This commit is contained in:
2025-07-20 18:28:12 +08:00
parent 89fd7175f1
commit 40018dc353
8 changed files with 315 additions and 283 deletions

View File

@@ -1,4 +1,3 @@
= Appendix
#include "predict/default.typ"
#include "predmode.typ"

View File

@@ -6,268 +6,251 @@
近似的核心思路。
我们的近似方法基于这样一个原则:将拉曼张量(即原子位移引起的极化率变化)分配给单位晶胞中的每个原子。
由于同种原子的局部环境相似、只有次近邻才有不同,因此我们将同种原子导致的拉曼效应的差视为一个小量
一些原子的局部环境相似但不完全相同,我们将它们的拉曼张量的差视为一个小量$epsilon$, $eta$ and $zeta$
剩余的部分视为一个大量($a$).
将一个模式中所有参与振动的原子的贡献相加,就可以得到该模式的拉曼张量。
若模式的该拉曼张量只包含小量($epsilon$, $eta$ and $zeta$
说明该模式中,原子振动导致的拉曼效应互相抵消了大部分,该模式的拉曼活性较弱;
而若该拉曼张量包含较大的常数项,说明该模式的拉曼效应较强。
The center principle of our approximation is to assign the Raman tensor
(i.e., change of polarizability caused by atomic displacement)
to each atom in the unit cell.
Because the local environment of the same type of atom is similar and only different for the next nearest neighbors,
we consider the difference in Raman effect caused by the same type of atom as a small quantity.
For the atoms with similar but not exactly the same local environment,
we consider the difference in their Raman tensors as quantities with small absolute value
($epsilon$, $eta$ and $zeta$),
while the remaining part is treated as quantities with large absolute value ($a$).
The Raman tensor of a phonon mode can be obtained
by summing the contributions of all atoms participating in the vibration.
If the Raman tensor of a mode only contains quantities with small absolute value ($epsilon$, $eta$ and $zeta$),
it indicates that the Raman effect caused by atomic vibrations in this mode is largely canceled out,
and thus the mode has weak Raman activity.
Otherwise, if the Raman tensor contains quantities with large absolute value ($a$),
it indicates that the mode has strong Raman activity.
推导 A/C Si 原子沿 x 方向振动时的拉曼张量
使用 A/B1/C/B2 层的表述,而不是 ABCB来区分两个 B
这是因为两个 B 层的原子局部环境互相镜面对称而不是平移对称,导致它们的拉曼张量不相等。
In this section, AB#sub[1]CB#sub[2] instead of ABCB was used to denote the four bilayers in 4H-SiC primative cell
to clearly distinguish the two B layers.
This is because the local environment of the two B layers is mirror symmetric rather than translationally symmetric,
thus their Raman tensors are not equal.
=== Raman tensor of Si atoms in A and C layers
我们首先推导 A/C Si 原子沿 x 方向振动时的拉曼张量。
根据前文,我们知道,当这两个原子同向和反向振动时,它们分别属于 E1(C6v) B2(C2v) E2(C6v) A2(C2v) 表示,因此它们的拉曼张量分别为:
根据前文,我们知道,当这两个原子同步地沿 x 正方向振动时,它们属于 E1(C6v) B2(C2v) 表示,拉曼张量可以写为:
We first derive the Raman tensor of Si atoms in A/C layer vibrating along x direction.
When the two atoms vibrate in the same direction and opposite direction,
they belong to the representation of E#sub[1] of C#sub[6v] or B#sub[2] of C#sub[2v]
and E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v], respectively.
Thus, their Raman tensors are in the form of:
We first derive the Raman tensor of Si atoms in A and C layer vibrating along x direction.
When the two atoms vibrate synchronously in the positive x direction,
they belong to the representation of E#sub[1] of C#sub[6v] or B#sub[2] of C#sub[2v].
Thus, their Raman tensor can be written as:
$ mat(,,2a_1;,,;2a_1,,;), mat(,2a_2,;2a_2,,;,,;), $
$ mat(,,2a_1;,,;2a_1,,;) $
其中 $a_1$ $a_2$ 是两个未知的常数。
其中 $a_1$ 未知的常数。
where $a_1$ and $a_2$ are two constants with unknown values.
where $a_i (i = 1 "to" 6)$ are unknown constants.
将上述结果相加或相减,得到 A 层和 C Si 原子沿 x 方向振动时的拉曼张量分别为:
A Si 原子沿 x 正方向振动而 C Si 原子沿 x 方向振动时
它们属于 E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v] 表示,
拉曼张量可以写为:
By adding or subtracting the above results,
we get the Raman tensors of Si atoms in A and C layers vibrating along x direction:
When the Si atom in A layer vibrates in the positive x direction
while the Si atom in C layer vibrates in the negative x direction,
they belong to the representation of E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v].
Thus, their Raman tensor can be written as:
$ mat(,a_2,a_1;a_2,,;a_1,,;), mat(,-a_2,a_1;-a_2,,;-a_1,,;), $
$ mat(,2a_2,;2a_2,,;,,;) $
近似给出 B Si 原子沿 x 方向振动时的拉曼张量
因此A 层和 C Si 原子沿 x 方向振动时的拉曼张量分别为:
注意到 B Si 原子与 A Si 原子
Thus, the Raman tensors of Si atoms in A and C layers vibrating in the positive x direction are:
$ mat(,a_2,a_1;a_2,,;a_1,,;), mat(,-a_2,a_1;-a_2,,;a_1,,;), $
接下来讨论 A/C Si 原子沿 y 方向振动时的拉曼张量,使用相似的方法可以得到:
The Raman tensors of Si atoms in A and C layers vibrating along positive y direction
can be obtained using the method, which gives:
$ mat(a_4,,;,-a_4,a_3;,a_3,;), mat(-a_4,,;,a_4,a_3;,a_3,;) $
$\{a_1, a_2, a_3, a_4\}$ 之间并不独立。为了确定它们之间的关系,我们考虑将体系绕 z 轴旋转 120 度,
同一个点的坐标旋转前后分别为 $r$ $C_3 r$,其中 $r$ 是一个列向量,$C_3$ 是一个旋转矩阵:
where $\{a_3, a_4\}$ are not independent of $\{a_1, a_2\}$.
To determine the relationship between $\{a_1, a_2\}$ and $\{a_3, a_4\}$,
the system is rotated by $120 degree$ around the z axis.
The point located at $r$ before rotation should be at $C_3 r$ after rotation,
where $r$ is a column vector and $C_3$ is a rotation matrix:
$ C_3 = mat(-1/2,-sqrt(3)/2,0;sqrt(3)/2,-1/2,0;0,0,1;) $
A 层中 Si 原子沿与 x 轴夹角 $120 degree$ 的方向振动所导致的拉曼张量为 $alpha'$
沿 x y 正方向振动的拉曼张量则为 $alpha_x$ $alpha_y$
一方面,$alpha'$ 可以从 $alpha_x$ 出发,将体系旋转 $120 degree$ 得到;
另一方面,$alpha'$ 也可以由 $alpha_x$ $alpha_y$ 通过线性组合得到:
The Raman tensor of Si atoms in A layer vibrating along the direction at an angle of $120 degree$ with the x axis
is denoted as $alpha'$,
while those vibrating in the positive x and y directions are denoted as $alpha_x$ and $alpha_y$, respectively.
On one hand, $alpha'$ can be obtained from $alpha_x$ by rotating the system by $120 degree$;
on the other hand, $alpha'$ can also be expressed as a linear combination of $alpha_x$ and $alpha_y$:
$ alpha' = C_3 alpha_x C_3^T = -1/2 alpha_x + sqrt(3)/2 alpha_y $
化简可得:
Simplifying the above equations, we have:
$ a_3 = a_1, a_4 = a_2 $
x y 方向的情况类似,可以推导出 A/C C 原子沿 z 方向振动时的拉曼张量。总结如下。
The Raman tensors of C atoms in A and C layers vibrating along z direction can be derived similarly.
Thus the results are summarized as follows:
#figure(
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
table.cell(rowspan: 2)[*Raman tensor #linebreak() of atoms*],
[A layer], [Si],
[$mat(,a_2,a_1;a_2,,;a_1,,;)$],
[$mat(a_2,,;,-a_2,a_1;,a_1,;)$],
[$mat(a_5,,;,a_5,;,,a_6;)$],
[C layer], [Si],
[$mat(,-a_2,a_1;-a_2,,;a_1,,;)$],
[$mat(-a_2,,;,a_2,a_1;,a_1,;)$],
[$mat(a_5,,;,a_5,;,,a_6;)$],
),
placement: none,
)
=== Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers
A/C 层原子类似,同理可以给出 B#sub[1]B#sub[2] 层原子沿 x 方向振动的拉曼张量:
The Raman tensor of Si atoms in B#sub[1] and B#sub[2] layer vibrating along positive x direction
can be written out similarily as that in A and C layer:
$ mat(,a'_2,a'_1;a'_2,,;a'_1,,;), mat(,-a'_2,a'_1;-a'_2,,;a'_1,,;) $
注意到 B Si 原子与 A Si 原子的局部环境非常相似(最近邻完全相同,次近邻也只有一半不同,如图所示),
因此可以推测它们的拉曼张量只有较小的不同,即:
Because the local environment of Si atoms in B layer is very similar to that in A layer (as shown in @figure-same),
we can assume that their Raman tensors differ only by small quantities, i.e.,
$
a'_1 = a_1 + epsilon_1, abs(epsilon_1) << abs(a_1), \
a'_2 = a_2 + epsilon_2, abs(epsilon_2) << abs(a_2),
$
#include "fig-same.typ"
由此可以写出 B Si 原子沿 x 方向振动时的拉曼张量:
The center principle is to assign the Raman tensor (i.e., change of polarizability caused by atomic displacement)
to each atom in the unit cell.
This including the following steps:
- Write out the change of polarizability caused by displacement of Si atom in A and C layer,
Where unknown non-zero components are denoted by $a_1$, $a_2$, $a_5$, $a_6$.
For example, when we move the Si atom in A layer slightly towards the x+ direction in $d$ distance,
the change of polarizability should be $mat(,a_2,a_1;a_2,,;a_1,,)d$.
This could be done by conclusion above.
- The Si atom in B layer have similar local environment as the A and C layer, with only a little difference.
We denote these difference by $epsilon_1$, $epsilon_2$, $epsilon_5$, $epsilon_6$,
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
For example, when we move the Si atom in B layer slightly towards the x+ direction in $d$ distance,
the change of polarizability should be $mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,)d$.
- The local environment of C atom in A layer is similar to the Si atom in A layer with charge reversed and
the system reversed along xy plane.
We denote these difference by $eta_1$, $eta_2$, $eta_5$, $eta_6$,
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
For example, when we move the C atom in A layer slightly towards the x+ direction in $d$ distance,
the change of polarizability should be $mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,)d$.
- Similar to the case in Si atoms, we derive the change of polarizability
caused by moving C atom in B layer slightly towards the x+ direction in $d$ distance,
which should be $mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,)d$.
Thus, the Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers vibrating along x direction
can be written as:
Lets assign Raman tensor onto each atom.
That is, Raman tensor is derivative of the polarizability with respect to the atomic displacement:
$
alpha = pdv(chi, u)
$
where $u$ should be the displacement of the atom corresponding to a phonon mode.
But, even when $u$ is *NOT* the displacement of a phonon
(for example, lets only slightly move Si atom in A layer, keeping other atoms fixed),
the (high-frequency) polarizability is still well-defined,
and the will still cause a change in the polarizability.
Even more, the group representation theory is still applicable in this condition:
the only thing that matters is, when applying $g$ to the system,
the tensor transformed into $g^(-1) alpha g$ or $g alpha g^(-1)$,
no matter $alpha$ is Raman tensor or something else, or it is related to a phonon or not.
Thus, we can, in principle, "assign" Raman tensor of a phonon, to each atom.
This "assign" is unique since both the atom movement and all phonons have 24 dimensions.
Next, we consider what these single-atom-caused "Raman tensors" looks like.
For example, what happens if we move the Si atom in A layer slightly along the x+ direction?
Consider also move the Si atom in C layer slightly, along x+ or x- direction.
How about the Raman tensor caused by the both two atoms?
In first case, this is B2 representation in E1 representation. Thus the Raman tensor should be something like:
$
mat(,,2a_1;,,;2a_1,,;)
$
In the second case, it is A2 in E2. It turns out:
$
mat(,2a_2,;2a_2,,;,,;)
$
The average of these two tensors should be the s"Raman tensor" cause by move only the Si atom in A layer,
slightly towards x+ direction.
$
mat(,a_2,a_1;a_2,,;a_1,,;)
$
The difference should be the "Raman tensor" of the second atom.
$
mat(,-a_2,a_1;-a_2,,;a_1,,;)
$
// This approach applied relied on the fact that, all Si atom in 4H-SiC is "distinguishable" by the symmetry operations.
// I mean, what will happen if we have two Si atoms in A layer?
// Apparently, we could not extract the "Raman tensor" of only one of the two atoms.
// This is the case for the 6H-SiC.
// Hence, we will provide a more general approach to estimate the "Raman tensor" of a single atom.
Consider the Si atom in the B1 layer.
It lives in an environment quite similar to the A layer.
Thus, the "Raman tensor" caused by it should be similar to the one caused by the A layer:
$
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)
$
Similar to the Si atom in B2 layer:
$
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;),
mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)
$
Same approach applied for Si atom vibrate in y direction.
When we move both Si atoms in A and C layer in y+ direction,
it is B1 in E1, thus the "Raman tensor" should be:
$
mat(,,;,,2a_3;,2a_3,;)
$
And if we move Si in A layer towards y+ but Si in C layer towards y-,
it is A2 in E2:
$
mat(2a_4,,;,-2a_4,;,,;)
$
Thus we get the "Raman tensor" of Si atom in A layer sololy move towards y+ direction:
$
mat(a_4,,;,-a_4,a_3;,a_3,;)
$
and the "Raman tensor" of Si atom in C layer towards y+ direction:
$
mat(-a_4,,;,a_4,a_3;,a_3,;)
$
Same applied for the Si atom in B layer:
$
mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
$
$
mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
$
同理,可以得到 B#sub[1] B#sub[2] Si 原子沿其它方向振动的拉曼张量。
总结如下。
Before consider z-direction, it is important to note that, $a_1$ $a_2$ $a_3$ $a_4$ are not independent.
Consider vibration along x+ direction (lets say the distance is $d$).
System energy caused by external electric field and vibration is:
$
E^T (mat(,,2a_1;,,;2a_1,,) d) E
$
Apply C#sub[3] to atom vibration and external field, energy should not change. We got:
$
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)^T ( mat(,,2a_1;,,;2a_1,,)(-1/2 d) + mat(,,;,,2a_3;,2a_3,)(sqrt(3)/2 d) )
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)
$
It is equal to:
$
E^T (mat(,,1/2 a_1 + 3/2 a_3;,,sqrt(3)/2 a_1 - sqrt(3)/2 a_3;1/2 a_1 + 3/2 a_3,sqrt(3)/2 a_1 - sqrt(3)/2 a_3,) d) E
$
Thus:
$
1/2 a_1 + 3/2 a_3 = 2a_1 #linebreak()
sqrt(3)/2 a_1 - sqrt(3)/2 a_3 = 0
$
Thus $a_1 = a_3$.
Apply the same method, we get $abs(a_2) = abs(a_4)$.
Since we have not define the sign of $a_4$, we could take $a_2 = a_4$.
Same for $epsilon$.
The Raman tensors of Si atoms in B#sub[1] and B#sub[2] layers vibrating along other directions
can be obtained using similar method,
and the results are summarized as follows:
Now consider what if we move the Si atom in A layer along z+ direction.
If we move the Si atom in C layer along z+ direction, it is A1:
$
mat(2a_5,,;,2a_5,;,,2a_6;)
$
If we move the Si atom in C layer along z- direction, it is B1:
$
0
$
Thus we get the "Raman tensor" of Si atom in A or C layer towards z+ direction:
$
mat(a_5,,;,a_5,;,,a_6;)
$
Lets consider the C atom in A layer.
It should be somehow similar to the Si atom in A layer, but with a negative sign in some places,
and then add or subtract some little value.
Actually, the "transformation" of Si atom in A layer to C atom in A layer applied in the following steps:
- reverse charge.
- reverse system along xy plane.
First we consider the first step.
Taking the define of electricity tenser:
$
P = chi E
$
Lets reverse charge of the system, say we now have electricity tensor $chi'$. We get:
$
-P = chi'(-E)
$
Thus we get $chi' = chi$, the first step does not change the electricity tensor, nor the "Raman tensor".
Now we consider the second step.
For electricity tensor, it will become:
$
mat(1,,;,1,;,,-1) chi mat(1,,;,1,;,,-1)
$
For $u$, when it is along x or y direction, it will not change. When it is along z direction, it will become $-u$.
So in conclusion, Raman tensor of C atom in A layer could be estimated from the Raman tensor of Si atom in A layer, by:
- for movement alone x and y direction, xz yz should be applied a negative sign.
- for movement alone z direction, xx xy yy zz should be applied a negative sign.
Export "Raman tensor" of C atom in C layer from C atom in A layer, in the same way.
Now consider the C atom in B1 layer.
Is it similar to the C atom in A layer, just like that for Si atom?
No. It turns out to be similar to the C atom in C layer.
We summarize these stuff into @table-singleatom.
Until now, we only consider the "Raman tensor" caused by single atom or atoms move in the same amplitudes.
However, that is not the case in real phonon.
- In some A1 modes, only Si or C atom moves. If we take the magnitude of eigenvector as 1,
then amplitude of each atom is $1/(4sqrt(m_#text[Si]))$ or $1/(4sqrt(m_#text[C]))$.
- In other cases, the amplitude of Si and C are in the ration of $m_#text[C] : m_#text[Si]$.
thus the amplitude of Si atom is $1/2 sqrt(1/(m_#text[Si]+m_#text[Si]^2/m_#text[C]))$, so do the C atom.
Furthermore, we list predicted modes and their Raman tensors, in @table-predmode.
- $a$: Raman tensor of Si atom in A layer, large value.
- $epsilon$: Difference of Raman tensors of Si atom in A and B1 layer, small value.
- $eta$: Difference of Raman tensors of C and Si atom in A layer, small value.
- $zeta$: Difference of Raman tensors of C atoms in A and B layer, small value.
#page(flipped: true)[#figure({
table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Move Direction*], [x], [y], [z],
[Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_2,,;,-a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
[C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$],
[$mat(a_2+eta_2,,;,-a_2-eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
[Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
[C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
[$mat(-a_2-eta_2-zeta_2,,;,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
[Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_2,,;,a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
[C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$],
[$mat(-a_2-eta_2,,;,a_2+eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
[Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
[C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
[$mat(a_2+eta_2+zeta_2,,;,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
)},
caption: ["Raman tensor" caused by single atom],
#figure(
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
table.cell(rowspan: 2)[*Raman tensor #linebreak() of atoms*],
[B#sub[1] layer], [Si],
[$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
[B#sub[2] layer], [Si],
[$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
),
placement: none,
)<table-singleatom>]
)
=== Raman tensor of C atoms
考虑 A/C C 原子的拉曼张量,使用与 Si 原子类似的方法,可以得到:
The Raman tensors of C atoms in A and C layers can be obtained using a similar method:
$
mat(,b_2,b_1;b_2,,;b_1,,;), mat(,-b_2,b_1;-b_2,,;b_1,,;)
$
我们需要估计 ${b_1, b_2}$ ${a_1, a_2}$ 之间的关系。
考虑 A C 原子的环境,它可以由 A Si 原子通过以下操作得到:
先沿基平面取镜像,然后反转电荷,再调整原子质量等其它因素,如图所示。
我们分两步来推导这个过程中拉曼张量的变化。
The relationship between $\{b_1, b_2\}$ and $\{a_1, a_2\}$ needs to be estimated.
The environment of C atoms in A layer can be obtained from that of Si atoms in A layer
by first taking a mirror image along the basal plane,
then reversing the charge and adjusting the atomic mass and other factors,
as shown in @figure-sitoc.
The change of Raman tensor during this process could be derived following these two steps.
#include "fig-sitoc.typ"
记翻转前后的 Si 原子拉曼张量为 $alpha$ $alpha'$
考虑在外场 $E$ 作用下Si 原子沿 x 方向振动导致的系统能量变化为:
The Raman tensor of the Si atom in A layer before and after taking the mirror image
was denoted as $alpha$ and $alpha'$, respectively.
Before the mirror image,
the system energy change caused by the vibration of this atom along x direction
under an external electric field $E$ is:
$ Delta E = E^T alpha E, #[where] alpha = mat(,a_2,a_1;a_2,,;a_1,,;) $
若在翻转的过程中,将电场同样翻转,则总能量不变。因此:
When the electric field is also flipped during the mirror image,
the total energy does not change, i.e.,
$ E^T alpha E = Delta E = (sigma E)^T alpha' (sigma E), #[where] sigma = mat(1,0,0;0,1,0;0,0,-1;) $
整理可得:
Thus:
$ alpha' = mat(,a_2,-a_1;a_2,,;-a_1,,;) $
记电荷反转后Si 原子拉曼张量为 $alpha''$
若将外加电场方向同时反转,则能量不变。即:
// TODO: 能量写明是 Delta E
The Raman tensor of Si atom after charge reversal was denoted as $alpha''$.
The energy does not change when the direction of the external electric field is also reversed, i.e.,
$ E^T alpha' E = (sigma' E)^T alpha'' (sigma' E), #[where] sigma' = -1 $
Thus:
$ alpha'' = alpha' $
使用类似的方法,得到 Si 原子沿其它方向和 C 原子沿各个方向的拉曼张量,以及各个模式的拉曼张量。
Similarily, we can write out the Raman tensors of Si atoms virbrating along other directions
and the Raman tensors of C atoms,
and thus the Raman tensors of all phonon modes.
The results are summarized in @table-singleatom and @table-predmode.
#include "table-singleatom.typ"
#include "table-predmode.typ"

View File

@@ -1,5 +1,7 @@
#figure(
image("/画图/AB相似/embed.svg"),
caption: [Light incidence configurations in our Raman experiments.],
caption: [Local environment of the Si atoms in A and B#sub[1] layers,
where the nearest neighbors are exactly the same, and only half of the next nearest neighbors are different.
],
placement: none,
)<figure-same>

View File

@@ -0,0 +1,7 @@
#figure(
image("/画图/AB相似/embed.svg"),
caption: [Local environment of the Si atoms in A and B#sub[1] layers,
where the nearest neighbors are exactly the same, and only half of the next nearest neighbors are different.
],
placement: none,
)<figure-sitoc>

View File

@@ -0,0 +1,31 @@
#figure({
set par(justify: false);
let c(n, content) = table.cell(colspan: n, content);
let r(n, content) = table.cell(rowspan: n, content);
let r2(content) = r(2, content);
table(columns: 6, align: center + horizon, inset: (x: 1pt, y: 5pt),
r2[*Representation #linebreak() in C#sub[6v]*], r2[*Calculated Frequency* (THz)],
r2[*Relative Vibration Direction*], c(3)[*Raman Tensor*], [Component], [Predicted], [Calculated (a.u.)],
r(6)[A#sub[1]],
r2[591.90], r2[Si: $+-+-$ #linebreak() C: none],
[xx, yy], [$-2epsilon_5$], [-1.68],
[zz], [$-2epsilon_6$], [1.34],
r2[812.87], r2[Si: none #linebreak() C: $+-+-$],
[xx, yy], [$-2eta_5$], [0.10],
[zz], [$-2eta_6$], [-1.33],
r2[933.80], r2[Si: $++++$ #linebreak() C: $----$],
[xx, yy], [$4a_5+4b_5+2epsilon_5+2eta_5$], [-7.68],
[zz], [$4a_6-4b_6+2epsilon_6-2eta_6$], [21.65],
r(3)[E#sub[1]],
[257.35], [Si: $+-+-$ #linebreak() C: $-+-+$], [xz, yz], [$-2epsilon_1+2eta_1$], [-1.56],
[746.91], [Si: $+-+-$ #linebreak() C: $+-+-$], [xz, yz], [$-2epsilon_1-2eta_1$], [-0.30],
[776.57], [Si: $++++$ #linebreak() C: $----$], [xz, yz], [$4a_1-4b_1+2epsilon_1-2eta_1$], [7.32],
r(4)[E#sub[2]],
[190.51], [Si: $++--$ #linebreak() C: $-++-$], [xx, -yy], [$-2epsilon_1+2eta_1$], [-1.56],
[197.84], [Si: $+--+$ #linebreak() C: $++--$], [xx, -yy], [$-2epsilon_1-2eta_1$], [-0.30],
[756.25], [Si: $++--$ #linebreak() C: $+--+$], [xx, -yy], [$4a_1-4b_1+2epsilon_1-2eta_1$], [7.32],
[764.33], [Si: $+--+$ #linebreak() C: $--++$], [xx, -yy], [$4a_1-4b_1+2epsilon_1-2eta_1$], [7.32],
)},
caption: [Predicted modes and their Raman tensor.],
placement: none,
)<table-predmode>

View File

@@ -0,0 +1,45 @@
#figure({
let r2(content) = table.cell(rowspan: 2, content);
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
table.cell(rowspan: 8)[*Raman tensor #linebreak() of atoms*],
r2[A layer],
[C],
[$mat(,b_2,b_1;b_2,,;b_1,,;)$],
[$mat(b_2,,;,-b_2,b_1;,b_1,;)$],
[$mat(b_5,,;,b_5,;,,b_6;)$],
[Si],
[$mat(,a_2,a_1;a_2,,;a_1,,;)$],
[$mat(a_2,,;,-a_2,a_1;,a_1,;)$],
[$mat(a_5,,;,a_5,;,,a_6;)$],
r2[B#sub[1] layer],
[C],
[$mat(,-b_2-eta_2,b_1+eta_1;-b_2-eta_2,,;b_1+eta_1,,;)$],
[$mat(-b_2-eta_2,,;,b_2+eta_2,b_1+eta_1;,b_1+eta_1,;)$],
[$mat(b_5+eta_5,,;,b_5+eta_5,;,,b_6+eta_6;)$],
[Si],
[$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
r2[C layer],
[C],
[$mat(,-b_2,b_1;-b_2,,;b_1,,;)$],
[$mat(-b_2,,;,b_2,b_1;,b_1,;)$],
[$mat(b_5,,;,b_5,;,,b_6;)$],
[Si],
[$mat(,-a_2,a_1;-a_2,,;a_1,,;)$],
[$mat(-a_2,,;,a_2,a_1;,a_1,;)$],
[$mat(a_5,,;,a_5,;,,a_6;)$],
r2[B#sub[2] layer],
[C],
[$mat(,b_2+eta_2,b_1+eta_1;b_2+eta_2,,;b_1+eta_1,,;)$],
[$mat(b_2+eta_2,,;,-b_2-eta_2,b_1+eta_1;,b_1+eta_1,;)$],
[$mat(b_5+eta_5,,;,b_5+eta_5,;,,b_6+eta_6;)$],
[Si],
[$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
)},
caption: [Raman tensor of each atoms.],
placement: none,
)<table-singleatom>

View File

@@ -1,47 +0,0 @@
// Raman Tensor for A1: line1 xx/yy; line2 zz
// Raman Tensor for E1: x-dirc xz or y-dirc yx
// Raman Tensor for E2: x-dirc xy or y-dirc xx or y-dirc -yy
// TODO: remove LO TO or not?
#page(flipped: true)[#figure({
let m(n, content) = table.cell(colspan: n, content);
let m2(content) = table.cell(colspan: 2, content);
let m3(content) = table.cell(colspan: 3, content);
let m4(content) = table.cell(colspan: 4, content);
set text(size: 9pt);
set par(justify: false);
table(columns: 11, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Representation in C#sub[6v]*], m3[A#sub[1]], m3[E#sub[1]], m4[E#sub[2]],
[*Relative Vibration Direction*],
[Si: $+-+-$ #linebreak() C: $0000$], [Si: $0000$ #linebreak() C: $+-+-$], [Si: $++++$ #linebreak() C: $----$],
[Si: $+-+-$ #linebreak() C: $-+-+$], [Si: $+-+-$ #linebreak() C: $+-+-$], [Si: $++++$ #linebreak() C: $----$],
[Si: $++--$ #linebreak() C: $-++-$], [Si: $+--+$ #linebreak() C: $++--$],
[Si: $++--$ #linebreak() C: $+--+$], [Si: $+--+$ #linebreak() C: $--++$],
[*Vibration Direction*], m3[z], m3[x/y], m4[x/y],
[*Raman Tensor Predicted*], [xx/yy: $-2A_#text[Si] epsilon_5$ #linebreak() zz: $-2A_#text[Si]epsilon_6$],
[xx/yy: $-2A_#text[C]zeta_5$ #linebreak() zz: $-2A_#text[C]zeta_6$],
[xx/yy: $2A_#text[Si] (2a_5+epsilon_5) + 2A_#text[C] (2a_5+eta_5+zeta_5)$ #linebreak() zz: $2A_#text[Si] (2a_6+epsilon_6) + 2A_#text[C] (2a_6+eta_6+zeta_6)$],
[xz/yz: $-2A_#text[Si]epsilon_1-2A_#text[C]zeta_1$],
[xz/yz: $-2A_#text[Si]epsilon_1+2A_#text[C]zeta_1$],
[xz/yz: $2A_#text[Si] (2a_1+epsilon_1) +2A_#text[C] (2a_1+2eta_1+zeta_1))$],
[xx/-yy/xy: $2A_#text[Si] (2a_2+epsilon_2) -2A_#text[C] (2a_2+2eta_2+zeta_2))$],
[xx/-yy/xy: $-2A_#text[Si]epsilon_2-2A_#text[C]zeta_2$],
[xx/-yy/xy: $2A_#text[Si] (2a_2+epsilon_2) +2A_#text[C] (2a_2+2eta_2+zeta_2))$],
[xx/-yy/xy: $-2A_#text[Si]epsilon_2+2A_#text[C]zeta_2$],
[*Raman Intensity Predicted*], m2[weak], [strong], m2[weak], [strong], m2[weak], [strong], [weak],
[*Raman Tensor Calculated*],
[-1.68 #linebreak() 1.34], [0.10 #linebreak() -1.33], [-7.68 #linebreak() 21.65],
[-1.56], [-0.30], [7.32], [-0.41], [1.06], [9.41], [-0.71],
// [*x*], [1 axial acoustic], [0 axial optical], [1 axial optical],
// [0 axial acoustic], [1 axial optical], [1 axial optical],
// m2[0.5 acoustic], m2[0.5 optical],
[*Type*], [axial acoustic], [axial optical], [longitudinal optical],
[planer acoustic], [planer optical], [transverse optical],
m2[planer acoustic], m2[planer optical],
[*Move-towards Atom-pairs* (In-plane/Out-plane)], [4/0], [0/4], [4/4], [0/4], [4/0], [4/4], [0/2], [2/0], m2[4/2],
// [*Predicted Frequency*], [low], [medium], [high], [medium], [low], [high], [low], [medium], m2[high],
[*Calculated Frequency*],
[591.90], [812.87], [933.80], [257.35], [746.91], [776.57], [190.51], [197.84], [756.25], [764.33]
)},
caption: [Predicted modes and their "Raman tensor"],
placement: none,
)<table-predmode>]

12
画图/SiC相似/atom.csv Normal file
View File

@@ -0,0 +1,12 @@
type,x,y,z,radius
0,3.08813,0.00000,10.10781,1.18
0,0.00000,0.00000,10.10781,1.18
0,1.54407,2.67440,10.10781,1.18
1,1.54407,0.89147, 9.48201,0.77
0,1.54407,0.89147, 7.58104,1.18
1,1.54407,2.67440, 6.94819,0.77
1,3.08813,0.00000, 6.94819,0.77
1,0.00000,0.00000, 6.94819,0.77
0,3.08813,0.00000, 5.05312,1.18
0,0.00000,0.00000, 5.05312,1.18
0,1.54407,2.67440, 5.05312,1.18
1 type x y z radius
2 0 3.08813 0.00000 10.10781 1.18
3 0 0.00000 0.00000 10.10781 1.18
4 0 1.54407 2.67440 10.10781 1.18
5 1 1.54407 0.89147 9.48201 0.77
6 0 1.54407 0.89147 7.58104 1.18
7 1 1.54407 2.67440 6.94819 0.77
8 1 3.08813 0.00000 6.94819 0.77
9 1 0.00000 0.00000 6.94819 0.77
10 0 3.08813 0.00000 5.05312 1.18
11 0 0.00000 0.00000 5.05312 1.18
12 0 1.54407 2.67440 5.05312 1.18