This commit is contained in:
@@ -11,7 +11,7 @@
|
||||
将一个模式中所有参与振动的原子的贡献相加,就可以得到该模式的拉曼张量。
|
||||
若模式的该拉曼张量只包含小量($epsilon$, $eta$ and $zeta$),
|
||||
说明该模式中,原子振动导致的拉曼效应互相抵消了大部分,该模式的拉曼活性较弱;
|
||||
而若该拉曼张量包含较大的常数项,说明该模式的拉曼效应较强。
|
||||
而若该拉曼张量包含较大的常数项($a$),说明该模式的拉曼效应较强。
|
||||
|
||||
The center principle of our approximation is to assign the Raman tensor
|
||||
(i.e., change of polarizability caused by atomic displacement)
|
||||
@@ -33,7 +33,7 @@ Otherwise, if the Raman tensor contains quantities with large absolute value ($a
|
||||
|
||||
In this section, AB#sub[1]CB#sub[2] instead of ABCB was used to denote the four bilayers in 4H-SiC primative cell
|
||||
to clearly distinguish the two B layers.
|
||||
This is because the local environment of the two B layers is mirror symmetric rather than translationally symmetric,
|
||||
This is because the local environment of the two B layers is mirror symmetric with each other,
|
||||
thus their Raman tensors are not equal.
|
||||
|
||||
=== Raman tensor of Si atoms in A and C layers
|
||||
@@ -42,8 +42,8 @@ This is because the local environment of the two B layers is mirror symmetric ra
|
||||
根据前文,我们知道,当这两个原子同步地沿 x 正方向振动时,它们属于 E1(C6v) B2(C2v) 表示,拉曼张量可以写为:
|
||||
|
||||
We first derive the Raman tensor of Si atoms in A and C layer vibrating along x direction.
|
||||
When the two atoms vibrate synchronously in the positive x direction,
|
||||
they belong to the representation of E#sub[1] of C#sub[6v] or B#sub[2] of C#sub[2v].
|
||||
The vibration where the two atoms vibrate synchronously along the positive x direction,
|
||||
belongs to the representation of E#sub[1] of C#sub[6v] and B#sub[2] of C#sub[2v].
|
||||
Thus, their Raman tensor can be written as:
|
||||
|
||||
$ mat(,,2a_1;,,;2a_1,,;) $
|
||||
@@ -56,9 +56,9 @@ where $a_i (i = 1 "to" 6)$ are unknown constants.
|
||||
它们属于 E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v] 表示,
|
||||
拉曼张量可以写为:
|
||||
|
||||
When the Si atom in A layer vibrates in the positive x direction
|
||||
while the Si atom in C layer vibrates in the negative x direction,
|
||||
they belong to the representation of E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v].
|
||||
For the vibration where the Si atom in A layer vibrates towards the positive x direction
|
||||
and the Si atom in C layer vibrates towards the negative x direction,
|
||||
it belongs to the representation of E#sub[2] of C#sub[6v] and A#sub[2] of C#sub[2v].
|
||||
Thus, their Raman tensor can be written as:
|
||||
|
||||
$ mat(,2a_2,;2a_2,,;,,;) $
|
||||
@@ -72,33 +72,31 @@ $ mat(,a_2,a_1;a_2,,;a_1,,;), mat(,-a_2,a_1;-a_2,,;a_1,,;), $
|
||||
接下来讨论 A/C 层 Si 原子沿 y 方向振动时的拉曼张量,使用相似的方法可以得到:
|
||||
|
||||
The Raman tensors of Si atoms in A and C layers vibrating along positive y direction
|
||||
can be obtained using the method, which gives:
|
||||
can be obtained using the same method, which gives:
|
||||
|
||||
$ mat(a_4,,;,-a_4,a_3;,a_3,;), mat(-a_4,,;,a_4,a_3;,a_3,;) $
|
||||
|
||||
$\{a_1, a_2, a_3, a_4\}$ 之间并不独立。为了确定它们之间的关系,我们考虑将体系绕 z 轴旋转 120 度,
|
||||
同一个点的坐标旋转前后分别为 $r$ 和 $C_3 r$,其中 $r$ 是一个列向量,$C_3$ 是一个旋转矩阵:
|
||||
$\{a_1, a_2, a_3, a_4\}$ 之间并不独立。为了确定它们之间的关系,我们考虑 A 层中 Si 原子沿 b 轴正方向振动所导致的拉曼张量(记为 $alpha'$)。
|
||||
一方面,它可以看作由向 x 和 y 正方向振动的拉曼张量(记为 $alpha_x$ 和 $alpha_y$)通过线性组合得到;
|
||||
另一方面,它也可以看作由 $alpha_x$ 通过将体系绕 z 轴旋转 $120 degree$ 得到。
|
||||
因此:
|
||||
|
||||
where $\{a_3, a_4\}$ are not independent of $\{a_1, a_2\}$.
|
||||
To determine the relationship between $\{a_1, a_2\}$ and $\{a_3, a_4\}$,
|
||||
the system is rotated by $120 degree$ around the z axis.
|
||||
The point located at $r$ before rotation should be at $C_3 r$ after rotation,
|
||||
where $r$ is a column vector and $C_3$ is a rotation matrix:
|
||||
the Raman tensor of Si atoms in A layer vibrating along the positive b-axis direction
|
||||
(denoted as $alpha'$) was considered.
|
||||
On one hand,
|
||||
it can be expressed as a linear combination of the Raman tensors vibrating in the positive x and y directions
|
||||
(denoted as $alpha_x$ and $alpha_y$, respectively);
|
||||
on the other hand,
|
||||
it can also be obtained from $alpha_x$ by rotating the system by $120 degree$.
|
||||
Thus:
|
||||
|
||||
$ C_3 = mat(-1/2,-sqrt(3)/2,0;sqrt(3)/2,-1/2,0;0,0,1;) $
|
||||
|
||||
记 A 层中 Si 原子沿与 x 轴夹角 $120 degree$ 的方向振动所导致的拉曼张量为 $alpha'$,
|
||||
沿 x 和 y 正方向振动的拉曼张量则为 $alpha_x$ 和 $alpha_y$。
|
||||
一方面,$alpha'$ 可以从 $alpha_x$ 出发,将体系旋转 $120 degree$ 得到;
|
||||
另一方面,$alpha'$ 也可以由 $alpha_x$ 和 $alpha_y$ 通过线性组合得到:
|
||||
|
||||
The Raman tensor of Si atoms in A layer vibrating along the direction at an angle of $120 degree$ with the x axis
|
||||
is denoted as $alpha'$,
|
||||
while those vibrating in the positive x and y directions are denoted as $alpha_x$ and $alpha_y$, respectively.
|
||||
On one hand, $alpha'$ can be obtained from $alpha_x$ by rotating the system by $120 degree$;
|
||||
on the other hand, $alpha'$ can also be expressed as a linear combination of $alpha_x$ and $alpha_y$:
|
||||
|
||||
$ alpha' = C_3 alpha_x C_3^T = -1/2 alpha_x + sqrt(3)/2 alpha_y $
|
||||
$
|
||||
alpha' = C_3 alpha_x C_3^T = -1/2 alpha_x + sqrt(3)/2 alpha_y, \
|
||||
"where" C_3 = mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1;),
|
||||
alpha_x = mat(,a_2,a_1;a_2,,;a_1,,;), alpha_y = mat(a_4,,;,-a_4,a_3;,a_3,;)
|
||||
$
|
||||
|
||||
化简可得:
|
||||
|
||||
@@ -109,8 +107,7 @@ $ a_3 = a_1, a_4 = a_2 $
|
||||
与 x 和 y 方向的情况类似,可以推导出 A/C 层 C 原子沿 z 方向振动时的拉曼张量。总结如下。
|
||||
|
||||
The Raman tensors of C atoms in A and C layers vibrating along z direction can be derived similarly.
|
||||
Thus the results are summarized as follows:
|
||||
|
||||
The results are summarized as follows:
|
||||
|
||||
#figure(
|
||||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
@@ -141,7 +138,7 @@ $ mat(,a'_2,a'_1;a'_2,,;a'_1,,;), mat(,-a'_2,a'_1;-a'_2,,;a'_1,,;) $
|
||||
因此可以推测它们的拉曼张量只有较小的不同,即:
|
||||
|
||||
Because the local environment of Si atoms in B layer is very similar to that in A layer (as shown in @figure-same),
|
||||
we can assume that their Raman tensors differ only by small quantities, i.e.,
|
||||
we can assume that their Raman tensors differ only by quantities with small absolute values, i.e.,
|
||||
|
||||
$
|
||||
a'_1 = a_1 + epsilon_1, abs(epsilon_1) << abs(a_1), \
|
||||
@@ -152,7 +149,7 @@ $
|
||||
|
||||
由此可以写出 B 层 Si 原子沿 x 方向振动时的拉曼张量:
|
||||
|
||||
Thus, the Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers vibrating along x direction
|
||||
Thus, the Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers vibrating along positive x direction
|
||||
can be written as:
|
||||
|
||||
$
|
||||
@@ -185,72 +182,95 @@ The Raman tensors of Si atoms in B#sub[1] and B#sub[2] layers vibrating along ot
|
||||
|
||||
=== Raman tensor of C atoms
|
||||
|
||||
考虑 A/C 层 C 原子的拉曼张量,使用与 Si 原子类似的方法,可以得到:
|
||||
C 原子的拉曼张量,使用与 Si 原子类似的方法,可以得到。
|
||||
例如 A 层 C 原子的拉曼张量可以写为:
|
||||
|
||||
The Raman tensors of C atoms in A and C layers can be obtained using a similar method:
|
||||
The Raman tensors of C atoms can be obtained using a similar method as that of Si atoms.
|
||||
For example, the Raman tensor of C atom in A layer can be written as:
|
||||
|
||||
$
|
||||
mat(,b_2,b_1;b_2,,;b_1,,;), mat(,-b_2,b_1;-b_2,,;b_1,,;)
|
||||
$
|
||||
#figure(
|
||||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
|
||||
table.cell(rowspan: 2)[*Raman tensor #linebreak() of atoms*], table.cell(rowspan: 2)[A layer],
|
||||
[C],
|
||||
[$alpha_"Cx" = mat(,b_2,b_1;b_2,,;b_1,,;)$],
|
||||
[$alpha_"Cy" = mat(b_2,,;,-b_2,b_1;,b_1,;)$],
|
||||
[$alpha_"Cz" = mat(b_5,,;,b_5,;,,b_6;)$],
|
||||
[Si],
|
||||
[$alpha_"Six" = mat(,a_2,a_1;a_2,,;a_1,,;)$],
|
||||
[$alpha_"Siy" = mat(a_2,,;,-a_2,a_1;,a_1,;)$],
|
||||
[$alpha_"Siz" = mat(a_5,,;,a_5,;,,a_6;)$],
|
||||
),
|
||||
placement: none,
|
||||
)
|
||||
|
||||
我们需要估计 ${b_1, b_2}$ 与 ${a_1, a_2}$ 之间的关系。
|
||||
考虑 A 层 C 原子的环境,它可以由 A 层 Si 原子通过以下操作得到:
|
||||
考虑 A 层 C 原子的环境,它可以由 A 层 Si 原子通过以下三步操作得到:
|
||||
先沿基平面取镜像,然后反转电荷,再调整原子质量等其它因素,如图所示。
|
||||
我们分两步来推导这个过程中拉曼张量的变化。
|
||||
我们分别考虑这些过程中拉曼张量的变化。
|
||||
|
||||
The relationship between $\{b_1, b_2\}$ and $\{a_1, a_2\}$ needs to be estimated.
|
||||
The environment of C atoms in A layer can be obtained from that of Si atoms in A layer
|
||||
by first taking a mirror image along the basal plane,
|
||||
then reversing the charge and adjusting the atomic mass and other factors,
|
||||
as shown in @figure-sitoc.
|
||||
The change of Raman tensor during this process could be derived following these two steps.
|
||||
The environment of C atoms in A layer can be obtained from that of Si atoms in A layer with the following three steps:
|
||||
first taking a mirror image along the basal plane, then reversing the charge,
|
||||
and finally adjusting the atomic mass and other factors, as shown in @fig-sitoc.
|
||||
The change of Raman tensor during these processes would be discussed separately.
|
||||
|
||||
#include "fig-sitoc.typ"
|
||||
|
||||
记翻转前后的 Si 原子拉曼张量为 $alpha$ 和 $alpha'$。
|
||||
考虑在外场 $E$ 作用下,Si 原子沿 x 方向振动导致的系统能量变化为:
|
||||
第一步中,记翻转后的拉曼张量为 $alpha'_"Six"$、$alpha'_"Siy"$ 和 $alpha'_"Siz"$。
|
||||
对于 x 和 y 方向振动的拉曼张量,只需要将群元素 $sigma_"h" = op("diag") (1, 1, -1)$ 作用上去即可;
|
||||
对于 z 方向振动的拉曼张量,还需要乘以 $-1$,因为在这个过程中振动的方向发生了改变。
|
||||
|
||||
The Raman tensor of the Si atom in A layer before and after taking the mirror image
|
||||
was denoted as $alpha$ and $alpha'$, respectively.
|
||||
Before the mirror image,
|
||||
the system energy change caused by the vibration of this atom along x direction
|
||||
under an external electric field $E$ is:
|
||||
In the first step,
|
||||
the Raman tensors after taking the mirror image were denoted as $alpha'_"Six"$, $alpha'_"Siy"$ and $alpha'_"Siz"$.
|
||||
For $alpha'_"Six"$ and $alpha'_"Siy"$, they are connected with $alpha_"Six"$ and $alpha_"Siy"$
|
||||
by the group element $sigma_"h" = op("diag") (1, 1, -1)$.
|
||||
For $alpha'_"Siz"$, an additional factor of $-1$ is needed,
|
||||
because the direction of vibration has changed during this process.
|
||||
|
||||
$ Delta E = E^T alpha E, #[where] alpha = mat(,a_2,a_1;a_2,,;a_1,,;) $
|
||||
$
|
||||
alpha'_"Six" = sigma_"h" alpha_"Six" sigma_"h"^T = mat(,a_2,-a_1;a_2,,;-a_1,,;), \
|
||||
alpha'_"Siy" = sigma_"h" alpha_"Siy" sigma_"h"^T = mat(a_2,,;,-a_2,-a_1;,-a_1,;), \
|
||||
alpha'_"Siz" = -sigma_"h" alpha_"Siz" sigma_"h"^T = mat(-a_5,,;,-a_5,;,,-a_6;),
|
||||
$
|
||||
|
||||
若在翻转的过程中,将电场同样翻转,则总能量不变。因此:
|
||||
翻转电荷的过程不会导致拉曼张量的变化。
|
||||
这可以通过考虑在外场 $E$ 作用下的能量变化来得知。
|
||||
记电荷翻转前后的拉曼张量分别为 $alpha$ 和 $alpha'$。
|
||||
若在翻转电荷的过程中,外加电场同样翻转,则总能量不变。
|
||||
因此 $E^T alpha E = (-E)^T alpha' (-E)$,因此 $alpha = alpha'$。
|
||||
|
||||
When the electric field is also flipped during the mirror image,
|
||||
the total energy does not change, i.e.,
|
||||
In the second step (reversing the charge), the Raman tensor does not change.
|
||||
This can be derived by considering the energy caused by an external electric field $E$.
|
||||
The Raman tensors before and after charge reversal were denoted as $alpha$ and $alpha'$.
|
||||
When the direction of the external electric field is also reversed during the charge reversal,
|
||||
the total energy does not change, i.e., $E^T alpha E = (-E)^T alpha' (-E)$.
|
||||
Thus, we have $alpha = alpha'$.
|
||||
|
||||
$ E^T alpha E = Delta E = (sigma E)^T alpha' (sigma E), #[where] sigma = mat(1,0,0;0,1,0;0,0,-1;) $
|
||||
|
||||
整理可得:
|
||||
第三步中,我们假定原子质量和其它因素的变化对拉曼张量的影响较小,
|
||||
即 $alpha'_"Six"$、$alpha'_"Siy"$ 和 $alpha'_"Siz"$ 与 $alpha_"Six"$、$alpha_"Siy"$ 和 $alpha_"Siz"$ 之间仅有较小的差异。
|
||||
因此:
|
||||
|
||||
In the third step, we assume that the change in atomic mass and other factors has a small effect on the Raman tensor,
|
||||
i.e., $alpha'_"Six"$, $alpha'_"Siy"$ and $alpha'_"Siz"$ differ from $alpha_"Six"$, $alpha_"Siy"$ and $alpha_"Siz"$
|
||||
only by small quantities, respectively.
|
||||
Thus:
|
||||
|
||||
$ alpha' = mat(,a_2,-a_1;a_2,,;-a_1,,;) $
|
||||
$
|
||||
b_1 = -a_1 - zeta_1, abs(zeta_1) << abs(a_1), \
|
||||
b_2 = a_2 + zeta_2, abs(zeta_2) << abs(a_2), \
|
||||
b_5 = -a_5 - zeta_5, abs(zeta_5) << abs(a_5), \
|
||||
b_6 = -a_6 - zeta_6, abs(zeta_6) << abs(a_6),
|
||||
$
|
||||
|
||||
记电荷反转后,Si 原子拉曼张量为 $alpha''$。
|
||||
若将外加电场方向同时反转,则能量不变。即:
|
||||
=== Summary
|
||||
|
||||
// TODO: 能量写明是 Delta E
|
||||
我们将各个原子的拉曼张量总结于 @table-singleatom,用它推测了各个模式的拉曼张量并与第一性原理计算对比,
|
||||
结果如 @table-predmode 所示。
|
||||
|
||||
The Raman tensor of Si atom after charge reversal was denoted as $alpha''$.
|
||||
The energy does not change when the direction of the external electric field is also reversed, i.e.,
|
||||
|
||||
$ E^T alpha' E = (sigma' E)^T alpha'' (sigma' E), #[where] sigma' = -1 $
|
||||
|
||||
Thus:
|
||||
|
||||
$ alpha'' = alpha' $
|
||||
|
||||
使用类似的方法,得到 Si 原子沿其它方向和 C 原子沿各个方向的拉曼张量,以及各个模式的拉曼张量。
|
||||
|
||||
Similarily, we can write out the Raman tensors of Si atoms virbrating along other directions
|
||||
and the Raman tensors of C atoms,
|
||||
and thus the Raman tensors of all phonon modes.
|
||||
The results are summarized in @table-singleatom and @table-predmode.
|
||||
We summarized the Raman tensors of each atom in @table-singleatom.
|
||||
The result was used to predict the Raman tensors of each mode and comparing with first-principles calculations,
|
||||
which is shown in @table-predmode.
|
||||
|
||||
#include "table-singleatom.typ"
|
||||
#include "table-predmode.typ"
|
||||
@@ -4,4 +4,4 @@
|
||||
where the nearest neighbors are exactly the same, and only half of the next nearest neighbors are different.
|
||||
],
|
||||
placement: none,
|
||||
)<figure-sitoc>
|
||||
)<fig-sitoc>
|
||||
|
||||
@@ -5,36 +5,36 @@
|
||||
table.cell(rowspan: 8)[*Raman tensor #linebreak() of atoms*],
|
||||
r2[A layer],
|
||||
[C],
|
||||
[$mat(,b_2,b_1;b_2,,;b_1,,;)$],
|
||||
[$mat(b_2,,;,-b_2,b_1;,b_1,;)$],
|
||||
[$mat(b_5,,;,b_5,;,,b_6;)$],
|
||||
[$mat(,a_2+zeta_2,-a_1-zeta_1;a_2+zeta_2,,;-a_1-zeta_1,,;)$],
|
||||
[$mat(a_2+zeta_2,,;,-a_2-zeta_2,-a_1-zeta_1;,-a_1-zeta_1,;)$],
|
||||
[$mat(-a_5-zeta_5,,;,-a_5-zeta_5,;,,-a_6-zeta_6;)$],
|
||||
[Si],
|
||||
[$mat(,a_2,a_1;a_2,,;a_1,,;)$],
|
||||
[$mat(a_2,,;,-a_2,a_1;,a_1,;)$],
|
||||
[$mat(a_5,,;,a_5,;,,a_6;)$],
|
||||
r2[B#sub[1] layer],
|
||||
[C],
|
||||
[$mat(,-b_2-eta_2,b_1+eta_1;-b_2-eta_2,,;b_1+eta_1,,;)$],
|
||||
[$mat(-b_2-eta_2,,;,b_2+eta_2,b_1+eta_1;,b_1+eta_1,;)$],
|
||||
[$mat(b_5+eta_5,,;,b_5+eta_5,;,,b_6+eta_6;)$],
|
||||
[$mat(,-a_2-zeta_2-eta_2,-a_1-zeta_1+eta_1;-a_2-zeta_2-eta_2,,;-a_1-zeta_1+eta_1,,;)$],
|
||||
[$mat(-a_2-zeta_2-eta_2,,;,a_2+zeta_2+eta_2,-a_1-zeta_1+eta_1;,-a_1-zeta_1+eta_1,;)$],
|
||||
[$mat(-a_5-zeta_5+eta_5,,;,-a_5-zeta_5+eta_5,;,,-a_6-zeta_6+eta_6;)$],
|
||||
[Si],
|
||||
[$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
|
||||
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||||
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
|
||||
r2[C layer],
|
||||
[C],
|
||||
[$mat(,-b_2,b_1;-b_2,,;b_1,,;)$],
|
||||
[$mat(-b_2,,;,b_2,b_1;,b_1,;)$],
|
||||
[$mat(b_5,,;,b_5,;,,b_6;)$],
|
||||
[$mat(,-a_2-zeta_2,-a_1-zeta_1;-a_2-zeta_2,,;-a_1-zeta_1,,;)$],
|
||||
[$mat(-a_2-zeta_2,,;,a_2+zeta_2,-a_1-zeta_1;,-a_1-zeta_1,;)$],
|
||||
[$mat(-a_5-zeta_5,,;,-a_5-zeta_5,;,,-a_6-zeta_6;)$],
|
||||
[Si],
|
||||
[$mat(,-a_2,a_1;-a_2,,;a_1,,;)$],
|
||||
[$mat(-a_2,,;,a_2,a_1;,a_1,;)$],
|
||||
[$mat(a_5,,;,a_5,;,,a_6;)$],
|
||||
r2[B#sub[2] layer],
|
||||
[C],
|
||||
[$mat(,b_2+eta_2,b_1+eta_1;b_2+eta_2,,;b_1+eta_1,,;)$],
|
||||
[$mat(b_2+eta_2,,;,-b_2-eta_2,b_1+eta_1;,b_1+eta_1,;)$],
|
||||
[$mat(b_5+eta_5,,;,b_5+eta_5,;,,b_6+eta_6;)$],
|
||||
[$mat(,a_2+zeta_2+eta_2,-a_1-zeta_1+eta_1;a_2+zeta_2+eta_2,,;-a_1-zeta_1+eta_1,,;)$],
|
||||
[$mat(a_2+zeta_2+eta_2,,;,-a_2-zeta_2-eta_2,-a_1-zeta_1+eta_1;,-a_1-zeta_1+eta_1,;)$],
|
||||
[$mat(-a_5-zeta_5+eta_5,,;,-a_5-zeta_5+eta_5,;,,-a_6-zeta_6+eta_6;)$],
|
||||
[Si],
|
||||
[$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
|
||||
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||||
|
||||
Reference in New Issue
Block a user