256 lines
11 KiB
Typst
256 lines
11 KiB
Typst
#import "@preview/physica:0.9.5": pdv, super-T-as-transpose
|
||
#show: super-T-as-transpose
|
||
|
||
== Approximation of Raman tensor of 4H-SiC
|
||
|
||
近似的核心思路。
|
||
|
||
我们的近似方法基于这样一个原则:将拉曼张量(即原子位移引起的极化率变化)分配给单位晶胞中的每个原子。
|
||
一些原子的局部环境相似但不完全相同,我们将它们的拉曼张量的差视为一个小量($epsilon$, $eta$ and $zeta$),
|
||
剩余的部分视为一个大量($a$).
|
||
将一个模式中所有参与振动的原子的贡献相加,就可以得到该模式的拉曼张量。
|
||
若模式的该拉曼张量只包含小量($epsilon$, $eta$ and $zeta$),
|
||
说明该模式中,原子振动导致的拉曼效应互相抵消了大部分,该模式的拉曼活性较弱;
|
||
而若该拉曼张量包含较大的常数项,说明该模式的拉曼效应较强。
|
||
|
||
The center principle of our approximation is to assign the Raman tensor
|
||
(i.e., change of polarizability caused by atomic displacement)
|
||
to each atom in the unit cell.
|
||
For the atoms with similar but not exactly the same local environment,
|
||
we consider the difference in their Raman tensors as quantities with small absolute value
|
||
($epsilon$, $eta$ and $zeta$),
|
||
while the remaining part is treated as quantities with large absolute value ($a$).
|
||
The Raman tensor of a phonon mode can be obtained
|
||
by summing the contributions of all atoms participating in the vibration.
|
||
If the Raman tensor of a mode only contains quantities with small absolute value ($epsilon$, $eta$ and $zeta$),
|
||
it indicates that the Raman effect caused by atomic vibrations in this mode is largely canceled out,
|
||
and thus the mode has weak Raman activity.
|
||
Otherwise, if the Raman tensor contains quantities with large absolute value ($a$),
|
||
it indicates that the mode has strong Raman activity.
|
||
|
||
使用 A/B1/C/B2 层的表述,而不是 ABCB,来区分两个 B 层。
|
||
这是因为两个 B 层的原子局部环境互相镜面对称而不是平移对称,导致它们的拉曼张量不相等。
|
||
|
||
In this section, AB#sub[1]CB#sub[2] instead of ABCB was used to denote the four bilayers in 4H-SiC primative cell
|
||
to clearly distinguish the two B layers.
|
||
This is because the local environment of the two B layers is mirror symmetric rather than translationally symmetric,
|
||
thus their Raman tensors are not equal.
|
||
|
||
=== Raman tensor of Si atoms in A and C layers
|
||
|
||
我们首先推导 A/C 层 Si 原子沿 x 方向振动时的拉曼张量。
|
||
根据前文,我们知道,当这两个原子同步地沿 x 正方向振动时,它们属于 E1(C6v) B2(C2v) 表示,拉曼张量可以写为:
|
||
|
||
We first derive the Raman tensor of Si atoms in A and C layer vibrating along x direction.
|
||
When the two atoms vibrate synchronously in the positive x direction,
|
||
they belong to the representation of E#sub[1] of C#sub[6v] or B#sub[2] of C#sub[2v].
|
||
Thus, their Raman tensor can be written as:
|
||
|
||
$ mat(,,2a_1;,,;2a_1,,;) $
|
||
|
||
其中 $a_1$ 是未知的常数。
|
||
|
||
where $a_i (i = 1 "to" 6)$ are unknown constants.
|
||
|
||
当 A 层 Si 原子沿 x 正方向振动而 C 层 Si 原子沿 x 负方向振动时,
|
||
它们属于 E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v] 表示,
|
||
拉曼张量可以写为:
|
||
|
||
When the Si atom in A layer vibrates in the positive x direction
|
||
while the Si atom in C layer vibrates in the negative x direction,
|
||
they belong to the representation of E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v].
|
||
Thus, their Raman tensor can be written as:
|
||
|
||
$ mat(,2a_2,;2a_2,,;,,;) $
|
||
|
||
因此,A 层和 C 层 Si 原子沿 x 方向振动时的拉曼张量分别为:
|
||
|
||
Thus, the Raman tensors of Si atoms in A and C layers vibrating in the positive x direction are:
|
||
|
||
$ mat(,a_2,a_1;a_2,,;a_1,,;), mat(,-a_2,a_1;-a_2,,;a_1,,;), $
|
||
|
||
接下来讨论 A/C 层 Si 原子沿 y 方向振动时的拉曼张量,使用相似的方法可以得到:
|
||
|
||
The Raman tensors of Si atoms in A and C layers vibrating along positive y direction
|
||
can be obtained using the method, which gives:
|
||
|
||
$ mat(a_4,,;,-a_4,a_3;,a_3,;), mat(-a_4,,;,a_4,a_3;,a_3,;) $
|
||
|
||
$\{a_1, a_2, a_3, a_4\}$ 之间并不独立。为了确定它们之间的关系,我们考虑将体系绕 z 轴旋转 120 度,
|
||
同一个点的坐标旋转前后分别为 $r$ 和 $C_3 r$,其中 $r$ 是一个列向量,$C_3$ 是一个旋转矩阵:
|
||
|
||
where $\{a_3, a_4\}$ are not independent of $\{a_1, a_2\}$.
|
||
To determine the relationship between $\{a_1, a_2\}$ and $\{a_3, a_4\}$,
|
||
the system is rotated by $120 degree$ around the z axis.
|
||
The point located at $r$ before rotation should be at $C_3 r$ after rotation,
|
||
where $r$ is a column vector and $C_3$ is a rotation matrix:
|
||
|
||
$ C_3 = mat(-1/2,-sqrt(3)/2,0;sqrt(3)/2,-1/2,0;0,0,1;) $
|
||
|
||
记 A 层中 Si 原子沿与 x 轴夹角 $120 degree$ 的方向振动所导致的拉曼张量为 $alpha'$,
|
||
沿 x 和 y 正方向振动的拉曼张量则为 $alpha_x$ 和 $alpha_y$。
|
||
一方面,$alpha'$ 可以从 $alpha_x$ 出发,将体系旋转 $120 degree$ 得到;
|
||
另一方面,$alpha'$ 也可以由 $alpha_x$ 和 $alpha_y$ 通过线性组合得到:
|
||
|
||
The Raman tensor of Si atoms in A layer vibrating along the direction at an angle of $120 degree$ with the x axis
|
||
is denoted as $alpha'$,
|
||
while those vibrating in the positive x and y directions are denoted as $alpha_x$ and $alpha_y$, respectively.
|
||
On one hand, $alpha'$ can be obtained from $alpha_x$ by rotating the system by $120 degree$;
|
||
on the other hand, $alpha'$ can also be expressed as a linear combination of $alpha_x$ and $alpha_y$:
|
||
|
||
$ alpha' = C_3 alpha_x C_3^T = -1/2 alpha_x + sqrt(3)/2 alpha_y $
|
||
|
||
化简可得:
|
||
|
||
Simplifying the above equations, we have:
|
||
|
||
$ a_3 = a_1, a_4 = a_2 $
|
||
|
||
与 x 和 y 方向的情况类似,可以推导出 A/C 层 C 原子沿 z 方向振动时的拉曼张量。总结如下。
|
||
|
||
The Raman tensors of C atoms in A and C layers vibrating along z direction can be derived similarly.
|
||
Thus the results are summarized as follows:
|
||
|
||
|
||
#figure(
|
||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
|
||
table.cell(rowspan: 2)[*Raman tensor #linebreak() of atoms*],
|
||
[A layer], [Si],
|
||
[$mat(,a_2,a_1;a_2,,;a_1,,;)$],
|
||
[$mat(a_2,,;,-a_2,a_1;,a_1,;)$],
|
||
[$mat(a_5,,;,a_5,;,,a_6;)$],
|
||
[C layer], [Si],
|
||
[$mat(,-a_2,a_1;-a_2,,;a_1,,;)$],
|
||
[$mat(-a_2,,;,a_2,a_1;,a_1,;)$],
|
||
[$mat(a_5,,;,a_5,;,,a_6;)$],
|
||
),
|
||
placement: none,
|
||
)
|
||
|
||
=== Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers
|
||
|
||
与 A/C 层原子类似,同理可以给出 B#sub[1]B#sub[2] 层原子沿 x 方向振动的拉曼张量:
|
||
|
||
The Raman tensor of Si atoms in B#sub[1] and B#sub[2] layer vibrating along positive x direction
|
||
can be written out similarily as that in A and C layer:
|
||
|
||
$ mat(,a'_2,a'_1;a'_2,,;a'_1,,;), mat(,-a'_2,a'_1;-a'_2,,;a'_1,,;) $
|
||
|
||
注意到 B 层 Si 原子与 A 层 Si 原子的局部环境非常相似(最近邻完全相同,次近邻也只有一半不同,如图所示),
|
||
因此可以推测它们的拉曼张量只有较小的不同,即:
|
||
|
||
Because the local environment of Si atoms in B layer is very similar to that in A layer (as shown in @figure-same),
|
||
we can assume that their Raman tensors differ only by small quantities, i.e.,
|
||
|
||
$
|
||
a'_1 = a_1 + epsilon_1, abs(epsilon_1) << abs(a_1), \
|
||
a'_2 = a_2 + epsilon_2, abs(epsilon_2) << abs(a_2),
|
||
$
|
||
|
||
#include "fig-same.typ"
|
||
|
||
由此可以写出 B 层 Si 原子沿 x 方向振动时的拉曼张量:
|
||
|
||
Thus, the Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers vibrating along x direction
|
||
can be written as:
|
||
|
||
$
|
||
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;),
|
||
mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)
|
||
$
|
||
|
||
同理,可以得到 B#sub[1] 和 B#sub[2] 层 Si 原子沿其它方向振动的拉曼张量。
|
||
总结如下。
|
||
|
||
The Raman tensors of Si atoms in B#sub[1] and B#sub[2] layers vibrating along other directions
|
||
can be obtained using similar method,
|
||
and the results are summarized as follows:
|
||
|
||
#figure(
|
||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
|
||
table.cell(rowspan: 2)[*Raman tensor #linebreak() of atoms*],
|
||
[B#sub[1] layer], [Si],
|
||
[$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
|
||
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
|
||
[B#sub[2] layer], [Si],
|
||
[$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
|
||
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
|
||
),
|
||
placement: none,
|
||
)
|
||
|
||
=== Raman tensor of C atoms
|
||
|
||
考虑 A/C 层 C 原子的拉曼张量,使用与 Si 原子类似的方法,可以得到:
|
||
|
||
The Raman tensors of C atoms in A and C layers can be obtained using a similar method:
|
||
|
||
$
|
||
mat(,b_2,b_1;b_2,,;b_1,,;), mat(,-b_2,b_1;-b_2,,;b_1,,;)
|
||
$
|
||
|
||
我们需要估计 ${b_1, b_2}$ 与 ${a_1, a_2}$ 之间的关系。
|
||
考虑 A 层 C 原子的环境,它可以由 A 层 Si 原子通过以下操作得到:
|
||
先沿基平面取镜像,然后反转电荷,再调整原子质量等其它因素,如图所示。
|
||
我们分两步来推导这个过程中拉曼张量的变化。
|
||
|
||
The relationship between $\{b_1, b_2\}$ and $\{a_1, a_2\}$ needs to be estimated.
|
||
The environment of C atoms in A layer can be obtained from that of Si atoms in A layer
|
||
by first taking a mirror image along the basal plane,
|
||
then reversing the charge and adjusting the atomic mass and other factors,
|
||
as shown in @figure-sitoc.
|
||
The change of Raman tensor during this process could be derived following these two steps.
|
||
|
||
#include "fig-sitoc.typ"
|
||
|
||
记翻转前后的 Si 原子拉曼张量为 $alpha$ 和 $alpha'$。
|
||
考虑在外场 $E$ 作用下,Si 原子沿 x 方向振动导致的系统能量变化为:
|
||
|
||
The Raman tensor of the Si atom in A layer before and after taking the mirror image
|
||
was denoted as $alpha$ and $alpha'$, respectively.
|
||
Before the mirror image,
|
||
the system energy change caused by the vibration of this atom along x direction
|
||
under an external electric field $E$ is:
|
||
|
||
$ Delta E = E^T alpha E, #[where] alpha = mat(,a_2,a_1;a_2,,;a_1,,;) $
|
||
|
||
若在翻转的过程中,将电场同样翻转,则总能量不变。因此:
|
||
|
||
When the electric field is also flipped during the mirror image,
|
||
the total energy does not change, i.e.,
|
||
|
||
$ E^T alpha E = Delta E = (sigma E)^T alpha' (sigma E), #[where] sigma = mat(1,0,0;0,1,0;0,0,-1;) $
|
||
|
||
整理可得:
|
||
|
||
Thus:
|
||
|
||
$ alpha' = mat(,a_2,-a_1;a_2,,;-a_1,,;) $
|
||
|
||
记电荷反转后,Si 原子拉曼张量为 $alpha''$。
|
||
若将外加电场方向同时反转,则能量不变。即:
|
||
|
||
// TODO: 能量写明是 Delta E
|
||
|
||
The Raman tensor of Si atom after charge reversal was denoted as $alpha''$.
|
||
The energy does not change when the direction of the external electric field is also reversed, i.e.,
|
||
|
||
$ E^T alpha' E = (sigma' E)^T alpha'' (sigma' E), #[where] sigma' = -1 $
|
||
|
||
Thus:
|
||
|
||
$ alpha'' = alpha' $
|
||
|
||
使用类似的方法,得到 Si 原子沿其它方向和 C 原子沿各个方向的拉曼张量,以及各个模式的拉曼张量。
|
||
|
||
Similarily, we can write out the Raman tensors of Si atoms virbrating along other directions
|
||
and the Raman tensors of C atoms,
|
||
and thus the Raman tensors of all phonon modes.
|
||
The results are summarized in @table-singleatom and @table-predmode.
|
||
|
||
#include "table-singleatom.typ"
|
||
#include "table-predmode.typ" |