Files
SiC-2nd-paper/paper/appendix/predict/default.typ
2025-07-20 18:28:12 +08:00

256 lines
11 KiB
Typst
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#import "@preview/physica:0.9.5": pdv, super-T-as-transpose
#show: super-T-as-transpose
== Approximation of Raman tensor of 4H-SiC
近似的核心思路。
我们的近似方法基于这样一个原则:将拉曼张量(即原子位移引起的极化率变化)分配给单位晶胞中的每个原子。
一些原子的局部环境相似但不完全相同,我们将它们的拉曼张量的差视为一个小量($epsilon$, $eta$ and $zeta$
剩余的部分视为一个大量($a$).
将一个模式中所有参与振动的原子的贡献相加,就可以得到该模式的拉曼张量。
若模式的该拉曼张量只包含小量($epsilon$, $eta$ and $zeta$
说明该模式中,原子振动导致的拉曼效应互相抵消了大部分,该模式的拉曼活性较弱;
而若该拉曼张量包含较大的常数项,说明该模式的拉曼效应较强。
The center principle of our approximation is to assign the Raman tensor
(i.e., change of polarizability caused by atomic displacement)
to each atom in the unit cell.
For the atoms with similar but not exactly the same local environment,
we consider the difference in their Raman tensors as quantities with small absolute value
($epsilon$, $eta$ and $zeta$),
while the remaining part is treated as quantities with large absolute value ($a$).
The Raman tensor of a phonon mode can be obtained
by summing the contributions of all atoms participating in the vibration.
If the Raman tensor of a mode only contains quantities with small absolute value ($epsilon$, $eta$ and $zeta$),
it indicates that the Raman effect caused by atomic vibrations in this mode is largely canceled out,
and thus the mode has weak Raman activity.
Otherwise, if the Raman tensor contains quantities with large absolute value ($a$),
it indicates that the mode has strong Raman activity.
使用 A/B1/C/B2 层的表述,而不是 ABCB来区分两个 B 层。
这是因为两个 B 层的原子局部环境互相镜面对称而不是平移对称,导致它们的拉曼张量不相等。
In this section, AB#sub[1]CB#sub[2] instead of ABCB was used to denote the four bilayers in 4H-SiC primative cell
to clearly distinguish the two B layers.
This is because the local environment of the two B layers is mirror symmetric rather than translationally symmetric,
thus their Raman tensors are not equal.
=== Raman tensor of Si atoms in A and C layers
我们首先推导 A/C Si 原子沿 x 方向振动时的拉曼张量。
根据前文,我们知道,当这两个原子同步地沿 x 正方向振动时,它们属于 E1(C6v) B2(C2v) 表示,拉曼张量可以写为:
We first derive the Raman tensor of Si atoms in A and C layer vibrating along x direction.
When the two atoms vibrate synchronously in the positive x direction,
they belong to the representation of E#sub[1] of C#sub[6v] or B#sub[2] of C#sub[2v].
Thus, their Raman tensor can be written as:
$ mat(,,2a_1;,,;2a_1,,;) $
其中 $a_1$ 是未知的常数。
where $a_i (i = 1 "to" 6)$ are unknown constants.
A Si 原子沿 x 正方向振动而 C Si 原子沿 x 负方向振动时,
它们属于 E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v] 表示,
拉曼张量可以写为:
When the Si atom in A layer vibrates in the positive x direction
while the Si atom in C layer vibrates in the negative x direction,
they belong to the representation of E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v].
Thus, their Raman tensor can be written as:
$ mat(,2a_2,;2a_2,,;,,;) $
因此A 层和 C Si 原子沿 x 方向振动时的拉曼张量分别为:
Thus, the Raman tensors of Si atoms in A and C layers vibrating in the positive x direction are:
$ mat(,a_2,a_1;a_2,,;a_1,,;), mat(,-a_2,a_1;-a_2,,;a_1,,;), $
接下来讨论 A/C Si 原子沿 y 方向振动时的拉曼张量,使用相似的方法可以得到:
The Raman tensors of Si atoms in A and C layers vibrating along positive y direction
can be obtained using the method, which gives:
$ mat(a_4,,;,-a_4,a_3;,a_3,;), mat(-a_4,,;,a_4,a_3;,a_3,;) $
$\{a_1, a_2, a_3, a_4\}$ 之间并不独立。为了确定它们之间的关系,我们考虑将体系绕 z 轴旋转 120 度,
同一个点的坐标旋转前后分别为 $r$ $C_3 r$,其中 $r$ 是一个列向量,$C_3$ 是一个旋转矩阵:
where $\{a_3, a_4\}$ are not independent of $\{a_1, a_2\}$.
To determine the relationship between $\{a_1, a_2\}$ and $\{a_3, a_4\}$,
the system is rotated by $120 degree$ around the z axis.
The point located at $r$ before rotation should be at $C_3 r$ after rotation,
where $r$ is a column vector and $C_3$ is a rotation matrix:
$ C_3 = mat(-1/2,-sqrt(3)/2,0;sqrt(3)/2,-1/2,0;0,0,1;) $
A 层中 Si 原子沿与 x 轴夹角 $120 degree$ 的方向振动所导致的拉曼张量为 $alpha'$
沿 x y 正方向振动的拉曼张量则为 $alpha_x$ $alpha_y$
一方面,$alpha'$ 可以从 $alpha_x$ 出发,将体系旋转 $120 degree$ 得到;
另一方面,$alpha'$ 也可以由 $alpha_x$ $alpha_y$ 通过线性组合得到:
The Raman tensor of Si atoms in A layer vibrating along the direction at an angle of $120 degree$ with the x axis
is denoted as $alpha'$,
while those vibrating in the positive x and y directions are denoted as $alpha_x$ and $alpha_y$, respectively.
On one hand, $alpha'$ can be obtained from $alpha_x$ by rotating the system by $120 degree$;
on the other hand, $alpha'$ can also be expressed as a linear combination of $alpha_x$ and $alpha_y$:
$ alpha' = C_3 alpha_x C_3^T = -1/2 alpha_x + sqrt(3)/2 alpha_y $
化简可得:
Simplifying the above equations, we have:
$ a_3 = a_1, a_4 = a_2 $
x y 方向的情况类似,可以推导出 A/C C 原子沿 z 方向振动时的拉曼张量。总结如下。
The Raman tensors of C atoms in A and C layers vibrating along z direction can be derived similarly.
Thus the results are summarized as follows:
#figure(
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
table.cell(rowspan: 2)[*Raman tensor #linebreak() of atoms*],
[A layer], [Si],
[$mat(,a_2,a_1;a_2,,;a_1,,;)$],
[$mat(a_2,,;,-a_2,a_1;,a_1,;)$],
[$mat(a_5,,;,a_5,;,,a_6;)$],
[C layer], [Si],
[$mat(,-a_2,a_1;-a_2,,;a_1,,;)$],
[$mat(-a_2,,;,a_2,a_1;,a_1,;)$],
[$mat(a_5,,;,a_5,;,,a_6;)$],
),
placement: none,
)
=== Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers
A/C 层原子类似,同理可以给出 B#sub[1]B#sub[2] 层原子沿 x 方向振动的拉曼张量:
The Raman tensor of Si atoms in B#sub[1] and B#sub[2] layer vibrating along positive x direction
can be written out similarily as that in A and C layer:
$ mat(,a'_2,a'_1;a'_2,,;a'_1,,;), mat(,-a'_2,a'_1;-a'_2,,;a'_1,,;) $
注意到 B Si 原子与 A Si 原子的局部环境非常相似(最近邻完全相同,次近邻也只有一半不同,如图所示),
因此可以推测它们的拉曼张量只有较小的不同,即:
Because the local environment of Si atoms in B layer is very similar to that in A layer (as shown in @figure-same),
we can assume that their Raman tensors differ only by small quantities, i.e.,
$
a'_1 = a_1 + epsilon_1, abs(epsilon_1) << abs(a_1), \
a'_2 = a_2 + epsilon_2, abs(epsilon_2) << abs(a_2),
$
#include "fig-same.typ"
由此可以写出 B Si 原子沿 x 方向振动时的拉曼张量:
Thus, the Raman tensor of Si atoms in B#sub[1] and B#sub[2] layers vibrating along x direction
can be written as:
$
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;),
mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)
$
同理,可以得到 B#sub[1] B#sub[2] Si 原子沿其它方向振动的拉曼张量。
总结如下。
The Raman tensors of Si atoms in B#sub[1] and B#sub[2] layers vibrating along other directions
can be obtained using similar method,
and the results are summarized as follows:
#figure(
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
table.cell(colspan: 3)[*Vibration Direction*], [x], [y], [z],
table.cell(rowspan: 2)[*Raman tensor #linebreak() of atoms*],
[B#sub[1] layer], [Si],
[$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
[B#sub[2] layer], [Si],
[$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
),
placement: none,
)
=== Raman tensor of C atoms
考虑 A/C C 原子的拉曼张量,使用与 Si 原子类似的方法,可以得到:
The Raman tensors of C atoms in A and C layers can be obtained using a similar method:
$
mat(,b_2,b_1;b_2,,;b_1,,;), mat(,-b_2,b_1;-b_2,,;b_1,,;)
$
我们需要估计 ${b_1, b_2}$ ${a_1, a_2}$ 之间的关系。
考虑 A C 原子的环境,它可以由 A Si 原子通过以下操作得到:
先沿基平面取镜像,然后反转电荷,再调整原子质量等其它因素,如图所示。
我们分两步来推导这个过程中拉曼张量的变化。
The relationship between $\{b_1, b_2\}$ and $\{a_1, a_2\}$ needs to be estimated.
The environment of C atoms in A layer can be obtained from that of Si atoms in A layer
by first taking a mirror image along the basal plane,
then reversing the charge and adjusting the atomic mass and other factors,
as shown in @figure-sitoc.
The change of Raman tensor during this process could be derived following these two steps.
#include "fig-sitoc.typ"
记翻转前后的 Si 原子拉曼张量为 $alpha$ $alpha'$
考虑在外场 $E$ 作用下Si 原子沿 x 方向振动导致的系统能量变化为:
The Raman tensor of the Si atom in A layer before and after taking the mirror image
was denoted as $alpha$ and $alpha'$, respectively.
Before the mirror image,
the system energy change caused by the vibration of this atom along x direction
under an external electric field $E$ is:
$ Delta E = E^T alpha E, #[where] alpha = mat(,a_2,a_1;a_2,,;a_1,,;) $
若在翻转的过程中,将电场同样翻转,则总能量不变。因此:
When the electric field is also flipped during the mirror image,
the total energy does not change, i.e.,
$ E^T alpha E = Delta E = (sigma E)^T alpha' (sigma E), #[where] sigma = mat(1,0,0;0,1,0;0,0,-1;) $
整理可得:
Thus:
$ alpha' = mat(,a_2,-a_1;a_2,,;-a_1,,;) $
记电荷反转后Si 原子拉曼张量为 $alpha''$
若将外加电场方向同时反转,则能量不变。即:
// TODO: 能量写明是 Delta E
The Raman tensor of Si atom after charge reversal was denoted as $alpha''$.
The energy does not change when the direction of the external electric field is also reversed, i.e.,
$ E^T alpha' E = (sigma' E)^T alpha'' (sigma' E), #[where] sigma' = -1 $
Thus:
$ alpha'' = alpha' $
使用类似的方法,得到 Si 原子沿其它方向和 C 原子沿各个方向的拉曼张量,以及各个模式的拉曼张量。
Similarily, we can write out the Raman tensors of Si atoms virbrating along other directions
and the Raman tensors of C atoms,
and thus the Raman tensors of all phonon modes.
The results are summarized in @table-singleatom and @table-predmode.
#include "table-singleatom.typ"
#include "table-predmode.typ"