This commit is contained in:
@@ -47,7 +47,7 @@
|
||||
#set heading(numbering: "1.")
|
||||
|
||||
#include "introduction.typ"
|
||||
#include "method.typ"
|
||||
#include "method/default.typ"
|
||||
#include "result/default.typ"
|
||||
#include "appendix/default.typ"
|
||||
#include "others/default.typ"
|
||||
|
||||
@@ -1,21 +0,0 @@
|
||||
= Method
|
||||
|
||||
== Experiment details
|
||||
|
||||
外延片的厚度、掺杂浓度、生长 C/Si 比。
|
||||
|
||||
拉曼设备的型号。激光的波长,背散射。共焦针孔。对焦时向上或向下调整的距离。
|
||||
|
||||
画个图,表示正入射、掠入射和肩入射的角度关系。
|
||||
|
||||
Only back-scattering configurations were considered in this study.
|
||||
|
||||
== Simulation details
|
||||
|
||||
无缺陷的模型大小。带缺陷的情况下,模型大小,每个模型的代号和缺陷结构。
|
||||
|
||||
第一性原理计算使用 VASP,使用 PBE PAW,平面波截断能,K 点网格,涂抹,自洽和弛豫的 threshold。
|
||||
声子计算使用 phonopy phono3py ufo,BEC 修正的算法。
|
||||
|
||||
// 在略入射的过程中,角度的关系不大(即使是 60 度入射,和 90 度入射差别也不大)。因此我们按照折射角 20 度的结果计算。
|
||||
// 考虑到斜切,则大约是 24 度。
|
||||
51
paper/method/default.typ
Normal file
51
paper/method/default.typ
Normal file
@@ -0,0 +1,51 @@
|
||||
= Method
|
||||
|
||||
== Experiment details
|
||||
|
||||
外延片的厚度、掺杂浓度、生长 C/Si 比,斜切角度。
|
||||
|
||||
5 个 6 寸的 p 型外延片被使用,我们将它们称为 W#sub[i]。
|
||||
使用的衬底都是 n 型,前四个外延片的厚度为 1 微米,第五个外延片的厚度为 2 微米。
|
||||
外延层的 Al 掺杂浓度分别为 0.1 3.8 5.1 6.4 10 E18 cm#super[-3],使用 SIMS 测试。
|
||||
生长时 Si/C 比分别为 0.7 1.2 1.6 2.4 2.0。、
|
||||
所有外延片都有 4 度斜切。
|
||||
|
||||
Five 6-inch p-type epitaxial wafers on n-type substrates were used, denoted as W#sub[1]-W#sub[5].
|
||||
All epitaxial layers were grown using step-flow method with a 4° offcut angle.
|
||||
The Al doping concentrations in the epitaxial layers
|
||||
were 0.1, 3.8, 5.1, 6.4, and 10 #sym.times 10 cm#super[-3] (measured using SIMS)
|
||||
with W#sub[1]-W#sub[4] having a thickness of 1 μm and W#sub[5] having a thickness of 2 μm, respectively.
|
||||
The Si/C ratios of the five wafers during growth were 0.7, 1.2, 1.6, 2.4, and 2.0, respectively.
|
||||
|
||||
拉曼设备的型号。激光的波长,背散射。共焦针孔。
|
||||
|
||||
拉曼设备的型号是 LabRAM HR Evolution,使用背散射。
|
||||
大部分实验中,我们使用 532 nm 的激光,少部分实验中使用 325 nm 的激光以观测紫外拉曼。
|
||||
有三个不同的入射配置,包括正入射、掠入射、边入射。
|
||||
考虑到 4 度斜切和 4H-SiC 几乎各向同性的折射率() @shaffer_refractive_1971 ,
|
||||
在正散射过程中,我们使用 100 微米的共焦针孔,以尽可能提高 z 方向的分辨率 @song_depth_2020。
|
||||
|
||||
All our Raman experiments were performed using a LabRAM HR Evolution system with back-scattering configuration,
|
||||
where collected scattered light has a reversed wavevector direction compared to the incident light.
|
||||
A 532 nm laser was used in most experiments,
|
||||
while a 325 nm laser was used to observe Raman signals under ultraviolet excitation.
|
||||
Three different incidece configurations were used, as shown in @figure-incidence:
|
||||
normal incidence, where the laser beam is perpendicular to the epitaxial surface;
|
||||
grazing incidence, where the laser beam is nearly parallel to the epitaxial surface;
|
||||
and edge incidence, where the laser beam is incident at the edge of the wafer, instead of the epitaxial surface.
|
||||
Taking the
|
||||
During the experiments, a 100 μm confocal pinhole was used to improve the z-direction resolution @song_depth_2020.
|
||||
|
||||
and the refracted light propagates with about 25 #sym.degree to the c axis;
|
||||
|
||||
#include "figure-incidence.typ"
|
||||
|
||||
== Simulation details
|
||||
|
||||
无缺陷的模型大小。带缺陷的情况下,模型大小,每个模型的代号和缺陷结构。
|
||||
|
||||
第一性原理计算使用 VASP,使用 PBE PAW,平面波截断能,K 点网格,涂抹,自洽和弛豫的 threshold。
|
||||
声子计算使用 phonopy phono3py ufo,BEC 修正的算法。
|
||||
|
||||
// 在略入射的过程中,角度的关系不大(即使是 60 度入射,和 90 度入射差别也不大)。因此我们按照折射角 20 度的结果计算。
|
||||
// 考虑到斜切,则大约是 24 度。
|
||||
5
paper/method/figure-incidence.typ
Normal file
5
paper/method/figure-incidence.typ
Normal file
@@ -0,0 +1,5 @@
|
||||
#figure(
|
||||
image("/画图/入射方向/main.svg"),
|
||||
caption: [Light incidence configurations in our Raman experiments.],
|
||||
placement: none,
|
||||
)<figure-incidence>
|
||||
@@ -535,7 +535,25 @@ dbcode: CJFQ
|
||||
dbname: CJFD2010
|
||||
filename: WLXB201006094
|
||||
CNKICite: 6},
|
||||
keywords = {温度, 电子拉曼散射, 碳化硅, 纵光学声子等离子体激元耦合模},
|
||||
keywords = {碳化硅, 温度, 电子拉曼散射, 纵光学声子等离子体激元耦合模},
|
||||
pages = {4261--4266},
|
||||
file = {n-SiC拉曼散射光谱的温度特性:/home/chn/Zotero/storage/M94LRGCT/n-SiC拉曼散射光谱的温度特性.pdf:application/pdf},
|
||||
}
|
||||
|
||||
@article{shaffer_refractive_1971,
|
||||
title = {Refractive {Index}, {Dispersion}, and {Birefringence} of {Silicon} {Carbide} {Polytypes}},
|
||||
volume = {10},
|
||||
copyright = {https://doi.org/10.1364/OA\_License\_v1\#VOR},
|
||||
issn = {0003-6935, 1539-4522},
|
||||
url = {https://opg.optica.org/abstract.cfm?URI=ao-10-5-1034},
|
||||
doi = {10.1364/AO.10.001034},
|
||||
language = {en},
|
||||
number = {5},
|
||||
urldate = {2025-06-23},
|
||||
journal = {Applied Optics},
|
||||
author = {Shaffer, P. T. B.},
|
||||
month = may,
|
||||
year = {1971},
|
||||
pages = {1034},
|
||||
file = {PDF:/home/chn/Zotero/storage/YJD5HYLD/Shaffer - 1971 - Refractive Index, Dispersion, and Birefringence of Silicon Carbide Polytypes.pdf:application/pdf},
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user