Compare commits

..

1 Commits

Author SHA1 Message Date
Graham Christensen
f8fbe2dee1 networkd: support specifying the ClientIdentifier for DHCPv4 options 2022-04-26 15:49:52 -04:00
31274 changed files with 933544 additions and 2207844 deletions

View File

@@ -55,21 +55,6 @@ trim_trailing_whitespace = unset
[*.lock]
indent_size = unset
# Although Markdown/CommonMark allows using two trailing spaces to denote
# a hard line break, we do not use that feature in nixpkgs since
# it forces the surrounding paragraph to become a <literallayout> which
# does not wrap reasonably.
# Instead of a hard line break, start a new paragraph by inserting a blank line.
[*.md]
trim_trailing_whitespace = true
# binaries
[*.nib]
end_of_line = unset
insert_final_newline = unset
trim_trailing_whitespace = unset
charset = unset
[eggs.nix]
trim_trailing_whitespace = unset
@@ -95,13 +80,3 @@ trim_trailing_whitespace = unset
[pkgs/tools/misc/timidity/timidity.cfg]
trim_trailing_whitespace = unset
[pkgs/tools/virtualization/ovftool/*.ova]
end_of_line = unset
insert_final_newline = unset
trim_trailing_whitespace = unset
charset = unset
[lib/tests/*.plist]
indent_style = tab
insert_final_newline = unset

View File

@@ -28,71 +28,5 @@
# nixos/modules/rename: Sort alphabetically
1f71224fe86605ef4cd23ed327b3da7882dad382
# manual: fix typos
feddd5e7f8c6f8167b48a077fa2a5394dc008999
# nixos: fix module paths in rename.nix
d08ede042b74b8199dc748323768227b88efcf7c
# fix indentation in mk-python-derivation.nix
d1c1a0c656ccd8bd3b25d3c4287f2d075faf3cf3
# fix indentation in meteor default.nix
a37a6de881ec4c6708e6b88fd16256bbc7f26bbd
# treewide: automatically md-convert option descriptions
2e751c0772b9d48ff6923569adfa661b030ab6a2
# nixos/*: automatically convert option docs
087472b1e5230ffc8ba642b1e4f9218adf4634a2
# nixos/*: automatically convert option descriptions
ef176dcf7e76c3639571d7c6051246c8fbadf12a
# nixos/*: automatically convert option docs to MD
61e93df1891972bae3e0c97a477bd44e8a477aa0
# nixos/*: convert options with admonitions to MD
722b99bc0eb57711c0498a86a3f55e6c69cdb05f
# nixos/*: automatically convert option docs
6039648c50c7c0858b5e506c6298773a98e0f066
# nixos/*: md-convert options with unordered lists
c915b915b5e466a0b0b2af2906cd4d2380b8a1de
# nixos/*: convert options with listings
f2ea09ecbe1fa1da32eaa6e036d64ac324a2986f
# nixos/*: convert straggler options to MD
1d41cff3dc4c8f37bb5841f51fcbff705e169178
# nixos/*: normalize manpage references to single-line form
423545fe4865d126e86721ba30da116e29c65004
# nixos/documentation: split options doc build
fc614c37c653637e5475a0b0a987489b4d1f351d
# nixos/*: convert options with admonitions to MD
722b99bc0eb57711c0498a86a3f55e6c69cdb05f
# nixos/*: convert internal option descriptions to MD
9547123258f69efd92b54763051d6dc7f3bfcaca
# nixos/*: replace </para><para> with double linebreaks
694d5b19d30bf66687b42fb77f43ea7cd1002a62
# treewide: add defaultText for options with simple interpolation defaults
fb0e5be84331188a69b3edd31679ca6576edb75a
# nixos/*: mark pre-existing markdown descriptions as mdDoc
7e7d68a250f75678451cd44f8c3d585bf750461e
# nixos/*: normalize link format
3aebb4a2be8821a6d8a695f0908d8567dc00de31
# nixos/*: replace <code> in option docs with <literal>
16102dce2fbad670bd47dd75c860a8daa5fe47ad
# nixos/*: add trivial defaultText for options with simple defaults
25124556397ba17bfd70297000270de1e6523b0a

2
.gitattributes vendored
View File

@@ -1,6 +1,4 @@
**/deps.nix linguist-generated
**/deps.json linguist-generated
**/deps.toml linguist-generated
**/node-packages.nix linguist-generated
pkgs/applications/editors/emacs-modes/*-generated.nix linguist-generated

206
.github/CODEOWNERS vendored
View File

@@ -22,76 +22,59 @@
/.editorconfig @Mic92 @zowoq
# Libraries
/lib @edolstra @infinisil
/lib/systems @alyssais @ericson2314 @matthewbauer @amjoseph-nixpkgs
/lib/generators.nix @edolstra @Profpatsch
/lib/cli.nix @edolstra @Profpatsch
/lib/debug.nix @edolstra @Profpatsch
/lib/asserts.nix @edolstra @Profpatsch
/lib/path.* @infinisil @fricklerhandwerk
/lib/fileset @infinisil
/doc/functions/fileset.section.md @infinisil
/lib @edolstra @nbp @infinisil
/lib/systems @alyssais @nbp @ericson2314 @matthewbauer
/lib/generators.nix @edolstra @nbp @Profpatsch
/lib/cli.nix @edolstra @nbp @Profpatsch
/lib/debug.nix @edolstra @nbp @Profpatsch
/lib/asserts.nix @edolstra @nbp @Profpatsch
# Nixpkgs Internals
/default.nix @Ericson2314
/pkgs/top-level/default.nix @Ericson2314
/pkgs/top-level/impure.nix @Ericson2314
/pkgs/top-level/stage.nix @Ericson2314 @matthewbauer
/default.nix @nbp
/pkgs/top-level/default.nix @nbp @Ericson2314
/pkgs/top-level/impure.nix @nbp @Ericson2314
/pkgs/top-level/stage.nix @nbp @Ericson2314 @matthewbauer
/pkgs/top-level/splice.nix @Ericson2314 @matthewbauer
/pkgs/top-level/release-cross.nix @Ericson2314 @matthewbauer
/pkgs/stdenv/generic @Ericson2314 @matthewbauer @amjoseph-nixpkgs
/pkgs/stdenv/generic/check-meta.nix @Ericson2314 @matthewbauer @piegamesde
/pkgs/stdenv/cross @Ericson2314 @matthewbauer @amjoseph-nixpkgs
/pkgs/build-support/cc-wrapper @Ericson2314 @amjoseph-nixpkgs
/pkgs/stdenv/generic @Ericson2314 @matthewbauer
/pkgs/stdenv/cross @Ericson2314 @matthewbauer
/pkgs/build-support/cc-wrapper @Ericson2314
/pkgs/build-support/bintools-wrapper @Ericson2314
/pkgs/build-support/setup-hooks @Ericson2314
/pkgs/build-support/setup-hooks/auto-patchelf.sh @layus
/pkgs/build-support/setup-hooks/auto-patchelf.py @layus
/pkgs/pkgs-lib @infinisil
# pkgs/by-name
/pkgs/test/nixpkgs-check-by-name @infinisil
# Nixpkgs build-support
/pkgs/build-support/writers @lassulus @Profpatsch
# Nixpkgs make-disk-image
/doc/builders/images/makediskimage.section.md @raitobezarius
/nixos/lib/make-disk-image.nix @raitobezarius
# Nixpkgs documentation
/maintainers/scripts/db-to-md.sh @jtojnar @ryantm
/maintainers/scripts/doc @jtojnar @ryantm
# Contributor documentation
/CONTRIBUTING.md @infinisil
/.github/PULL_REQUEST_TEMPLATE.md @infinisil
/doc/contributing/ @fricklerhandwerk @infinisil
/doc/contributing/contributing-to-documentation.chapter.md @jtojnar @fricklerhandwerk @infinisil
/lib/README.md @infinisil
/doc/README.md @infinisil
/nixos/README.md @infinisil
/pkgs/README.md @infinisil
/maintainers/README.md @infinisil
# User-facing development documentation
/doc/development.md @infinisil
/doc/development @infinisil
/doc/build-aux/pandoc-filters @jtojnar
/doc/contributing/contributing-to-documentation.chapter.md @jtojnar
# NixOS Internals
/nixos/default.nix @infinisil
/nixos/lib/from-env.nix @infinisil
/nixos/lib/eval-config.nix @infinisil
/nixos/default.nix @nbp @infinisil
/nixos/lib/from-env.nix @nbp @infinisil
/nixos/lib/eval-config.nix @nbp @infinisil
/nixos/doc/manual/configuration/abstractions.xml @nbp
/nixos/doc/manual/configuration/config-file.xml @nbp
/nixos/doc/manual/configuration/config-syntax.xml @nbp
/nixos/doc/manual/configuration/modularity.xml @nbp
/nixos/doc/manual/development/assertions.xml @nbp
/nixos/doc/manual/development/meta-attributes.xml @nbp
/nixos/doc/manual/development/option-declarations.xml @nbp
/nixos/doc/manual/development/option-def.xml @nbp
/nixos/doc/manual/development/option-types.xml @nbp
/nixos/doc/manual/development/replace-modules.xml @nbp
/nixos/doc/manual/development/writing-modules.xml @nbp
/nixos/doc/manual/man-nixos-option.xml @nbp
/nixos/modules/installer/tools/nixos-option.sh @nbp
/nixos/modules/system @dasJ
/nixos/modules/system/activation/bootspec.nix @grahamc @cole-h @raitobezarius
/nixos/modules/system/activation/bootspec.cue @grahamc @cole-h @raitobezarius
# NixOS integration test driver
/nixos/lib/test-driver @tfc
# NixOS QEMU virtualisation
/nixos/virtualisation/qemu-vm.nix @raitobezarius
# Systemd
/nixos/modules/system/boot/systemd.nix @NixOS/systemd
/nixos/modules/system/boot/systemd @NixOS/systemd
@@ -107,24 +90,26 @@
# Python-related code and docs
/maintainers/scripts/update-python-libraries @FRidh
/pkgs/top-level/python-packages.nix @FRidh @jonringer
/pkgs/development/interpreters/python @FRidh
/doc/languages-frameworks/python.section.md @FRidh @mweinelt
/pkgs/development/python-modules @FRidh @jonringer
/doc/languages-frameworks/python.section.md @FRidh
/pkgs/development/tools/poetry2nix @adisbladis
/pkgs/development/interpreters/python/hooks @FRidh @jonringer
# Haskell
/doc/languages-frameworks/haskell.section.md @cdepillabout @sternenseemann @maralorn
/maintainers/scripts/haskell @cdepillabout @sternenseemann @maralorn
/pkgs/development/compilers/ghc @cdepillabout @sternenseemann @maralorn
/pkgs/development/haskell-modules @cdepillabout @sternenseemann @maralorn
/pkgs/test/haskell @cdepillabout @sternenseemann @maralorn
/pkgs/top-level/release-haskell.nix @cdepillabout @sternenseemann @maralorn
/pkgs/top-level/haskell-packages.nix @cdepillabout @sternenseemann @maralorn
/doc/languages-frameworks/haskell.section.md @cdepillabout @sternenseemann @maralorn @expipiplus1
/maintainers/scripts/haskell @cdepillabout @sternenseemann @maralorn @expipiplus1
/pkgs/development/compilers/ghc @cdepillabout @sternenseemann @maralorn @expipiplus1
/pkgs/development/haskell-modules @cdepillabout @sternenseemann @maralorn @expipiplus1
/pkgs/test/haskell @cdepillabout @sternenseemann @maralorn @expipiplus1
/pkgs/top-level/release-haskell.nix @cdepillabout @sternenseemann @maralorn @expipiplus1
/pkgs/top-level/haskell-packages.nix @cdepillabout @sternenseemann @maralorn @expipiplus1
# Perl
/pkgs/development/interpreters/perl @stigtsp @zakame @dasJ
/pkgs/top-level/perl-packages.nix @stigtsp @zakame @dasJ
/pkgs/development/perl-modules @stigtsp @zakame @dasJ
/pkgs/development/interpreters/perl @stigtsp @zakame
/pkgs/top-level/perl-packages.nix @stigtsp @zakame
/pkgs/development/perl-modules @stigtsp @zakame
# R
/pkgs/applications/science/math/R @jbedo
@@ -135,13 +120,13 @@
/pkgs/development/ruby-modules @marsam
# Rust
/pkgs/development/compilers/rust @Mic92 @zowoq @winterqt @figsoda
/pkgs/build-support/rust @zowoq @winterqt @figsoda
/doc/languages-frameworks/rust.section.md @zowoq @winterqt @figsoda
/pkgs/development/compilers/rust @Mic92 @LnL7 @zowoq
/pkgs/build-support/rust @zowoq
/doc/languages-frameworks/rust.section.md @zowoq
# C compilers
/pkgs/development/compilers/gcc @matthewbauer @amjoseph-nixpkgs
/pkgs/development/compilers/llvm @matthewbauer @RaitoBezarius
/pkgs/development/compilers/gcc @matthewbauer
/pkgs/development/compilers/llvm @matthewbauer
# Compatibility stuff
/pkgs/top-level/unix-tools.nix @matthewbauer
@@ -156,11 +141,6 @@
# Browsers
/pkgs/applications/networking/browsers/firefox @mweinelt
# Certificate Authorities
pkgs/data/misc/cacert/ @ajs124 @lukegb @mweinelt
pkgs/development/libraries/nss/ @ajs124 @lukegb @mweinelt
pkgs/development/python-modules/buildcatrust/ @ajs124 @lukegb @mweinelt
# Jetbrains
/pkgs/applications/editors/jetbrains @edwtjo
@@ -207,19 +187,13 @@ pkgs/development/python-modules/buildcatrust/ @ajs124 @lukegb @mweinelt
/nixos/modules/services/networking/babeld.nix @mweinelt
/nixos/modules/services/networking/kea.nix @mweinelt
/nixos/modules/services/networking/knot.nix @mweinelt
/nixos/modules/services/monitoring/prometheus/exporters/kea.nix @mweinelt
/nixos/tests/babeld.nix @mweinelt
/nixos/tests/kea.nix @mweinelt
/nixos/tests/knot.nix @mweinelt
# Web servers
/doc/builders/packages/nginx.section.md @raitobezarius
/pkgs/servers/http/nginx/ @raitobezarius
/nixos/modules/services/web-servers/nginx/ @raitobezarius
# Dhall
/pkgs/development/dhall-modules @Gabriella439 @Profpatsch @ehmry
/pkgs/development/interpreters/dhall @Gabriella439 @Profpatsch @ehmry
/pkgs/development/dhall-modules @Gabriel439 @Profpatsch @ehmry
/pkgs/development/interpreters/dhall @Gabriel439 @Profpatsch @ehmry
# Idris
/pkgs/development/idris-modules @Infinisil
@@ -239,28 +213,33 @@ pkgs/development/python-modules/buildcatrust/ @ajs124 @lukegb @mweinelt
/pkgs/top-level/emacs-packages.nix @adisbladis
# Neovim
/pkgs/applications/editors/neovim @figsoda @jonringer @teto
/pkgs/applications/editors/neovim @jonringer @teto
# VimPlugins
/pkgs/applications/editors/vim/plugins @figsoda @jonringer
/pkgs/applications/editors/vim/plugins @jonringer
# VsCode Extensions
/pkgs/applications/editors/vscode/extensions @jonringer
# Prometheus exporter modules and tests
/nixos/modules/services/monitoring/prometheus/exporters.nix @WilliButz
/nixos/modules/services/monitoring/prometheus/exporters.xml @WilliButz
/nixos/tests/prometheus-exporters.nix @WilliButz
# PHP interpreter, packages, extensions, tests and documentation
/doc/languages-frameworks/php.section.md @aanderse @drupol @etu @globin @ma27 @talyz
/nixos/tests/php @aanderse @drupol @etu @globin @ma27 @talyz
/pkgs/build-support/build-pecl.nix @aanderse @drupol @etu @globin @ma27 @talyz
/pkgs/development/interpreters/php @jtojnar @aanderse @drupol @etu @globin @ma27 @talyz
/pkgs/development/php-packages @aanderse @drupol @etu @globin @ma27 @talyz
/pkgs/top-level/php-packages.nix @jtojnar @aanderse @drupol @etu @globin @ma27 @talyz
/doc/languages-frameworks/php.section.md @aanderse @etu @globin @ma27 @talyz
/nixos/tests/php @aanderse @etu @globin @ma27 @talyz
/pkgs/build-support/build-pecl.nix @aanderse @etu @globin @ma27 @talyz
/pkgs/development/interpreters/php @jtojnar @aanderse @etu @globin @ma27 @talyz
/pkgs/development/php-packages @aanderse @etu @globin @ma27 @talyz
/pkgs/top-level/php-packages.nix @jtojnar @aanderse @etu @globin @ma27 @talyz
# Podman, CRI-O modules and related
/nixos/modules/virtualisation/containers.nix @adisbladis
/nixos/modules/virtualisation/cri-o.nix @adisbladis
/nixos/modules/virtualisation/podman @adisbladis
/nixos/tests/cri-o.nix @adisbladis
/nixos/tests/podman @adisbladis
/nixos/modules/virtualisation/containers.nix @zowoq @adisbladis
/nixos/modules/virtualisation/cri-o.nix @zowoq @adisbladis
/nixos/modules/virtualisation/podman @zowoq @adisbladis
/nixos/tests/cri-o.nix @zowoq @adisbladis
/nixos/tests/podman @zowoq @adisbladis
# Docker tools
/pkgs/build-support/docker @roberth
@@ -272,13 +251,13 @@ pkgs/development/python-modules/buildcatrust/ @ajs124 @lukegb @mweinelt
# Go
/doc/languages-frameworks/go.section.md @kalbasit @Mic92 @zowoq
/pkgs/build-support/go @kalbasit @Mic92 @zowoq
/pkgs/development/compilers/go @kalbasit @Mic92 @zowoq
/pkgs/development/go-modules @kalbasit @Mic92 @zowoq
/pkgs/development/go-packages @kalbasit @Mic92 @zowoq
# GNOME
/pkgs/desktops/gnome @jtojnar
/pkgs/desktops/gnome/extensions @piegamesde @jtojnar
/pkgs/build-support/make-hardcode-gsettings-patch @jtojnar
/pkgs/desktops/gnome @jtojnar @hedning
/pkgs/desktops/gnome/extensions @piegamesde @jtojnar @hedning
# Cinnamon
/pkgs/desktops/cinnamon @mkg20001
@@ -291,39 +270,18 @@ pkgs/development/python-modules/buildcatrust/ @ajs124 @lukegb @mweinelt
# terraform providers
/pkgs/applications/networking/cluster/terraform-providers @zowoq
# kubernetes
/nixos/doc/manual/configuration/kubernetes.chapter.md @zowoq
/nixos/modules/services/cluster/kubernetes @zowoq
/nixos/tests/kubernetes @zowoq
/pkgs/applications/networking/cluster/kubernetes @zowoq
# Matrix
/pkgs/servers/heisenbridge @piegamesde
/pkgs/servers/matrix-conduit @piegamesde
/pkgs/servers/matrix-synapse/matrix-appservice-irc @piegamesde
/nixos/modules/services/misc/heisenbridge.nix @piegamesde
/nixos/modules/services/misc/matrix-appservice-irc.nix @piegamesde
/nixos/modules/services/misc/matrix-conduit.nix @piegamesde
/nixos/tests/matrix-appservice-irc.nix @piegamesde
/nixos/tests/matrix-conduit.nix @piegamesde
# Dotnet
/pkgs/build-support/dotnet @IvarWithoutBones
/pkgs/development/compilers/dotnet @IvarWithoutBones
/pkgs/test/dotnet @IvarWithoutBones
/doc/languages-frameworks/dotnet.section.md @IvarWithoutBones
# Node.js
/pkgs/build-support/node/build-npm-package @lilyinstarlight @winterqt
/pkgs/build-support/node/fetch-npm-deps @lilyinstarlight @winterqt
/doc/languages-frameworks/javascript.section.md @lilyinstarlight @winterqt
# OCaml
/pkgs/build-support/ocaml @ulrikstrid
/pkgs/development/compilers/ocaml @ulrikstrid
/pkgs/development/ocaml-modules @ulrikstrid
# ZFS
pkgs/os-specific/linux/zfs @raitobezarius
nixos/lib/make-single-disk-zfs-image.nix @raitobezarius
nixos/lib/make-multi-disk-zfs-image.nix @raitobezarius
nixos/modules/tasks/filesystems/zfs.nix @raitobezarius
nixos/tests/zfs.nix @raitobezarius
# Zig
/pkgs/development/compilers/zig @AndersonTorres @figsoda
/doc/hooks/zig.section.md @AndersonTorres @figsoda
# Linux Kernel
pkgs/os-specific/linux/kernel/manual-config.nix @amjoseph-nixpkgs

View File

@@ -26,7 +26,6 @@ If applicable, add screenshots to help explain your problem.
Add any other context about the problem here.
### Notify maintainers
<!--
Please @ people who are in the `meta.maintainers` list of the offending package or module.
If in doubt, check `git blame` for whoever last touched something.

View File

@@ -1,39 +0,0 @@
---
name: Build failure
about: Create a report to help us improve
title: 'Build failure: PACKAGENAME'
labels: '0.kind: build failure'
assignees: ''
---
### Steps To Reproduce
Steps to reproduce the behavior:
1. build *X*
### Build log
```
log here if short otherwise a link to a gist
```
### Additional context
Add any other context about the problem here.
### Notify maintainers
<!--
Please @ people who are in the `meta.maintainers` list of the offending package or module.
If in doubt, check `git blame` for whoever last touched something.
-->
### Metadata
Please run `nix-shell -p nix-info --run "nix-info -m"` and paste the result.
```console
[user@system:~]$ nix-shell -p nix-info --run "nix-info -m"
output here
```

View File

@@ -1,32 +0,0 @@
---
name: Missing or incorrect documentation
about: Help us improve the Nixpkgs and NixOS reference manuals
title: 'Documentation: '
labels: '9.needs: documentation'
assignees: ''
---
## Problem
<!-- describe your problem -->
## Proposal
<!-- propose a solution (optional) -->
## Checklist
<!-- make sure this issue is not redundant or obsolete -->
- [ ] checked [latest Nixpkgs manual] \([source][nixpkgs-source]) and [latest NixOS manual] \([source][nixos-source])
- [ ] checked [open documentation issues] for possible duplicates
- [ ] checked [open documentation pull requests] for possible solutions
[latest Nixpkgs manual]: https://nixos.org/manual/nixpkgs/unstable/
[latest NixOS manual]: https://nixos.org/manual/nixos/unstable/
[nixpkgs-source]: https://github.com/NixOS/nixpkgs/tree/master/doc
[nixos-source]: https://github.com/NixOS/nixpkgs/tree/master/nixos/doc/manual
[open documentation issues]: https://github.com/NixOS/nixpkgs/issues?q=is%3Aissue+is%3Aopen+label%3A%229.needs%3A+documentation%22
[open documentation pull requests]: https://github.com/NixOS/nixpkgs/pulls?q=is%3Aopen+is%3Apr+label%3A%228.has%3A+documentation%22%2C%226.topic%3A+documentation%22

View File

@@ -1,17 +1,24 @@
---
name: Out-of-date package reports
about: For packages that are out-of-date
title: 'Update request: PACKAGENAME OLDVERSION → NEWVERSION'
title: ''
labels: '9.needs: package (update)'
assignees: ''
---
- Package name:
- Latest released version:
<!-- Search your package here: https://search.nixos.org/packages?channel=unstable -->
- Current version on the unstable channel:
- Current version on the stable/release channel:
###### Checklist
<!-- Note that these are hard requirements -->
<!--
You can use the "Go to file" functionality on GitHub to find the package
Then you can go to the history for this package
Find the latest "package_name: old_version -> new_version" commit
The "new_version" is the current version of the package
-->
- [ ] Checked the [nixpkgs master branch](https://github.com/NixOS/nixpkgs)
<!--
Type the name of your package and try to find an open pull request for the package
If you find an open pull request, you can review it!
@@ -19,10 +26,23 @@ There's a high chance that you'll have the new version right away while helping
-->
- [ ] Checked the [nixpkgs pull requests](https://github.com/NixOS/nixpkgs/pulls)
**Notify maintainers**
###### Project name
`nix search` name:
<!--
The current version can be found easily with the same process as above for checking the master branch
If an open PR is present for the package, take this version as the current one and link to the PR
-->
current version:
desired version:
<!-- If the search.nixos.org result shows no maintainers, tag the person that last updated the package. -->
###### Notify maintainers
<!--
Search your package here: https://search.nixos.org/packages?channel=unstable
If no maintainer is listed for your package, tag the person that last updated the package
-->
-----
maintainers:
Note for maintainers: Please tag this issue in your PR.
###### Note for maintainers
Please tag this issue in your PR.

View File

@@ -1,15 +1,14 @@
---
name: Packaging requests
about: For packages that are missing
title: 'Package request: PACKAGENAME'
title: ''
labels: '0.kind: packaging request'
assignees: ''
---
**Project description**
<!-- Describe the project a little: -->
_describe the project a little_
**Metadata**

View File

@@ -1,31 +0,0 @@
---
name: Unreproducible package
about: A package that does not produce a bit-by-bit reproducible result each time it is built
title: ''
labels: [ '0.kind: enhancement', '6.topic: reproducible builds' ]
assignees: ''
---
Building this package twice does not produce the bit-by-bit identical result each time, making it harder to detect CI breaches. You can read more about this at https://reproducible-builds.org/ .
Fixing bit-by-bit reproducibility also has additional advantages, such as avoiding hard-to-reproduce bugs, making content-addressed storage more effective and reducing rebuilds in such systems.
### Steps To Reproduce
```
nix-build '<nixpkgs>' -A ... --check --keep-failed
```
You can use `diffoscope` to analyze the differences in the output of the two builds.
To view the build log of the build that produced the artifact in the binary cache:
```
nix-store --read-log $(nix-instantiate '<nixpkgs>' -A ...)
```
### Additional context
(please share the relevant fragment of the diffoscope output here,
and any additional analysis you may have done)

View File

@@ -1,11 +1,11 @@
## Description of changes
###### Description of changes
<!--
For package updates please link to a changelog or describe changes, this helps your fellow maintainers discover breaking updates.
For new packages please briefly describe the package or provide a link to its homepage.
-->
## Things done
###### Things done
<!-- Please check what applies. Note that these are not hard requirements but merely serve as information for reviewers. -->
@@ -22,10 +22,11 @@ For new packages please briefly describe the package or provide a link to its ho
- made sure NixOS tests are [linked](https://nixos.org/manual/nixpkgs/unstable/#ssec-nixos-tests-linking) to the relevant packages
- [ ] Tested compilation of all packages that depend on this change using `nix-shell -p nixpkgs-review --run "nixpkgs-review rev HEAD"`. Note: all changes have to be committed, also see [nixpkgs-review usage](https://github.com/Mic92/nixpkgs-review#usage)
- [ ] Tested basic functionality of all binary files (usually in `./result/bin/`)
- [23.11 Release Notes](https://github.com/NixOS/nixpkgs/blob/master/nixos/doc/manual/release-notes/rl-2311.section.md) (or backporting [23.05 Release notes](https://github.com/NixOS/nixpkgs/blob/master/nixos/doc/manual/release-notes/rl-2305.section.md))
- [22.05 Release Notes (or backporting 21.11 Release notes)](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md#generating-2205-release-notes)
- [ ] (Package updates) Added a release notes entry if the change is major or breaking
- [ ] (Module updates) Added a release notes entry if the change is significant
- [ ] (Module addition) Added a release notes entry if adding a new NixOS module
- [ ] (Release notes changes) Ran `nixos/doc/manual/md-to-db.sh` to update generated release notes
- [ ] Fits [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
<!--

View File

@@ -1,7 +1,6 @@
# Stale bot information
- Thanks for your contribution!
- Our stale bot will never close an issue or PR.
- To remove the stale label, just leave a new comment.
- _How to find the right people to ping?_ &rarr; [`git blame`](https://git-scm.com/docs/git-blame) to the rescue! (or GitHub's history and blame buttons.)
- You can always ask for help on [our Discourse Forum](https://discourse.nixos.org/), [our Matrix room](https://matrix.to/#/#nix:nixos.org), or on the [#nixos IRC channel](https://web.libera.chat/#nixos).

View File

@@ -1,6 +0,0 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

49
.github/labeler.yml vendored
View File

@@ -7,8 +7,6 @@
"6.topic: cinnamon":
- pkgs/desktops/cinnamon/**/*
- nixos/modules/services/x11/desktop-managers/cinnamon.nix
- nixos/tests/cinnamon.nix
"6.topic: emacs":
- nixos/modules/services/editors/emacs.nix
@@ -19,11 +17,6 @@
- pkgs/build-support/emacs/**/*
- pkgs/top-level/emacs-packages.nix
"6.topic: Enlightenment DE":
- nixos/modules/services/x11/desktop-managers/enlightenment.nix
- pkgs/desktops/enlightenment/**/*
- pkgs/development/python-modules/python-efl/*
"6.topic: erlang":
- doc/languages-frameworks/beam.section.md
- pkgs/development/beam-modules/**/*
@@ -47,8 +40,9 @@
"6.topic: golang":
- doc/languages-frameworks/go.section.md
- pkgs/build-support/go/**/*
- pkgs/development/compilers/go/**/*
- pkgs/development/go-modules/**/*
- pkgs/development/go-packages/**/*
"6.topic: haskell":
- doc/languages-frameworks/haskell.section.md
@@ -64,35 +58,12 @@
- pkgs/build-support/kernel/**/*
- pkgs/os-specific/linux/kernel/**/*
"6.topic: lib":
- lib/**
"6.topic: lua":
- pkgs/development/interpreters/lua-5/**/*
- pkgs/development/interpreters/luajit/**/*
- pkgs/development/lua-modules/**/*
- pkgs/top-level/lua-packages.nix
"6.topic: Lumina DE":
- nixos/modules/services/x11/desktop-managers/lumina.nix
- pkgs/desktops/lumina/**/*
"6.topic: LXQt":
- nixos/modules/services/x11/desktop-managers/lxqt.nix
- pkgs/desktops/lxqt/**/*
"6.topic: mate":
- nixos/modules/services/x11/desktop-managers/mate.nix
- nixos/tests/mate.nix
- pkgs/desktops/mate/**/*
"6.topic: module system":
- lib/modules.nix
- lib/types.nix
- lib/options.nix
- lib/tests/modules.sh
- lib/tests/modules/**
"6.topic: nixos":
- nixos/**/*
- pkgs/os-specific/linux/nixos-rebuild/**/*
@@ -103,14 +74,6 @@
- pkgs/development/nim-packages/**/*
- pkgs/top-level/nim-packages.nix
"6.topic: nodejs":
- doc/languages-frameworks/javascript.section.md
- pkgs/build-support/node/**/*
- pkgs/development/node-packages/**/*
- pkgs/development/tools/yarn/*
- pkgs/development/tools/yarn2nix-moretea/**/*
- pkgs/development/web/nodejs/*
"6.topic: ocaml":
- doc/languages-frameworks/ocaml.section.md
- pkgs/development/compilers/ocaml/**/*
@@ -170,7 +133,6 @@
"6.topic: TeX":
- doc/languages-frameworks/texlive.section.md
- pkgs/test/texlive/**
- pkgs/tools/typesetting/tex/**/*
"6.topic: vim":
@@ -180,19 +142,12 @@
- nixos/modules/programs/neovim.nix
- pkgs/applications/editors/neovim/**/*
"6.topic: vscode":
- pkgs/applications/editors/vscode/**/*
"6.topic: xfce":
- nixos/doc/manual/configuration/xfce.xml
- nixos/modules/services/x11/desktop-managers/xfce.nix
- nixos/tests/xfce.nix
- pkgs/desktops/xfce/**/*
"6.topic: zig":
- pkgs/development/compilers/zig/**/*
- doc/hooks/zig.section.md
"8.has: changelog":
- nixos/doc/manual/release-notes/**/*

3
.github/stale.yml vendored
View File

@@ -5,5 +5,6 @@ exemptLabels:
- "1.severity: security"
- "2.status: never-stale"
staleLabel: "2.status: stale"
markComment: false
markComment: |
I marked this as stale due to inactivity. &rarr; [More info](https://github.com/NixOS/nixpkgs/blob/master/.github/STALE-BOT.md)
closeComment: false

View File

@@ -8,26 +8,26 @@ on:
# the GitHub repository. This means that it should not evaluate user input in a
# way that allows code injection.
permissions:
contents: read
jobs:
backport:
permissions:
contents: write # for korthout/backport-action to create branch
pull-requests: write # for korthout/backport-action to create PR to backport
name: Backport Pull Request
if: github.repository_owner == 'NixOS' && github.event.pull_request.merged == true && (github.event_name != 'labeled' || startsWith('backport', github.event.label.name))
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
# required to find all branches
fetch-depth: 0
ref: ${{ github.event.pull_request.head.sha }}
- name: Create backport PRs
uses: korthout/backport-action@v1.3.1
# should be kept in sync with `version`
uses: zeebe-io/backport-action@v0.0.5
with:
# Config README: https://github.com/korthout/backport-action#backport-action
copy_labels_pattern: 'severity:\ssecurity'
# Config README: https://github.com/zeebe-io/backport-action#backport-action
github_token: ${{ secrets.GITHUB_TOKEN }}
github_workspace: ${{ github.workspace }}
# should be kept in sync with `uses`
version: v0.0.5
pull_description: |-
Bot-based backport to `${target_branch}`, triggered by a label in #${pull_number}.

View File

@@ -10,17 +10,14 @@ on:
# branches:
# - master
# - release-**
permissions:
contents: read
jobs:
tests:
runs-on: ubuntu-latest
# we don't limit this action to only NixOS repo since the checks are cheap and useful developer feedback
steps:
- uses: actions/checkout@v3
- uses: cachix/install-nix-action@v22
- uses: cachix/cachix-action@v12
- uses: cachix/install-nix-action@v17
- uses: cachix/cachix-action@v10
with:
# This cache is for the nixpkgs repo checks and should not be trusted or used elsewhere.
name: nixpkgs-ci

View File

@@ -1,24 +0,0 @@
name: "Check that maintainer list is sorted"
on:
pull_request_target:
paths:
- 'maintainers/maintainer-list.nix'
permissions:
contents: read
jobs:
nixos:
runs-on: ubuntu-latest
if: github.repository_owner == 'NixOS'
steps:
- uses: actions/checkout@v3
with:
# pull_request_target checks out the base branch by default
ref: refs/pull/${{ github.event.pull_request.number }}/merge
- uses: cachix/install-nix-action@v22
with:
# explicitly enable sandbox
extra_nix_config: sandbox = true
- name: Check that maintainer-list.nix is sorted
run: nix-instantiate --eval maintainers/scripts/check-maintainers-sorted.nix

32
.github/workflows/direct-push.yml vendored Normal file
View File

@@ -0,0 +1,32 @@
name: "Direct Push Warning"
on:
push:
branches:
- master
- release-**
jobs:
build:
runs-on: ubuntu-latest
if: github.repository_owner == 'NixOS'
env:
GITHUB_SHA: ${{ github.sha }}
GITHUB_REPOSITORY: ${{ github.repository }}
steps:
- name: Check if commit is a merge commit
id: ismerge
run: |
ISMERGE=$(curl -H 'Accept: application/vnd.github.groot-preview+json' -H "authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" https://api.github.com/repos/${{ env.GITHUB_REPOSITORY }}/commits/${{ env.GITHUB_SHA }}/pulls | jq -r '.[] | select(.merge_commit_sha == "${{ env.GITHUB_SHA }}") | any')
echo "::set-output name=ismerge::$ISMERGE"
# github events are eventually consistent, so wait until changes propagate to thier DB
- run: sleep 60
if: steps.ismerge.outputs.ismerge != 'true'
- name: Warn if the commit was a direct push
if: steps.ismerge.outputs.ismerge != 'true'
uses: peter-evans/commit-comment@v2
with:
body: |
@${{ github.actor }}, you pushed a commit directly to master/release branch
instead of going through a Pull Request.
That's highly discouraged beyond the few exceptions listed
on https://github.com/NixOS/nixpkgs/issues/118661

View File

@@ -11,7 +11,7 @@ on:
jobs:
tests:
runs-on: ubuntu-latest
if: "github.repository_owner == 'NixOS' && !contains(github.event.pull_request.title, '[skip treewide]')"
if: "github.repository_owner == 'NixOS' && !contains(github.event.pull_request.title, '[skip editorconfig]')"
steps:
- name: Get list of changed files from PR
env:
@@ -28,14 +28,16 @@ jobs:
with:
# pull_request_target checks out the base branch by default
ref: refs/pull/${{ github.event.pull_request.number }}/merge
- uses: cachix/install-nix-action@v22
- uses: cachix/install-nix-action@v17
with:
# nixpkgs commit is pinned so that it doesn't break
# editorconfig-checker 2.4.0
nix_path: nixpkgs=https://github.com/NixOS/nixpkgs/archive/c473cc8714710179df205b153f4e9fa007107ff9.tar.gz
- name: install editorconfig-checker
run: nix-env -iA editorconfig-checker -f '<nixpkgs>'
- name: Checking EditorConfig
run: |
cat "$HOME/changed_files" | nix-shell -p editorconfig-checker --run 'xargs -r editorconfig-checker -disable-indent-size'
cat "$HOME/changed_files" | xargs -r editorconfig-checker -disable-indent-size
- if: ${{ failure() }}
run: |
echo "::error :: Hey! It looks like your changes don't follow our editorconfig settings. Read https://editorconfig.org/#download to configure your editor so you never see this error again."

View File

@@ -16,7 +16,7 @@ permissions:
jobs:
labels:
runs-on: ubuntu-latest
if: "github.repository_owner == 'NixOS' && !contains(github.event.pull_request.title, '[skip treewide]')"
if: github.repository_owner == 'NixOS'
steps:
- uses: actions/labeler@v4
with:

View File

@@ -18,11 +18,11 @@ jobs:
with:
# pull_request_target checks out the base branch by default
ref: refs/pull/${{ github.event.pull_request.number }}/merge
- uses: cachix/install-nix-action@v22
- uses: cachix/install-nix-action@v17
with:
# explicitly enable sandbox
extra_nix_config: sandbox = true
- uses: cachix/cachix-action@v12
- uses: cachix/cachix-action@v10
with:
# This cache is for the nixpkgs repo checks and should not be trusted or used elsewhere.
name: nixpkgs-ci

View File

@@ -8,7 +8,6 @@ on:
- master
paths:
- 'doc/**'
- 'lib/**'
jobs:
nixpkgs:
@@ -19,11 +18,11 @@ jobs:
with:
# pull_request_target checks out the base branch by default
ref: refs/pull/${{ github.event.pull_request.number }}/merge
- uses: cachix/install-nix-action@v22
- uses: cachix/install-nix-action@v17
with:
# explicitly enable sandbox
extra_nix_config: sandbox = true
- uses: cachix/cachix-action@v12
- uses: cachix/cachix-action@v10
with:
# This cache is for the nixpkgs repo checks and should not be trusted or used elsewhere.
name: nixpkgs-ci

26
.github/workflows/nixos-manual.yml vendored Normal file
View File

@@ -0,0 +1,26 @@
name: NixOS manual checks
permissions: read-all
on:
pull_request_target:
branches-ignore:
- 'release-**'
paths:
- 'nixos/**/*.xml'
- 'nixos/**/*.md'
jobs:
tests:
runs-on: ubuntu-latest
if: github.repository_owner == 'NixOS'
steps:
- uses: actions/checkout@v3
with:
# pull_request_target checks out the base branch by default
ref: refs/pull/${{ github.event.pull_request.number }}/merge
- uses: cachix/install-nix-action@v17
- name: Check DocBook files generated from Markdown are consistent
run: |
nixos/doc/manual/md-to-db.sh
git diff --exit-code

View File

@@ -6,13 +6,8 @@ on:
- 'nixos-**'
- 'nixpkgs-**'
permissions:
contents: read
jobs:
fail:
permissions:
contents: none
name: "This PR is is targeting a channel branch"
runs-on: ubuntu-latest
steps:

View File

@@ -1,33 +0,0 @@
name: "Set pending OfBorg status"
on:
pull_request_target:
# Sets the ofborg-eval status to "pending" to signal that we are waiting for
# OfBorg even if it is running late. The status will be overwritten by OfBorg
# once it starts evaluation.
# WARNING:
# When extending this action, be aware that $GITHUB_TOKEN allows (restricted) write access to
# the GitHub repository. This means that it should not evaluate user input in a
# way that allows code injection.
permissions:
contents: read
jobs:
action:
if: github.repository_owner == 'NixOS'
permissions:
statuses: write
runs-on: ubuntu-latest
steps:
- name: "Set pending OfBorg status"
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
curl \
-X POST \
-H "Accept: application/vnd.github.v3+json" \
-H "Authorization: Bearer $GITHUB_TOKEN" \
-d '{"context": "ofborg-eval", "state": "pending", "description": "Waiting for OfBorg..."}' \
"https://api.github.com/repos/NixOS/nixpkgs/commits/${{ github.event.pull_request.head.sha }}/statuses"

21
.github/workflows/pending-clear.yml vendored Normal file
View File

@@ -0,0 +1,21 @@
name: "clear pending status"
on:
check_suite:
types: [ completed ]
jobs:
action:
runs-on: ubuntu-latest
steps:
- name: clear pending status
if: github.repository_owner == 'NixOS' && github.event.check_suite.app.name == 'OfBorg'
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
curl \
-X POST \
-H "Accept: application/vnd.github.v3+json" \
-H "Authorization: token $GITHUB_TOKEN" \
-d '{"state": "success", "target_url": " ", "description": " ", "context": "Wait for ofborg"}' \
"https://api.github.com/repos/NixOS/nixpkgs/statuses/${{ github.event.check_suite.head_sha }}"

25
.github/workflows/pending-set.yml vendored Normal file
View File

@@ -0,0 +1,25 @@
name: "set pending status"
on:
pull_request_target:
# WARNING:
# When extending this action, be aware that $GITHUB_TOKEN allows write access to
# the GitHub repository. This means that it should not evaluate user input in a
# way that allows code injection.
jobs:
action:
runs-on: ubuntu-latest
steps:
- name: set pending status
if: github.repository_owner == 'NixOS'
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
curl \
-X POST \
-H "Accept: application/vnd.github.v3+json" \
-H "Authorization: token $GITHUB_TOKEN" \
-d '{"state": "pending", "target_url": " ", "description": "This pending status will be cleared when ofborg starts eval.", "context": "Wait for ofborg"}' \
"https://api.github.com/repos/NixOS/nixpkgs/statuses/${{ github.event.pull_request.head.sha }}"

View File

@@ -14,14 +14,8 @@ on:
# Merge every 24 hours
- cron: '0 0 * * *'
permissions:
contents: read
jobs:
periodic-merge:
permissions:
contents: write # for devmasx/merge-branch to merge branches
pull-requests: write # for peter-evans/create-or-update-comment to create or update comment
if: github.repository_owner == 'NixOS'
runs-on: ubuntu-latest
strategy:
@@ -34,10 +28,14 @@ jobs:
pairs:
- from: master
into: haskell-updates
- from: release-23.05
into: staging-next-23.05
- from: staging-next-23.05
into: staging-23.05
- from: release-21.05
into: staging-next-21.05
- from: staging-next-21.05
into: staging-21.05
- from: release-21.11
into: staging-next-21.11
- from: staging-next-21.11
into: staging-21.11
name: ${{ matrix.pairs.from }} → ${{ matrix.pairs.into }}
steps:
- uses: actions/checkout@v3
@@ -51,7 +49,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
- name: Comment on failure
uses: peter-evans/create-or-update-comment@v3
uses: peter-evans/create-or-update-comment@v2
if: ${{ failure() }}
with:
issue-number: 105153

View File

@@ -14,14 +14,8 @@ on:
# Merge every 6 hours
- cron: '0 */6 * * *'
permissions:
contents: read
jobs:
periodic-merge:
permissions:
contents: write # for devmasx/merge-branch to merge branches
pull-requests: write # for peter-evans/create-or-update-comment to create or update comment
if: github.repository_owner == 'NixOS'
runs-on: ubuntu-latest
strategy:
@@ -49,7 +43,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
- name: Comment on failure
uses: peter-evans/create-or-update-comment@v3
uses: peter-evans/create-or-update-comment@v2
if: ${{ failure() }}
with:
issue-number: 105153

View File

@@ -1,69 +1,47 @@
name: "Update terraform-providers"
on:
#schedule:
# - cron: "0 3 * * *"
schedule:
- cron: "14 3 * * 1"
workflow_dispatch:
permissions:
contents: read
jobs:
tf-providers:
permissions:
contents: write # for peter-evans/create-pull-request to create branch
pull-requests: write # for peter-evans/create-pull-request to create a PR
if: github.repository_owner == 'NixOS' && github.ref == 'refs/heads/master' # ensure workflow_dispatch only runs on master
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: cachix/install-nix-action@v22
with:
nix_path: nixpkgs=channel:nixpkgs-unstable
- uses: cachix/install-nix-action@v17
- name: setup
id: setup
run: |
echo "title=terraform-providers: update $(date -u +"%Y-%m-%d")" >> $GITHUB_OUTPUT
echo ::set-output name=title::"terraform-providers: update $(date -u +"%Y-%m-%d")"
- name: update terraform-providers
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
git config user.email "41898282+github-actions[bot]@users.noreply.github.com"
git config user.name "github-actions[bot]"
echo | nix-shell \
maintainers/scripts/update.nix \
--argstr commit true \
--argstr keep-going true \
--argstr max-workers 2 \
--argstr path terraform-providers
- name: get failed updates
run: |
echo 'FAILED<<EOF' >> $GITHUB_ENV
git ls-files --others >> $GITHUB_ENV
echo 'EOF' >> $GITHUB_ENV
# cleanup logs of failed updates so they aren't included in the PR
- name: clean repo
run: |
git clean -f
pushd pkgs/applications/networking/cluster/terraform-providers
./update-all-providers --no-build
git commit -m "${{ steps.setup.outputs.title }}" providers.json
popd
- name: create PR
uses: peter-evans/create-pull-request@v5
uses: peter-evans/create-pull-request@v3
with:
body: |
Automatic update by [update-terraform-providers](https://github.com/NixOS/nixpkgs/blob/master/.github/workflows/update-terraform-providers.yml) action.
Automatic update of terraform providers.
https://github.com/NixOS/nixpkgs/actions/runs/${{ github.run_id }}
Created by [update-terraform-providers](https://github.com/NixOS/nixpkgs/blob/master/.github/workflows/update-terraform-providers.yml) action.
These providers failed to update:
```
${{ env.FAILED }}
```
Check that all providers build with:
```
@ofborg build terraform.full
```
If there is more than ten commits in the PR `ofborg` won't build it automatically and you will need to use the above command.
Check that all providers build with `@ofborg build terraform-full`
branch: terraform-providers-update
delete-branch: false
labels: "2.status: work-in-progress"
title: ${{ steps.setup.outputs.title }}
token: ${{ secrets.GITHUB_TOKEN }}
- name: comment on failure
uses: peter-evans/create-or-update-comment@v2
if: ${{ failure() }}
with:
issue-number: 153416
body: |
Automatic update of terraform providers [failed](https://github.com/NixOS/nixpkgs/actions/runs/${{ github.run_id }}).

9
.gitignore vendored
View File

@@ -2,21 +2,16 @@
,*
.*.swp
.*.swo
.\#*
\#*\#
.idea/
.vscode/
outputs/
result-*
result
repl-result-*
!pkgs/development/python-modules/result
result-*
source/
/doc/NEWS.html
/doc/NEWS.txt
/doc/manual.html
/doc/manual.pdf
/result
/source/
.version-suffix
.DS_Store

View File

@@ -1,14 +0,0 @@
ajs124 <git@ajs124.de> <ajs124@users.noreply.github.com>
Anderson Torres <torres.anderson.85@protonmail.com>
Daniel Løvbrøtte Olsen <me@dandellion.xyz> <daniel.olsen99@gmail.com>
Fabian Affolter <mail@fabian-affolter.ch> <fabian@affolter-engineering.ch>
Janne Heß <janne@hess.ooo> <dasJ@users.noreply.github.com>
Jörg Thalheim <joerg@thalheim.io> <Mic92@users.noreply.github.com>
Martin Weinelt <hexa@darmstadt.ccc.de> <mweinelt@users.noreply.github.com>
R. RyanTM <ryantm-bot@ryantm.com>
Robert Hensing <robert@roberthensing.nl> <roberth@users.noreply.github.com>
Sandro Jäckel <sandro.jaeckel@gmail.com>
Sandro Jäckel <sandro.jaeckel@gmail.com> <sandro.jaeckel@sap.com>
superherointj <5861043+superherointj@users.noreply.github.com>
Vladimír Čunát <v@cunat.cz> <vcunat@gmail.com>
Vladimír Čunát <v@cunat.cz> <vladimir.cunat@nic.cz>

View File

@@ -1 +1 @@
23.11
22.05

View File

@@ -1,518 +1,21 @@
# Contributing to Nixpkgs
# How to contribute
This document is for people wanting to contribute to the implementation of Nixpkgs.
This involves interacting with implementation changes that are proposed using [GitHub](https://github.com/) [pull requests](https://docs.github.com/pull-requests) to the [Nixpkgs](https://github.com/nixos/nixpkgs/) repository (which you're in right now).
Note: contributing implies licensing those contributions
under the terms of [COPYING](COPYING), which is an MIT-like license.
As such, a GitHub account is recommended, which you can sign up for [here](https://github.com/signup).
See [here](https://discourse.nixos.org/t/about-the-patches-category/477) for how to contribute without a GitHub account.
## Opening issues
Additionally this document assumes that you already know how to use GitHub and Git.
If that's not the case, we recommend learning about it first [here](https://docs.github.com/en/get-started/quickstart/hello-world).
* Make sure you have a [GitHub account](https://github.com/signup/free)
* Make sure there is no open issue on the topic
* [Submit a new issue](https://github.com/NixOS/nixpkgs/issues/new/choose) by choosing the kind of topic and fill out the template
## Overview
[overview]: #overview
## Submitting changes
This file contains general contributing information, but individual parts also have more specific information to them in their respective `README.md` files, linked here:
- [`lib`](./lib/README.md): Sources and documentation of the [library functions](https://nixos.org/manual/nixpkgs/stable/#chap-functions)
- [`maintainers`](./maintainers/README.md): Nixpkgs maintainer and team listings, maintainer scripts
- [`pkgs`](./pkgs/README.md): Package and [builder](https://nixos.org/manual/nixpkgs/stable/#part-builders) definitions
- [`doc`](./doc/README.md): Sources and infrastructure for the [Nixpkgs manual](https://nixos.org/manual/nixpkgs/stable/)
- [`nixos`](./nixos/README.md): Implementation of [NixOS](https://nixos.org/manual/nixos/stable/)
Read the ["Submitting changes"](https://nixos.org/nixpkgs/manual/#chap-submitting-changes) section of the nixpkgs manual. It explains how to write, test, and iterate on your change, and which branch to base your pull request against.
# How to's
Below is a short excerpt of some points in there:
## How to create pull requests
[pr-create]: #how-to-create-pull-requests
This section describes in some detail how changes can be made and proposed with pull requests.
> **Note**
> Be aware that contributing implies licensing those contributions under the terms of [COPYING](./COPYING), an MIT-like license.
0. Set up a local version of Nixpkgs to work with using GitHub and Git
1. [Fork](https://docs.github.com/en/get-started/quickstart/fork-a-repo#forking-a-repository) the [Nixpkgs repository](https://github.com/nixos/nixpkgs/).
1. [Clone the forked repository](https://docs.github.com/en/get-started/quickstart/fork-a-repo#cloning-your-forked-repository) into a local `nixpkgs` directory.
1. [Configure the upstream Nixpkgs repository](https://docs.github.com/en/get-started/quickstart/fork-a-repo#configuring-git-to-sync-your-fork-with-the-upstream-repository).
1. Figure out the branch that should be used for this change by going through [this section][branch].
If in doubt use `master`, that's where most changes should go.
This can be changed later by [rebasing][rebase].
2. Create and switch to a new Git branch, ideally such that:
- The name of the branch hints at the change you'd like to implement, e.g. `update-hello`.
- The base of the branch includes the most recent changes on the base branch from step 1, we'll assume `master` here.
```bash
# Make sure you have the latest changes from upstream Nixpkgs
git fetch upstream
# Create and switch to a new branch based off the master branch in Nixpkgs
git switch --create update-hello upstream/master
```
To avoid having to download and build potentially many derivations, at the expense of using a potentially outdated version, you can base the branch off a specific [Git commit](https://www.git-scm.com/docs/gitglossary#def_commit) instead:
- The commit of the latest `nixpkgs-unstable` channel, available [here](https://channels.nixos.org/nixpkgs-unstable/git-revision).
- The commit of a local Nixpkgs downloaded using [nix-channel](https://nixos.org/manual/nix/stable/command-ref/nix-channel), available using `nix-instantiate --eval --expr '(import <nixpkgs/lib>).trivial.revisionWithDefault null'`
- If you're using NixOS, the commit of your NixOS installation, available with `nixos-version --revision`.
Once you have an appropriate commit you can use it instead of `upstream/master` in the above command:
```bash
git switch --create update-hello <the desired base commit>
```
3. Make the desired changes in the local Nixpkgs repository using an editor of your choice.
Make sure to:
- Adhere to both the [general code conventions][code-conventions], and the code conventions specific to the part you're making changes to.
See the [overview section][overview] for more specific information.
- Test the changes.
See the [overview section][overview] for more specific information.
- If necessary, document the change.
See the [overview section][overview] for more specific information.
4. Commit your changes using `git commit`.
Make sure to adhere to the [commit conventions](#commit-conventions).
Repeat the steps 3-4 as many times as necessary.
Advance to the next step if all the commits (viewable with `git log`) make sense together.
5. Push your commits to your fork of Nixpkgs.
```
git push --set-upstream origin HEAD
```
The above command will output a link that allows you to directly quickly do the next step:
```
remote: Create a pull request for 'update-hello' on GitHub by visiting:
remote: https://github.com/myUser/nixpkgs/pull/new/update-hello
```
6. [Create a pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request#creating-the-pull-request) from the new branch in your Nixpkgs fork to the upstream Nixpkgs repository.
Use the branch from step 2 as the pull requests base branch.
Go through the [pull request template](#pull-request-template) in the pre-filled default description.
7. Respond to review comments, potential CI failures and potential merge conflicts by updating the pull request.
Always keep the pull request in a mergeable state.
The custom [OfBorg](https://github.com/NixOS/ofborg) CI system will perform various checks to help ensure code quality, whose results you can see at the bottom of the pull request.
See [the OfBorg Readme](https://github.com/NixOS/ofborg#readme) for more details.
- To add new commits, repeat steps 3-4 and push the result using
```
git push
```
- To change existing commits you will have to [rewrite Git history](https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History).
Useful Git commands that can help a lot with this are `git commit --patch --amend` and `git rebase --interactive`.
With a rewritten history you need to force-push the commits using
```
git push --force-with-lease
```
- In case of merge conflicts you will also have to [rebase the branch](https://git-scm.com/book/en/v2/Git-Branching-Rebasing) on top of current `master`.
Sometimes this can be done [on GitHub directly](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/keeping-your-pull-request-in-sync-with-the-base-branch#updating-your-pull-request-branch), but if not you will have to rebase locally using
```
git fetch upstream
git rebase upstream/master
git push --force-with-lease
```
- If you need to change the base branch of the pull request, you can do so by [rebasing][rebase].
8. If your pull request is merged and [acceptable for releases][release-acceptable] you may [backport][pr-backport] the pull request.
### Pull request template
[pr-template]: #pull-request-template
The pull request template helps determine what steps have been made for a contribution so far, and will help guide maintainers on the status of a change. The motivation section of the PR should include any extra details the title does not address and link any existing issues related to the pull request.
When a PR is created, it will be pre-populated with some checkboxes detailed below:
#### Tested using sandboxing
When sandbox builds are enabled, Nix will setup an isolated environment for each build process. It is used to remove further hidden dependencies set by the build environment to improve reproducibility. This includes access to the network during the build outside of `fetch*` functions and files outside the Nix store. Depending on the operating system access to other resources are blocked as well (ex. inter process communication is isolated on Linux); see [sandbox](https://nixos.org/manual/nix/stable/command-ref/conf-file#conf-sandbox) in the Nix manual for details.
Sandboxing is not enabled by default in Nix due to a small performance hit on each build. In pull requests for [nixpkgs](https://github.com/NixOS/nixpkgs/) people are asked to test builds with sandboxing enabled (see `Tested using sandboxing` in the pull request template) because in [Hydra](https://nixos.org/hydra/) sandboxing is also used.
Depending if you use NixOS or other platforms you can use one of the following methods to enable sandboxing **before** building the package:
- **Globally enable sandboxing on NixOS**: add the following to `configuration.nix`
```nix
nix.settings.sandbox = true;
```
- **Globally enable sandboxing on non-NixOS platforms**: add the following to: `/etc/nix/nix.conf`
```ini
sandbox = true
```
#### Built on platform(s)
Many Nix packages are designed to run on multiple platforms. As such, its important to let the maintainer know which platforms your changes have been tested on. Its not always practical to test a change on all platforms, and is not required for a pull request to be merged. Only check the systems you tested the build on in this section.
#### Tested via one or more NixOS test(s) if existing and applicable for the change (look inside nixos/tests)
Packages with automated tests are much more likely to be merged in a timely fashion because it doesnt require as much manual testing by the maintainer to verify the functionality of the package. If there are existing tests for the package, they should be run to verify your changes do not break the tests. Tests can only be run on Linux. For more details on writing and running tests, see the [section in the NixOS manual](https://nixos.org/nixos/manual/index.html#sec-nixos-tests).
#### Tested compilation of all pkgs that depend on this change using `nixpkgs-review`
If you are modifying a package, you can use `nixpkgs-review` to make sure all packages that depend on the updated package still compile correctly. The `nixpkgs-review` utility can look for and build all dependencies either based on uncommitted changes with the `wip` option or specifying a GitHub pull request number.
Review changes from pull request number 12345:
```ShellSession
nix-shell -p nixpkgs-review --run "nixpkgs-review pr 12345"
```
Alternatively, with flakes (and analogously for the other commands below):
```ShellSession
nix run nixpkgs#nixpkgs-review -- pr 12345
```
Review uncommitted changes:
```ShellSession
nix-shell -p nixpkgs-review --run "nixpkgs-review wip"
```
Review changes from last commit:
```ShellSession
nix-shell -p nixpkgs-review --run "nixpkgs-review rev HEAD"
```
#### Tested execution of all binary files (usually in `./result/bin/`)
Its important to test any executables generated by a build when you change or create a package in nixpkgs. This can be done by looking in `./result/bin` and running any files in there, or at a minimum, the main executable for the package. For example, if you make a change to texlive, you probably would only check the binaries associated with the change you made rather than testing all of them.
#### Meets Nixpkgs contribution standards
The last checkbox is about whether it fits the guidelines in this `CONTRIBUTING.md` file. This document has detailed information on standards the Nix community has for commit messages, reviews, licensing of contributions you make to the project, etc... Everyone should read and understand the standards the community has for contributing before submitting a pull request.
### Rebasing between branches (i.e. from master to staging)
[rebase]: #rebasing-between-branches-ie-from-master-to-staging
From time to time, changes between branches must be rebased, for example, if the
number of new rebuilds they would cause is too large for the target branch. When
rebasing, care must be taken to include only the intended changes, otherwise
many CODEOWNERS will be inadvertently requested for review. To achieve this,
rebasing should not be performed directly on the target branch, but on the merge
base between the current and target branch. As an additional precautionary measure,
you should temporarily mark the PR as draft for the duration of the operation.
This reduces the probability of mass-pinging people. (OfBorg might still
request a couple of persons for reviews though.)
In the following example, we assume that the current branch, called `feature`,
is based on `master`, and we rebase it onto the merge base between
`master` and `staging` so that the PR can eventually be retargeted to
`staging` without causing a mess. The example uses `upstream` as the remote for `NixOS/nixpkgs.git`
while `origin` is the remote you are pushing to.
```console
# Rebase your commits onto the common merge base
git rebase --onto upstream/staging... upstream/master
# Force push your changes
git push origin feature --force-with-lease
```
The syntax `upstream/staging...` is equivalent to `upstream/staging...HEAD` and
stands for the merge base between `upstream/staging` and `HEAD` (hence between
`upstream/staging` and `upstream/master`).
Then change the base branch in the GitHub PR using the *Edit* button in the upper
right corner, and switch from `master` to `staging`. *After* the PR has been
retargeted it might be necessary to do a final rebase onto the target branch, to
resolve any outstanding merge conflicts.
```console
# Rebase onto target branch
git rebase upstream/staging
# Review and fixup possible conflicts
git status
# Force push your changes
git push origin feature --force-with-lease
```
#### Something went wrong and a lot of people were pinged
It happens. Remember to be kind, especially to new contributors.
There is no way back, so the pull request should be closed and locked
(if possible). The changes should be re-submitted in a new PR, in which the people
originally involved in the conversation need to manually be pinged again.
No further discussion should happen on the original PR, as a lot of people
are now subscribed to it.
The following message (or a version thereof) might be left when closing to
describe the situation, since closing and locking without any explanation
is kind of rude:
```markdown
It looks like you accidentally mass-pinged a bunch of people, which are now subscribed
and getting notifications for everything in this pull request. Unfortunately, they
cannot be automatically unsubscribed from the issue (removing review request does not
unsubscribe), therefore development cannot continue in this pull request anymore.
Please open a new pull request with your changes, link back to this one and ping the
people actually involved in here over there.
In order to avoid this in the future, there are instructions for how to properly
rebase between branches in our [contribution guidelines](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md#rebasing-between-branches-ie-from-master-to-staging).
Setting your pull request to draft prior to rebasing is strongly recommended.
In draft status, you can preview the list of people that are about to be requested
for review, which allows you to sidestep this issue.
This is not a bulletproof method though, as OfBorg still does review requests even on draft PRs.
```
## How to backport pull requests
[pr-backport]: #how-to-backport-pull-requests
Once a pull request has been merged into `master`, a backport pull request to the corresponding `release-YY.MM` branch can be created either automatically or manually.
### Automatically backporting changes
> **Note**
> You have to be a [Nixpkgs maintainer](./maintainers) to automatically create a backport pull request.
Add the [`backport release-YY.MM` label](https://github.com/NixOS/nixpkgs/labels?q=backport) to the pull request on the `master` branch.
This will cause [a GitHub Action](.github/workflows/backport.yml) to open a pull request to the `release-YY.MM` branch a few minutes later.
This can be done on both open or already merged pull requests.
### Manually backporting changes
To manually create a backport pull request, follow [the standard pull request process][pr-create], with these notable differences:
- Use `release-YY.MM` for the base branch, both for the local branch and the pull request.
> **Warning**
> Do not use the `nixos-YY.MM` branch, that is a branch pointing to the tested release channel commit
- Instead of manually making and committing the changes, use [`git cherry-pick -x`](https://git-scm.com/docs/git-cherry-pick) for each commit from the pull request you'd like to backport.
Either `git cherry-pick -x <commit>` when the reason for the backport is obvious (such as minor versions, fixes, etc.), otherwise use `git cherry-pick -xe <commit>` to add a reason for the backport to the commit message.
Here is [an example](https://github.com/nixos/nixpkgs/commit/5688c39af5a6c5f3d646343443683da880eaefb8) of this.
> **Warning**
> Ensure the commits exists on the master branch.
> In the case of squashed or rebased merges, the commit hash will change and the new commits can be found in the merge message at the bottom of the master pull request.
- In the pull request description, link to the original pull request to `master`.
The pull request title should include `[YY.MM]` matching the release you're backporting to.
- When the backport pull request is merged and you have the necessary privileges you can also replace the label `9.needs: port to stable` with `8.has: port to stable` on the original pull request.
This way maintainers can keep track of missing backports easier.
## How to review pull requests
[pr-review]: #how-to-review-pull-requests
> **Warning**
> The following section is a draft, and the policy for reviewing is still being discussed in issues such as [#11166](https://github.com/NixOS/nixpkgs/issues/11166) and [#20836](https://github.com/NixOS/nixpkgs/issues/20836).
The Nixpkgs project receives a fairly high number of contributions via GitHub pull requests. Reviewing and approving these is an important task and a way to contribute to the project.
The high change rate of Nixpkgs makes any pull request that remains open for too long subject to conflicts that will require extra work from the submitter or the merger. Reviewing pull requests in a timely manner and being responsive to the comments is the key to avoid this issue. GitHub provides sort filters that can be used to see the [most recently](https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aopen+sort%3Aupdated-desc) and the [least recently](https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aopen+sort%3Aupdated-asc) updated pull requests. We highly encourage looking at [this list of ready to merge, unreviewed pull requests](https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aopen+review%3Anone+status%3Asuccess+-label%3A%222.status%3A+work-in-progress%22+no%3Aproject+no%3Aassignee+no%3Amilestone).
When reviewing a pull request, please always be nice and polite. Controversial changes can lead to controversial opinions, but it is important to respect every community member and their work.
GitHub provides reactions as a simple and quick way to provide feedback to pull requests or any comments. The thumb-down reaction should be used with care and if possible accompanied with some explanation so the submitter has directions to improve their contribution.
Pull request reviews should include a list of what has been reviewed in a comment, so other reviewers and mergers can know the state of the review.
All the review template samples provided in this section are generic and meant as examples. Their usage is optional and the reviewer is free to adapt them to their liking.
To get more information about how to review specific parts of Nixpkgs, refer to the documents linked to in the [overview section][overview].
If you consider having enough knowledge and experience in a topic and would like to be a long-term reviewer for related submissions, please contact the current reviewers for that topic. They will give you information about the reviewing process. The main reviewers for a topic can be hard to find as there is no list, but checking past pull requests to see who reviewed or git-blaming the code to see who committed to that topic can give some hints.
Container system, boot system and library changes are some examples of the pull requests fitting this category.
## How to merge pull requests
[pr-merge]: #how-to-merge-pull-requests
The *Nixpkgs committers* are people who have been given
permission to merge.
It is possible for community members that have enough knowledge and experience on a special topic to contribute by merging pull requests.
In case the PR is stuck waiting for the original author to apply a trivial
change (a typo, capitalisation change, etc.) and the author allowed the members
to modify the PR, consider applying it yourself (or commit the existing review
suggestion). You should pay extra attention to make sure the addition doesn't go
against the idea of the original PR and would not be opposed by the author.
<!--
The following paragraphs about how to deal with unactive contributors is just a proposition and should be modified to what the community agrees to be the right policy.
Please note that contributors with commit rights unactive for more than three months will have their commit rights revoked.
-->
Please see the discussion in [GitHub nixpkgs issue #50105](https://github.com/NixOS/nixpkgs/issues/50105) for information on how to proceed to be granted this level of access.
In a case a contributor definitively leaves the Nix community, they should create an issue or post on [Discourse](https://discourse.nixos.org) with references of packages and modules they maintain so the maintainership can be taken over by other contributors.
# Flow of merged pull requests
After a pull requests is merged, it eventually makes it to the [official Hydra CI](https://hydra.nixos.org/).
Hydra regularly evaluates and builds Nixpkgs, updating [the official channels](http://channels.nixos.org/) when specific Hydra jobs succeeded.
See [Nix Channel Status](https://status.nixos.org/) for the current channels and their state.
Here's a brief overview of the main Git branches and what channels they're used for:
- `master`: The main branch, used for the unstable channels such as `nixpkgs-unstable`, `nixos-unstable` and `nixos-unstable-small`.
- `release-YY.MM` (e.g. `release-23.05`): The NixOS release branches, used for the stable channels such as `nixos-23.05`, `nixos-23.05-small` and `nixpkgs-23.05-darwin`.
When a channel is updated, a corresponding Git branch is also updated to point to the corresponding commit.
So e.g. the [`nixpkgs-unstable` branch](https://github.com/nixos/nixpkgs/tree/nixpkgs-unstable) corresponds to the Git commit from the [`nixpkgs-unstable` channel](https://channels.nixos.org/nixpkgs-unstable).
Nixpkgs in its entirety is tied to the NixOS release process, which is documented in the [NixOS Release Wiki](https://nixos.github.io/release-wiki/).
See [this section][branch] to know when to use the release branches.
## Staging
[staging]: #staging
The staging workflow exists to batch Hydra builds of many packages together.
It works by directing commits that cause [mass rebuilds][mass-rebuild] to a separate `staging` branch that isn't directly built by Hydra.
Regularly, the `staging` branch is _manually_ merged into a `staging-next` branch to be built by Hydra using the [`nixpkgs:staging-next` jobset](https://hydra.nixos.org/jobset/nixpkgs/staging-next).
The `staging-next` branch should then only receive direct commits in order to fix Hydra builds.
Once it is verified that there are no major regressions, it is merged into `master` using [a pull requests](https://github.com/NixOS/nixpkgs/pulls?q=head%3Astaging-next).
This is done manually in order to ensure it's a good use of Hydra's computing resources.
By keeping the `staging-next` branch separate from `staging`, this batching does not block developers from merging changes into `staging`.
In order for the `staging` and `staging-next` branches to be up-to-date with the latest commits on `master`, there are regular _automated_ merges from `master` into `staging-next` and `staging`.
This is implemented using GitHub workflows [here](.github/workflows/periodic-merge-6h.yml) and [here](.github/workflows/periodic-merge-24h.yml).
> **Note**
> Changes must be sufficiently tested before being merged into any branch.
> Hydra builds should not be used as testing platform.
Here is a Git history diagram showing the flow of commits between the three branches:
```mermaid
%%{init: {
'theme': 'base',
'themeVariables': {
'gitInv0': '#ff0000',
'gitInv1': '#ff0000',
'git2': '#ff4444',
'commitLabelFontSize': '15px'
},
'gitGraph': {
'showCommitLabel':true,
'mainBranchName': 'master',
'rotateCommitLabel': true
}
} }%%
gitGraph
commit id:" "
branch staging-next
branch staging
checkout master
checkout staging
checkout master
commit id:" "
checkout staging-next
merge master id:"automatic"
checkout staging
merge staging-next id:"automatic "
checkout staging-next
merge staging type:HIGHLIGHT id:"manual"
commit id:"fixup"
checkout master
checkout staging
checkout master
commit id:" "
checkout staging-next
merge master id:"automatic "
checkout staging
merge staging-next id:"automatic "
checkout staging-next
commit id:"fixup "
checkout master
merge staging-next type:HIGHLIGHT id:"manual (PR)"
```
Here's an overview of the different branches:
| branch | `master` | `staging` | `staging-next` |
| --- | --- | --- | --- |
| Used for development | ✔️ | ✔️ | ❌ |
| Built by Hydra | ✔️ | ❌ | ✔️ |
| [Mass rebuilds][mass-rebuild] | ❌ | ✔️ | ⚠️ Only to fix Hydra builds |
| Critical security fixes | ✔️ for non-mass-rebuilds | ❌ | ✔️ for mass-rebuilds |
| Automatically merged into | `staging-next` | - | `staging` |
| Manually merged into | - | `staging-next` | `master` |
The staging workflow is used for all main branches, `master` and `release-YY.MM`, with corresponding names:
- `master`/`release-YY.MM`
- `staging`/`staging-YY.MM`
- `staging-next`/`staging-next-YY.MM`
# Conventions
## Branch conventions
<!-- This section is relevant to both contributors and reviewers -->
[branch]: #branch-conventions
Most changes should go to the `master` branch, but sometimes other branches should be used instead.
Use the following decision process to figure out which one it should be:
Is the change [acceptable for releases][release-acceptable] and do you wish to have the change in the release?
- No: Use the `master` branch, do not backport the pull request.
- Yes: Can the change be implemented the same way on the `master` and release branches?
For example, a packages major version might differ between the `master` and release branches, such that separate security patches are required.
- Yes: Use the `master` branch and [backport the pull request](#backporting-changes).
- No: Create separate pull requests to the `master` and `release-XX.YY` branches.
Furthermore, if the change causes a [mass rebuild][mass-rebuild], use the appropriate staging branch instead:
- Mass rebuilds to `master` should go to `staging` instead.
- Mass rebuilds to `release-XX.YY` should go to `staging-XX.YY` instead.
See [this section][staging] for more details about such changes propagate between the branches.
### Changes acceptable for releases
[release-acceptable]: #changes-acceptable-for-releases
Only changes to supported releases may be accepted.
The oldest supported release (`YYMM`) can be found using
```
nix-instantiate --eval -A lib.trivial.oldestSupportedRelease
```
The release branches should generally not receive any breaking changes, both for the Nix expressions and derivations.
So these changes are acceptable to backport:
- New packages, modules and functions
- Security fixes
- Package version updates
- Patch versions with fixes
- Minor versions with new functionality, but no breaking changes
In addition, major package version updates with breaking changes are also acceptable for:
- Services that would fail without up-to-date client software, such as `spotify`, `steam`, and `discord`
- Security critical applications, such as `firefox` and `chromium`
### Changes causing mass rebuilds
[mass-rebuild]: #changes-causing-mass-rebuilds
Which changes cause mass rebuilds is not formally defined.
In order to help the decision, CI automatically assigns [`rebuild` labels](https://github.com/NixOS/nixpkgs/labels?q=rebuild) to pull requests based on the number of packages they cause rebuilds for.
As a rule of thumb, if the number of rebuilds is **over 500**, it can be considered a mass rebuild.
To get a sense for what changes are considered mass rebuilds, see [previously merged pull requests to the staging branches](https://github.com/NixOS/nixpkgs/issues?q=base%3Astaging+-base%3Astaging-next+is%3Amerged).
## Commit conventions
[commit-conventions]: #commit-conventions
- Create a commit for each logical unit.
- Check for unnecessary whitespace with `git diff --check` before committing.
- If you have commits `pkg-name: oh, forgot to insert whitespace`: squash commits in this case. Use `git rebase -i`.
- Format the commit messages in the following way:
* Format the commit messages in the following way:
```
(pkg-name | nixos/<module>): (from -> to | init at version | refactor | etc)
@@ -526,7 +29,6 @@ To get a sense for what changes are considered mass rebuilds, see [previously me
* nginx: init at 2.0.1
* firefox: 54.0.1 -> 55.0
https://www.mozilla.org/en-US/firefox/55.0/releasenotes/
* nixos/hydra: add bazBaz option
@@ -535,217 +37,94 @@ To get a sense for what changes are considered mass rebuilds, see [previously me
The old config generation system used impure shell scripts and could break in specific circumstances (see #1234).
### Writing good commit messages
* `meta.description` should:
* Be capitalized.
* Not start with the package name.
* Not have a period at the end.
* `meta.license` must be set and fit the upstream license.
* If there is no upstream license, `meta.license` should default to `lib.licenses.unfree`.
* `meta.maintainers` must be set.
See the nixpkgs manual for more details on [standard meta-attributes](https://nixos.org/nixpkgs/manual/#sec-standard-meta-attributes).
## Writing good commit messages
In addition to writing properly formatted commit messages, it's important to include relevant information so other developers can later understand *why* a change was made. While this information usually can be found by digging code, mailing list/Discourse archives, pull request discussions or upstream changes, it may require a lot of work.
Package version upgrades usually allow for simpler commit messages, including attribute name, old and new version, as well as a reference to the relevant release notes/changelog. Every once in a while a package upgrade requires more extensive changes, and that subsequently warrants a more verbose message.
For package version upgrades and such a one-line commit message is usually sufficient.
Pull requests should not be squash merged in order to keep complete commit messages and GPG signatures intact and must not be when the change doesn't make sense as a single commit.
## Rebasing between branches (i.e. from master to staging)
## Code conventions
[code-conventions]: #code-conventions
From time to time, changes between branches must be rebased, for example, if the
number of new rebuilds they would cause is too large for the target branch. When
rebasing, care must be taken to include only the intended changes, otherwise
many CODEOWNERS will be inadvertently requested for review. To achieve this,
rebasing should not be performed directly on the target branch, but on the merge
base between the current and target branch.
### Release notes
In the following example, we see a rebase from `master` onto the merge base
between `master` and `staging`, so that a change can eventually be retargeted to
`staging`. The example uses `upstream` as the remote for `NixOS/nixpkgs.git`
while the `origin` remote is used for the remote you are pushing to.
If you removed packages or made some major NixOS changes, write about it in the release notes for the next stable release in [`nixos/doc/manual/release-notes`](./nixos/doc/manual/release-notes).
### File naming and organisation
```console
# Find the common base between two branches
common=$(git merge-base upstream/master upstream/staging)
# Find the common base between your feature branch and master
commits=$(git merge-base $(git branch --show-current) upstream/master)
# Rebase all commits onto the common base
git rebase --onto=$common $commits
# Force push your changes
git push origin $(git branch --show-current) --force-with-lease
```
Names of files and directories should be in lowercase, with dashes between words — not in camel case. For instance, it should be `all-packages.nix`, not `allPackages.nix` or `AllPackages.nix`.
Then change the base branch in the GitHub PR using the *Edit* button in the upper
right corner, and switch from `master` to `staging`. After the PR has been
retargeted it might be necessary to do a final rebase onto the target branch, to
resolve any outstanding merge conflicts.
### Syntax
```console
# Rebase onto target branch
git rebase upstream/staging
# Review and fixup possible conflicts
git status
# Force push your changes
git push origin $(git branch --show-current) --force-with-lease
```
- Use 2 spaces of indentation per indentation level in Nix expressions, 4 spaces in shell scripts.
## Backporting changes
- Do not use tab characters, i.e. configure your editor to use soft tabs. For instance, use `(setq-default indent-tabs-mode nil)` in Emacs. Everybody has different tab settings so its asking for trouble.
Follow these steps to backport a change into a release branch in compliance with the [commit policy](https://nixos.org/nixpkgs/manual/#submitting-changes-stable-release-branches).
- Use `lowerCamelCase` for variable names, not `UpperCamelCase`. Note, this rule does not apply to package attribute names, which instead follow the rules in [](#sec-package-naming).
1. Take note of the commits in which the change was introduced into `master` branch.
2. Check out the target _release branch_, e.g. `release-21.11`. Do not use a _channel branch_ like `nixos-21.11` or `nixpkgs-21.11-darwin`.
3. Create a branch for your change, e.g. `git checkout -b backport`.
4. When the reason to backport is not obvious from the original commit message, use `git cherry-pick -xe <original commit>` and add a reason. Otherwise use `git cherry-pick -x <original commit>`. That's fine for minor version updates that only include security and bug fixes, commits that fixes an otherwise broken package or similar. Please also ensure the commits exists on the master branch; in the case of squashed or rebased merges, the commit hash will change and the new commits can be found in the merge message at the bottom of the master pull request.
5. Push to GitHub and open a backport pull request. Make sure to select the release branch (e.g. `release-21.11`) as the target branch of the pull request, and link to the pull request in which the original change was comitted to `master`. The pull request title should be the commit title with the release version as prefix, e.g. `[21.11]`.
6. When the backport pull request is merged and you have the necessary privileges you can also replace the label `9.needs: port to stable` with `8.has: port to stable` on the original pull request. This way maintainers can keep track of missing backports easier.
- Function calls with attribute set arguments are written as
## Criteria for Backporting changes
```nix
foo {
arg = ...;
}
```
Anything that does not cause user or downstream dependency regressions can be backported. This includes:
- New Packages / Modules
- Security / Patch updates
- Version updates which include new functionality (but no breaking changes)
- Services which require a client to be up-to-date regardless. (E.g. `spotify`, `steam`, or `discord`)
- Security critical applications (E.g. `firefox`)
not
## Generating 22.05 Release Notes
```nix
foo
{
arg = ...;
}
```
(This section also applies to backporting 21.11 release notes: substitute "rl-2205" for "rl-2111".)
Also fine is
Documentation in nixpkgs is transitioning to a markdown-centric workflow. Release notes now require a translation step to convert from markdown to a compatible docbook document.
```nix
foo { arg = ...; }
```
Steps for updating 22.05 Release notes:
if it's a short call.
1. Edit `nixos/doc/manual/release-notes/rl-2205.section.md` with the desired changes
2. Run `./nixos/doc/manual/md-to-db.sh` to render `nixos/doc/manual/from_md/release-notes/rl-2205.section.xml`
3. Include changes to `rl-2205.section.md` and `rl-2205.section.xml` in the same commit.
- In attribute sets or lists that span multiple lines, the attribute names or list elements should be aligned:
## Reviewing contributions
```nix
# A long list.
list = [
elem1
elem2
elem3
];
# A long attribute set.
attrs = {
attr1 = short_expr;
attr2 =
if true then big_expr else big_expr;
};
# Combined
listOfAttrs = [
{
attr1 = 3;
attr2 = "fff";
}
{
attr1 = 5;
attr2 = "ggg";
}
];
```
- Short lists or attribute sets can be written on one line:
```nix
# A short list.
list = [ elem1 elem2 elem3 ];
# A short set.
attrs = { x = 1280; y = 1024; };
```
- Breaking in the middle of a function argument can give hard-to-read code, like
```nix
someFunction { x = 1280;
y = 1024; } otherArg
yetAnotherArg
```
(especially if the argument is very large, spanning multiple lines).
Better:
```nix
someFunction
{ x = 1280; y = 1024; }
otherArg
yetAnotherArg
```
or
```nix
let res = { x = 1280; y = 1024; };
in someFunction res otherArg yetAnotherArg
```
- The bodies of functions, asserts, and withs are not indented to prevent a lot of superfluous indentation levels, i.e.
```nix
{ arg1, arg2 }:
assert system == "i686-linux";
stdenv.mkDerivation { ...
```
not
```nix
{ arg1, arg2 }:
assert system == "i686-linux";
stdenv.mkDerivation { ...
```
- Function formal arguments are written as:
```nix
{ arg1, arg2, arg3 }:
```
but if they don't fit on one line they're written as:
```nix
{ arg1, arg2, arg3
, arg4, ...
, # Some comment...
argN
}:
```
- Functions should list their expected arguments as precisely as possible. That is, write
```nix
{ stdenv, fetchurl, perl }: ...
```
instead of
```nix
args: with args; ...
```
or
```nix
{ stdenv, fetchurl, perl, ... }: ...
```
For functions that are truly generic in the number of arguments (such as wrappers around `mkDerivation`) that have some required arguments, you should write them using an `@`-pattern:
```nix
{ stdenv, doCoverageAnalysis ? false, ... } @ args:
stdenv.mkDerivation (args // {
... if doCoverageAnalysis then "bla" else "" ...
})
```
instead of
```nix
args:
args.stdenv.mkDerivation (args // {
... if args ? doCoverageAnalysis && args.doCoverageAnalysis then "bla" else "" ...
})
```
- Unnecessary string conversions should be avoided. Do
```nix
rev = version;
```
instead of
```nix
rev = "${version}";
```
- Building lists conditionally _should_ be done with `lib.optional(s)` instead of using `if cond then [ ... ] else null` or `if cond then [ ... ] else [ ]`.
```nix
buildInputs = lib.optional stdenv.isDarwin iconv;
```
instead of
```nix
buildInputs = if stdenv.isDarwin then [ iconv ] else null;
```
As an exception, an explicit conditional expression with null can be used when fixing a important bug without triggering a mass rebuild.
If this is done a follow up pull request _should_ be created to change the code to `lib.optional(s)`.
See the nixpkgs manual for more details on how to [Review contributions](https://nixos.org/nixpkgs/manual/#chap-reviewing-contributions).

View File

@@ -1,4 +1,4 @@
Copyright (c) 2003-2023 Eelco Dolstra and the Nixpkgs/NixOS contributors
Copyright (c) 2003-2022 Eelco Dolstra and the Nixpkgs/NixOS contributors
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

View File

@@ -51,9 +51,9 @@ Nixpkgs and NixOS are built and tested by our continuous integration
system, [Hydra](https://hydra.nixos.org/).
* [Continuous package builds for unstable/master](https://hydra.nixos.org/jobset/nixos/trunk-combined)
* [Continuous package builds for the NixOS 23.05 release](https://hydra.nixos.org/jobset/nixos/release-23.05)
* [Continuous package builds for the NixOS 21.11 release](https://hydra.nixos.org/jobset/nixos/release-21.11)
* [Tests for unstable/master](https://hydra.nixos.org/job/nixos/trunk-combined/tested#tabs-constituents)
* [Tests for the NixOS 23.05 release](https://hydra.nixos.org/job/nixos/release-23.05/tested#tabs-constituents)
* [Tests for the NixOS 21.11 release](https://hydra.nixos.org/job/nixos/release-21.11/tested#tabs-constituents)
Artifacts successfully built with Hydra are published to cache at
https://cache.nixos.org/. When successful build and test criteria are
@@ -70,7 +70,26 @@ Linux distribution. The [GitHub Insights](https://github.com/NixOS/nixpkgs/pulse
page gives a sense of the project activity.
Community contributions are always welcome through GitHub Issues and
Pull Requests.
Pull Requests. When pull requests are made, our tooling automation bot,
[OfBorg](https://github.com/NixOS/ofborg) will perform various checks
to help ensure expression quality.
The *Nixpkgs maintainers* are people who have assigned themselves to
maintain specific individual packages. We encourage people who care
about a package to assign themselves as a maintainer. When a pull
request is made against a package, OfBorg will notify the appropriate
maintainer(s). The *Nixpkgs committers* are people who have been given
permission to merge.
Most contributions are based on and merged into these branches:
* `master` is the main branch where all small contributions go
* `staging` is branched from master, changes that have a big impact on
Hydra builds go to this branch
* `staging-next` is branched from staging and only fixes to stabilize
and security fixes with a big impact on Hydra builds should be
contributed to this branch. This branch is merged into master when
deemed of sufficiently high quality
For more information about contributing to the project, please visit
the [contributing page](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).

8
doc/.gitignore vendored Normal file
View File

@@ -0,0 +1,8 @@
*.chapter.xml
*.section.xml
.version
functions/library/generated
functions/library/locations.xml
highlightjs
manual-full.xml
out

116
doc/Makefile Normal file
View File

@@ -0,0 +1,116 @@
MD_TARGETS=$(addsuffix .xml, $(basename $(shell find . -type f -regex '.*\.md$$' -not -name README.md)))
PANDOC ?= pandoc
pandoc_media_dir = media
# NOTE: Keep in sync with NixOS manual (/nixos/doc/manual/md-to-db.sh) and conversion script (/maintainers/scripts/db-to-md.sh).
# TODO: Remove raw-attribute when we can get rid of DocBook altogether.
pandoc_commonmark_enabled_extensions = +attributes+fenced_divs+footnotes+bracketed_spans+definition_lists+pipe_tables+raw_attribute
# Not needed:
# - docbook-reader/citerefentry-to-rst-role.lua (only relevant for DocBook → MarkDown/rST/MyST)
pandoc_flags = --extract-media=$(pandoc_media_dir) \
--lua-filter=$(PANDOC_LUA_FILTERS_DIR)/diagram-generator.lua \
--lua-filter=build-aux/pandoc-filters/myst-reader/roles.lua \
--lua-filter=build-aux/pandoc-filters/link-unix-man-references.lua \
--lua-filter=build-aux/pandoc-filters/docbook-writer/rst-roles.lua \
--lua-filter=build-aux/pandoc-filters/docbook-writer/labelless-link-is-xref.lua \
-f commonmark$(pandoc_commonmark_enabled_extensions)+smart
.PHONY: all
all: validate format out/html/index.html out/epub/manual.epub
.PHONY: debug
debug:
nix-shell --run "xmloscopy --docbook5 ./manual.xml ./manual-full.xml"
.PHONY: format
format: doc-support/result
find . -iname '*.xml' -type f | while read f; do \
echo $$f ;\
xmlformat --config-file "doc-support/result/xmlformat.conf" -i $$f ;\
done
.PHONY: fix-misc-xml
fix-misc-xml:
find . -iname '*.xml' -type f \
-exec ../nixos/doc/varlistentry-fixer.rb {} ';'
.PHONY: clean
clean:
rm -f ${MD_TARGETS} doc-support/result .version manual-full.xml functions/library/locations.xml functions/library/generated
rm -rf ./out/ ./highlightjs ./media
.PHONY: validate
validate: manual-full.xml doc-support/result
jing doc-support/result/docbook.rng manual-full.xml
out/html/index.html: doc-support/result manual-full.xml style.css highlightjs
mkdir -p out/html
xsltproc \
--nonet --xinclude \
--output $@ \
doc-support/result/xhtml.xsl \
./manual-full.xml
mkdir -p out/html/highlightjs/
cp -r highlightjs out/html/
cp -r $(pandoc_media_dir) out/html/
cp ./overrides.css out/html/
cp ./style.css out/html/style.css
mkdir -p out/html/images/callouts
cp doc-support/result/xsl/docbook/images/callouts/*.svg out/html/images/callouts/
chmod u+w -R out/html/
out/epub/manual.epub: manual-full.xml
mkdir -p out/epub/scratch
xsltproc --nonet \
--output out/epub/scratch/ \
doc-support/result/epub.xsl \
./manual-full.xml
cp -r $(pandoc_media_dir) out/epub/scratch/OEBPS
cp ./overrides.css out/epub/scratch/OEBPS
cp ./style.css out/epub/scratch/OEBPS
mkdir -p out/epub/scratch/OEBPS/images/callouts/
cp doc-support/result/xsl/docbook/images/callouts/*.svg out/epub/scratch/OEBPS/images/callouts/
echo "application/epub+zip" > mimetype
zip -0Xq "out/epub/manual.epub" mimetype
rm mimetype
cd "out/epub/scratch/" && zip -Xr9D "../manual.epub" *
rm -rf "out/epub/scratch/"
highlightjs: doc-support/result
mkdir -p highlightjs
cp -r doc-support/result/highlightjs/highlight.pack.js highlightjs/
cp -r doc-support/result/highlightjs/LICENSE highlightjs/
cp -r doc-support/result/highlightjs/mono-blue.css highlightjs/
cp -r doc-support/result/highlightjs/loader.js highlightjs/
manual-full.xml: ${MD_TARGETS} .version functions/library/locations.xml functions/library/generated *.xml **/*.xml **/**/*.xml
xmllint --nonet --xinclude --noxincludenode manual.xml --output manual-full.xml
.version: doc-support/result
ln -rfs ./doc-support/result/version .version
doc-support/result: doc-support/default.nix
(cd doc-support; nix-build)
functions/library/locations.xml: doc-support/result
ln -rfs ./doc-support/result/function-locations.xml functions/library/locations.xml
functions/library/generated: doc-support/result
ln -rfs ./doc-support/result/function-docs functions/library/generated
%.section.xml: %.section.md
$(PANDOC) $^ -t docbook \
$(pandoc_flags) \
-o $@
%.chapter.xml: %.chapter.md
$(PANDOC) $^ -t docbook \
--top-level-division=chapter \
$(pandoc_flags) \
-o $@

View File

@@ -1,4 +1,5 @@
# Contributing to the Nixpkgs manual
# Nixpkgs/doc
This directory houses the sources files for the Nixpkgs manual.
@@ -6,110 +7,6 @@ You can find the [rendered documentation for Nixpkgs `unstable` on nixos.org](ht
[Docs for Nixpkgs stable](https://nixos.org/manual/nixpkgs/stable/) are also available.
If you want to contribute to the documentation, [here's how to do it](https://nixos.org/manual/nixpkgs/unstable/#chap-contributing).
If you're only getting started with Nix, go to [nixos.org/learn](https://nixos.org/learn).
## Contributing to this documentation
You can quickly check your edits with `nix-build`:
```ShellSession
$ cd /path/to/nixpkgs
$ nix-build doc
```
If the build succeeds, the manual will be in `./result/share/doc/nixpkgs/manual.html`.
### devmode
The shell in the manual source directory makes available a command, `devmode`.
It is a daemon, that:
1. watches the manual's source for changes and when they occur — rebuilds
2. HTTP serves the manual, injecting a script that triggers reload on changes
3. opens the manual in the default browser
## Syntax
As per [RFC 0072](https://github.com/NixOS/rfcs/pull/72), all new documentation content should be written in [CommonMark](https://commonmark.org/) Markdown dialect.
Additional syntax extensions are available, all of which can be used in NixOS option documentation. The following extensions are currently used:
#### Tables
Tables, using the [GitHub-flavored Markdown syntax](https://github.github.com/gfm/#tables-extension-).
#### Anchors
Explicitly defined **anchors** on headings, to allow linking to sections. These should be always used, to ensure the anchors can be linked even when the heading text changes, and to prevent conflicts between [automatically assigned identifiers](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/auto_identifiers.md).
It uses the widely compatible [header attributes](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/attributes.md) syntax:
```markdown
## Syntax {#sec-contributing-markup}
```
> **Note**
> NixOS option documentation does not support headings in general.
#### Inline Anchors
Allow linking arbitrary place in the text (e.g. individual list items, sentences…).
They are defined using a hybrid of the link syntax with the attributes syntax known from headings, called [bracketed spans](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/bracketed_spans.md):
```markdown
- []{#ssec-gnome-hooks-glib} `glib` setup hook will populate `GSETTINGS_SCHEMAS_PATH` and then `wrapGAppsHook` will prepend it to `XDG_DATA_DIRS`.
```
#### Automatic links
If you **omit a link text** for a link pointing to a section, the text will be substituted automatically. For example `[](#chap-contributing)`.
This syntax is taken from [MyST](https://myst-parser.readthedocs.io/en/latest/using/syntax.html#targets-and-cross-referencing).
#### Roles
If you want to link to a man page, you can use `` {manpage}`nix.conf(5)` ``. The references will turn into links when a mapping exists in [`doc/manpage-urls.json`](./manpage-urls.json).
A few markups for other kinds of literals are also available:
- `` {command}`rm -rfi` ``
- `` {env}`XDG_DATA_DIRS` ``
- `` {file}`/etc/passwd` ``
- `` {option}`networking.useDHCP` ``
- `` {var}`/etc/passwd` ``
These literal kinds are used mostly in NixOS option documentation.
This syntax is taken from [MyST](https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html#roles-an-in-line-extension-point). Though, the feature originates from [reStructuredText](https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-manpage) with slightly different syntax.
#### Admonitions
Set off from the text to bring attention to something.
It uses pandocs [fenced `div`s syntax](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/fenced_divs.md):
```markdown
::: {.warning}
This is a warning
:::
```
The following are supported:
- [`caution`](https://tdg.docbook.org/tdg/5.0/caution.html)
- [`important`](https://tdg.docbook.org/tdg/5.0/important.html)
- [`note`](https://tdg.docbook.org/tdg/5.0/note.html)
- [`tip`](https://tdg.docbook.org/tdg/5.0/tip.html)
- [`warning`](https://tdg.docbook.org/tdg/5.0/warning.html)
#### [Definition lists](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/definition_lists.md)
For defining a group of terms:
```markdown
pear
: green or yellow bulbous fruit
watermelon
: green fruit with red flesh
```

View File

@@ -0,0 +1,23 @@
--[[
Converts Code AST nodes produced by pandocs DocBook reader
from citerefentry elements into AST for corresponding role
for reStructuredText.
We use subset of MyST syntax (CommonMark with features from rST)
so lets use the rST AST for rST features.
Reference: https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-manpage
]]
function Code(elem)
elem.classes = elem.classes:map(function (x)
if x == 'citerefentry' then
elem.attributes['role'] = 'manpage'
return 'interpreted-text'
else
return x
end
end)
return elem
end

View File

@@ -0,0 +1,34 @@
--[[
Converts Link AST nodes with empty label to DocBook xref elements.
This is a temporary script to be able use cross-references conveniently
using syntax taken from MyST, while we still use docbook-xsl
for generating the documentation.
Reference: https://myst-parser.readthedocs.io/en/latest/using/syntax.html#targets-and-cross-referencing
]]
local function starts_with(start, str)
return str:sub(1, #start) == start
end
local function escape_xml_arg(arg)
amps = arg:gsub('&', '&amp;')
amps_quotes = amps:gsub('"', '&quot;')
amps_quotes_lt = amps_quotes:gsub('<', '&lt;')
return amps_quotes_lt
end
function Link(elem)
has_no_content = #elem.content == 0
targets_anchor = starts_with('#', elem.target)
has_no_attributes = elem.title == '' and elem.identifier == '' and #elem.classes == 0 and #elem.attributes == 0
if has_no_content and targets_anchor and has_no_attributes then
-- xref expects idref without the pound-sign
target_without_hash = elem.target:sub(2, #elem.target)
return pandoc.RawInline('docbook', '<xref linkend="' .. escape_xml_arg(target_without_hash) .. '" />')
end
end

View File

@@ -0,0 +1,36 @@
--[[
Converts AST for reStructuredText roles into corresponding
DocBook elements.
Currently, only a subset of roles is supported.
Reference:
List of roles:
https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html
manpage:
https://tdg.docbook.org/tdg/5.1/citerefentry.html
file:
https://tdg.docbook.org/tdg/5.1/filename.html
]]
function Code(elem)
if elem.classes:includes('interpreted-text') then
local tag = nil
local content = elem.text
if elem.attributes['role'] == 'manpage' then
tag = 'citerefentry'
local title, volnum = content:match('^(.+)%((%w+)%)$')
if title == nil then
-- No volnum in parentheses.
title = content
end
content = '<refentrytitle>' .. title .. '</refentrytitle>' .. (volnum ~= nil and ('<manvolnum>' .. volnum .. '</manvolnum>') or '')
elseif elem.attributes['role'] == 'file' then
tag = 'filename'
end
if tag ~= nil then
return pandoc.RawInline('docbook', '<' .. tag .. '>' .. content .. '</' .. tag .. '>')
end
end
end

View File

@@ -0,0 +1,17 @@
--[[
Turns a manpage reference into a link, when a mapping is defined below.
]]
local man_urls = {
["tmpfiles.d(5)"] = "https://www.freedesktop.org/software/systemd/man/tmpfiles.d.html",
["nix.conf(5)"] = "https://nixos.org/manual/nix/stable/#sec-conf-file",
["systemd.time(7)"] = "https://www.freedesktop.org/software/systemd/man/systemd.time.html",
["systemd.timer(5)"] = "https://www.freedesktop.org/software/systemd/man/systemd.timer.html",
}
function Code(elem)
local is_man_role = elem.classes:includes('interpreted-text') and elem.attributes['role'] == 'manpage'
if is_man_role and man_urls[elem.text] ~= nil then
return pandoc.Link(elem, man_urls[elem.text])
end
end

View File

@@ -0,0 +1,29 @@
--[[
Replaces Str AST nodes containing {role}, followed by a Code node
by a Code node with attrs that would be produced by rST reader
from the role syntax.
This is to emulate MyST syntax in Pandoc.
(MyST is a CommonMark flavour with rST features mixed in.)
Reference: https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html#roles-an-in-line-extension-point
]]
function Inlines(inlines)
for i = #inlines-1,1,-1 do
local first = inlines[i]
local second = inlines[i+1]
local correct_tags = first.tag == 'Str' and second.tag == 'Code'
if correct_tags then
-- docutils supports alphanumeric strings separated by [-._:]
-- We are slightly more liberal for simplicity.
local role = first.text:match('^{([-._+:%w]+)}$')
if role ~= nil then
inlines:remove(i)
second.attributes['role'] = role
second.classes:insert('interpreted-text')
end
end
end
return inlines
end

View File

@@ -0,0 +1,25 @@
--[[
Replaces Code nodes with attrs that would be produced by rST reader
from the role syntax by a Str AST node containing {role}, followed by a Code node.
This is to emulate MyST syntax in Pandoc.
(MyST is a CommonMark flavour with rST features mixed in.)
Reference: https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html#roles-an-in-line-extension-point
]]
function Code(elem)
local role = elem.attributes['role']
if elem.classes:includes('interpreted-text') and role ~= nil then
elem.classes = elem.classes:filter(function (c)
return c ~= 'interpreted-text'
end)
elem.attributes['role'] = nil
return {
pandoc.Str('{' .. role .. '}'),
elem,
}
end
end

View File

@@ -1,12 +0,0 @@
# Builders {#part-builders}
```{=include=} chapters
builders/fetchers.chapter.md
builders/trivial-builders.chapter.md
builders/testers.chapter.md
builders/special.md
builders/images.md
hooks/index.md
languages-frameworks/index.md
builders/packages/index.md
```

View File

@@ -1,55 +1,16 @@
# Fetchers {#chap-pkgs-fetchers}
Building software with Nix often requires downloading source code and other files from the internet.
`nixpkgs` provides *fetchers* for different protocols and services. Fetchers are functions that simplify downloading files.
When using Nix, you will frequently need to download source code and other files from the internet. For this purpose, Nix provides the [_fixed output derivation_](https://nixos.org/manual/nix/stable/#fixed-output-drvs) feature and Nixpkgs provides various functions that implement the actual fetching from various protocols and services.
## Caveats {#chap-pkgs-fetchers-caveats}
## Caveats
Fetchers create [fixed output derivations](https://nixos.org/manual/nix/stable/#fixed-output-drvs) from downloaded files.
Nix can reuse the downloaded files via the hash of the resulting derivation.
Because fixed output derivations are _identified_ by their hash, a common mistake is to update a fetcher's URL or a version parameter, without updating the hash. **This will cause the old contents to be used.** So remember to always invalidate the hash argument.
The fact that the hash belongs to the Nix derivation output and not the file itself can lead to confusion.
For example, consider the following fetcher:
```nix
fetchurl {
url = "http://www.example.org/hello-1.0.tar.gz";
hash = "sha256-lTeyxzJNQeMdu1IVdovNMtgn77jRIhSybLdMbTkf2Ww=";
};
```
A common mistake is to update a fetchers URL, or a version parameter, without updating the hash.
```nix
fetchurl {
url = "http://www.example.org/hello-1.1.tar.gz";
hash = "sha256-lTeyxzJNQeMdu1IVdovNMtgn77jRIhSybLdMbTkf2Ww=";
};
```
**This will reuse the old contents**.
Remember to invalidate the hash argument, in this case by setting the `hash` attribute to an empty string.
```nix
fetchurl {
url = "http://www.example.org/hello-1.1.tar.gz";
hash = "";
};
```
Use the resulting error message to determine the correct hash.
```
error: hash mismatch in fixed-output derivation '/path/to/my.drv':
specified: sha256-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=
got: sha256-lTeyxzJNQeMdu1IVdovNMtgn77jRIhSybLdMbTkf2Ww=
```
A similar problem arises while testing changes to a fetcher's implementation. If the output of the derivation already exists in the Nix store, test failures can go undetected. The [`invalidateFetcherByDrvHash`](#tester-invalidateFetcherByDrvHash) function helps prevent reusing cached derivations.
For those who develop and maintain fetchers, a similar problem arises with changes to the implementation of a fetcher. These may cause a fixed output derivation to fail, but won't normally be caught by tests because the supposed output is already in the store or cache. For the purpose of testing, you can use a trick that is embodied by the [`invalidateFetcherByDrvHash`](#tester-invalidateFetcherByDrvHash) function. It uses the derivation `name` to create a unique output path per fetcher implementation, defeating the caching precisely where it would be harmful.
## `fetchurl` and `fetchzip` {#fetchurl}
Two basic fetchers are `fetchurl` and `fetchzip`. Both of these have two required arguments, a URL and a hash. The hash is typically `hash`, although many more hash algorithms are supported. Nixpkgs contributors are currently recommended to use `hash`. This hash will be used by Nix to identify your source. A typical usage of `fetchurl` is provided below.
Two basic fetchers are `fetchurl` and `fetchzip`. Both of these have two required arguments, a URL and a hash. The hash is typically `sha256`, although many more hash algorithms are supported. Nixpkgs contributors are currently recommended to use `sha256`. This hash will be used by Nix to identify your source. A typical usage of fetchurl is provided below.
```nix
{ stdenv, fetchurl }:
@@ -58,88 +19,28 @@ stdenv.mkDerivation {
name = "hello";
src = fetchurl {
url = "http://www.example.org/hello.tar.gz";
hash = "sha256-BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB=";
sha256 = "1111111111111111111111111111111111111111111111111111";
};
}
```
The main difference between `fetchurl` and `fetchzip` is in how they store the contents. `fetchurl` will store the unaltered contents of the URL within the Nix store. `fetchzip` on the other hand, will decompress the archive for you, making files and directories directly accessible in the future. `fetchzip` can only be used with archives. Despite the name, `fetchzip` is not limited to .zip files and can also be used with any tarball.
## `fetchpatch` {#fetchpatch}
`fetchpatch` works very similarly to `fetchurl` with the same arguments expected. It expects patch files as a source and performs normalization on them before computing the checksum. For example, it will remove comments or other unstable parts that are sometimes added by version control systems and can change over time.
- `relative`: Similar to using `git-diff`'s `--relative` flag, only keep changes inside the specified directory, making paths relative to it.
- `stripLen`: Remove the first `stripLen` components of pathnames in the patch.
- `decode`: Pipe the downloaded data through this command before processing it as a patch.
- `extraPrefix`: Prefix pathnames by this string.
- `excludes`: Exclude files matching these patterns (applies after the above arguments).
- `includes`: Include only files matching these patterns (applies after the above arguments).
- `revert`: Revert the patch.
Note that because the checksum is computed after applying these effects, using or modifying these arguments will have no effect unless the `hash` argument is changed as well.
The main difference between `fetchurl` and `fetchzip` is in how they store the contents. `fetchurl` will store the unaltered contents of the URL within the Nix store. `fetchzip` on the other hand will decompress the archive for you, making files and directories directly accessible in the future. `fetchzip` can only be used with archives. Despite the name, `fetchzip` is not limited to .zip files and can also be used with any tarball.
`fetchpatch` works very similarly to `fetchurl` with the same arguments expected. It expects patch files as a source and performs normalization on them before computing the checksum. For example it will remove comments or other unstable parts that are sometimes added by version control systems and can change over time.
Most other fetchers return a directory rather than a single file.
## `fetchDebianPatch` {#fetchdebianpatch}
A wrapper around `fetchpatch`, which takes:
- `patch` and `hash`: the patch's filename without the `.patch` suffix,
and its hash after normalization by `fetchpatch` ;
- `pname`: the Debian source package's name ;
- `version`: the upstream version number ;
- `debianRevision`: the [Debian revision number] if applicable ;
- the `area` of the Debian archive: `main` (default), `contrib`, or `non-free`.
Here is an example of `fetchDebianPatch` in action:
```nix
{ lib
, fetchDebianPatch
, buildPythonPackage
}:
buildPythonPackage rec {
pname = "pysimplesoap";
version = "1.16.2";
src = ...;
patches = [
(fetchDebianPatch {
inherit pname version;
debianRevision = "5";
name = "Add-quotes-to-SOAPAction-header-in-SoapClient";
hash = "sha256-xA8Wnrpr31H8wy3zHSNfezFNjUJt1HbSXn3qUMzeKc0=";
})
];
...
}
```
Patches are fetched from `sources.debian.org`, and so must come from a
package version that was uploaded to the Debian archive. Packages may
be removed from there once that specific version isn't in any suite
anymore (stable, testing, unstable, etc.), so maintainers should use
`copy-tarballs.pl` to archive the patch if it needs to be available
longer-term.
[Debian revision number]: https://www.debian.org/doc/debian-policy/ch-controlfields.html#version
## `fetchsvn` {#fetchsvn}
Used with Subversion. Expects `url` to a Subversion directory, `rev`, and `hash`.
Used with Subversion. Expects `url` to a Subversion directory, `rev`, and `sha256`.
## `fetchgit` {#fetchgit}
Used with Git. Expects `url` to a Git repo, `rev`, and `hash`. `rev` in this case can be full the git commit id (SHA1 hash) or a tag name like `refs/tags/v1.0`.
Used with Git. Expects `url` to a Git repo, `rev`, and `sha256`. `rev` in this case can be full the git commit id (SHA1 hash) or a tag name like `refs/tags/v1.0`.
Additionally, the following optional arguments can be given: `fetchSubmodules = true` makes `fetchgit` also fetch the submodules of a repository. If `deepClone` is set to true, the entire repository is cloned as opposing to just creating a shallow clone. `deepClone = true` also implies `leaveDotGit = true` which means that the `.git` directory of the clone won't be removed after checkout.
Additionally the following optional arguments can be given: `fetchSubmodules = true` makes `fetchgit` also fetch the submodules of a repository. If `deepClone` is set to true, the entire repository is cloned as opposing to just creating a shallow clone. `deepClone = true` also implies `leaveDotGit = true` which means that the `.git` directory of the clone won't be removed after checkout.
If only parts of the repository are needed, `sparseCheckout` can be used. This will prevent git from fetching unnecessary blobs from server, see [git sparse-checkout](https://git-scm.com/docs/git-sparse-checkout) for more information:
If only parts of the repository are needed, `sparseCheckout` can be used. This will prevent git from fetching unnecessary blobs from server, see [git sparse-checkout](https://git-scm.com/docs/git-sparse-checkout) and [git clone --filter](https://git-scm.com/docs/git-clone#Documentation/git-clone.txt---filterltfilter-specgt) for more infomation:
```nix
{ stdenv, fetchgit }:
@@ -148,98 +49,66 @@ stdenv.mkDerivation {
name = "hello";
src = fetchgit {
url = "https://...";
sparseCheckout = [
"directory/to/be/included"
"another/directory"
];
hash = "sha256-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=";
sparseCheckout = ''
path/to/be/included
another/path
'';
sha256 = "0000000000000000000000000000000000000000000000000000";
};
}
```
## `fetchfossil` {#fetchfossil}
Used with Fossil. Expects `url` to a Fossil archive, `rev`, and `hash`.
Used with Fossil. Expects `url` to a Fossil archive, `rev`, and `sha256`.
## `fetchcvs` {#fetchcvs}
Used with CVS. Expects `cvsRoot`, `tag`, and `hash`.
Used with CVS. Expects `cvsRoot`, `tag`, and `sha256`.
## `fetchhg` {#fetchhg}
Used with Mercurial. Expects `url`, `rev`, and `hash`.
Used with Mercurial. Expects `url`, `rev`, and `sha256`.
A number of fetcher functions wrap part of `fetchurl` and `fetchzip`. They are mainly convenience functions intended for commonly used destinations of source code in Nixpkgs. These wrapper fetchers are listed below.
## `fetchFromGitea` {#fetchfromgitea}
`fetchFromGitea` expects five arguments. `domain` is the gitea server name. `owner` is a string corresponding to the Gitea user or organization that controls this repository. `repo` corresponds to the name of the software repository. These are located at the top of every Gitea HTML page as `owner`/`repo`. `rev` corresponds to the Git commit hash or tag (e.g `v1.0`) that will be downloaded from Git. Finally, `hash` corresponds to the hash of the extracted directory. Again, other hash algorithms are also available but `hash` is currently preferred.
`fetchFromGitea` expects five arguments. `domain` is the gitea server name. `owner` is a string corresponding to the Gitea user or organization that controls this repository. `repo` corresponds to the name of the software repository. These are located at the top of every Gitea HTML page as `owner`/`repo`. `rev` corresponds to the Git commit hash or tag (e.g `v1.0`) that will be downloaded from Git. Finally, `sha256` corresponds to the hash of the extracted directory. Again, other hash algorithms are also available but `sha256` is currently preferred.
## `fetchFromGitHub` {#fetchfromgithub}
`fetchFromGitHub` expects four arguments. `owner` is a string corresponding to the GitHub user or organization that controls this repository. `repo` corresponds to the name of the software repository. These are located at the top of every GitHub HTML page as `owner`/`repo`. `rev` corresponds to the Git commit hash or tag (e.g `v1.0`) that will be downloaded from Git. Finally, `hash` corresponds to the hash of the extracted directory. Again, other hash algorithms are also available, but `hash` is currently preferred.
To use a different GitHub instance, use `githubBase` (defaults to `"github.com"`).
`fetchFromGitHub` expects four arguments. `owner` is a string corresponding to the GitHub user or organization that controls this repository. `repo` corresponds to the name of the software repository. These are located at the top of every GitHub HTML page as `owner`/`repo`. `rev` corresponds to the Git commit hash or tag (e.g `v1.0`) that will be downloaded from Git. Finally, `sha256` corresponds to the hash of the extracted directory. Again, other hash algorithms are also available but `sha256` is currently preferred.
`fetchFromGitHub` uses `fetchzip` to download the source archive generated by GitHub for the specified revision. If `leaveDotGit`, `deepClone` or `fetchSubmodules` are set to `true`, `fetchFromGitHub` will use `fetchgit` instead. Refer to its section for documentation of these options.
## `fetchFromGitLab` {#fetchfromgitlab}
This is used with GitLab repositories. It behaves similarly to `fetchFromGitHub`, and expects `owner`, `repo`, `rev`, and `hash`.
To use a specific GitLab instance, use `domain` (defaults to `"gitlab.com"`).
This is used with GitLab repositories. The arguments expected are very similar to fetchFromGitHub above.
## `fetchFromGitiles` {#fetchfromgitiles}
This is used with Gitiles repositories. The arguments expected are similar to `fetchgit`.
This is used with Gitiles repositories. The arguments expected are similar to fetchgit.
## `fetchFromBitbucket` {#fetchfrombitbucket}
This is used with BitBucket repositories. The arguments expected are very similar to `fetchFromGitHub` above.
This is used with BitBucket repositories. The arguments expected are very similar to fetchFromGitHub above.
## `fetchFromSavannah` {#fetchfromsavannah}
This is used with Savannah repositories. The arguments expected are very similar to `fetchFromGitHub` above.
This is used with Savannah repositories. The arguments expected are very similar to fetchFromGitHub above.
## `fetchFromRepoOrCz` {#fetchfromrepoorcz}
This is used with repo.or.cz repositories. The arguments expected are very similar to `fetchFromGitHub` above.
This is used with repo.or.cz repositories. The arguments expected are very similar to fetchFromGitHub above.
## `fetchFromSourcehut` {#fetchfromsourcehut}
This is used with sourcehut repositories. Similar to `fetchFromGitHub` above,
it expects `owner`, `repo`, `rev` and `hash`, but don't forget the tilde (~)
it expects `owner`, `repo`, `rev` and `sha256`, but don't forget the tilde (~)
in front of the username! Expected arguments also include `vc` ("git" (default)
or "hg"), `domain` and `fetchSubmodules`.
If `fetchSubmodules` is `true`, `fetchFromSourcehut` uses `fetchgit`
or `fetchhg` with `fetchSubmodules` or `fetchSubrepos` set to `true`,
respectively. Otherwise, the fetcher uses `fetchzip`.
## `requireFile` {#requirefile}
`requireFile` allows requesting files that cannot be fetched automatically, but whose content is known.
This is a useful last-resort workaround for license restrictions that prohibit redistribution, or for downloads that are only accessible after authenticating interactively in a browser.
If the requested file is present in the Nix store, the resulting derivation will not be built, because its expected output is already available.
Otherwise, the builder will run, but fail with a message explaining to the user how to provide the file. The following code, for example:
```
requireFile {
name = "jdk-${version}_linux-x64_bin.tar.gz";
url = "https://www.oracle.com/java/technologies/javase-jdk11-downloads.html";
sha256 = "94bd34f85ee38d3ef59e5289ec7450b9443b924c55625661fffe66b03f2c8de2";
}
```
results in this error message:
```
***
Unfortunately, we cannot download file jdk-11.0.10_linux-x64_bin.tar.gz automatically.
Please go to https://www.oracle.com/java/technologies/javase-jdk11-downloads.html to download it yourself, and add it to the Nix store
using either
nix-store --add-fixed sha256 jdk-11.0.10_linux-x64_bin.tar.gz
or
nix-prefetch-url --type sha256 file:///path/to/jdk-11.0.10_linux-x64_bin.tar.gz
***
```
respectively. Otherwise the fetcher uses `fetchzip`.

View File

@@ -1,13 +0,0 @@
# Images {#chap-images}
This chapter describes tools for creating various types of images.
```{=include=} sections
images/appimagetools.section.md
images/dockertools.section.md
images/ocitools.section.md
images/snaptools.section.md
images/portableservice.section.md
images/makediskimage.section.md
images/binarycache.section.md
```

12
doc/builders/images.xml Normal file
View File

@@ -0,0 +1,12 @@
<chapter xmlns="http://docbook.org/ns/docbook"
xmlns:xi="http://www.w3.org/2001/XInclude"
xml:id="chap-images">
<title>Images</title>
<para>
This chapter describes tools for creating various types of images.
</para>
<xi:include href="images/appimagetools.section.xml" />
<xi:include href="images/dockertools.section.xml" />
<xi:include href="images/ocitools.section.xml" />
<xi:include href="images/snaptools.section.xml" />
</chapter>

View File

@@ -35,7 +35,7 @@ appimageTools.wrapType2 { # or wrapType1
name = "patchwork";
src = fetchurl {
url = "https://github.com/ssbc/patchwork/releases/download/v3.11.4/Patchwork-3.11.4-linux-x86_64.AppImage";
hash = "sha256-OqTitCeZ6xmWbqYTXp8sDrmVgTNjPZNW0hzUPW++mq4=";
sha256 = "1blsprpkvm0ws9b96gb36f0rbf8f5jgmw4x6dsb1kswr4ysf591s";
};
extraPkgs = pkgs: with pkgs; [ ];
}

View File

@@ -1,49 +0,0 @@
# pkgs.mkBinaryCache {#sec-pkgs-binary-cache}
`pkgs.mkBinaryCache` is a function for creating Nix flat-file binary caches. Such a cache exists as a directory on disk, and can be used as a Nix substituter by passing `--substituter file:///path/to/cache` to Nix commands.
Nix packages are most commonly shared between machines using [HTTP, SSH, or S3](https://nixos.org/manual/nix/stable/package-management/sharing-packages.html), but a flat-file binary cache can still be useful in some situations. For example, you can copy it directly to another machine, or make it available on a network file system. It can also be a convenient way to make some Nix packages available inside a container via bind-mounting.
Note that this function is meant for advanced use-cases. The more idiomatic way to work with flat-file binary caches is via the [nix-copy-closure](https://nixos.org/manual/nix/stable/command-ref/nix-copy-closure.html) command. You may also want to consider [dockerTools](#sec-pkgs-dockerTools) for your containerization needs.
## Example {#sec-pkgs-binary-cache-example}
The following derivation will construct a flat-file binary cache containing the closure of `hello`.
```nix
mkBinaryCache {
rootPaths = [hello];
}
```
- `rootPaths` specifies a list of root derivations. The transitive closure of these derivations' outputs will be copied into the cache.
Here's an example of building and using the cache.
Build the cache on one machine, `host1`:
```shellSession
nix-build -E 'with import <nixpkgs> {}; mkBinaryCache { rootPaths = [hello]; }'
```
```shellSession
/nix/store/cc0562q828rnjqjyfj23d5q162gb424g-binary-cache
```
Copy the resulting directory to the other machine, `host2`:
```shellSession
scp result host2:/tmp/hello-cache
```
Substitute the derivation using the flat-file binary cache on the other machine, `host2`:
```shellSession
nix-build -A hello '<nixpkgs>' \
--option require-sigs false \
--option trusted-substituters file:///tmp/hello-cache \
--option substituters file:///tmp/hello-cache
```
```shellSession
/nix/store/gl5a41azbpsadfkfmbilh9yk40dh5dl0-hello-2.12.1
```

View File

@@ -20,12 +20,7 @@ buildImage {
fromImageName = null;
fromImageTag = "latest";
copyToRoot = pkgs.buildEnv {
name = "image-root";
paths = [ pkgs.redis ];
pathsToLink = [ "/bin" ];
};
contents = pkgs.redis;
runAsRoot = ''
#!${pkgs.runtimeShell}
mkdir -p /data
@@ -36,9 +31,6 @@ buildImage {
WorkingDir = "/data";
Volumes = { "/data" = { }; };
};
diskSize = 1024;
buildVMMemorySize = 512;
}
```
@@ -54,7 +46,7 @@ The above example will build a Docker image `redis/latest` from the given base i
- `fromImageTag` can be used to further specify the tag of the base image within the repository, in case an image contains multiple tags. By default it's `null`, in which case `buildImage` will peek the first tag available for the base image.
- `copyToRoot` is a derivation that will be copied in the new layer of the resulting image. This can be similarly seen as `ADD contents/ /` in a `Dockerfile`. By default it's `null`.
- `contents` is a derivation that will be copied in the new layer of the resulting image. This can be similarly seen as `ADD contents/ /` in a `Dockerfile`. By default it's `null`.
- `runAsRoot` is a bash script that will run as root in an environment that overlays the existing layers of the base image with the new resulting layer, including the previously copied `contents` derivation. This can be similarly seen as `RUN ...` in a `Dockerfile`.
@@ -62,17 +54,11 @@ The above example will build a Docker image `redis/latest` from the given base i
- `config` is used to specify the configuration of the containers that will be started off the built image in Docker. The available options are listed in the [Docker Image Specification v1.2.0](https://github.com/moby/moby/blob/master/image/spec/v1.2.md#image-json-field-descriptions).
- `architecture` is _optional_ and used to specify the image architecture, this is useful for multi-architecture builds that don't need cross compiling. If not specified it will default to `hostPlatform`.
- `diskSize` is used to specify the disk size of the VM used to build the image in megabytes. By default it's 1024 MiB.
- `buildVMMemorySize` is used to specify the memory size of the VM to build the image in megabytes. By default it's 512 MiB.
After the new layer has been created, its closure (to which `contents`, `config` and `runAsRoot` contribute) will be copied in the layer itself. Only new dependencies that are not already in the existing layers will be copied.
At the end of the process, only one new single layer will be produced and added to the resulting image.
The resulting repository will only list the single image `image/tag`. In the case of [the `buildImage` example](#ex-dockerTools-buildImage), it would be `redis/latest`.
The resulting repository will only list the single image `image/tag`. In the case of [the `buildImage` example](#ex-dockerTools-buildImage) it would be `redis/latest`.
It is possible to inspect the arguments with which an image was built using its `buildArgs` attribute.
@@ -95,17 +81,13 @@ pkgs.dockerTools.buildImage {
name = "hello";
tag = "latest";
created = "now";
copyToRoot = pkgs.buildEnv {
name = "image-root";
paths = [ pkgs.hello ];
pathsToLink = [ "/bin" ];
};
contents = pkgs.hello;
config.Cmd = [ "/bin/hello" ];
}
```
Now the Docker CLI will display a reasonable date and sort the images as expected:
and now the Docker CLI will display a reasonable date and sort the images as expected:
```ShellSession
$ docker images
@@ -113,7 +95,7 @@ REPOSITORY TAG IMAGE ID CREATED SIZE
hello latest de2bf4786de6 About a minute ago 25.2MB
```
However, the produced images will not be binary reproducible.
however, the produced images will not be binary reproducible.
## buildLayeredImage {#ssec-pkgs-dockerTools-buildLayeredImage}
@@ -137,15 +119,13 @@ Create a Docker image with many of the store paths being on their own layer to i
`contents` _optional_
: Top-level paths in the container. Either a single derivation, or a list of derivations.
: Top level paths in the container. Either a single derivation, or a list of derivations.
*Default:* `[]`
`config` _optional_
`architecture` is _optional_ and used to specify the image architecture, this is useful for multi-architecture builds that don't need cross compiling. If not specified it will default to `hostPlatform`.
: Run-time configuration of the container. A full list of the options available is in the [Docker Image Specification v1.2.0](https://github.com/moby/moby/blob/master/image/spec/v1.2.md#image-json-field-descriptions).
: Run-time configuration of the container. A full list of the options are available at in the [ Docker Image Specification v1.2.0 ](https://github.com/moby/moby/blob/master/image/spec/v1.2.md#image-json-field-descriptions).
*Default:* `{}`
@@ -215,9 +195,9 @@ pkgs.dockerTools.buildLayeredImage {
Increasing the `maxLayers` increases the number of layers which have a chance to be shared between different images.
Modern Docker installations support up to 128 layers, but older versions support as few as 42.
Modern Docker installations support up to 128 layers, however older versions support as few as 42.
If the produced image will not be extended by other Docker builds, it is safe to set `maxLayers` to `128`. However, it will be impossible to extend the image further.
If the produced image will not be extended by other Docker builds, it is safe to set `maxLayers` to `128`. However it will be impossible to extend the image further.
The first (`maxLayers-2`) most "popular" paths will have their own individual layers, then layer \#`maxLayers-1` will contain all the remaining "unpopular" paths, and finally layer \#`maxLayers` will contain the Image configuration.
@@ -233,7 +213,7 @@ The image produced by running the output script can be piped directly into `dock
$(nix-build) | docker load
```
Alternatively, the image be piped via `gzip` into `skopeo`, e.g., to copy it into a registry:
Alternatively, the image be piped via `gzip` into `skopeo`, e.g. to copy it into a registry:
```ShellSession
$(nix-build) | gzip --fast | skopeo copy docker-archive:/dev/stdin docker://some_docker_registry/myimage:tag
@@ -249,10 +229,10 @@ Its parameters are described in the example below:
pullImage {
imageName = "nixos/nix";
imageDigest =
"sha256:473a2b527958665554806aea24d0131bacec46d23af09fef4598eeab331850fa";
"sha256:20d9485b25ecfd89204e843a962c1bd70e9cc6858d65d7f5fadc340246e2116b";
finalImageName = "nix";
finalImageTag = "2.11.1";
sha256 = "sha256-qvhj+Hlmviz+KEBVmsyPIzTB3QlVAFzwAY1zDPIBGxc=";
finalImageTag = "1.11";
sha256 = "0mqjy3zq2v6rrhizgb9nvhczl87lcfphq9601wcprdika2jz7qh8";
os = "linux";
arch = "x86_64";
}
@@ -312,44 +292,7 @@ The parameters relative to the base image have the same synopsis as described in
The `name` argument is the name of the derivation output, which defaults to `fromImage.name`.
## Environment Helpers {#ssec-pkgs-dockerTools-helpers}
Some packages expect certain files to be available globally.
When building an image from scratch (i.e. without `fromImage`), these files are missing.
`pkgs.dockerTools` provides some helpers to set up an environment with the necessary files.
You can include them in `copyToRoot` like this:
```nix
buildImage {
name = "environment-example";
copyToRoot = with pkgs.dockerTools; [
usrBinEnv
binSh
caCertificates
fakeNss
];
}
```
### usrBinEnv {#sssec-pkgs-dockerTools-helpers-usrBinEnv}
This provides the `env` utility at `/usr/bin/env`.
### binSh {#sssec-pkgs-dockerTools-helpers-binSh}
This provides `bashInteractive` at `/bin/sh`.
### caCertificates {#sssec-pkgs-dockerTools-helpers-caCertificates}
This sets up `/etc/ssl/certs/ca-certificates.crt`.
### fakeNss {#sssec-pkgs-dockerTools-helpers-fakeNss}
Provides `/etc/passwd` and `/etc/group` that contain root and nobody.
Useful when packaging binaries that insist on using nss to look up
username/groups (like nginx).
### shadowSetup {#ssec-pkgs-dockerTools-shadowSetup}
## shadowSetup {#ssec-pkgs-dockerTools-shadowSetup}
This constant string is a helper for setting up the base files for managing users and groups, only if such files don't exist already. It is suitable for being used in a [`buildImage` `runAsRoot`](#ex-dockerTools-buildImage-runAsRoot) script for cases like in the example below:
@@ -359,7 +302,7 @@ buildImage {
runAsRoot = ''
#!${pkgs.runtimeShell}
${pkgs.dockerTools.shadowSetup}
${shadowSetup}
groupadd -r redis
useradd -r -g redis redis
mkdir /data
@@ -369,171 +312,3 @@ buildImage {
```
Creating base files like `/etc/passwd` or `/etc/login.defs` is necessary for shadow-utils to manipulate users and groups.
## fakeNss {#ssec-pkgs-dockerTools-fakeNss}
If your primary goal is providing a basic skeleton for user lookups to work,
and/or a lesser privileged user, adding `pkgs.fakeNss` to
the container image root might be the better choice than a custom script
running `useradd` and friends.
It provides a `/etc/passwd` and `/etc/group`, containing `root` and `nobody`
users and groups.
It also provides a `/etc/nsswitch.conf`, configuring NSS host resolution to
first check `/etc/hosts`, before checking DNS, as the default in the absence of
a config file (`dns [!UNAVAIL=return] files`) is quite unexpected.
You can pair it with `binSh`, which provides `bin/sh` as a symlink
to `bashInteractive` (as `/bin/sh` is configured as a shell).
```nix
buildImage {
name = "shadow-basic";
copyToRoot = pkgs.buildEnv {
name = "image-root";
paths = [ binSh pkgs.fakeNss ];
pathsToLink = [ "/bin" "/etc" "/var" ];
};
}
```
## buildNixShellImage {#ssec-pkgs-dockerTools-buildNixShellImage}
Create a Docker image that sets up an environment similar to that of running `nix-shell` on a derivation.
When run in Docker, this environment somewhat resembles the Nix sandbox typically used by `nix-build`, with a major difference being that access to the internet is allowed.
It additionally also behaves like an interactive `nix-shell`, running things like `shellHook` and setting an interactive prompt.
If the derivation is fully buildable (i.e. `nix-build` can be used on it), running `buildDerivation` inside such a Docker image will build the derivation, with all its outputs being available in the correct `/nix/store` paths, pointed to by the respective environment variables like `$out`, etc.
::: {.warning}
The behavior doesn't match `nix-shell` or `nix-build` exactly and this function is known not to work correctly for e.g. fixed-output derivations, content-addressed derivations, impure derivations and other special types of derivations.
:::
### Arguments {#ssec-pkgs-dockerTools-buildNixShellImage-arguments}
`drv`
: The derivation on which to base the Docker image.
Adding packages to the Docker image is possible by e.g. extending the list of `nativeBuildInputs` of this derivation like
```nix
buildNixShellImage {
drv = someDrv.overrideAttrs (old: {
nativeBuildInputs = old.nativeBuildInputs or [] ++ [
somethingExtra
];
});
# ...
}
```
Similarly, you can extend the image initialization script by extending `shellHook`
`name` _optional_
: The name of the resulting image.
*Default:* `drv.name + "-env"`
`tag` _optional_
: Tag of the generated image.
*Default:* the resulting image derivation output path's hash
`uid`/`gid` _optional_
: The user/group ID to run the container as. This is like a `nixbld` build user.
*Default:* 1000/1000
`homeDirectory` _optional_
: The home directory of the user the container is running as
*Default:* `/build`
`shell` _optional_
: The path to the `bash` binary to use as the shell. This shell is started when running the image.
*Default:* `pkgs.bashInteractive + "/bin/bash"`
`command` _optional_
: Run this command in the environment of the derivation, in an interactive shell. See the `--command` option in the [`nix-shell` documentation](https://nixos.org/manual/nix/stable/command-ref/nix-shell.html?highlight=nix-shell#options).
*Default:* (none)
`run` _optional_
: Same as `command`, but runs the command in a non-interactive shell instead. See the `--run` option in the [`nix-shell` documentation](https://nixos.org/manual/nix/stable/command-ref/nix-shell.html?highlight=nix-shell#options).
*Default:* (none)
### Example {#ssec-pkgs-dockerTools-buildNixShellImage-example}
The following shows how to build the `pkgs.hello` package inside a Docker container built with `buildNixShellImage`.
```nix
with import <nixpkgs> {};
dockerTools.buildNixShellImage {
drv = hello;
}
```
Build the derivation:
```console
nix-build hello.nix
```
these 8 derivations will be built:
/nix/store/xmw3a5ln29rdalavcxk1w3m4zb2n7kk6-nix-shell-rc.drv
...
Creating layer 56 from paths: ['/nix/store/crpnj8ssz0va2q0p5ibv9i6k6n52gcya-stdenv-linux']
Creating layer 57 with customisation...
Adding manifests...
Done.
/nix/store/cpyn1lc897ghx0rhr2xy49jvyn52bazv-hello-2.12-env.tar.gz
Load the image:
```console
docker load -i result
```
0d9f4c4cd109: Loading layer [==================================================>] 2.56MB/2.56MB
...
ab1d897c0697: Loading layer [==================================================>] 10.24kB/10.24kB
Loaded image: hello-2.12-env:pgj9h98nal555415faa43vsydg161bdz
Run the container:
```console
docker run -it hello-2.12-env:pgj9h98nal555415faa43vsydg161bdz
```
[nix-shell:/build]$
In the running container, run the build:
```console
buildDerivation
```
unpacking sources
unpacking source archive /nix/store/8nqv6kshb3vs5q5bs2k600xpj5bkavkc-hello-2.12.tar.gz
...
patching script interpreter paths in /nix/store/z5wwy5nagzy15gag42vv61c2agdpz2f2-hello-2.12
checking for references to /build/ in /nix/store/z5wwy5nagzy15gag42vv61c2agdpz2f2-hello-2.12...
Check the build result:
```console
$out/bin/hello
```
Hello, world!

View File

@@ -1,108 +0,0 @@
# `<nixpkgs/nixos/lib/make-disk-image.nix>` {#sec-make-disk-image}
`<nixpkgs/nixos/lib/make-disk-image.nix>` is a function to create _disk images_ in multiple formats: raw, QCOW2 (QEMU), QCOW2-Compressed (compressed version), VDI (VirtualBox), VPC (VirtualPC).
This function can create images in two ways:
- using `cptofs` without any virtual machine to create a Nix store disk image,
- using a virtual machine to create a full NixOS installation.
When testing early-boot or lifecycle parts of NixOS such as a bootloader or multiple generations, it is necessary to opt for a full NixOS system installation.
Whereas for many web servers, applications, it is possible to work with a Nix store only disk image and is faster to build.
NixOS tests also use this function when preparing the VM. The `cptofs` method is used when `virtualisation.useBootLoader` is false (the default). Otherwise the second method is used.
## Features {#sec-make-disk-image-features}
For reference, read the function signature source code for documentation on arguments: <https://github.com/NixOS/nixpkgs/blob/master/nixos/lib/make-disk-image.nix>.
Features are separated in various sections depending on if you opt for a Nix-store only image or a full NixOS image.
### Common {#sec-make-disk-image-features-common}
- arbitrary NixOS configuration
- automatic or bound disk size: `diskSize` parameter, `additionalSpace` can be set when `diskSize` is `auto` to add a constant of disk space
- multiple partition table layouts: EFI, legacy, legacy + GPT, hybrid, none through `partitionTableType` parameter
- OVMF or EFI firmwares and variables templates can be customized
- root filesystem `fsType` can be customized to whatever `mkfs.${fsType}` exist during operations
- root filesystem label can be customized, defaults to `nix-store` if it's a Nix store image, otherwise `nixpkgs/nixos`
- arbitrary code can be executed after disk image was produced with `postVM`
- the current nixpkgs can be realized as a channel in the disk image, which will change the hash of the image when the sources are updated
- additional store paths can be provided through `additionalPaths`
### Full NixOS image {#sec-make-disk-image-features-full-image}
- arbitrary contents with permissions can be placed in the target filesystem using `contents`
- a `/etc/nixpkgs/nixos/configuration.nix` can be provided through `configFile`
- bootloaders are supported
- EFI variables can be mutated during image production and the result is exposed in `$out`
- boot partition size when partition table is `efi` or `hybrid`
### On bit-to-bit reproducibility {#sec-make-disk-image-features-reproducibility}
Images are **NOT** deterministic, please do not hesitate to try to fix this, source of determinisms are (not exhaustive) :
- bootloader installation have timestamps
- SQLite Nix store database contain registration times
- `/etc/shadow` is in a non-deterministic order
A `deterministic` flag is available for best efforts determinism.
## Usage {#sec-make-disk-image-usage}
To produce a Nix-store only image:
```nix
let
pkgs = import <nixpkgs> {};
lib = pkgs.lib;
make-disk-image = import <nixpkgs/nixos/lib/make-disk-image.nix>;
in
make-disk-image {
inherit pkgs lib;
config = {};
additionalPaths = [ ];
format = "qcow2";
onlyNixStore = true;
partitionTableType = "none";
installBootLoader = false;
touchEFIVars = false;
diskSize = "auto";
additionalSpace = "0M"; # Defaults to 512M.
copyChannel = false;
}
```
Some arguments can be left out, they are shown explicitly for the sake of the example.
Building this derivation will provide a QCOW2 disk image containing only the Nix store and its registration information.
To produce a NixOS installation image disk with UEFI and bootloader installed:
```nix
let
pkgs = import <nixpkgs> {};
lib = pkgs.lib;
make-disk-image = import <nixpkgs/nixos/lib/make-disk-image.nix>;
evalConfig = import <nixpkgs/nixos/lib/eval-config.nix>;
in
make-disk-image {
inherit pkgs lib;
config = evalConfig {
modules = [
{
fileSystems."/" = { device = "/dev/vda"; fsType = "ext4"; autoFormat = true; };
boot.grub.device = "/dev/vda";
}
];
};
format = "qcow2";
onlyNixStore = false;
partitionTableType = "legacy+gpt";
installBootLoader = true;
touchEFIVars = true;
diskSize = "auto";
additionalSpace = "0M"; # Defaults to 512M.
copyChannel = false;
memSize = 2048; # Qemu VM memory size in megabytes. Defaults to 1024M.
}
```

View File

@@ -1,10 +1,10 @@
# pkgs.ociTools {#sec-pkgs-ociTools}
`pkgs.ociTools` is a set of functions for creating containers according to the [OCI container specification v1.0.0](https://github.com/opencontainers/runtime-spec). Beyond that, it makes no assumptions about the container runner you choose to use to run the created container.
`pkgs.ociTools` is a set of functions for creating containers according to the [OCI container specification v1.0.0](https://github.com/opencontainers/runtime-spec). Beyond that it makes no assumptions about the container runner you choose to use to run the created container.
## buildContainer {#ssec-pkgs-ociTools-buildContainer}
This function creates a simple OCI container that runs a single command inside of it. An OCI container consists of a `config.json` and a rootfs directory. The nix store of the container will contain all referenced dependencies of the given command.
This function creates a simple OCI container that runs a single command inside of it. An OCI container consists of a `config.json` and a rootfs directory.The nix store of the container will contain all referenced dependencies of the given command.
The parameters of `buildContainer` with an example value are described below:
@@ -30,8 +30,8 @@ buildContainer {
}
```
- `args` specifies a set of arguments to run inside the container. This is the only required argument for `buildContainer`. All referenced packages inside the derivation will be made available inside the container.
- `args` specifies a set of arguments to run inside the container. This is the only required argument for `buildContainer`. All referenced packages inside the derivation will be made available inside the container
- `mounts` specifies additional mount points chosen by the user. By default only a minimal set of necessary filesystems are mounted into the container (e.g procfs, cgroupfs)
- `readonly` makes the container's rootfs read-only if it is set to true. The default value is false `false`.
- `readonly` makes the container\'s rootfs read-only if it is set to true. The default value is false `false`.

View File

@@ -1,81 +0,0 @@
# pkgs.portableService {#sec-pkgs-portableService}
`pkgs.portableService` is a function to create _portable service images_,
as read-only, immutable, `squashfs` archives.
systemd supports a concept of [Portable Services](https://systemd.io/PORTABLE_SERVICES/).
Portable Services are a delivery method for system services that uses two specific features of container management:
* Applications are bundled. I.e. multiple services, their binaries and
all their dependencies are packaged in an image, and are run directly from it.
* Stricter default security policies, i.e. sandboxing of applications.
This allows using Nix to build images which can be run on many recent Linux distributions.
The primary tool for interacting with Portable Services is `portablectl`,
and they are managed by the `systemd-portabled` system service.
::: {.note}
Portable services are supported starting with systemd 239 (released on 2018-06-22).
:::
A very simple example of using `portableService` is described below:
[]{#ex-pkgs-portableService}
```nix
pkgs.portableService {
pname = "demo";
version = "1.0";
units = [ demo-service demo-socket ];
}
```
The above example will build an squashfs archive image in `result/$pname_$version.raw`. The image will contain the
file system structure as required by the portable service specification, and a subset of the Nix store with all the
dependencies of the two derivations in the `units` list.
`units` must be a list of derivations, and their names must be prefixed with the service name (`"demo"` in this case).
Otherwise `systemd-portabled` will ignore them.
::: {.note}
The `.raw` file extension of the image is required by the portable services specification.
:::
Some other options available are:
- `description`, `homepage`
Are added to the `/etc/os-release` in the image and are shown by the portable services tooling.
Default to empty values, not added to os-release.
- `symlinks`
A list of attribute sets {object, symlink}. Symlinks will be created in the root filesystem of the image to
objects in the Nix store. Defaults to an empty list.
- `contents`
A list of additional derivations to be included in the image Nix store, as-is. Defaults to an empty list.
- `squashfsTools`
Defaults to `pkgs.squashfsTools`, allows you to override the package that provides `mksquashfs`.
- `squash-compression`, `squash-block-size`
Options to `mksquashfs`. Default to `"xz -Xdict-size 100%"` and `"1M"` respectively.
A typical usage of `symlinks` would be:
```nix
symlinks = [
{ object = "${pkgs.cacert}/etc/ssl"; symlink = "/etc/ssl"; }
{ object = "${pkgs.bash}/bin/bash"; symlink = "/bin/sh"; }
{ object = "${pkgs.php}/bin/php"; symlink = "/usr/bin/php"; }
];
```
to create these symlinks for legacy applications that assume them existing globally.
Once the image is created, and deployed on a host in `/var/lib/portables/`, you can attach the image and run the service. As root run:
```console
portablectl attach demo_1.0.raw
systemctl enable --now demo.socket
systemctl enable --now demo.service
```
::: {.note}
See the [man page](https://www.freedesktop.org/software/systemd/man/portablectl.html) of `portablectl` for more info on its usage.
:::

View File

@@ -33,7 +33,7 @@ in snapTools.makeSnap {
## Build a Graphical Snap {#ssec-pkgs-snapTools-build-a-snap-firefox}
Graphical programs require many more integrations with the host. This example uses Firefox as an example because it is one of the most complicated programs we could package.
Graphical programs require many more integrations with the host. This example uses Firefox as an example, because it is one of the most complicated programs we could package.
``` {#ex-snapTools-buildSnap-firefox .nix}
let

View File

@@ -103,7 +103,7 @@ let
owner = "Someone";
repo = "AwesomeMod";
rev = "...";
hash = "...";
sha256 = "...";
};
# Path to be installed in the unpacked source (default: ".")
modRoot = "contents/under/this/path/will/be/installed";

View File

@@ -4,13 +4,13 @@ The [Citrix Workspace App](https://www.citrix.com/products/workspace-app/) is a
## Basic usage {#sec-citrix-base}
The tarball archive needs to be downloaded manually, as the license agreements of the vendor for [Citrix Workspace](https://www.citrix.com/downloads/workspace-app/linux/workspace-app-for-linux-latest.html) needs to be accepted first. Then run `nix-prefetch-url file://$PWD/linuxx64-$version.tar.gz`. With the archive available in the store, the package can be built and installed with Nix.
The tarball archive needs to be downloaded manually as the license agreements of the vendor for [Citrix Workspace](https://www.citrix.de/downloads/workspace-app/linux/workspace-app-for-linux-latest.html) needs to be accepted first. Then run `nix-prefetch-url file://$PWD/linuxx64-$version.tar.gz`. With the archive available in the store the package can be built and installed with Nix.
## Citrix Self-service {#sec-citrix-selfservice}
## Citrix Selfservice {#sec-citrix-selfservice}
The [self-service](https://support.citrix.com/article/CTX200337) is an application managing Citrix desktops and applications. Please note that this feature only works with at least citrix_workspace_20_06_0 and later versions.
The [selfservice](https://support.citrix.com/article/CTX200337) is an application managing Citrix desktops and applications. Please note that this feature only works with at least citrix_workspace_20_06_0 and later versions.
In order to set this up, you first have to [download the `.cr` file from the Netscaler Gateway](https://its.uiowa.edu/support/article/102186). After that, you can configure the `selfservice` like this:
In order to set this up, you first have to [download the `.cr` file from the Netscaler Gateway](https://its.uiowa.edu/support/article/102186). After that you can configure the `selfservice` like this:
```ShellSession
$ storebrowse -C ~/Downloads/receiverconfig.cr
@@ -19,7 +19,7 @@ $ selfservice
## Custom certificates {#sec-citrix-custom-certs}
The `Citrix Workspace App` in `nixpkgs` trusts several certificates [from the Mozilla database](https://curl.haxx.se/docs/caextract.html) by default. However, several companies using Citrix might require their own corporate certificate. On distros with imperative packaging, these certs can be stored easily in [`$ICAROOT`](https://citrix.github.io/receiver-for-linux-command-reference/), however this directory is a store path in `nixpkgs`. In order to work around this issue, the package provides a simple mechanism to add custom certificates without rebuilding the entire package using `symlinkJoin`:
The `Citrix Workspace App` in `nixpkgs` trusts several certificates [from the Mozilla database](https://curl.haxx.se/docs/caextract.html) by default. However several companies using Citrix might require their own corporate certificate. On distros with imperative packaging these certs can be stored easily in [`$ICAROOT`](https://developer-docs.citrix.com/projects/receiver-for-linux-command-reference/en/13.7/), however this directory is a store path in `nixpkgs`. In order to work around this issue the package provides a simple mechanism to add custom certificates without rebuilding the entire package using `symlinkJoin`:
```nix
with import <nixpkgs> { config.allowUnfree = true; };

View File

@@ -1,10 +1,10 @@
# DLib {#dlib}
[DLib](http://dlib.net/) is a modern, C++\-based toolkit which provides several machine learning algorithms.
[DLib](http://dlib.net/) is a modern, C++-based toolkit which provides several machine learning algorithms.
## Compiling without AVX support {#compiling-without-avx-support}
Especially older CPUs don't support [AVX](https://en.wikipedia.org/wiki/Advanced_Vector_Extensions) (Advanced Vector Extensions) instructions that are used by DLib to optimize their algorithms.
Especially older CPUs don\'t support [AVX](https://en.wikipedia.org/wiki/Advanced_Vector_Extensions) (Advanced Vector Extensions) instructions that are used by DLib to optimize their algorithms.
On the affected hardware errors like `Illegal instruction` will occur. In those cases AVX support needs to be disabled:

View File

@@ -8,9 +8,9 @@ Nixpkgs provides a number of packages that will install Eclipse in its various f
$ nix-env -f '<nixpkgs>' -qaP -A eclipses --description
```
Once an Eclipse variant is installed, it can be run using the `eclipse` command, as expected. From within Eclipse, it is then possible to install plugins in the usual manner by either manually specifying an Eclipse update site or by installing the Marketplace Client plugin and using it to discover and install other plugins. This installation method provides an Eclipse installation that closely resemble a manually installed Eclipse.
Once an Eclipse variant is installed it can be run using the `eclipse` command, as expected. From within Eclipse it is then possible to install plugins in the usual manner by either manually specifying an Eclipse update site or by installing the Marketplace Client plugin and using it to discover and install other plugins. This installation method provides an Eclipse installation that closely resemble a manually installed Eclipse.
If you prefer to install plugins in a more declarative manner, then Nixpkgs also offer a number of Eclipse plugins that can be installed in an _Eclipse environment_. This type of environment is created using the function `eclipseWithPlugins` found inside the `nixpkgs.eclipses` attribute set. This function takes as argument `{ eclipse, plugins ? [], jvmArgs ? [] }` where `eclipse` is a one of the Eclipse packages described above, `plugins` is a list of plugin derivations, and `jvmArgs` is a list of arguments given to the JVM running the Eclipse. For example, say you wish to install the latest Eclipse Platform with the popular Eclipse Color Theme plugin and also allow Eclipse to use more RAM. You could then add:
If you prefer to install plugins in a more declarative manner then Nixpkgs also offer a number of Eclipse plugins that can be installed in an _Eclipse environment_. This type of environment is created using the function `eclipseWithPlugins` found inside the `nixpkgs.eclipses` attribute set. This function takes as argument `{ eclipse, plugins ? [], jvmArgs ? [] }` where `eclipse` is a one of the Eclipse packages described above, `plugins` is a list of plugin derivations, and `jvmArgs` is a list of arguments given to the JVM running the Eclipse. For example, say you wish to install the latest Eclipse Platform with the popular Eclipse Color Theme plugin and also allow Eclipse to use more RAM. You could then add
```nix
packageOverrides = pkgs: {
@@ -22,15 +22,15 @@ packageOverrides = pkgs: {
}
```
to your Nixpkgs configuration (`~/.config/nixpkgs/config.nix`) and install it by running `nix-env -f '<nixpkgs>' -iA myEclipse` and afterward run Eclipse as usual. It is possible to find out which plugins are available for installation using `eclipseWithPlugins` by running:
to your Nixpkgs configuration (`~/.config/nixpkgs/config.nix`) and install it by running `nix-env -f '<nixpkgs>' -iA myEclipse` and afterward run Eclipse as usual. It is possible to find out which plugins are available for installation using `eclipseWithPlugins` by running
```ShellSession
$ nix-env -f '<nixpkgs>' -qaP -A eclipses.plugins --description
```
If there is a need to install plugins that are not available in Nixpkgs then it may be possible to define these plugins outside Nixpkgs using the `buildEclipseUpdateSite` and `buildEclipsePlugin` functions found in the `nixpkgs.eclipses.plugins` attribute set. Use the `buildEclipseUpdateSite` function to install a plugin distributed as an Eclipse update site. This function takes `{ name, src }` as argument, where `src` indicates the Eclipse update site archive. All Eclipse features and plugins within the downloaded update site will be installed. When an update site archive is not available, then the `buildEclipsePlugin` function can be used to install a plugin that consists of a pair of feature and plugin JARs. This function takes an argument `{ name, srcFeature, srcPlugin }` where `srcFeature` and `srcPlugin` are the feature and plugin JARs, respectively.
If there is a need to install plugins that are not available in Nixpkgs then it may be possible to define these plugins outside Nixpkgs using the `buildEclipseUpdateSite` and `buildEclipsePlugin` functions found in the `nixpkgs.eclipses.plugins` attribute set. Use the `buildEclipseUpdateSite` function to install a plugin distributed as an Eclipse update site. This function takes `{ name, src }` as argument where `src` indicates the Eclipse update site archive. All Eclipse features and plugins within the downloaded update site will be installed. When an update site archive is not available then the `buildEclipsePlugin` function can be used to install a plugin that consists of a pair of feature and plugin JARs. This function takes an argument `{ name, srcFeature, srcPlugin }` where `srcFeature` and `srcPlugin` are the feature and plugin JARs, respectively.
Expanding the previous example with two plugins using the above functions, we have:
Expanding the previous example with two plugins using the above functions we have
```nix
packageOverrides = pkgs: {
@@ -43,11 +43,11 @@ packageOverrides = pkgs: {
name = "myplugin1-1.0";
srcFeature = fetchurl {
url = "http:///features/myplugin1.jar";
hash = "sha256-123";
sha256 = "123";
};
srcPlugin = fetchurl {
url = "http:///plugins/myplugin1.jar";
hash = "sha256-123";
sha256 = "123";
};
});
(plugins.buildEclipseUpdateSite {
@@ -55,7 +55,7 @@ packageOverrides = pkgs: {
src = fetchurl {
stripRoot = false;
url = "http:///myplugin2.zip";
hash = "sha256-123";
sha256 = "123";
};
});
];

View File

@@ -1,6 +1,6 @@
# Elm {#sec-elm}
To start a development environment, run:
To start a development environment do
```ShellSession
nix-shell -p elmPackages.elm elmPackages.elm-format

View File

@@ -20,12 +20,16 @@ The Emacs package comes with some extra helpers to make it easier to configure.
}
```
You can install it like any other packages via `nix-env -iA myEmacs`. However, this will only install those packages. It will not `configure` them for us. To do this, we need to provide a configuration file. Luckily, it is possible to do this from within Nix! By modifying the above example, we can make Emacs load a custom config file. The key is to create a package that provides a `default.el` file in `/share/emacs/site-start/`. Emacs knows to load this file automatically when it starts.
You can install it like any other packages via `nix-env -iA myEmacs`. However, this will only install those packages. It will not `configure` them for us. To do this, we need to provide a configuration file. Luckily, it is possible to do this from within Nix! By modifying the above example, we can make Emacs load a custom config file. The key is to create a package that provide a `default.el` file in `/share/emacs/site-start/`. Emacs knows to load this file automatically when it starts.
```nix
{
packageOverrides = pkgs: with pkgs; rec {
myEmacsConfig = writeText "default.el" ''
;; initialize package
(require 'package)
(package-initialize 'noactivate)
(eval-when-compile
(require 'use-package))
@@ -97,16 +101,16 @@ You can install it like any other packages via `nix-env -iA myEmacs`. However, t
}
```
This provides a fairly full Emacs start file. It will load in addition to the user's personal config. You can always disable it by passing `-q` to the Emacs command.
This provides a fairly full Emacs start file. It will load in addition to the user's presonal config. You can always disable it by passing `-q` to the Emacs command.
Sometimes `emacs.pkgs.withPackages` is not enough, as this package set has some priorities imposed on packages (with the lowest priority assigned to GNU-devel ELPA, and the highest for packages manually defined in `pkgs/applications/editors/emacs/elisp-packages/manual-packages`). But you can't control these priorities when some package is installed as a dependency. You can override it on a per-package-basis, providing all the required dependencies manually, but it's tedious and there is always a possibility that an unwanted dependency will sneak in through some other package. To completely override such a package, you can use `overrideScope`.
Sometimes `emacs.pkgs.withPackages` is not enough, as this package set has some priorities imposed on packages (with the lowest priority assigned to Melpa Unstable, and the highest for packages manually defined in `pkgs/top-level/emacs-packages.nix`). But you can't control this priorities when some package is installed as a dependency. You can override it on per-package-basis, providing all the required dependencies manually - but it's tedious and there is always a possibility that an unwanted dependency will sneak in through some other package. To completely override such a package you can use `overrideScope'`.
```nix
overrides = self: super: rec {
haskell-mode = self.melpaPackages.haskell-mode;
...
};
((emacsPackagesFor emacs).overrideScope overrides).withPackages
((emacsPackagesFor emacs).overrideScope' overrides).withPackages
(p: with p; [
# here both these package will use haskell-mode of our own choice
ghc-mod

View File

@@ -1,10 +1,10 @@
# /etc files {#etc}
Certain calls in glibc require access to runtime files found in `/etc` such as `/etc/protocols` or `/etc/services` -- [getprotobyname](https://linux.die.net/man/3/getprotobyname) is one such function.
Certain calls in glibc require access to runtime files found in /etc such as `/etc/protocols` or `/etc/services` -- [getprotobyname](https://linux.die.net/man/3/getprotobyname) is one such function.
On non-NixOS distributions these files are typically provided by packages (i.e., [netbase](https://packages.debian.org/sid/netbase)) if not already pre-installed in your distribution. This can cause non-reproducibility for code if they rely on these files being present.
On non-NixOS distributions these files are typically provided by packages (i.e. [netbase](https://packages.debian.org/sid/netbase)) if not already pre-installed in your distribution. This can cause non-reproducibility for code if they rely on these files being present.
If [iana-etc](https://hydra.nixos.org/job/nixos/trunk-combined/nixpkgs.iana-etc.x86_64-linux) is part of your `buildInputs`, then it will set the environment variables `NIX_ETC_PROTOCOLS` and `NIX_ETC_SERVICES` to the corresponding files in the package through a setup hook.
If [iana-etc](https://hydra.nixos.org/job/nixos/trunk-combined/nixpkgs.iana-etc.x86_64-linux) is part of your _buildInputs_ then it will set the environment varaibles `NIX_ETC_PROTOCOLS` and `NIX_ETC_SERVICES` to the corresponding files in the package through a _setup-hook_.
```bash
@@ -15,4 +15,4 @@ NIX_ETC_SERVICES=/nix/store/aj866hr8fad8flnggwdhrldm0g799ccz-iana-etc-20210225/e
NIX_ETC_PROTOCOLS=/nix/store/aj866hr8fad8flnggwdhrldm0g799ccz-iana-etc-20210225/etc/protocols
```
Nixpkg's version of [glibc](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/glibc/default.nix) has been patched to check for the existence of these environment variables. If the environment variables are *not* set, then it will attempt to find the files at the default location within `/etc`.
Nixpkg's version of [glibc](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/glibc/default.nix) has been patched to check for the existence of these environment variables. If the environment variable are *not set*, then it will attempt to find the files at the default location within _/etc_.

View File

@@ -2,7 +2,7 @@
## Build wrapped Firefox with extensions and policies {#build-wrapped-firefox-with-extensions-and-policies}
The `wrapFirefox` function allows to pass policies, preferences and extensions that are available to Firefox. With the help of `fetchFirefoxAddon` this allows to build a Firefox version that already comes with add-ons pre-installed:
The `wrapFirefox` function allows to pass policies, preferences and extension that are available to Firefox. With the help of `fetchFirefoxAddon` this allows build a Firefox version that already comes with addons pre-installed:
```nix
{
@@ -12,7 +12,7 @@ The `wrapFirefox` function allows to pass policies, preferences and extensions t
(fetchFirefoxAddon {
name = "ublock"; # Has to be unique!
url = "https://addons.mozilla.org/firefox/downloads/file/3679754/ublock_origin-1.31.0-an+fx.xpi";
hash = "sha256-2e73AbmYZlZXCP5ptYVcFjQYdjDp4iPoEPEOSCVF5sA=";
sha256 = "1h768ljlh3pi23l27qp961v1hd0nbj2vasgy11bmcrlqp40zgvnr";
})
];
@@ -26,14 +26,10 @@ The `wrapFirefox` function allows to pass policies, preferences and extensions t
Pocket = false;
Snippets = false;
};
UserMessaging = {
ExtensionRecommendations = false;
SkipOnboarding = true;
};
SecurityDevices = {
# Use a proxy module rather than `nixpkgs.config.firefox.smartcardSupport = true`
"PKCS#11 Proxy Module" = "${pkgs.p11-kit}/lib/p11-kit-proxy.so";
};
UserMessaging = {
ExtensionRecommendations = false;
SkipOnboarding = true;
};
};
extraPrefs = ''
@@ -44,12 +40,13 @@ The `wrapFirefox` function allows to pass policies, preferences and extensions t
}
```
If `nixExtensions != null`, then all manually installed add-ons will be uninstalled from your browser profile.
To view available enterprise policies, visit [enterprise policies](https://github.com/mozilla/policy-templates#enterprisepoliciesenabled)
or type into the Firefox URL bar: `about:policies#documentation`.
Nix installed add-ons do not have a valid signature, which is why signature verification is disabled. This does not compromise security because downloaded add-ons are checksummed and manual add-ons can't be installed. Also, make sure that the `name` field of `fetchFirefoxAddon` is unique. If you remove an add-on from the `nixExtensions` array, rebuild and start Firefox: the removed add-on will be completely removed with all of its settings.
If `nixExtensions != null` then all manually installed addons will be uninstalled from your browser profile.
To view available enterprise policies visit [enterprise policies](https://github.com/mozilla/policy-templates#enterprisepoliciesenabled)
or type into the Firefox url bar: `about:policies#documentation`.
Nix installed addons do not have a valid signature, which is why signature verification is disabled. This does not compromise security because downloaded addons are checksumed and manual addons can't be installed. Also make sure that the `name` field of fetchFirefoxAddon is unique. If you remove an addon from the nixExtensions array, rebuild and start Firefox the removed addon will be completly removed with all of its settings.
## Troubleshooting {#sec-firefox-troubleshooting}
If add-ons are marked as broken or the signature is invalid, make sure you have Firefox ESR installed. Normal Firefox does not provide the ability anymore to disable signature verification for add-ons thus nix add-ons get disabled by the normal Firefox binary.
If addons are marked as broken or the signature is invalid, make sure you have Firefox ESR installed. Normal Firefox does not provide the ability anymore to disable signature verification for addons thus nix addons get disabled by the normal Firefox binary.
If addons do not appear installed although they have been defined in your nix configuration file reset the local addon state of your Firefox profile by clicking `help -> restart with addons disabled -> restart -> refresh firefox`. This can happen if you switch from manual addon mode to nix addon mode and then back to manual mode and then again to nix addon mode.
If add-ons do not appear installed despite being defined in your nix configuration file, reset the local add-on state of your Firefox profile by clicking `Help -> More Troubleshooting Information -> Refresh Firefox`. This can happen if you switch from manual add-on mode to nix add-on mode and then back to manual mode and then again to nix add-on mode.

View File

@@ -36,7 +36,7 @@ using `buildFishPlugin` and running unit tests with the `fishtape` test runner.
## Fish wrapper {#sec-fish-wrapper}
The `wrapFish` package is a wrapper around Fish which can be used to create
Fish shells initialized with some plugins as well as completions, configuration
Fish shells initialised with some plugins as well as completions, configuration
snippets and functions sourced from the given paths. This provides a convenient
way to test Fish plugins and scripts without having to alter the environment.

View File

@@ -24,10 +24,10 @@ packages on macOS:
checking for fuse.h... no
configure: error: No fuse.h found.
This happens on autoconf based projects that use `AC_CHECK_HEADERS` or
This happens on autoconf based projects that uses `AC_CHECK_HEADERS` or
`AC_CHECK_LIBS` to detect libfuse, and will occur even when the `fuse` package
is included in `buildInputs`. It happens because libfuse headers throw an error
on macOS if the `FUSE_USE_VERSION` macro is undefined. Many projects do define
on macOS if the `FUSE_USE_VERSION` macro is undefined. Many proejcts do define
`FUSE_USE_VERSION`, but only inside C source files. This results in the above
error at configure time because the configure script would attempt to compile
sample FUSE programs without defining `FUSE_USE_VERSION`.

View File

@@ -4,9 +4,9 @@ This package is an ibus-based completion method to speed up typing.
## Activating the engine {#sec-ibus-typing-booster-activate}
IBus needs to be configured accordingly to activate `typing-booster`. The configuration depends on the desktop manager in use. For detailed instructions, please refer to the [upstream docs](https://mike-fabian.github.io/ibus-typing-booster/).
IBus needs to be configured accordingly to activate `typing-booster`. The configuration depends on the desktop manager in use. For detailed instructions, please refer to the [upstream docs](https://mike-fabian.github.io/ibus-typing-booster/documentation.html).
On NixOS, you need to explicitly enable `ibus` with given engines before customizing your desktop to use `typing-booster`. This can be achieved using the `ibus` module:
On NixOS you need to explicitly enable `ibus` with given engines before customizing your desktop to use `typing-booster`. This can be achieved using the `ibus` module:
```nix
{ pkgs, ... }: {
@@ -19,7 +19,7 @@ On NixOS, you need to explicitly enable `ibus` with given engines before customi
## Using custom hunspell dictionaries {#sec-ibus-typing-booster-customize-hunspell}
The IBus engine is based on `hunspell` to support completion in many languages. By default, the dictionaries `de-de`, `en-us`, `fr-moderne` `es-es`, `it-it`, `sv-se` and `sv-fi` are in use. To add another dictionary, the package can be overridden like this:
The IBus engine is based on `hunspell` to support completion in many languages. By default the dictionaries `de-de`, `en-us`, `fr-moderne` `es-es`, `it-it`, `sv-se` and `sv-fi` are in use. To add another dictionary, the package can be overridden like this:
```nix
ibus-engines.typing-booster.override { langs = [ "de-at" "en-gb" ]; }
@@ -31,10 +31,8 @@ _Note: each language passed to `langs` must be an attribute name in `pkgs.hunspe
The `ibus-engines.typing-booster` package contains a program named `emoji-picker`. To display all emojis correctly, a special font such as `noto-fonts-emoji` is needed:
On NixOS, it can be installed using the following expression:
On NixOS it can be installed using the following expression:
```nix
{ pkgs, ... }: {
fonts.packages = with pkgs; [ noto-fonts-emoji ];
}
{ pkgs, ... }: { fonts.fonts = with pkgs; [ noto-fonts-emoji ]; }
```

View File

@@ -1,27 +0,0 @@
# Packages {#chap-packages}
This chapter contains information about how to use and maintain the Nix expressions for a number of specific packages, such as the Linux kernel or X.org.
```{=include=} sections
citrix.section.md
dlib.section.md
eclipse.section.md
elm.section.md
emacs.section.md
firefox.section.md
fish.section.md
fuse.section.md
ibus.section.md
kakoune.section.md
linux.section.md
locales.section.md
etc-files.section.md
nginx.section.md
opengl.section.md
shell-helpers.section.md
steam.section.md
cataclysm-dda.section.md
urxvt.section.md
weechat.section.md
xorg.section.md
```

View File

@@ -0,0 +1,29 @@
<chapter xmlns="http://docbook.org/ns/docbook"
xmlns:xi="http://www.w3.org/2001/XInclude"
xml:id="chap-packages">
<title>Packages</title>
<para>
This chapter contains information about how to use and maintain the Nix expressions for a number of specific packages, such as the Linux kernel or X.org.
</para>
<xi:include href="citrix.section.xml" />
<xi:include href="dlib.section.xml" />
<xi:include href="eclipse.section.xml" />
<xi:include href="elm.section.xml" />
<xi:include href="emacs.section.xml" />
<xi:include href="firefox.section.xml" />
<xi:include href="fish.section.xml" />
<xi:include href="fuse.section.xml" />
<xi:include href="ibus.section.xml" />
<xi:include href="kakoune.section.xml" />
<xi:include href="linux.section.xml" />
<xi:include href="locales.section.xml" />
<xi:include href="etc-files.section.xml" />
<xi:include href="nginx.section.xml" />
<xi:include href="opengl.section.xml" />
<xi:include href="shell-helpers.section.xml" />
<xi:include href="steam.section.xml" />
<xi:include href="cataclysm-dda.section.xml" />
<xi:include href="urxvt.section.xml" />
<xi:include href="weechat.section.xml" />
<xi:include href="xorg.section.xml" />
</chapter>

View File

@@ -4,7 +4,7 @@ The Nix expressions to build the Linux kernel are in [`pkgs/os-specific/linux/ke
The function that builds the kernel has an argument `kernelPatches` which should be a list of `{name, patch, extraConfig}` attribute sets, where `name` is the name of the patch (which is included in the kernels `meta.description` attribute), `patch` is the patch itself (possibly compressed), and `extraConfig` (optional) is a string specifying extra options to be concatenated to the kernel configuration file (`.config`).
The kernel derivation exports an attribute `features` specifying whether optional functionality is or isnt enabled. This is used in NixOS to implement kernel-specific behaviour. For instance, if the kernel has the `iwlwifi` feature (i.e., has built-in support for Intel wireless chipsets), then NixOS doesnt have to build the external `iwlwifi` package:
The kernel derivation exports an attribute `features` specifying whether optional functionality is or isnt enabled. This is used in NixOS to implement kernel-specific behaviour. For instance, if the kernel has the `iwlwifi` feature (i.e. has built-in support for Intel wireless chipsets), then NixOS doesnt have to build the external `iwlwifi` package:
```nix
modulesTree = [kernel]
@@ -14,19 +14,19 @@ modulesTree = [kernel]
How to add a new (major) version of the Linux kernel to Nixpkgs:
1. Copy the old Nix expression (e.g., `linux-2.6.21.nix`) to the new one (e.g., `linux-2.6.22.nix`) and update it.
1. Copy the old Nix expression (e.g. `linux-2.6.21.nix`) to the new one (e.g. `linux-2.6.22.nix`) and update it.
2. Add the new kernel to the `kernels` attribute set in `linux-kernels.nix` (e.g., create an attribute `kernel_2_6_22`).
3. Now were going to update the kernel configuration. First unpack the kernel. Then for each supported platform (`i686`, `x86_64`, `uml`) do the following:
1. Make a copy from the old config (e.g., `config-2.6.21-i686-smp`) to the new one (e.g., `config-2.6.22-i686-smp`).
1. Make an copy from the old config (e.g. `config-2.6.21-i686-smp`) to the new one (e.g. `config-2.6.22-i686-smp`).
2. Copy the config file for this platform (e.g., `config-2.6.22-i686-smp`) to `.config` in the kernel source tree.
2. Copy the config file for this platform (e.g. `config-2.6.22-i686-smp`) to `.config` in the kernel source tree.
3. Run `make oldconfig ARCH={i386,x86_64,um}` and answer all questions. (For the uml configuration, also add `SHELL=bash`.) Make sure to keep the configuration consistent between platforms (i.e., dont enable some feature on `i686` and disable it on `x86_64`).
3. Run `make oldconfig ARCH={i386,x86_64,um}` and answer all questions. (For the uml configuration, also add `SHELL=bash`.) Make sure to keep the configuration consistent between platforms (i.e. dont enable some feature on `i686` and disable it on `x86_64`).
4. If needed, you can also run `make menuconfig`:
4. If needed you can also run `make menuconfig`:
```ShellSession
$ nix-env -f "<nixpkgs>" -iA ncurses
@@ -34,7 +34,7 @@ How to add a new (major) version of the Linux kernel to Nixpkgs:
$ make menuconfig ARCH=arch
```
5. Copy `.config` over the new config file (e.g., `config-2.6.22-i686-smp`).
5. Copy `.config` over the new config file (e.g. `config-2.6.22-i686-smp`).
4. Test building the kernel: `nix-build -A linuxKernel.kernels.kernel_2_6_22`. If it compiles, ship it! For extra credit, try booting NixOS with it.

View File

@@ -1,5 +1,5 @@
# Locales {#locales}
To allow simultaneous use of packages linked against different versions of `glibc` with different locale archive formats, Nixpkgs patches `glibc` to rely on `LOCALE_ARCHIVE` environment variable.
To allow simultaneous use of packages linked against different versions of `glibc` with different locale archive formats Nixpkgs patches `glibc` to rely on `LOCALE_ARCHIVE` environment variable.
On non-NixOS distributions, this variable is obviously not set. This can cause regressions in language support or even crashes in some Nixpkgs-provided programs. The simplest way to mitigate this problem is exporting the `LOCALE_ARCHIVE` variable pointing to `${glibcLocales}/lib/locale/locale-archive`. The drawback (and the reason this is not the default) is the relatively large (a hundred MiB) size of the full set of locales. It is possible to build a custom set of locales by overriding parameters `allLocales` and `locales` of the package.
On non-NixOS distributions this variable is obviously not set. This can cause regressions in language support or even crashes in some Nixpkgs-provided programs. The simplest way to mitigate this problem is exporting the `LOCALE_ARCHIVE` variable pointing to `${glibcLocales}/lib/locale/locale-archive`. The drawback (and the reason this is not the default) is the relatively large (a hundred MiB) size of the full set of locales. It is possible to build a custom set of locales by overriding parameters `allLocales` and `locales` of the package.

View File

@@ -4,8 +4,8 @@
## ETags on static files served from the Nix store {#sec-nginx-etag}
HTTP has a couple of different mechanisms for caching to prevent clients from having to download the same content repeatedly if a resource has not changed since the last time it was requested. When nginx is used as a server for static files, it implements the caching mechanism based on the [`Last-Modified`](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Last-Modified) response header automatically; unfortunately, it works by using filesystem timestamps to determine the value of the `Last-Modified` header. This doesn't give the desired behavior when the file is in the Nix store because all file timestamps are set to 0 (for reasons related to build reproducibility).
HTTP has a couple different mechanisms for caching to prevent clients from having to download the same content repeatedly if a resource has not changed since the last time it was requested. When nginx is used as a server for static files, it implements the caching mechanism based on the [`Last-Modified`](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Last-Modified) response header automatically; unfortunately, it works by using filesystem timestamps to determine the value of the `Last-Modified` header. This doesn't give the desired behavior when the file is in the Nix store, because all file timestamps are set to 0 (for reasons related to build reproducibility).
Fortunately, HTTP supports an alternative (and more effective) caching mechanism: the [`ETag`](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag) response header. The value of the `ETag` header specifies some identifier for the particular content that the server is sending (e.g., a hash). When a client makes a second request for the same resource, it sends that value back in an `If-None-Match` header. If the ETag value is unchanged, then the server does not need to resend the content.
Fortunately, HTTP supports an alternative (and more effective) caching mechanism: the [`ETag`](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag) response header. The value of the `ETag` header specifies some identifier for the particular content that the server is sending (e.g. a hash). When a client makes a second request for the same resource, it sends that value back in an `If-None-Match` header. If the ETag value is unchanged, then the server does not need to resend the content.
As of NixOS 19.09, the nginx package in Nixpkgs is patched such that when nginx serves a file out of `/nix/store`, the hash in the store path is used as the `ETag` header in the HTTP response, thus providing proper caching functionality. This happens automatically; you do not need to do modify any configuration to get this behavior.

View File

@@ -12,4 +12,4 @@ The NixOS desktop or other non-headless configurations are the primary target fo
If you are using a non-NixOS GNU/Linux/X11 desktop with free software video drivers, consider launching OpenGL-dependent programs from Nixpkgs with Nixpkgs versions of `libglvnd` and `mesa.drivers` in `LD_LIBRARY_PATH`. For Mesa drivers, the Linux kernel version doesn't have to match nixpkgs.
For proprietary video drivers, you might have luck with also adding the corresponding video driver package.
For proprietary video drivers you might have luck with also adding the corresponding video driver package.

View File

@@ -4,7 +4,7 @@ Some packages provide the shell integration to be more useful. But unlike other
- `fzf` : `fzf-share`
E.g. `fzf` can then be used in the `.bashrc` like this:
E.g. `fzf` can then used in the `.bashrc` like this:
```bash
source "$(fzf-share)/completion.bash"

View File

@@ -2,20 +2,20 @@
## Steam in Nix {#sec-steam-nix}
Steam is distributed as a `.deb` file, for now only as an i686 package (the amd64 package only has documentation). When unpacked, it has a script called `steam` that in Ubuntu (their target distro) would go to `/usr/bin`. When run for the first time, this script copies some files to the user's home, which include another script that is the ultimate responsible for launching the steam binary, which is also in `$HOME`.
Steam is distributed as a `.deb` file, for now only as an i686 package (the amd64 package only has documentation). When unpacked, it has a script called `steam` that in Ubuntu (their target distro) would go to `/usr/bin`. When run for the first time, this script copies some files to the user's home, which include another script that is the ultimate responsible for launching the steam binary, which is also in \$HOME.
Nix problems and constraints:
- We don't have `/bin/bash` and many scripts point there. Same thing for `/usr/bin/python`.
- We don't have `/bin/bash` and many scripts point there. Similarly for `/usr/bin/python`.
- We don't have the dynamic loader in `/lib`.
- The `steam.sh` script in `$HOME` cannot be patched, as it is checked and rewritten by steam.
- The `steam.sh` script in \$HOME can not be patched, as it is checked and rewritten by steam.
- The steam binary cannot be patched, it's also checked.
The current approach to deploy Steam in NixOS is composing a FHS-compatible chroot environment, as documented [here](http://sandervanderburg.blogspot.nl/2013/09/composing-fhs-compatible-chroot.html). This allows us to have binaries in the expected paths without disrupting the system, and to avoid patching them to work in a non FHS environment.
## How to play {#sec-steam-play}
Use `programs.steam.enable = true;` if you want to add steam to `systemPackages` and also enable a few workarounds as well as Steam controller support or other Steam supported controllers such as the DualShock 4 or Nintendo Switch Pro Controller.
Use `programs.steam.enable = true;` if you want to add steam to systemPackages and also enable a few workarrounds aswell as Steam controller support or other Steam supported controllers such as the DualShock 4 or Nintendo Switch Pr.
## Troubleshooting {#sec-steam-troub}
@@ -32,7 +32,7 @@ Use `programs.steam.enable = true;` if you want to add steam to `systemPackages`
- **Using the FOSS Radeon or nouveau (nvidia) drivers**
- The `newStdcpp` parameter was removed since NixOS 17.09 and should not be needed anymore.
- Steam ships statically linked with a version of `libcrypto` that conflicts with the one dynamically loaded by radeonsi_dri.so. If you get the error:
- Steam ships statically linked with a version of libcrypto that conflics with the one dynamically loaded by radeonsi_dri.so. If you get the error
```
steam.sh: line 713: 7842 Segmentation fault (core dumped)
@@ -42,13 +42,13 @@ Use `programs.steam.enable = true;` if you want to add steam to `systemPackages`
- **Java**
1. There is no java in steam chrootenv by default. If you get a message like:
1. There is no java in steam chrootenv by default. If you get a message like
```
/home/foo/.local/share/Steam/SteamApps/common/towns/towns.sh: line 1: java: command not found
```
you need to add:
you need to add
```nix
steam.override { withJava = true; };
@@ -56,7 +56,7 @@ Use `programs.steam.enable = true;` if you want to add steam to `systemPackages`
## steam-run {#sec-steam-run}
The FHS-compatible chroot used for Steam can also be used to run other Linux games that expect a FHS environment. To use it, install the `steam-run` package and run the game with:
The FHS-compatible chroot used for Steam can also be used to run other Linux games that expect a FHS environment. To use it, install the `steam-run` package and run the game with
```
steam-run ./foo

View File

@@ -0,0 +1,13 @@
<section xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xml:id="unfree-software">
<title>Unfree software</title>
<para>
All users of Nixpkgs are free software users, and many users (and developers) of Nixpkgs want to limit and tightly control their exposure to unfree software. At the same time, many users need (or want) to run some specific pieces of proprietary software. Nixpkgs includes some expressions for unfree software packages. By default unfree software cannot be installed and doesnt show up in searches. To allow installing unfree software in a single Nix invocation one can export <literal>NIXPKGS_ALLOW_UNFREE=1</literal>. For a persistent solution, users can set <literal>allowUnfree</literal> in the Nixpkgs configuration.
</para>
<para>
Fine-grained control is possible by defining <literal>allowUnfreePredicate</literal> function in config; it takes the <literal>mkDerivation</literal> parameter attrset and returns <literal>true</literal> for unfree packages that should be allowed.
</para>
</section>

View File

@@ -4,7 +4,7 @@ Urxvt, also known as rxvt-unicode, is a highly customizable terminal emulator.
## Configuring urxvt {#sec-urxvt-conf}
In `nixpkgs`, urxvt is provided by the package `rxvt-unicode`. It can be configured to include your choice of plugins, reducing its closure size from the default configuration which includes all available plugins. To make use of this functionality, use an overlay or directly install an expression that overrides its configuration, such as:
In `nixpkgs`, urxvt is provided by the package `rxvt-unicode`. It can be configured to include your choice of plugins, reducing its closure size from the default configuration which includes all available plugins. To make use of this functionality, use an overlay or directly install an expression that overrides its configuration, such as
```nix
rxvt-unicode.override {
@@ -58,14 +58,14 @@ rxvt-unicode.override {
## Packaging urxvt plugins {#sec-urxvt-pkg}
Urxvt plugins resides in `pkgs/applications/misc/rxvt-unicode-plugins`. To add a new plugin, create an expression in a subdirectory and add the package to the set in `pkgs/applications/misc/rxvt-unicode-plugins/default.nix`.
Urxvt plugins resides in `pkgs/applications/misc/rxvt-unicode-plugins`. To add a new plugin create an expression in a subdirectory and add the package to the set in `pkgs/applications/misc/rxvt-unicode-plugins/default.nix`.
A plugin can be any kind of derivation, the only requirement is that it should always install perl scripts in `$out/lib/urxvt/perl`. Look for existing plugins for examples.
If the plugin is itself a Perl package that needs to be imported from other plugins or scripts, add the following passthrough:
If the plugin is itself a perl package that needs to be imported from other plugins or scripts, add the following passthrough:
```nix
passthru.perlPackages = [ "self" ];
```
This will make the urxvt wrapper pick up the dependency and set up the Perl path accordingly.
This will make the urxvt wrapper pick up the dependency and set up the perl path accordingly.

View File

@@ -1,6 +1,6 @@
# WeeChat {#sec-weechat}
# Weechat {#sec-weechat}
WeeChat can be configured to include your choice of plugins, reducing its closure size from the default configuration which includes all available plugins. To make use of this functionality, install an expression that overrides its configuration, such as:
Weechat can be configured to include your choice of plugins, reducing its closure size from the default configuration which includes all available plugins. To make use of this functionality, install an expression that overrides its configuration such as
```nix
weechat.override {configure = {availablePlugins, ...}: {
@@ -13,7 +13,7 @@ If the `configure` function returns an attrset without the `plugins` attribute,
The plugins currently available are `python`, `perl`, `ruby`, `guile`, `tcl` and `lua`.
The Python and Perl plugins allows the addition of extra libraries. For instance, the `inotify.py` script in `weechat-scripts` requires D-Bus or libnotify, and the `fish.py` script requires `pycrypto`. To use these scripts, use the plugin's `withPackages` attribute:
The python and perl plugins allows the addition of extra libraries. For instance, the `inotify.py` script in `weechat-scripts` requires D-Bus or libnotify, and the `fish.py` script requires `pycrypto`. To use these scripts, use the plugin's `withPackages` attribute:
```nix
weechat.override { configure = {availablePlugins, ...}: {
@@ -49,7 +49,7 @@ weechat.override {
Further values can be added to the list of commands when running `weechat --run-command "your-commands"`.
Additionally, it's possible to specify scripts to be loaded when starting `weechat`. These will be loaded before the commands from `init`:
Additionally it's possible to specify scripts to be loaded when starting `weechat`. These will be loaded before the commands from `init`:
```nix
weechat.override {
@@ -64,7 +64,7 @@ weechat.override {
}
```
In `nixpkgs` there's a subpackage which contains derivations for WeeChat scripts. Such derivations expect a `passthru.scripts` attribute, which contains a list of all scripts inside the store path. Furthermore, all scripts have to live in `$out/share`. An exemplary derivation looks like this:
In `nixpkgs` there's a subpackage which contains derivations for WeeChat scripts. Such derivations expect a `passthru.scripts` attribute which contains a list of all scripts inside the store path. Furthermore all scripts have to live in `$out/share`. An exemplary derivation looks like this:
```nix
{ stdenv, fetchurl }:
@@ -73,7 +73,7 @@ stdenv.mkDerivation {
name = "exemplary-weechat-script";
src = fetchurl {
url = "https://scripts.tld/your-scripts.tar.gz";
hash = "...";
sha256 = "...";
};
passthru.scripts = [ "foo.py" "bar.lua" ];
installPhase = ''

View File

@@ -1,11 +0,0 @@
# Special builders {#chap-special}
This chapter describes several special builders.
```{=include=} sections
special/fhs-environments.section.md
special/makesetuphook.section.md
special/mkshell.section.md
special/darwin-builder.section.md
special/vm-tools.section.md
```

10
doc/builders/special.xml Normal file
View File

@@ -0,0 +1,10 @@
<chapter xmlns="http://docbook.org/ns/docbook"
xmlns:xi="http://www.w3.org/2001/XInclude"
xml:id="chap-special">
<title>Special builders</title>
<para>
This chapter describes several special builders.
</para>
<xi:include href="special/fhs-environments.section.xml" />
<xi:include href="special/mkshell.section.xml" />
</chapter>

View File

@@ -1,159 +0,0 @@
# darwin.linux-builder {#sec-darwin-builder}
`darwin.linux-builder` provides a way to bootstrap a Linux builder on a macOS machine.
This requires macOS version 12.4 or later.
The builder runs on host port 31022 by default.
You can change it by overriding `virtualisation.darwin-builder.hostPort`.
See the [example](#sec-darwin-builder-example-flake).
You will also need to be a trusted user for your Nix installation. In other
words, your `/etc/nix/nix.conf` should have something like:
```
extra-trusted-users = <your username goes here>
```
To launch the builder, run the following flake:
```ShellSession
$ nix run nixpkgs#darwin.linux-builder
```
That will prompt you to enter your `sudo` password:
```
+ sudo --reset-timestamp /nix/store/…-install-credentials.sh ./keys
Password:
```
… so that it can install a private key used to `ssh` into the build server.
After that the script will launch the virtual machine and automatically log you
in as the `builder` user:
```
<<< Welcome to NixOS 22.11.20220901.1bd8d11 (aarch64) - ttyAMA0 >>>
Run 'nixos-help' for the NixOS manual.
nixos login: builder (automatic login)
[builder@nixos:~]$
```
> Note: When you need to stop the VM, run `shutdown now` as the `builder` user.
To delegate builds to the remote builder, add the following options to your
`nix.conf` file:
```
# - Replace ${ARCH} with either aarch64 or x86_64 to match your host machine
# - Replace ${MAX_JOBS} with the maximum number of builds (pick 4 if you're not sure)
builders = ssh-ng://builder@linux-builder ${ARCH}-linux /etc/nix/builder_ed25519 ${MAX_JOBS} - - - c3NoLWVkMjU1MTkgQUFBQUMzTnphQzFsWkRJMU5URTVBQUFBSUpCV2N4Yi9CbGFxdDFhdU90RStGOFFVV3JVb3RpQzVxQkorVXVFV2RWQ2Igcm9vdEBuaXhvcwo=
# Not strictly necessary, but this will reduce your disk utilization
builders-use-substitutes = true
```
To allow Nix to connect to a builder not running on port 22, you will also need to create a new file at `/etc/ssh/ssh_config.d/100-linux-builder.conf`:
```
Host linux-builder
Hostname localhost
HostKeyAlias linux-builder
Port 31022
```
… and then restart your Nix daemon to apply the change:
```ShellSession
$ sudo launchctl kickstart -k system/org.nixos.nix-daemon
```
## Example flake usage {#sec-darwin-builder-example-flake}
```
{
inputs = {
nixpkgs.url = "github:nixos/nixpkgs/nixpkgs-22.11-darwin";
darwin.url = "github:lnl7/nix-darwin/master";
darwin.inputs.nixpkgs.follows = "nixpkgs";
};
outputs = { self, darwin, nixpkgs, ... }@inputs:
let
inherit (darwin.lib) darwinSystem;
system = "aarch64-darwin";
pkgs = nixpkgs.legacyPackages."${system}";
linuxSystem = builtins.replaceStrings [ "darwin" ] [ "linux" ] system;
darwin-builder = nixpkgs.lib.nixosSystem {
system = linuxSystem;
modules = [
"${nixpkgs}/nixos/modules/profiles/macos-builder.nix"
{ virtualisation.host.pkgs = pkgs; }
];
};
in {
darwinConfigurations = {
machine1 = darwinSystem {
inherit system;
modules = [
{
nix.distributedBuilds = true;
nix.buildMachines = [{
hostName = "ssh://builder@localhost";
system = linuxSystem;
maxJobs = 4;
supportedFeatures = [ "kvm" "benchmark" "big-parallel" ];
}];
launchd.daemons.darwin-builder = {
command = "${darwin-builder.config.system.build.macos-builder-installer}/bin/create-builder";
serviceConfig = {
KeepAlive = true;
RunAtLoad = true;
StandardOutPath = "/var/log/darwin-builder.log";
StandardErrorPath = "/var/log/darwin-builder.log";
};
};
}
];
};
};
};
}
```
## Reconfiguring the builder {#sec-darwin-builder-reconfiguring}
Initially you should not change the builder configuration else you will not be
able to use the binary cache. However, after you have the builder running locally
you may use it to build a modified builder with additional storage or memory.
To do this, you just need to set the `virtualisation.darwin-builder.*` parameters as
in the example below and rebuild.
```
darwin-builder = nixpkgs.lib.nixosSystem {
system = linuxSystem;
modules = [
"${nixpkgs}/nixos/modules/profiles/macos-builder.nix"
{
virtualisation.host.pkgs = pkgs;
virtualisation.darwin-builder.diskSize = 5120;
virtualisation.darwin-builder.memorySize = 1024;
virtualisation.darwin-builder.hostPort = 33022;
virtualisation.darwin-builder.workingDirectory = "/var/lib/darwin-builder";
}
];
```
You may make any other changes to your VM in this attribute set. For example,
you could enable Docker or X11 forwarding to your Darwin host.

View File

@@ -1,18 +1,13 @@
# buildFHSEnv {#sec-fhs-environments}
# buildFHSUserEnv {#sec-fhs-environments}
`buildFHSEnv` provides a way to build and run FHS-compatible lightweight sandboxes. It creates an isolated root filesystem with the host's `/nix/store`, so its footprint in terms of disk space is quite small. This allows you to run software which is hard or unfeasible to patch for NixOS; 3rd-party source trees with FHS assumptions, games distributed as tarballs, software with integrity checking and/or external self-updated binaries for instance.
It uses Linux' namespaces feature to create temporary lightweight environments which are destroyed after all child processes exit, without requiring elevated privileges. It works similar to containerisation technology such as Docker or FlatPak but provides no security-relevant separation from the host system.
Accepted arguments are:
`buildFHSUserEnv` provides a way to build and run FHS-compatible lightweight sandboxes. It creates an isolated root with bound `/nix/store`, so its footprint in terms of disk space needed is quite small. This allows one to run software which is hard or unfeasible to patch for NixOS -- 3rd-party source trees with FHS assumptions, games distributed as tarballs, software with integrity checking and/or external self-updated binaries. It uses Linux namespaces feature to create temporary lightweight environments which are destroyed after all child processes exit, without root user rights requirement. Accepted arguments are:
- `name`
The name of the environment and the wrapper executable.
Environment name.
- `targetPkgs`
Packages to be installed for the main host's architecture (i.e. x86_64 on x86_64 installations). Along with libraries binaries are also installed.
- `multiPkgs`
Packages to be installed for all architectures supported by a host (i.e. i686 and x86_64 on x86_64 installations). Only libraries are installed by default.
- `multiArch`
Whether to install 32bit multiPkgs into the FHSEnv in 64bit environments
- `extraBuildCommands`
Additional commands to be executed for finalizing the directory structure.
- `extraBuildCommandsMulti`
@@ -22,35 +17,33 @@ Accepted arguments are:
- `extraInstallCommands`
Additional commands to be executed for finalizing the derivation with runner script.
- `runScript`
A shell command to be executed inside the sandbox. It defaults to `bash`. Command line arguments passed to the resulting wrapper are appended to this command by default.
This command must be escaped; i.e. `"foo app" --do-stuff --with "some file"`. See `lib.escapeShellArgs`.
A command that would be executed inside the sandbox and passed all the command line arguments. It defaults to `bash`.
- `profile`
Optional script for `/etc/profile` within the sandbox.
You can create a simple environment using a `shell.nix` like this:
One can create a simple environment using a `shell.nix` like that:
```nix
{ pkgs ? import <nixpkgs> {} }:
(pkgs.buildFHSEnv {
(pkgs.buildFHSUserEnv {
name = "simple-x11-env";
targetPkgs = pkgs: (with pkgs; [
udev
alsa-lib
]) ++ (with pkgs.xorg; [
libX11
libXcursor
libXrandr
]);
multiPkgs = pkgs: (with pkgs; [
udev
alsa-lib
]);
targetPkgs = pkgs: (with pkgs;
[ udev
alsa-lib
]) ++ (with pkgs.xorg;
[ libX11
libXcursor
libXrandr
]);
multiPkgs = pkgs: (with pkgs;
[ udev
alsa-lib
]);
runScript = "bash";
}).env
```
Running `nix-shell` on it would drop you into a shell inside an FHS env where those libraries and binaries are available in FHS-compliant paths. Applications that expect an FHS structure (i.e. proprietary binaries) can run inside this environment without modification.
You can build a wrapper by running your binary in `runScript`, e.g. `./bin/start.sh`. Relative paths work as expected.
Running `nix-shell` would then drop you into a shell with these libraries and binaries available. You can use this to run closed-source applications which expect FHS structure without hassles: simply change `runScript` to the application path, e.g. `./bin/start.sh` -- relative paths are supported.
Additionally, the FHS builder links all relocated gsettings-schemas (the glib setup-hook moves them to `share/gsettings-schemas/${name}/glib-2.0/schemas`) to their standard FHS location. This means you don't need to wrap binaries with `wrapGAppsHook`.

View File

@@ -1,37 +0,0 @@
# pkgs.makeSetupHook {#sec-pkgs.makeSetupHook}
`pkgs.makeSetupHook` is a builder that produces hooks that go in to `nativeBuildInputs`
## Usage {#sec-pkgs.makeSetupHook-usage}
```nix
pkgs.makeSetupHook {
name = "something-hook";
propagatedBuildInputs = [ pkgs.commandsomething ];
depsTargetTargetPropagated = [ pkgs.libsomething ];
} ./script.sh
```
### setup hook that depends on the hello package and runs hello and @shell@ is substituted with path to bash {#sec-pkgs.makeSetupHook-usage-example}
```nix
pkgs.makeSetupHook {
name = "run-hello-hook";
propagatedBuildInputs = [ pkgs.hello ];
substitutions = { shell = "${pkgs.bash}/bin/bash"; };
passthru.tests.greeting = callPackage ./test { };
meta.platforms = lib.platforms.linux;
} (writeScript "run-hello-hook.sh" ''
#!@shell@
hello
'')
```
## Attributes {#sec-pkgs.makeSetupHook-attributes}
* `name` Set the name of the hook.
* `propagatedBuildInputs` Runtime dependencies (such as binaries) of the hook.
* `depsTargetTargetPropagated` Non-binary dependencies.
* `meta`
* `passthru`
* `substitutions` Variables for `substituteAll`

View File

@@ -20,7 +20,7 @@ pkgs.mkShell {
}
```
## Attributes {#sec-pkgs-mkShell-attributes}
## Attributes
* `name` (default: `nix-shell`). Set the name of the derivation.
* `packages` (default: `[]`). Add executable packages to the `nix-shell` environment.
@@ -29,7 +29,7 @@ pkgs.mkShell {
... all the attributes of `stdenv.mkDerivation`.
## Building the shell {#sec-pkgs-mkShell-building}
## Building the shell
This derivation output will contain a text file that contains a reference to
all the build inputs. This is useful in CI where we want to make sure that

View File

@@ -1,148 +0,0 @@
# vmTools {#sec-vm-tools}
A set of VM related utilities, that help in building some packages in more advanced scenarios.
## `vmTools.createEmptyImage` {#vm-tools-createEmptyImage}
A bash script fragment that produces a disk image at `destination`.
### Attributes {#vm-tools-createEmptyImage-attributes}
* `size`. The disk size, in MiB.
* `fullName`. Name that will be written to `${destination}/nix-support/full-name`.
* `destination` (optional, default `$out`). Where to write the image files.
## `vmTools.runInLinuxVM` {#vm-tools-runInLinuxVM}
Run a derivation in a Linux virtual machine (using Qemu/KVM).
By default, there is no disk image; the root filesystem is a `tmpfs`, and the Nix store is shared with the host (via the [9P protocol](https://wiki.qemu.org/Documentation/9p#9p_Protocol)).
Thus, any pure Nix derivation should run unmodified.
If the build fails and Nix is run with the `-K/--keep-failed` option, a script `run-vm` will be left behind in the temporary build directory that allows you to boot into the VM and debug it interactively.
### Attributes {#vm-tools-runInLinuxVM-attributes}
* `preVM` (optional). Shell command to be evaluated *before* the VM is started (i.e., on the host).
* `memSize` (optional, default `512`). The memory size of the VM in MiB.
* `diskImage` (optional). A file system image to be attached to `/dev/sda`.
Note that currently we expect the image to contain a filesystem, not a full disk image with a partition table etc.
### Examples {#vm-tools-runInLinuxVM-examples}
Build the derivation hello inside a VM:
```nix
{ pkgs }: with pkgs; with vmTools;
runInLinuxVM hello
```
Build inside a VM with extra memory:
```nix
{ pkgs }: with pkgs; with vmTools;
runInLinuxVM (hello.overrideAttrs (_: { memSize = 1024; }))
```
Use VM with a disk image (implicitly sets `diskImage`, see [`vmTools.createEmptyImage`](#vm-tools-createEmptyImage)):
```nix
{ pkgs }: with pkgs; with vmTools;
runInLinuxVM (hello.overrideAttrs (_: {
preVM = createEmptyImage {
size = 1024;
fullName = "vm-image";
};
}))
```
## `vmTools.extractFs` {#vm-tools-extractFs}
Takes a file, such as an ISO, and extracts its contents into the store.
### Attributes {#vm-tools-extractFs-attributes}
* `file`. Path to the file to be extracted.
Note that currently we expect the image to contain a filesystem, not a full disk image with a partition table etc.
* `fs` (optional). Filesystem of the contents of the file.
### Examples {#vm-tools-extractFs-examples}
Extract the contents of an ISO file:
```nix
{ pkgs }: with pkgs; with vmTools;
extractFs { file = ./image.iso; }
```
## `vmTools.extractMTDfs` {#vm-tools-extractMTDfs}
Like [](#vm-tools-extractFs), but it makes use of a [Memory Technology Device (MTD)](https://en.wikipedia.org/wiki/Memory_Technology_Device).
## `vmTools.runInLinuxImage` {#vm-tools-runInLinuxImage}
Like [](#vm-tools-runInLinuxVM), but instead of using `stdenv` from the Nix store, run the build using the tools provided by `/bin`, `/usr/bin`, etc. from the specified filesystem image, which typically is a filesystem containing a [FHS](https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard)-based Linux distribution.
## `vmTools.makeImageTestScript` {#vm-tools-makeImageTestScript}
Generate a script that can be used to run an interactive session in the given image.
### Examples {#vm-tools-makeImageTestScript-examples}
Create a script for running a Fedora 27 VM:
```nix
{ pkgs }: with pkgs; with vmTools;
makeImageTestScript diskImages.fedora27x86_64
```
Create a script for running an Ubuntu 20.04 VM:
```nix
{ pkgs }: with pkgs; with vmTools;
makeImageTestScript diskImages.ubuntu2004x86_64
```
## `vmTools.diskImageFuns` {#vm-tools-diskImageFuns}
A set of functions that build a predefined set of minimal Linux distributions images.
### Images {#vm-tools-diskImageFuns-images}
* Fedora
* `fedora26x86_64`
* `fedora27x86_64`
* CentOS
* `centos6i386`
* `centos6x86_64`
* `centos7x86_64`
* Ubuntu
* `ubuntu1404i386`
* `ubuntu1404x86_64`
* `ubuntu1604i386`
* `ubuntu1604x86_64`
* `ubuntu1804i386`
* `ubuntu1804x86_64`
* `ubuntu2004i386`
* `ubuntu2004x86_64`
* `ubuntu2204i386`
* `ubuntu2204x86_64`
* Debian
* `debian10i386`
* `debian10x86_64`
* `debian11i386`
* `debian11x86_64`
### Attributes {#vm-tools-diskImageFuns-attributes}
* `size` (optional, defaults to `4096`). The size of the image, in MiB.
* `extraPackages` (optional). A list names of additional packages from the distribution that should be included in the image.
### Examples {#vm-tools-diskImageFuns-examples}
8GiB image containing Firefox in addition to the default packages:
```nix
{ pkgs }: with pkgs; with vmTools;
diskImageFuns.ubuntu2004x86_64 { extraPackages = [ "firefox" ]; size = 8192; }
```
## `vmTools.diskImageExtraFuns` {#vm-tools-diskImageExtraFuns}
Shorthand for `vmTools.diskImageFuns.<attr> { extraPackages = ... }`.
## `vmTools.diskImages` {#vm-tools-diskImages}
Shorthand for `vmTools.diskImageFuns.<attr> { }`.

View File

@@ -1,32 +1,5 @@
# Testers {#chap-testers}
This chapter describes several testing builders which are available in the `testers` namespace.
## `hasPkgConfigModules` {#tester-hasPkgConfigModules}
<!-- Old anchor name so links still work -->
[]{#tester-hasPkgConfigModule}
Checks whether a package exposes a given list of `pkg-config` modules.
If the `moduleNames` argument is omitted, `hasPkgConfigModules` will
use `meta.pkgConfigModules`.
Example:
```nix
passthru.tests.pkg-config = testers.hasPkgConfigModules {
package = finalAttrs.finalPackage;
moduleNames = [ "libfoo" ];
};
```
If the package in question has `meta.pkgConfigModules` set, it is even simpler:
```nix
passthru.tests.pkg-config = testers.hasPkgConfigModules {
package = finalAttrs.finalPackage;
};
meta.pkgConfigModules = [ "libfoo" ];
```
This chapter describes several testing builders which are available in the <literal>testers</literal> namespace.
## `testVersion` {#tester-testVersion}
@@ -41,89 +14,19 @@ for example when using an 'old' hash in a fixed-output derivation.
Examples:
```nix
passthru.tests.version = testers.testVersion { package = hello; };
passthru.tests.version = testVersion { package = hello; };
passthru.tests.version = testers.testVersion {
passthru.tests.version = testVersion {
package = seaweedfs;
command = "weed version";
};
passthru.tests.version = testers.testVersion {
passthru.tests.version = testVersion {
package = key;
command = "KeY --help";
# Wrong '2.5' version in the code. Drop on next version.
version = "2.5";
};
passthru.tests.version = testers.testVersion {
package = ghr;
# The output needs to contain the 'version' string without any prefix or suffix.
version = "v${version}";
};
```
## `testBuildFailure` {#tester-testBuildFailure}
Make sure that a build does not succeed. This is useful for testing testers.
This returns a derivation with an override on the builder, with the following effects:
- Fail the build when the original builder succeeds
- Move `$out` to `$out/result`, if it exists (assuming `out` is the default output)
- Save the build log to `$out/testBuildFailure.log` (same)
Example:
```nix
runCommand "example" {
failed = testers.testBuildFailure (runCommand "fail" {} ''
echo ok-ish >$out
echo failing though
exit 3
'');
} ''
grep -F 'ok-ish' $failed/result
grep -F 'failing though' $failed/testBuildFailure.log
[[ 3 = $(cat $failed/testBuildFailure.exit) ]]
touch $out
'';
```
While `testBuildFailure` is designed to keep changes to the original builder's
environment to a minimum, some small changes are inevitable.
- The file `$TMPDIR/testBuildFailure.log` is present. It should not be deleted.
- `stdout` and `stderr` are a pipe instead of a tty. This could be improved.
- One or two extra processes are present in the sandbox during the original
builder's execution.
- The derivation and output hashes are different, but not unusual.
- The derivation includes a dependency on `buildPackages.bash` and
`expect-failure.sh`, which is built to include a transitive dependency on
`buildPackages.coreutils` and possibly more. These are not added to `PATH`
or any other environment variable, so they should be hard to observe.
## `testEqualContents` {#tester-equalContents}
Check that two paths have the same contents.
Example:
```nix
testers.testEqualContents {
assertion = "sed -e performs replacement";
expected = writeText "expected" ''
foo baz baz
'';
actual = runCommand "actual" {
# not really necessary for a package that's in stdenv
nativeBuildInputs = [ gnused ];
base = writeText "base" ''
foo bar baz
'';
} ''
sed -e 's/bar/baz/g' $base >$out
'';
}
```
## `testEqualDerivation` {#tester-testEqualDerivation}
@@ -139,7 +42,7 @@ Otherwise, the build log explains the difference via `nix-diff`.
Example:
```nix
testers.testEqualDerivation
testEqualDerivation
"The hello package must stay the same when enabling checks."
hello
(hello.overrideAttrs(o: { doCheck = true; }))
@@ -170,76 +73,10 @@ fixed output derivation.
Example:
```nix
tests.fetchgit = testers.invalidateFetcherByDrvHash fetchgit {
tests.fetchgit = invalidateFetcherByDrvHash fetchgit {
name = "nix-source";
url = "https://github.com/NixOS/nix";
rev = "9d9dbe6ed05854e03811c361a3380e09183f4f4a";
hash = "sha256-7DszvbCNTjpzGRmpIVAWXk20P0/XTrWZ79KSOGLrUWY=";
sha256 = "sha256-7DszvbCNTjpzGRmpIVAWXk20P0/XTrWZ79KSOGLrUWY=";
};
```
## `runNixOSTest` {#tester-runNixOSTest}
A helper function that behaves exactly like the NixOS `runTest`, except it also assigns this Nixpkgs package set as the `pkgs` of the test and makes the `nixpkgs.*` options read-only.
If your test is part of the Nixpkgs repository, or if you need a more general entrypoint, see ["Calling a test" in the NixOS manual](https://nixos.org/manual/nixos/stable/index.html#sec-calling-nixos-tests).
Example:
```nix
pkgs.testers.runNixOSTest ({ lib, ... }: {
name = "hello";
nodes.machine = { pkgs, ... }: {
environment.systemPackages = [ pkgs.hello ];
};
testScript = ''
machine.succeed("hello")
'';
})
```
## `nixosTest` {#tester-nixosTest}
Run a NixOS VM network test using this evaluation of Nixpkgs.
NOTE: This function is primarily for external use. NixOS itself uses `make-test-python.nix` directly. Packages defined in Nixpkgs [reuse NixOS tests via `nixosTests`, plural](#ssec-nixos-tests-linking).
It is mostly equivalent to the function `import ./make-test-python.nix` from the
[NixOS manual](https://nixos.org/nixos/manual/index.html#sec-nixos-tests),
except that the current application of Nixpkgs (`pkgs`) will be used, instead of
letting NixOS invoke Nixpkgs anew.
If a test machine needs to set NixOS options under `nixpkgs`, it must set only the
`nixpkgs.pkgs` option.
### Parameter {#tester-nixosTest-parameter}
A [NixOS VM test network](https://nixos.org/nixos/manual/index.html#sec-nixos-tests), or path to it. Example:
```nix
{
name = "my-test";
nodes = {
machine1 = { lib, pkgs, nodes, ... }: {
environment.systemPackages = [ pkgs.hello ];
services.foo.enable = true;
};
# machine2 = ...;
};
testScript = ''
start_all()
machine1.wait_for_unit("foo.service")
machine1.succeed("hello | foo-send")
'';
}
```
### Result {#tester-nixosTest-result}
A derivation that runs the VM test.
Notable attributes:
* `nodes`: the evaluated NixOS configurations. Useful for debugging and exploring the configuration.
* `driverInteractive`: a script that launches an interactive Python session in the context of the `testScript`.

View File

@@ -35,10 +35,10 @@ This works just like `runCommand`. The only difference is that it also provides
## `runCommandLocal` {#trivial-builder-runCommandLocal}
Variant of `runCommand` that forces the derivation to be built locally, it is not substituted. This is intended for very cheap commands (<1s execution time). It saves on the network round-trip and can speed up a build.
Variant of `runCommand` that forces the derivation to be built locally, it is not substituted. This is intended for very cheap commands (<1s execution time). It saves on the network roundrip and can speed up a build.
::: {.note}
This sets [`allowSubstitutes` to `false`](https://nixos.org/nix/manual/#adv-attr-allowSubstitutes), so only use `runCommandLocal` if you are certain the user will always have a builder for the `system` of the derivation. This should be true for most trivial use cases (e.g., just copying some files to a different location or adding symlinks) because there the `system` is usually the same as `builtins.currentSystem`.
This sets [`allowSubstitutes` to `false`](https://nixos.org/nix/manual/#adv-attr-allowSubstitutes), so only use `runCommandLocal` if you are certain the user will always have a builder for the `system` of the derivation. This should be true for most trivial use cases (e.g. just copying some files to a different location or adding symlinks), because there the `system` is usually the same as `builtins.currentSystem`.
:::
## `writeTextFile`, `writeText`, `writeTextDir`, `writeScript`, `writeScriptBin` {#trivial-builder-writeText}
@@ -219,5 +219,5 @@ produces an output path `/nix/store/<hash>-runtime-references` containing
/nix/store/<hash>-hello-2.10
```
but none of `hello`'s dependencies because those are not referenced directly
but none of `hello`'s dependencies, because those are not referenced directly
by `hi`'s output.

View File

@@ -1,4 +0,0 @@
{
outputPath = "share/doc/nixpkgs";
indexPath = "manual.html";
}

View File

@@ -1,10 +0,0 @@
# Contributing to Nixpkgs {#part-contributing}
```{=include=} chapters
contributing/quick-start.chapter.md
contributing/coding-conventions.chapter.md
contributing/submitting-changes.chapter.md
contributing/vulnerability-roundup.chapter.md
contributing/reviewing-contributions.chapter.md
contributing/contributing-to-documentation.chapter.md
```

View File

@@ -1,63 +1,665 @@
# Coding conventions {#chap-conventions}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
## Syntax {#sec-syntax}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
- Use 2 spaces of indentation per indentation level in Nix expressions, 4 spaces in shell scripts.
- Do not use tab characters, i.e. configure your editor to use soft tabs. For instance, use `(setq-default indent-tabs-mode nil)` in Emacs. Everybody has different tab settings so its asking for trouble.
- Use `lowerCamelCase` for variable names, not `UpperCamelCase`. Note, this rule does not apply to package attribute names, which instead follow the rules in [](#sec-package-naming).
- Function calls with attribute set arguments are written as
```nix
foo {
arg = ...;
}
```
not
```nix
foo
{
arg = ...;
}
```
Also fine is
```nix
foo { arg = ...; }
```
if it's a short call.
- In attribute sets or lists that span multiple lines, the attribute names or list elements should be aligned:
```nix
# A long list.
list = [
elem1
elem2
elem3
];
# A long attribute set.
attrs = {
attr1 = short_expr;
attr2 =
if true then big_expr else big_expr;
};
# Combined
listOfAttrs = [
{
attr1 = 3;
attr2 = "fff";
}
{
attr1 = 5;
attr2 = "ggg";
}
];
```
- Short lists or attribute sets can be written on one line:
```nix
# A short list.
list = [ elem1 elem2 elem3 ];
# A short set.
attrs = { x = 1280; y = 1024; };
```
- Breaking in the middle of a function argument can give hard-to-read code, like
```nix
someFunction { x = 1280;
y = 1024; } otherArg
yetAnotherArg
```
(especially if the argument is very large, spanning multiple lines).
Better:
```nix
someFunction
{ x = 1280; y = 1024; }
otherArg
yetAnotherArg
```
or
```nix
let res = { x = 1280; y = 1024; };
in someFunction res otherArg yetAnotherArg
```
- The bodies of functions, asserts, and withs are not indented to prevent a lot of superfluous indentation levels, i.e.
```nix
{ arg1, arg2 }:
assert system == "i686-linux";
stdenv.mkDerivation { ...
```
not
```nix
{ arg1, arg2 }:
assert system == "i686-linux";
stdenv.mkDerivation { ...
```
- Function formal arguments are written as:
```nix
{ arg1, arg2, arg3 }:
```
but if they don't fit on one line they're written as:
```nix
{ arg1, arg2, arg3
, arg4, ...
, # Some comment...
argN
}:
```
- Functions should list their expected arguments as precisely as possible. That is, write
```nix
{ stdenv, fetchurl, perl }: ...
```
instead of
```nix
args: with args; ...
```
or
```nix
{ stdenv, fetchurl, perl, ... }: ...
```
For functions that are truly generic in the number of arguments (such as wrappers around `mkDerivation`) that have some required arguments, you should write them using an `@`-pattern:
```nix
{ stdenv, doCoverageAnalysis ? false, ... } @ args:
stdenv.mkDerivation (args // {
... if doCoverageAnalysis then "bla" else "" ...
})
```
instead of
```nix
args:
args.stdenv.mkDerivation (args // {
... if args ? doCoverageAnalysis && args.doCoverageAnalysis then "bla" else "" ...
})
```
- Unnecessary string conversions should be avoided. Do
```nix
rev = version;
```
instead of
```nix
rev = "${version}";
```
- Building lists conditionally _should_ be done with `lib.optional(s)` instead of using `if cond then [ ... ] else null` or `if cond then [ ... ] else [ ]`.
```nix
buildInputs = lib.optional stdenv.isDarwin iconv;
```
instead of
```nix
buildInputs = if stdenv.isDarwin then [ iconv ] else null;
```
As an exception, an explicit conditional expression with null can be used when fixing a important bug without triggering a mass rebuild.
If this is done a follow up pull request _should_ be created to change the code to `lib.optional(s)`.
- Arguments should be listed in the order they are used, with the exception of `lib`, which always goes first.
## Package naming {#sec-package-naming}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
The key words _must_, _must not_, _required_, _shall_, _shall not_, _should_, _should not_, _recommended_, _may_, and _optional_ in this section are to be interpreted as described in [RFC 2119](https://tools.ietf.org/html/rfc2119). Only _emphasized_ words are to be interpreted in this way.
In Nixpkgs, there are generally three different names associated with a package:
- The `name` attribute of the derivation (excluding the version part). This is what most users see, in particular when using `nix-env`.
- The variable name used for the instantiated package in `all-packages.nix`, and when passing it as a dependency to other functions. Typically this is called the _package attribute name_. This is what Nix expression authors see. It can also be used when installing using `nix-env -iA`.
- The filename for (the directory containing) the Nix expression.
Most of the time, these are the same. For instance, the package `e2fsprogs` has a `name` attribute `"e2fsprogs-version"`, is bound to the variable name `e2fsprogs` in `all-packages.nix`, and the Nix expression is in `pkgs/os-specific/linux/e2fsprogs/default.nix`.
There are a few naming guidelines:
- The `pname` attribute _should_ be identical to the upstream package name.
- The `pname` and the `version` attribute _must not_ contain uppercase letters — e.g., `"mplayer" instead of `"MPlayer"`.
- The `version` attribute _must_ start with a digit e.g`"0.3.1rc2".
- If a package is not a release but a commit from a repository, then the `version` attribute _must_ be the date of that (fetched) commit. The date _must_ be in `"unstable-YYYY-MM-DD"` format.
- Dashes in the package `pname` _should_ be preserved in new variable names, rather than converted to underscores or camel cased — e.g., `http-parser` instead of `http_parser` or `httpParser`. The hyphenated style is preferred in all three package names.
- If there are multiple versions of a package, this _should_ be reflected in the variable names in `all-packages.nix`, e.g. `json-c_0_9` and `json-c_0_11`. If there is an obvious “default” version, make an attribute like `json-c = json-c_0_9;`. See also [](#sec-versioning)
## File naming and organisation {#sec-organisation}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Names of files and directories should be in lowercase, with dashes between words — not in camel case. For instance, it should be `all-packages.nix`, not `allPackages.nix` or `AllPackages.nix`.
### Hierarchy {#sec-hierarchy}
Each package should be stored in its own directory somewhere in the `pkgs/` tree, i.e. in `pkgs/category/subcategory/.../pkgname`. Below are some rules for picking the right category for a package. Many packages fall under several categories; what matters is the _primary_ purpose of a package. For example, the `libxml2` package builds both a library and some tools; but its a library foremost, so it goes under `pkgs/development/libraries`.
When in doubt, consider refactoring the `pkgs/` tree, e.g. creating new categories or splitting up an existing category.
**If its used to support _software development_:**
- **If its a _library_ used by other packages:**
- `development/libraries` (e.g. `libxml2`)
- **If its a _compiler_:**
- `development/compilers` (e.g. `gcc`)
- **If its an _interpreter_:**
- `development/interpreters` (e.g. `guile`)
- **If its a (set of) development _tool(s)_:**
- **If its a _parser generator_ (including lexers):**
- `development/tools/parsing` (e.g. `bison`, `flex`)
- **If its a _build manager_:**
- `development/tools/build-managers` (e.g. `gnumake`)
- **Else:**
- `development/tools/misc` (e.g. `binutils`)
- **Else:**
- `development/misc`
**If its a (set of) _tool(s)_:**
(A tool is a relatively small program, especially one intended to be used non-interactively.)
- **If its for _networking_:**
- `tools/networking` (e.g. `wget`)
- **If its for _text processing_:**
- `tools/text` (e.g. `diffutils`)
- **If its a _system utility_, i.e., something related or essential to the operation of a system:**
- `tools/system` (e.g. `cron`)
- **If its an _archiver_ (which may include a compression function):**
- `tools/archivers` (e.g. `zip`, `tar`)
- **If its a _compression_ program:**
- `tools/compression` (e.g. `gzip`, `bzip2`)
- **If its a _security_-related program:**
- `tools/security` (e.g. `nmap`, `gnupg`)
- **Else:**
- `tools/misc`
**If its a _shell_:**
- `shells` (e.g. `bash`)
**If its a _server_:**
- **If its a web server:**
- `servers/http` (e.g. `apache-httpd`)
- **If its an implementation of the X Windowing System:**
- `servers/x11` (e.g. `xorg` — this includes the client libraries and programs)
- **Else:**
- `servers/misc`
**If its a _desktop environment_:**
- `desktops` (e.g. `kde`, `gnome`, `enlightenment`)
**If its a _window manager_:**
- `applications/window-managers` (e.g. `awesome`, `stumpwm`)
**If its an _application_:**
A (typically large) program with a distinct user interface, primarily used interactively.
- **If its a _version management system_:**
- `applications/version-management` (e.g. `subversion`)
- **If its a _terminal emulator_:**
- `applications/terminal-emulators` (e.g. `alacritty` or `rxvt` or `termite`)
- **If its for _video playback / editing_:**
- `applications/video` (e.g. `vlc`)
- **If its for _graphics viewing / editing_:**
- `applications/graphics` (e.g. `gimp`)
- **If its for _networking_:**
- **If its a _mailreader_:**
- `applications/networking/mailreaders` (e.g. `thunderbird`)
- **If its a _newsreader_:**
- `applications/networking/newsreaders` (e.g. `pan`)
- **If its a _web browser_:**
- `applications/networking/browsers` (e.g. `firefox`)
- **Else:**
- `applications/networking/misc`
- **Else:**
- `applications/misc`
**If its _data_ (i.e., does not have a straight-forward executable semantics):**
- **If its a _font_:**
- `data/fonts`
- **If its an _icon theme_:**
- `data/icons`
- **If its related to _SGML/XML processing_:**
- **If its an _XML DTD_:**
- `data/sgml+xml/schemas/xml-dtd` (e.g. `docbook`)
- **If its an _XSLT stylesheet_:**
(Okay, these are executable...)
- `data/sgml+xml/stylesheets/xslt` (e.g. `docbook-xsl`)
- **If its a _theme_ for a _desktop environment_, a _window manager_ or a _display manager_:**
- `data/themes`
**If its a _game_:**
- `games`
**Else:**
- `misc`
### Versioning {#sec-versioning}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Because every version of a package in Nixpkgs creates a potential maintenance burden, old versions of a package should not be kept unless there is a good reason to do so. For instance, Nixpkgs contains several versions of GCC because other packages dont build with the latest version of GCC. Other examples are having both the latest stable and latest pre-release version of a package, or to keep several major releases of an application that differ significantly in functionality.
If there is only one version of a package, its Nix expression should be named `e2fsprogs/default.nix`. If there are multiple versions, this should be reflected in the filename, e.g. `e2fsprogs/1.41.8.nix` and `e2fsprogs/1.41.9.nix`. The version in the filename should leave out unnecessary detail. For instance, if we keep the latest Firefox 2.0.x and 3.5.x versions in Nixpkgs, they should be named `firefox/2.0.nix` and `firefox/3.5.nix`, respectively (which, at a given point, might contain versions `2.0.0.20` and `3.5.4`). If a version requires many auxiliary files, you can use a subdirectory for each version, e.g. `firefox/2.0/default.nix` and `firefox/3.5/default.nix`.
All versions of a package _must_ be included in `all-packages.nix` to make sure that they evaluate correctly.
## Fetching Sources {#sec-sources}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
There are multiple ways to fetch a package source in nixpkgs. The general guideline is that you should package reproducible sources with a high degree of availability. Right now there is only one fetcher which has mirroring support and that is `fetchurl`. Note that you should also prefer protocols which have a corresponding proxy environment variable.
You can find many source fetch helpers in `pkgs/build-support/fetch*`.
In the file `pkgs/top-level/all-packages.nix` you can find fetch helpers, these have names on the form `fetchFrom*`. The intention of these are to provide snapshot fetches but using the same api as some of the version controlled fetchers from `pkgs/build-support/`. As an example going from bad to good:
- Bad: Uses `git://` which won't be proxied.
```nix
src = fetchgit {
url = "git://github.com/NixOS/nix.git";
rev = "1f795f9f44607cc5bec70d1300150bfefcef2aae";
sha256 = "1cw5fszffl5pkpa6s6wjnkiv6lm5k618s32sp60kvmvpy7a2v9kg";
}
```
- Better: This is ok, but an archive fetch will still be faster.
```nix
src = fetchgit {
url = "https://github.com/NixOS/nix.git";
rev = "1f795f9f44607cc5bec70d1300150bfefcef2aae";
sha256 = "1cw5fszffl5pkpa6s6wjnkiv6lm5k618s32sp60kvmvpy7a2v9kg";
}
```
- Best: Fetches a snapshot archive and you get the rev you want.
```nix
src = fetchFromGitHub {
owner = "NixOS";
repo = "nix";
rev = "1f795f9f44607cc5bec70d1300150bfefcef2aae";
sha256 = "1i2yxndxb6yc9l6c99pypbd92lfq5aac4klq7y2v93c9qvx2cgpc";
}
```
Find the value to put as `sha256` by running `nix run -f '<nixpkgs>' nix-prefetch-github -c nix-prefetch-github --rev 1f795f9f44607cc5bec70d1300150bfefcef2aae NixOS nix` or `nix-prefetch-url --unpack https://github.com/NixOS/nix/archive/1f795f9f44607cc5bec70d1300150bfefcef2aae.tar.gz`.
## Obtaining source hash {#sec-source-hashes}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Preferred source hash type is sha256. There are several ways to get it.
1. Prefetch URL (with `nix-prefetch-XXX URL`, where `XXX` is one of `url`, `git`, `hg`, `cvs`, `bzr`, `svn`). Hash is printed to stdout.
2. Prefetch by package source (with `nix-prefetch-url '<nixpkgs>' -A PACKAGE.src`, where `PACKAGE` is package attribute name). Hash is printed to stdout.
This works well when you've upgraded existing package version and want to find out new hash, but is useless if package can't be accessed by attribute or package has multiple sources (`.srcs`, architecture-dependent sources, etc).
3. Upstream provided hash: use it when upstream provides `sha256` or `sha512` (when upstream provides `md5`, don't use it, compute `sha256` instead).
A little nuance is that `nix-prefetch-*` tools produce hash encoded with `base32`, but upstream usually provides hexadecimal (`base16`) encoding. Fetchers understand both formats. Nixpkgs does not standardize on any one format.
You can convert between formats with nix-hash, for example:
```ShellSession
$ nix-hash --type sha256 --to-base32 HASH
```
4. Extracting hash from local source tarball can be done with `sha256sum`. Use `nix-prefetch-url file:///path/to/tarball` if you want base32 hash.
5. Fake hash: set fake hash in package expression, perform build and extract correct hash from error Nix prints.
For package updates it is enough to change one symbol to make hash fake. For new packages, you can use `lib.fakeSha256`, `lib.fakeSha512` or any other fake hash.
This is last resort method when reconstructing source URL is non-trivial and `nix-prefetch-url -A` isnt applicable (for example, [one of `kodi` dependencies](https://github.com/NixOS/nixpkgs/blob/d2ab091dd308b99e4912b805a5eb088dd536adb9/pkgs/applications/video/kodi/default.nix#L73)). The easiest way then would be replace hash with a fake one and rebuild. Nix build will fail and error message will contain desired hash.
::: {.warning}
This method has security problems. Check below for details.
:::
### Obtaining hashes securely {#sec-source-hashes-security}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Let's say Man-in-the-Middle (MITM) sits close to your network. Then instead of fetching source you can fetch malware, and instead of source hash you get hash of malware. Here are security considerations for this scenario:
- `http://` URLs are not secure to prefetch hash from;
- hashes from upstream (in method 3) should be obtained via secure protocol;
- `https://` URLs are secure in methods 1, 2, 3;
- `https://` URLs are not secure in method 5. When obtaining hashes with fake hash method, TLS checks are disabled. So refetch source hash from several different networks to exclude MITM scenario. Alternatively, use fake hash method to make Nix error, but instead of extracting hash from error, extract `https://` URL and prefetch it with method 1.
## Patches {#sec-patches}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Patches available online should be retrieved using `fetchpatch`.
```nix
patches = [
(fetchpatch {
name = "fix-check-for-using-shared-freetype-lib.patch";
url = "http://git.ghostscript.com/?p=ghostpdl.git;a=patch;h=8f5d285";
sha256 = "1f0k043rng7f0rfl9hhb89qzvvksqmkrikmm38p61yfx51l325xr";
})
];
```
Otherwise, you can add a `.patch` file to the `nixpkgs` repository. In the interest of keeping our maintenance burden to a minimum, only patches that are unique to `nixpkgs` should be added in this way.
```nix
patches = [ ./0001-changes.patch ];
```
If you do need to do create this sort of patch file, one way to do so is with git:
1. Move to the root directory of the source code you're patching.
```ShellSession
$ cd the/program/source
```
2. If a git repository is not already present, create one and stage all of the source files.
```ShellSession
$ git init
$ git add .
```
3. Edit some files to make whatever changes need to be included in the patch.
4. Use git to create a diff, and pipe the output to a patch file:
```ShellSession
$ git diff -a > nixpkgs/pkgs/the/package/0001-changes.patch
```
If a patch is available online but does not cleanly apply, it can be modified in some fixed ways by using additional optional arguments for `fetchpatch`:
- `relative`: Similar to using `git-diff`'s `--relative` flag, only keep changes inside the specified directory, making paths relative to it.
- `stripLen`: Remove the first `stripLen` components of pathnames in the patch.
- `extraPrefix`: Prefix pathnames by this string.
- `excludes`: Exclude files matching these patterns (applies after the above arguments).
- `includes`: Include only files matching these patterns (applies after the above arguments).
- `revert`: Revert the patch.
Note that because the checksum is computed after applying these effects, using or modifying these arguments will have no effect unless the `sha256` argument is changed as well.
## Package tests {#sec-package-tests}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Tests are important to ensure quality and make reviews and automatic updates easy.
The following types of tests exists:
* [NixOS **module tests**](https://nixos.org/manual/nixos/stable/#sec-nixos-tests), which spawn one or more NixOS VMs. They exercise both NixOS modules and the packaged programs used within them. For example, a NixOS module test can start a web server VM running the `nginx` module, and a client VM running `curl` or a graphical `firefox`, and test that they can talk to each other and display the correct content.
* Nix **package tests** are a lightweight alternative to NixOS module tests. They should be used to create simple integration tests for packages, but cannot test NixOS services, and some programs with graphical user interfaces may also be difficult to test with them.
* The **`checkPhase` of a package**, which should execute the unit tests that are included in the source code of a package.
Here in the nixpkgs manual we describe mostly _package tests_; for _module tests_ head over to the corresponding [section in the NixOS manual](https://nixos.org/manual/nixos/stable/#sec-nixos-tests).
### Writing inline package tests {#ssec-inline-package-tests-writing}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
For very simple tests, they can be written inline:
```nix
{ …, yq-go }:
buildGoModule rec {
passthru.tests = {
simple = runCommand "${pname}-test" {} ''
echo "test: 1" | ${yq-go}/bin/yq eval -j > $out
[ "$(cat $out | tr -d $'\n ')" = '{"test":1}' ]
'';
};
}
```
### Writing larger package tests {#ssec-package-tests-writing}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
This is an example using the `phoronix-test-suite` package with the current best practices.
Add the tests in `passthru.tests` to the package definition like this:
```nix
{ stdenv, lib, fetchurl, callPackage }:
stdenv.mkDerivation {
passthru.tests = {
simple-execution = callPackage ./tests.nix { };
};
meta = { … };
}
```
Create `tests.nix` in the package directory:
```nix
{ runCommand, phoronix-test-suite }:
let
inherit (phoronix-test-suite) pname version;
in
runCommand "${pname}-tests" { meta.timeout = 60; }
''
# automatic initial setup to prevent interactive questions
${phoronix-test-suite}/bin/phoronix-test-suite enterprise-setup >/dev/null
# get version of installed program and compare with package version
if [[ `${phoronix-test-suite}/bin/phoronix-test-suite version` != *"${version}"* ]]; then
echo "Error: program version does not match package version"
exit 1
fi
# run dummy command
${phoronix-test-suite}/bin/phoronix-test-suite dummy_module.dummy-command >/dev/null
# needed for Nix to register the command as successful
touch $out
''
```
### Running package tests {#ssec-package-tests-running}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
You can run these tests with:
```ShellSession
$ cd path/to/nixpkgs
$ nix-build -A phoronix-test-suite.tests
```
### Examples of package tests {#ssec-package-tests-examples}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Here are examples of package tests:
- [Jasmin compile test](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/compilers/jasmin/test-assemble-hello-world/default.nix)
- [Lobster compile test](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/compilers/lobster/test-can-run-hello-world.nix)
- [Spacy annotation test](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/python-modules/spacy/annotation-test/default.nix)
- [Libtorch test](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/science/math/libtorch/test/default.nix)
- [Multiple tests for nanopb](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/nanopb/default.nix)
### Linking NixOS module tests to a package {#ssec-nixos-tests-linking}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Like [package tests](#ssec-package-tests-writing) as shown above, [NixOS module tests](https://nixos.org/manual/nixos/stable/#sec-nixos-tests) can also be linked to a package, so that the tests can be easily run when changing the related package.
### Import From Derivation {#ssec-import-from-derivation}
For example, assuming we're packaging `nginx`, we can link its module test via `passthru.tests`:
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
```nix
{ stdenv, lib, nixosTests }:
stdenv.mkDerivation {
...
passthru.tests = {
nginx = nixosTests.nginx;
};
...
}
```

View File

@@ -1,11 +1,106 @@
# Contributing to Nixpkgs documentation {#chap-contributing}
# Contributing to this documentation {#chap-contributing}
This section has been moved to [doc/README.md](https://github.com/NixOS/nixpkgs/blob/master/doc/README.md).
The sources of the Nixpkgs manual are in the [doc](https://github.com/NixOS/nixpkgs/tree/master/doc) subdirectory of the Nixpkgs repository. The manual is still partially written in DocBook but it is progressively being converted to [Markdown](#sec-contributing-markup).
## devmode {#sec-contributing-devmode}
You can quickly check your edits with `make`:
This section has been moved to [doc/README.md](https://github.com/NixOS/nixpkgs/blob/master/doc/README.md).
```ShellSession
$ cd /path/to/nixpkgs/doc
$ nix-shell
[nix-shell]$ make
```
If you experience problems, run `make debug` to help understand the docbook errors.
After making modifications to the manual, it's important to build it before committing. You can do that as follows:
```ShellSession
$ cd /path/to/nixpkgs/doc
$ nix-shell
[nix-shell]$ make clean
[nix-shell]$ nix-build .
```
If the build succeeds, the manual will be in `./result/share/doc/nixpkgs/manual.html`.
## Syntax {#sec-contributing-markup}
This section has been moved to [doc/README.md](https://github.com/NixOS/nixpkgs/blob/master/doc/README.md).
As per [RFC 0072](https://github.com/NixOS/rfcs/pull/72), all new documentation content should be written in [CommonMark](https://commonmark.org/) Markdown dialect.
Additionally, the following syntax extensions are currently used:
- []{#ssec-contributing-markup-anchors}
Explicitly defined **anchors** on headings, to allow linking to sections. These should be always used, to ensure the anchors can be linked even when the heading text changes, and to prevent conflicts between [automatically assigned identifiers](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/auto_identifiers.md).
It uses the widely compatible [header attributes](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/attributes.md) syntax:
```markdown
## Syntax {#sec-contributing-markup}
```
- []{#ssec-contributing-markup-anchors-inline}
**Inline anchors**, which allow linking arbitrary place in the text (e.g. individual list items, sentences…).
They are defined using a hybrid of the link syntax with the attributes syntax known from headings, called [bracketed spans](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/bracketed_spans.md):
```markdown
- []{#ssec-gnome-hooks-glib} `glib` setup hook will populate `GSETTINGS_SCHEMAS_PATH` and then `wrapGAppsHook` will prepend it to `XDG_DATA_DIRS`.
```
- []{#ssec-contributing-markup-automatic-links}
If you **omit a link text** for a link pointing to a section, the text will be substituted automatically. For example, `[](#chap-contributing)` will result in [](#chap-contributing).
This syntax is taken from [MyST](https://myst-parser.readthedocs.io/en/latest/using/syntax.html#targets-and-cross-referencing).
- []{#ssec-contributing-markup-inline-roles}
If you want to link to a man page, you can use `` {manpage}`nix.conf(5)` ``, which will turn into {manpage}`nix.conf(5)`.
The references will turn into links when a mapping exists in {file}`doc/build-aux/pandoc-filters/link-unix-man-references.lua`.
This syntax is taken from [MyST](https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html#roles-an-in-line-extension-point). Though, the feature originates from [reStructuredText](https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-manpage) with slightly different syntax.
- []{#ssec-contributing-markup-admonitions}
**Admonitions**, set off from the text to bring attention to something.
It uses pandocs [fenced `div`s syntax](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/fenced_divs.md):
```markdown
::: {.warning}
This is a warning
:::
```
which renders as
> ::: {.warning}
> This is a warning.
> :::
The following are supported:
- [`caution`](https://tdg.docbook.org/tdg/5.0/caution.html)
- [`important`](https://tdg.docbook.org/tdg/5.0/important.html)
- [`note`](https://tdg.docbook.org/tdg/5.0/note.html)
- [`tip`](https://tdg.docbook.org/tdg/5.0/tip.html)
- [`warning`](https://tdg.docbook.org/tdg/5.0/warning.html)
- []{#ssec-contributing-markup-definition-lists}
[**Definition lists**](https://github.com/jgm/commonmark-hs/blob/master/commonmark-extensions/test/definition_lists.md), for defining a group of terms:
```markdown
pear
: green or yellow bulbous fruit
watermelon
: green fruit with red flesh
```
which renders as
> pear
> : green or yellow bulbous fruit
>
> watermelon
> : green fruit with red flesh
For contributing to the legacy parts, please see [DocBook: The Definitive Guide](https://tdg.docbook.org/) or the [DocBook rocks! primer](https://web.archive.org/web/20200816233747/https://docbook.rocks/).

View File

@@ -1,3 +1,77 @@
# Quick Start to Adding a Package {#chap-quick-start}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
To add a package to Nixpkgs:
1. Checkout the Nixpkgs source tree:
```ShellSession
$ git clone https://github.com/NixOS/nixpkgs
$ cd nixpkgs
```
2. Find a good place in the Nixpkgs tree to add the Nix expression for your package. For instance, a library package typically goes into `pkgs/development/libraries/pkgname`, while a web browser goes into `pkgs/applications/networking/browsers/pkgname`. See [](#sec-organisation) for some hints on the tree organisation. Create a directory for your package, e.g.
```ShellSession
$ mkdir pkgs/development/libraries/libfoo
```
3. In the package directory, create a Nix expression — a piece of code that describes how to build the package. In this case, it should be a _function_ that is called with the package dependencies as arguments, and returns a build of the package in the Nix store. The expression should usually be called `default.nix`.
```ShellSession
$ emacs pkgs/development/libraries/libfoo/default.nix
$ git add pkgs/development/libraries/libfoo/default.nix
```
You can have a look at the existing Nix expressions under `pkgs/` to see how its done. Here are some good ones:
- GNU Hello: [`pkgs/applications/misc/hello/default.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/misc/hello/default.nix). Trivial package, which specifies some `meta` attributes which is good practice.
- GNU cpio: [`pkgs/tools/archivers/cpio/default.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/archivers/cpio/default.nix). Also a simple package. The generic builder in `stdenv` does everything for you. It has no dependencies beyond `stdenv`.
- GNU Multiple Precision arithmetic library (GMP): [`pkgs/development/libraries/gmp/5.1.x.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/gmp/5.1.x.nix). Also done by the generic builder, but has a dependency on `m4`.
- Pan, a GTK-based newsreader: [`pkgs/applications/networking/newsreaders/pan/default.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/networking/newsreaders/pan/default.nix). Has an optional dependency on `gtkspell`, which is only built if `spellCheck` is `true`.
- Apache HTTPD: [`pkgs/servers/http/apache-httpd/2.4.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/servers/http/apache-httpd/2.4.nix). A bunch of optional features, variable substitutions in the configure flags, a post-install hook, and miscellaneous hackery.
- Thunderbird: [`pkgs/applications/networking/mailreaders/thunderbird/default.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/networking/mailreaders/thunderbird/default.nix). Lots of dependencies.
- JDiskReport, a Java utility: [`pkgs/tools/misc/jdiskreport/default.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/misc/jdiskreport/default.nix). Nixpkgs doesnt have a decent `stdenv` for Java yet so this is pretty ad-hoc.
- XML::Simple, a Perl module: [`pkgs/top-level/perl-packages.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/perl-packages.nix) (search for the `XMLSimple` attribute). Most Perl modules are so simple to build that they are defined directly in `perl-packages.nix`; no need to make a separate file for them.
- Adobe Reader: [`pkgs/applications/misc/adobe-reader/default.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/misc/adobe-reader/default.nix). Shows how binary-only packages can be supported. In particular the [builder](https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/misc/adobe-reader/builder.sh) uses `patchelf` to set the RUNPATH and ELF interpreter of the executables so that the right libraries are found at runtime.
Some notes:
- All [`meta`](#chap-meta) attributes are optional, but its still a good idea to provide at least the `description`, `homepage` and [`license`](#sec-meta-license).
- You can use `nix-prefetch-url url` to get the SHA-256 hash of source distributions. There are similar commands as `nix-prefetch-git` and `nix-prefetch-hg` available in `nix-prefetch-scripts` package.
- A list of schemes for `mirror://` URLs can be found in [`pkgs/build-support/fetchurl/mirrors.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/build-support/fetchurl/mirrors.nix).
The exact syntax and semantics of the Nix expression language, including the built-in function, are described in the Nix manual in the [chapter on writing Nix expressions](https://hydra.nixos.org/job/nix/trunk/tarball/latest/download-by-type/doc/manual/#chap-writing-nix-expressions).
4. Add a call to the function defined in the previous step to [`pkgs/top-level/all-packages.nix`](https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/all-packages.nix) with some descriptive name for the variable, e.g. `libfoo`.
```ShellSession
$ emacs pkgs/top-level/all-packages.nix
```
The attributes in that file are sorted by category (like “Development / Libraries”) that more-or-less correspond to the directory structure of Nixpkgs, and then by attribute name.
5. To test whether the package builds, run the following command from the root of the nixpkgs source tree:
```ShellSession
$ nix-build -A libfoo
```
where `libfoo` should be the variable name defined in the previous step. You may want to add the flag `-K` to keep the temporary build directory in case something fails. If the build succeeds, a symlink `./result` to the package in the Nix store is created.
6. If you want to install the package into your profile (optional), do
```ShellSession
$ nix-env -f . -iA libfoo
```
7. Optionally commit the new package and open a pull request [to nixpkgs](https://github.com/NixOS/nixpkgs/pulls), or use [the Patches category](https://discourse.nixos.org/t/about-the-patches-category/477) on Discourse for sending a patch without a GitHub account.

View File

@@ -1,35 +1,208 @@
# Reviewing contributions {#chap-reviewing-contributions}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
::: {.warning}
The following section is a draft, and the policy for reviewing is still being discussed in issues such as [#11166](https://github.com/NixOS/nixpkgs/issues/11166) and [#20836](https://github.com/NixOS/nixpkgs/issues/20836).
:::
The Nixpkgs project receives a fairly high number of contributions via GitHub pull requests. Reviewing and approving these is an important task and a way to contribute to the project.
The high change rate of Nixpkgs makes any pull request that remains open for too long subject to conflicts that will require extra work from the submitter or the merger. Reviewing pull requests in a timely manner and being responsive to the comments is the key to avoid this issue. GitHub provides sort filters that can be used to see the [most recently](https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aopen+sort%3Aupdated-desc) and the [least recently](https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aopen+sort%3Aupdated-asc) updated pull requests. We highly encourage looking at [this list of ready to merge, unreviewed pull requests](https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aopen+review%3Anone+status%3Asuccess+-label%3A%222.status%3A+work-in-progress%22+no%3Aproject+no%3Aassignee+no%3Amilestone).
When reviewing a pull request, please always be nice and polite. Controversial changes can lead to controversial opinions, but it is important to respect every community member and their work.
GitHub provides reactions as a simple and quick way to provide feedback to pull requests or any comments. The thumb-down reaction should be used with care and if possible accompanied with some explanation so the submitter has directions to improve their contribution.
pull request reviews should include a list of what has been reviewed in a comment, so other reviewers and mergers can know the state of the review.
All the review template samples provided in this section are generic and meant as examples. Their usage is optional and the reviewer is free to adapt them to their liking.
## Package updates {#reviewing-contributions-package-updates}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
A package update is the most trivial and common type of pull request. These pull requests mainly consist of updating the version part of the package name and the source hash.
It can happen that non-trivial updates include patches or more complex changes.
Reviewing process:
- Ensure that the package versioning fits the guidelines.
- Ensure that the commit text fits the guidelines.
- Ensure that the package maintainers are notified.
- [CODEOWNERS](https://help.github.com/articles/about-codeowners) will make GitHub notify users based on the submitted changes, but it can happen that it misses some of the package maintainers.
- Ensure that the meta field information is correct.
- License can change with version updates, so it should be checked to match the upstream license.
- If the package has no maintainer, a maintainer must be set. This can be the update submitter or a community member that accepts to take maintainership of the package.
- Ensure that the code contains no typos.
- Building the package locally.
- pull requests are often targeted to the master or staging branch, and building the pull request locally when it is submitted can trigger many source builds.
- It is possible to rebase the changes on nixos-unstable or nixpkgs-unstable for easier review by running the following commands from a nixpkgs clone.
```ShellSession
$ git fetch origin nixos-unstable
$ git fetch origin pull/PRNUMBER/head
$ git rebase --onto nixos-unstable BASEBRANCH FETCH_HEAD
```
- The first command fetches the nixos-unstable branch.
- The second command fetches the pull request changes, `PRNUMBER` is the number at the end of the pull request title and `BASEBRANCH` the base branch of the pull request.
- The third command rebases the pull request changes to the nixos-unstable branch.
- The [nixpkgs-review](https://github.com/Mic92/nixpkgs-review) tool can be used to review a pull request content in a single command. `PRNUMBER` should be replaced by the number at the end of the pull request title. You can also provide the full github pull request url.
```ShellSession
$ nix-shell -p nixpkgs-review --run "nixpkgs-review pr PRNUMBER"
```
- Running every binary.
Sample template for a package update review is provided below.
```markdown
##### Reviewed points
- [ ] package name fits guidelines
- [ ] package version fits guidelines
- [ ] package build on ARCHITECTURE
- [ ] executables tested on ARCHITECTURE
- [ ] all depending packages build
##### Possible improvements
##### Comments
```
## New packages {#reviewing-contributions-new-packages}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
New packages are a common type of pull requests. These pull requests consists in adding a new nix-expression for a package.
Review process:
- Ensure that the package versioning fits the guidelines.
- Ensure that the commit name fits the guidelines.
- Ensure that the meta fields contain correct information.
- License must match the upstream license.
- Platforms should be set (or the package will not get binary substitutes).
- Maintainers must be set. This can be the package submitter or a community member that accepts taking up maintainership of the package.
- Report detected typos.
- Ensure the package source:
- Uses mirror URLs when available.
- Uses the most appropriate functions (e.g. packages from GitHub should use `fetchFromGitHub`).
- Building the package locally.
- Running every binary.
Sample template for a new package review is provided below.
```markdown
##### Reviewed points
- [ ] package path fits guidelines
- [ ] package name fits guidelines
- [ ] package version fits guidelines
- [ ] package build on ARCHITECTURE
- [ ] executables tested on ARCHITECTURE
- [ ] `meta.description` is set and fits guidelines
- [ ] `meta.license` fits upstream license
- [ ] `meta.platforms` is set
- [ ] `meta.maintainers` is set
- [ ] build time only dependencies are declared in `nativeBuildInputs`
- [ ] source is fetched using the appropriate function
- [ ] the list of `phases` is not overridden
- [ ] when a phase (like `installPhase`) is overridden it starts with `runHook preInstall` and ends with `runHook postInstall`.
- [ ] patches that are remotely available are fetched with `fetchpatch`
##### Possible improvements
##### Comments
```
## Module updates {#reviewing-contributions-module-updates}
This section has been moved to [nixos/README.md](https://github.com/NixOS/nixpkgs/blob/master/nixos/README.md).
Module updates are submissions changing modules in some ways. These often contains changes to the options or introduce new options.
Reviewing process:
- Ensure that the module maintainers are notified.
- [CODEOWNERS](https://help.github.com/articles/about-codeowners/) will make GitHub notify users based on the submitted changes, but it can happen that it misses some of the package maintainers.
- Ensure that the module tests, if any, are succeeding.
- Ensure that the introduced options are correct.
- Type should be appropriate (string related types differs in their merging capabilities, `loaOf` and `string` types are deprecated).
- Description, default and example should be provided.
- Ensure that option changes are backward compatible.
- `mkRenamedOptionModuleWith` provides a way to make option changes backward compatible.
- Ensure that removed options are declared with `mkRemovedOptionModule`
- Ensure that changes that are not backward compatible are mentioned in release notes.
- Ensure that documentations affected by the change is updated.
Sample template for a module update review is provided below.
```markdown
##### Reviewed points
- [ ] changes are backward compatible
- [ ] removed options are declared with `mkRemovedOptionModule`
- [ ] changes that are not backward compatible are documented in release notes
- [ ] module tests succeed on ARCHITECTURE
- [ ] options types are appropriate
- [ ] options description is set
- [ ] options example is provided
- [ ] documentation affected by the changes is updated
##### Possible improvements
##### Comments
```
## New modules {#reviewing-contributions-new-modules}
This section has been moved to [nixos/README.md](https://github.com/NixOS/nixpkgs/blob/master/nixos/README.md).
New modules submissions introduce a new module to NixOS.
## Individual maintainer list {#reviewing-contributions-individual-maintainer-list}
Reviewing process:
This section has been moved to [maintainers/README.md](https://github.com/NixOS/nixpkgs/blob/master/maintainers/README.md).
- Ensure that the module tests, if any, are succeeding.
- Ensure that the introduced options are correct.
- Type should be appropriate (string related types differs in their merging capabilities, `loaOf` and `string` types are deprecated).
- Description, default and example should be provided.
- Ensure that module `meta` field is present
- Maintainers should be declared in `meta.maintainers`.
- Module documentation should be declared with `meta.doc`.
- Ensure that the module respect other modules functionality.
- For example, enabling a module should not open firewall ports by default.
## Maintainer teams {#reviewing-contributions-maintainer-teams}
Sample template for a new module review is provided below.
This section has been moved to [maintainers/README.md](https://github.com/NixOS/nixpkgs/blob/master/maintainers/README.md).
```markdown
##### Reviewed points
- [ ] module path fits the guidelines
- [ ] module tests succeed on ARCHITECTURE
- [ ] options have appropriate types
- [ ] options have default
- [ ] options have example
- [ ] options have descriptions
- [ ] No unneeded package is added to environment.systemPackages
- [ ] meta.maintainers is set
- [ ] module documentation is declared in meta.doc
##### Possible improvements
##### Comments
```
## Other submissions {#reviewing-contributions-other-submissions}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Other type of submissions requires different reviewing steps.
If you consider having enough knowledge and experience in a topic and would like to be a long-term reviewer for related submissions, please contact the current reviewers for that topic. They will give you information about the reviewing process. The main reviewers for a topic can be hard to find as there is no list, but checking past pull requests to see who reviewed or git-blaming the code to see who committed to that topic can give some hints.
Container system, boot system and library changes are some examples of the pull requests fitting this category.
## Merging pull requests {#reviewing-contributions--merging-pull-requests}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
It is possible for community members that have enough knowledge and experience on a special topic to contribute by merging pull requests.
<!--
The following paragraphs about how to deal with unactive contributors is just a proposition and should be modified to what the community agrees to be the right policy.
Please note that contributors with commit rights unactive for more than three months will have their commit rights revoked.
-->
Please see the discussion in [GitHub nixpkgs issue #50105](https://github.com/NixOS/nixpkgs/issues/50105) for information on how to proceed to be granted this level of access.
In a case a contributor definitively leaves the Nix community, they should create an issue or post on [Discourse](https://discourse.nixos.org) with references of packages and modules they maintain so the maintainership can be taken over by other contributors.

View File

@@ -1,88 +1,292 @@
# Submitting changes {#chap-submitting-changes}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
## Making patches {#submitting-changes-making-patches}
- Read [Manual (How to write packages for Nix)](https://nixos.org/nixpkgs/manual/).
- Fork [the Nixpkgs repository](https://github.com/nixos/nixpkgs/) on GitHub.
- Create a branch for your future fix.
- You can make branch from a commit of your local `nixos-version`. That will help you to avoid additional local compilations. Because you will receive packages from binary cache. For example
```ShellSession
$ nixos-version --hash
0998212
$ git checkout 0998212
$ git checkout -b 'fix/pkg-name-update'
```
- Please avoid working directly on the `master` branch.
- Make commits of logical units.
- If you removed pkgs or made some major NixOS changes, write about it in the release notes for the next stable release. For example `nixos/doc/manual/release-notes/rl-2003.xml`.
- Check for unnecessary whitespace with `git diff --check` before committing.
- Format the commit in a following way:
```
(pkg-name | nixos/<module>): (from -> to | init at version | refactor | etc)
Additional information.
```
- Examples:
- `nginx: init at 2.0.1`
- `firefox: 54.0.1 -> 55.0`
- `nixos/hydra: add bazBaz option`
- `nixos/nginx: refactor config generation`
- Test your changes. If you work with
- nixpkgs:
- update pkg
- `nix-env -iA pkg-attribute-name -f <path to your local nixpkgs folder>`
- add pkg
- Make sure its in `pkgs/top-level/all-packages.nix`
- `nix-env -iA pkg-attribute-name -f <path to your local nixpkgs folder>`
- _If you dont want to install pkg in you profile_.
- `nix-build -A pkg-attribute-name <path to your local nixpkgs folder>` and check results in the folder `result`. It will appear in the same directory where you did `nix-build`.
- If you installed your package with `nix-env`, you can run `nix-env -e pkg-name` where `pkg-name` is as reported by `nix-env -q` to uninstall it from your system.
- NixOS and its modules:
- You can add new module to your NixOS configuration file (usually its `/etc/nixos/configuration.nix`). And do `sudo nixos-rebuild test -I nixpkgs=<path to your local nixpkgs folder> --fast`.
- If you have commits `pkg-name: oh, forgot to insert whitespace`: squash commits in this case. Use `git rebase -i`.
- [Rebase](https://git-scm.com/book/en/v2/Git-Branching-Rebasing) your branch against current `master`.
## Submitting changes {#submitting-changes-submitting-changes}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
- Push your changes to your fork of nixpkgs.
- Create the pull request
- Follow [the contribution guidelines](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md#submitting-changes).
## Submitting security fixes {#submitting-changes-submitting-security-fixes}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Security fixes are submitted in the same way as other changes and thus the same guidelines apply.
- If a new version fixing the vulnerability has been released, update the package;
- If the security fix comes in the form of a patch and a CVE is available, then add the patch to the Nixpkgs tree, and apply it to the package.
The name of the patch should be the CVE identifier, so e.g. `CVE-2019-13636.patch`; If a patch is fetched the name needs to be set as well, e.g.:
```nix
(fetchpatch {
name = "CVE-2019-11068.patch";
url = "https://gitlab.gnome.org/GNOME/libxslt/commit/e03553605b45c88f0b4b2980adfbbb8f6fca2fd6.patch";
sha256 = "0pkpb4837km15zgg6h57bncp66d5lwrlvkr73h0lanywq7zrwhj8";
})
```
If a security fix applies to both master and a stable release then, similar to regular changes, they are preferably delivered via master first and cherry-picked to the release branch.
Critical security fixes may by-pass the staging branches and be delivered directly to release branches such as `master` and `release-*`.
## Deprecating/removing packages {#submitting-changes-deprecating-packages}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
There is currently no policy when to remove a package.
Before removing a package, one should try to find a new maintainer or fix smaller issues first.
### Steps to remove a package from Nixpkgs {#steps-to-remove-a-package-from-nixpkgs}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
We use jbidwatcher as an example for a discontinued project here.
1. Have Nixpkgs checked out locally and up to date.
1. Create a new branch for your change, e.g. `git checkout -b jbidwatcher`
1. Remove the actual package including its directory, e.g. `rm -rf pkgs/applications/misc/jbidwatcher`
1. Remove the package from the list of all packages (`pkgs/top-level/all-packages.nix`).
1. Add an alias for the package name in `pkgs/top-level/aliases.nix` (There is also `pkgs/applications/editors/vim/plugins/aliases.nix`. Package sets typically do not have aliases, so we can't add them there.)
For example in this case:
```
jbidwatcher = throw "jbidwatcher was discontinued in march 2021"; # added 2021-03-15
```
The throw message should explain in short why the package was removed for users that still have it installed.
1. Test if the changes introduced any issues by running `nix-env -qaP -f . --show-trace`. It should show the list of packages without errors.
1. Commit the changes. Explain again why the package was removed. If it was declared discontinued upstream, add a link to the source.
```ShellSession
$ git add pkgs/applications/misc/jbidwatcher/default.nix pkgs/top-level/all-packages.nix pkgs/top-level/aliases.nix
$ git commit
```
Example commit message:
```
jbidwatcher: remove
project was discontinued in march 2021. the program does not work anymore because ebay changed the login.
https://web.archive.org/web/20210315205723/http://www.jbidwatcher.com/
```
1. Push changes to your GitHub fork with `git push`
1. Create a pull request against Nixpkgs. Mention the package maintainer.
This is how the pull request looks like in this case: [https://github.com/NixOS/nixpkgs/pull/116470](https://github.com/NixOS/nixpkgs/pull/116470)
## Pull Request Template {#submitting-changes-pull-request-template}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
The pull request template helps determine what steps have been made for a contribution so far, and will help guide maintainers on the status of a change. The motivation section of the PR should include any extra details the title does not address and link any existing issues related to the pull request.
When a PR is created, it will be pre-populated with some checkboxes detailed below:
### Tested using sandboxing {#submitting-changes-tested-with-sandbox}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
When sandbox builds are enabled, Nix will setup an isolated environment for each build process. It is used to remove further hidden dependencies set by the build environment to improve reproducibility. This includes access to the network during the build outside of `fetch*` functions and files outside the Nix store. Depending on the operating system access to other resources are blocked as well (ex. inter process communication is isolated on Linux); see [sandbox](https://nixos.org/nix/manual/#conf-sandbox) in Nix manual for details.
Sandboxing is not enabled by default in Nix due to a small performance hit on each build. In pull requests for [nixpkgs](https://github.com/NixOS/nixpkgs/) people are asked to test builds with sandboxing enabled (see `Tested using sandboxing` in the pull request template) because in<https://nixos.org/hydra/> sandboxing is also used.
Depending if you use NixOS or other platforms you can use one of the following methods to enable sandboxing **before** building the package:
- **Globally enable sandboxing on NixOS**: add the following to `configuration.nix`
```nix
nix.useSandbox = true;
```
- **Globally enable sandboxing on non-NixOS platforms**: add the following to: `/etc/nix/nix.conf`
```ini
sandbox = true
```
### Built on platform(s) {#submitting-changes-platform-diversity}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Many Nix packages are designed to run on multiple platforms. As such, its important to let the maintainer know which platforms your changes have been tested on. Its not always practical to test a change on all platforms, and is not required for a pull request to be merged. Only check the systems you tested the build on in this section.
### Tested via one or more NixOS test(s) if existing and applicable for the change (look inside nixos/tests) {#submitting-changes-nixos-tests}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Packages with automated tests are much more likely to be merged in a timely fashion because it doesnt require as much manual testing by the maintainer to verify the functionality of the package. If there are existing tests for the package, they should be run to verify your changes do not break the tests. Tests can only be run on Linux. For more details on writing and running tests, see the [section in the NixOS manual](https://nixos.org/nixos/manual/index.html#sec-nixos-tests).
### Tested compilation of all pkgs that depend on this change using `nixpkgs-review` {#submitting-changes-tested-compilation}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
If you are updating a packages version, you can use nixpkgs-review to make sure all packages that depend on the updated package still compile correctly. The `nixpkgs-review` utility can look for and build all dependencies either based on uncommited changes with the `wip` option or specifying a github pull request number.
review changes from pull request number 12345:
```ShellSession
nix run nixpkgs.nixpkgs-review -c nixpkgs-review pr 12345
```
review uncommitted changes:
```ShellSession
nix run nixpkgs.nixpkgs-review -c nixpkgs-review wip
```
review changes from last commit:
```ShellSession
nix run nixpkgs.nixpkgs-review -c nixpkgs-review rev HEAD
```
### Tested execution of all binary files (usually in `./result/bin/`) {#submitting-changes-tested-execution}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Its important to test any executables generated by a build when you change or create a package in nixpkgs. This can be done by looking in `./result/bin` and running any files in there, or at a minimum, the main executable for the package. For example, if you make a change to texlive, you probably would only check the binaries associated with the change you made rather than testing all of them.
### Meets Nixpkgs contribution standards {#submitting-changes-contribution-standards}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
The last checkbox is fits [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md). The contributing document has detailed information on standards the Nix community has for commit messages, reviews, licensing of contributions you make to the project, etc\... Everyone should read and understand the standards the community has for contributing before submitting a pull request.
## Hotfixing pull requests {#submitting-changes-hotfixing-pull-requests}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
- Make the appropriate changes in you branch.
- Dont create additional commits, do
- `git rebase -i`
- `git push --force` to your branch.
## Commit policy {#submitting-changes-commit-policy}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
- Commits must be sufficiently tested before being merged, both for the master and staging branches.
- Hydra builds for master and staging should not be used as testing platform, its a build farm for changes that have been already tested.
- When changing the bootloader installation process, extra care must be taken. Grub installations cannot be rolled back, hence changes may break peoples installations forever. For any non-trivial change to the bootloader please file a PR asking for review, especially from \@edolstra.
### Branches {#submitting-changes-branches}
```{.graphviz caption="Staging workflow"}
digraph {
"small changes" [shape=none]
"mass-rebuilds and other large changes" [shape=none]
"critical security fixes" [shape=none]
"broken staging-next fixes" [shape=none]
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
"small changes" -> master
"mass-rebuilds and other large changes" -> staging
"critical security fixes" -> master
"broken staging-next fixes" -> "staging-next"
#### Master branch {#submitting-changes-master-branch}
"staging-next" -> master [color="#E85EB0"] [label="stabilization ends"] [fontcolor="#E85EB0"]
"staging" -> "staging-next" [color="#E85EB0"] [label="stabilization starts"] [fontcolor="#E85EB0"]
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
master -> "staging-next" -> staging [color="#5F5EE8"] [label="every six hours (GitHub Action)"] [fontcolor="#5F5EE8"]
}
```
#### Staging branch {#submitting-changes-staging-branch}
[This GitHub Action](https://github.com/NixOS/nixpkgs/blob/master/.github/workflows/periodic-merge-6h.yml) brings changes from `master` to `staging-next` and from `staging-next` to `staging` every 6 hours.
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
#### Staging-next branch {#submitting-changes-staging-next-branch}
### Master branch {#submitting-changes-master-branch}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
The `master` branch is the main development branch. It should only see non-breaking commits that do not cause mass rebuilds.
#### Stable release branches {#submitting-changes-stable-release-branches}
### Staging branch {#submitting-changes-staging-branch}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
The `staging` branch is a development branch where mass-rebuilds go. It should only see non-breaking mass-rebuild commits. That means it is not to be used for testing, and changes must have been well tested already. If the branch is already in a broken state, please refrain from adding extra new breakages.
### Staging-next branch {#submitting-changes-staging-next-branch}
The `staging-next` branch is for stabilizing mass-rebuilds submitted to the `staging` branch prior to merging them into `master`. Mass-rebuilds must go via the `staging` branch. It must only see non-breaking commits that are fixing issues blocking it from being merged into the `master ` branch.
If the branch is already in a broken state, please refrain from adding extra new breakages. Stabilize it for a few days and then merge into master.
### Stable release branches {#submitting-changes-stable-release-branches}
The same staging workflow applies to stable release branches, but the main branch is called `release-*` instead of `master`.
Example branch names: `release-21.11`, `staging-21.11`, `staging-next-21.11`.
Most changes added to the stable release branches are cherry-picked (“backported”) from the `master` and staging branches.
#### Automatically backporting a Pull Request {#submitting-changes-stable-release-branches-automatic-backports}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Assign label `backport <branch>` (e.g. `backport release-21.11`) to the PR and a backport PR is automatically created after the PR is merged.
#### Manually backporting changes {#submitting-changes-stable-release-branches-manual-backports}
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Cherry-pick changes via `git cherry-pick -x <original commit>` so that the original commit id is included in the commit message.
#### Acceptable backport criteria {#acceptable-backport-criteria}
Add a reason for the backport when it is not obvious from the original commit message. You can do this by cherry picking with `git cherry-pick -xe <original commit>`, which allows editing the commit message. This is not needed for minor version updates that include security and bug fixes but don't add new features or when the commit fixes an otherwise broken package.
This section has been moved to [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
Here is an example of a cherry-picked commit message with good reason description:
```
zfs: Keep trying root import until it works
Works around #11003.
(cherry picked from commit 98b213a11041af39b39473906b595290e2a4e2f9)
Reason: several people cannot boot with ZFS on NVMe
```
Other examples of reasons are:
- Previously the build would fail due to, e.g., `getaddrinfo` not being defined
- The previous download links were all broken
- Crash when starting on some X11 systems
#### Acceptable backport criteria
The stable branch does have some changes which cannot be backported. Most notable are breaking changes. The desire is to have stable users be uninterrupted when updating packages.
However, many changes are able to be backported, including:
- New Packages / Modules
- Security / Patch updates
- Version updates which include new functionality (but no breaking changes)
- Services which require a client to be up-to-date regardless. (E.g. `spotify`, `steam`, or `discord`)
- Security critical applications (E.g. `firefox`)

View File

@@ -1,11 +1,45 @@
# Vulnerability Roundup {#chap-vulnerability-roundup}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
## Issues {#vulnerability-roundup-issues}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
Vulnerable packages in Nixpkgs are managed using issues.
Currently opened ones can be found using the following:
[github.com/NixOS/nixpkgs/issues?q=is:issue+is:open+"Vulnerability+roundup"](https://github.com/NixOS/nixpkgs/issues?q=is%3Aissue+is%3Aopen+%22Vulnerability+roundup%22)
Each issue correspond to a vulnerable version of a package; As a consequence:
- One issue can contain several CVEs;
- One CVE can be shared across several issues;
- A single package can be concerned by several issues.
A "Vulnerability roundup" issue usually respects the following format:
```txt
<link to relevant package search on search.nix.gsc.io>, <link to relevant files in Nixpkgs on GitHub>
<list of related CVEs, their CVSS score, and the impacted NixOS version>
<list of the scanned Nixpkgs versions>
<list of relevant contributors>
```
Note that there can be an extra comment containing links to previously reported (and still open) issues for the same package.
## Triaging and Fixing {#vulnerability-roundup-triaging-and-fixing}
This section has been moved to [pkgs/README.md](https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md).
**Note**: An issue can be a "false positive" (i.e. automatically opened, but without the package it refers to being actually vulnerable).
If you find such a "false positive", comment on the issue an explanation of why it falls into this category, linking as much information as the necessary to help maintainers double check.
If you are investigating a "true positive":
- Find the earliest patched version or a code patch in the CVE details;
- Is the issue already patched (version up-to-date or patch applied manually) in Nixpkgs's `master` branch?
- **No**:
- [Submit a security fix](#submitting-changes-submitting-security-fixes);
- Once the fix is merged into `master`, [submit the change to the vulnerable release branch(es)](https://nixos.org/manual/nixpkgs/stable/#submitting-changes-stable-release-branches);
- **Yes**: [Backport the change to the vulnerable release branch(es)](https://nixos.org/manual/nixpkgs/stable/#submitting-changes-stable-release-branches).
- When the patch has made it into all the relevant branches (`master`, and the vulnerable releases), close the relevant issue(s).

View File

@@ -1,150 +1,39 @@
{ pkgs ? (import ./.. { }), nixpkgs ? { }}:
let
inherit (pkgs) lib;
inherit (lib) hasPrefix removePrefix;
common = import ./common.nix;
lib-docs = import ./doc-support/lib-function-docs.nix {
inherit pkgs nixpkgs;
libsets = [
{ name = "asserts"; description = "assertion functions"; }
{ name = "attrsets"; description = "attribute set functions"; }
{ name = "strings"; description = "string manipulation functions"; }
{ name = "versions"; description = "version string functions"; }
{ name = "trivial"; description = "miscellaneous functions"; }
{ name = "fixedPoints"; baseName = "fixed-points"; description = "explicit recursion functions"; }
{ name = "lists"; description = "list manipulation functions"; }
{ name = "debug"; description = "debugging functions"; }
{ name = "options"; description = "NixOS / nixpkgs option handling"; }
{ name = "path"; description = "path functions"; }
{ name = "filesystem"; description = "filesystem functions"; }
{ name = "fileset"; description = "file set functions"; }
{ name = "sources"; description = "source filtering functions"; }
{ name = "cli"; description = "command-line serialization functions"; }
{ name = "gvariant"; description = "GVariant formatted string serialization functions"; }
];
};
epub = pkgs.runCommand "manual.epub" {
nativeBuildInputs = with pkgs; [ libxslt zip ];
epub = ''
<book xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="5.0"
xml:id="nixpkgs-manual">
<info>
<title>Nixpkgs Manual</title>
<subtitle>Version ${pkgs.lib.version}</subtitle>
</info>
<chapter>
<title>Temporarily unavailable</title>
<para>
The Nixpkgs manual is currently not available in EPUB format,
please use the <link xlink:href="https://nixos.org/nixpkgs/manual">HTML manual</link>
instead.
</para>
<para>
If you've used the EPUB manual in the past and it has been useful to you, please
<link xlink:href="https://github.com/NixOS/nixpkgs/issues/237234">let us know</link>.
</para>
</chapter>
</book>
'';
passAsFile = [ "epub" ];
} ''
mkdir scratch
xsltproc \
--param chapter.autolabel 0 \
--nonet \
--output scratch/ \
${pkgs.docbook_xsl_ns}/xml/xsl/docbook/epub/docbook.xsl \
$epubPath
echo "application/epub+zip" > mimetype
zip -0Xq "$out" mimetype
cd scratch && zip -Xr9D "$out" *
'';
# NB: This file describes the Nixpkgs manual, which happens to use module
# docs infra originally developed for NixOS.
optionsDoc = pkgs.nixosOptionsDoc {
inherit (pkgs.lib.evalModules {
modules = [ ../pkgs/top-level/config.nix ];
class = "nixpkgsConfig";
}) options;
documentType = "none";
transformOptions = opt:
opt // {
declarations =
map
(decl:
if hasPrefix (toString ../..) (toString decl)
then
let subpath = removePrefix "/" (removePrefix (toString ../.) (toString decl));
in { url = "https://github.com/NixOS/nixpkgs/blob/master/${subpath}"; name = subpath; }
else decl)
opt.declarations;
};
};
lib = pkgs.lib;
doc-support = import ./doc-support { inherit pkgs nixpkgs; };
in pkgs.stdenv.mkDerivation {
name = "nixpkgs-manual";
nativeBuildInputs = with pkgs; [
nixos-render-docs
pandoc
graphviz
libxml2
libxslt
zip
jing
xmlformat
];
src = ./.;
src = lib.cleanSource ./.;
postPatch = ''
ln -s ${optionsDoc.optionsJSON}/share/doc/nixos/options.json ./config-options.json
'';
buildPhase = ''
cat \
./functions/library.md.in \
${lib-docs}/index.md \
> ./functions/library.md
substitute ./manual.md.in ./manual.md \
--replace '@MANUAL_VERSION@' '${pkgs.lib.version}'
mkdir -p out/media
mkdir -p out/highlightjs
cp -t out/highlightjs \
${pkgs.documentation-highlighter}/highlight.pack.js \
${pkgs.documentation-highlighter}/LICENSE \
${pkgs.documentation-highlighter}/mono-blue.css \
${pkgs.documentation-highlighter}/loader.js
cp -t out ./overrides.css ./style.css
nixos-render-docs manual html \
--manpage-urls ./manpage-urls.json \
--revision ${pkgs.lib.trivial.revisionWithDefault (pkgs.rev or "master")} \
--stylesheet style.css \
--stylesheet overrides.css \
--stylesheet highlightjs/mono-blue.css \
--script ./highlightjs/highlight.pack.js \
--script ./highlightjs/loader.js \
--toc-depth 1 \
--section-toc-depth 1 \
manual.md \
out/index.html
ln -s ${doc-support} ./doc-support/result
'';
installPhase = ''
dest="$out/${common.outputPath}"
dest="$out/share/doc/nixpkgs"
mkdir -p "$(dirname "$dest")"
mv out "$dest"
mv "$dest/index.html" "$dest/${common.indexPath}"
mv out/html "$dest"
mv "$dest/index.html" "$dest/manual.html"
cp ${epub} "$dest/nixpkgs-manual.epub"
mv out/epub/manual.epub "$dest/nixpkgs-manual.epub"
mkdir -p $out/nix-support/
echo "doc manual $dest ${common.indexPath}" >> $out/nix-support/hydra-build-products
echo "doc manual $dest manual.html" >> $out/nix-support/hydra-build-products
echo "doc manual $dest nixpkgs-manual.epub" >> $out/nix-support/hydra-build-products
'';
# Environment variables
PANDOC_LUA_FILTERS_DIR = "${pkgs.pandoc-lua-filters}/share/pandoc/filters";
}

View File

@@ -1,10 +0,0 @@
# Development of Nixpkgs {#part-development}
This section shows you how Nixpkgs is being developed and how you can interact with the contributors and the latest updates.
If you are interested in contributing yourself, see [CONTRIBUTING.md](https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md).
<!-- In the future this section should also include: How to test pull requests, how to know if pull requests are available in channels, etc. -->
```{=include=} chapters
development/opening-issues.chapter.md
```

View File

@@ -1,7 +0,0 @@
# Opening issues {#sec-opening-issues}
* Make sure you have a [GitHub account](https://github.com/signup/free)
* Make sure there is no open issue on the topic
* [Submit a new issue](https://github.com/NixOS/nixpkgs/issues/new/choose) by choosing the kind of topic and fill out the template
<!-- In the future this section could also include more detailed information on the issue templates -->

View File

@@ -0,0 +1,45 @@
{ pkgs ? (import ../.. {}), nixpkgs ? { }}:
let
locationsXml = import ./lib-function-locations.nix { inherit pkgs nixpkgs; };
functionDocs = import ./lib-function-docs.nix { inherit locationsXml pkgs; };
version = pkgs.lib.version;
epub-xsl = pkgs.writeText "epub.xsl" ''
<?xml version='1.0'?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:import href="${pkgs.docbook_xsl_ns}/xml/xsl/docbook/epub/docbook.xsl" />
<xsl:import href="${./parameters.xml}"/>
</xsl:stylesheet>
'';
xhtml-xsl = pkgs.writeText "xhtml.xsl" ''
<?xml version='1.0'?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:import href="${pkgs.docbook_xsl_ns}/xml/xsl/docbook/xhtml/docbook.xsl" />
<xsl:import href="${./parameters.xml}"/>
</xsl:stylesheet>
'';
in pkgs.runCommand "doc-support" {}
''
mkdir result
(
cd result
ln -s ${locationsXml} ./function-locations.xml
ln -s ${functionDocs} ./function-docs
ln -s ${pkgs.docbook5}/xml/rng/docbook/docbook.rng ./docbook.rng
ln -s ${pkgs.docbook_xsl_ns}/xml/xsl ./xsl
ln -s ${epub-xsl} ./epub.xsl
ln -s ${xhtml-xsl} ./xhtml.xsl
ln -s ${../../nixos/doc/xmlformat.conf} ./xmlformat.conf
ln -s ${pkgs.documentation-highlighter} ./highlightjs
echo -n "${version}" > ./version
)
mv result $out
''

Some files were not shown because too many files have changed in this diff Show More