Merge branch 'production' into next

This commit is contained in:
2024-11-25 20:02:39 +08:00
41 changed files with 274 additions and 1109 deletions

View File

@@ -58,7 +58,11 @@ inputs:
hardware =
{
cpus = [ "amd" ];
gpu = { type = "nvidia"; nvidia = { dynamicBoost = true; driver = "beta"; }; };
gpu =
{
type = "amd+nvidia";
nvidia = { dynamicBoost = true; driver = "beta"; prime.busId = { amd = "6:0:0"; nvidia = "1:0:0"; }; };
};
legion = {};
};
virtualization =
@@ -92,7 +96,10 @@ inputs:
[ "mirism.one" "beta.mirism.one" "ng01.mirism.one" "initrd.vps6.chn.moe" ])
++ (builtins.map
(name: { inherit name; value = "0.0.0.0"; })
[ "log-upload.mihoyo.com" "uspider.yuanshen.com" "ys-log-upload.mihoyo.com" ])
[
"log-upload.mihoyo.com" "uspider.yuanshen.com" "ys-log-upload.mihoyo.com"
"dispatchcnglobal.yuanshen.com"
])
++ [{ name = "4006024680.com"; value = "192.168.199.1"; }]
);
};
@@ -115,7 +122,7 @@ inputs:
publicKey = "l1gFSDCeBxyf/BipXNvoEvVvLqPgdil84nmr5q6+EEw=";
wireguardIp = "192.168.83.3";
};
gamemode = { enable = true; drmDevice = 0; };
gamemode = { enable = true; drmDevice = 1; };
slurm =
{
enable = true;

View File

@@ -68,6 +68,7 @@ inputs:
main.enable = true;
nekomia.enable = true;
blog = {};
sticker = {};
};
};
coturn = {};

61
flake.lock generated
View File

@@ -549,6 +549,24 @@
"type": "github"
}
},
"highfive": {
"flake": false,
"locked": {
"lastModified": 1732469115,
"narHash": "sha256-C9gcLlhDd1iJlkW0DtMOi/4leUfo4Phhi9U+xiH/cQw=",
"ref": "refs/heads/master",
"rev": "7f3c91e9a3eff5856f93e61ff1b61060fcfcc636",
"revCount": 722,
"submodules": true,
"type": "git",
"url": "https://github.com/CHN-beta/HighFive"
},
"original": {
"submodules": true,
"type": "git",
"url": "https://github.com/CHN-beta/HighFive"
}
},
"home-manager": {
"inputs": {
"nixpkgs": [
@@ -674,11 +692,11 @@
"misskey": {
"flake": false,
"locked": {
"lastModified": 1729490489,
"narHash": "sha256-pYL5gN79GC3GZwjsWG5ufkYGVIg2SHe1ZckJqmUD3MI=",
"lastModified": 1732375939,
"narHash": "sha256-ZlyBBJniDJ8yS3ALMQ9gfsVUDTzp/U4Pr3SOtE5FttY=",
"ref": "refs/heads/chn-mod",
"rev": "7aa5ed4066b0f48c808defaa0772dd6d703c80fa",
"revCount": 26236,
"rev": "bb3ae0b9c84126dada9ce7e13a42962a8889eba8",
"revCount": 26357,
"submodules": true,
"type": "git",
"url": "https://github.com/CHN-beta/misskey"
@@ -1276,6 +1294,7 @@
"git-lfs-transfer": "git-lfs-transfer",
"gricad": "gricad",
"hextra": "hextra",
"highfive": "highfive",
"home-manager": "home-manager",
"impermanence": "impermanence",
"lepton": "lepton",
@@ -1310,7 +1329,9 @@
"sops-nix": "sops-nix",
"spectroscopy": "spectroscopy",
"sqlite-orm": "sqlite-orm",
"stickerpicker": "stickerpicker",
"tgbot-cpp": "tgbot-cpp",
"ufo": "ufo",
"v-sim": "v-sim",
"vaspberry": "vaspberry",
"winapps": "winapps",
@@ -1433,6 +1454,22 @@
"type": "github"
}
},
"stickerpicker": {
"flake": false,
"locked": {
"lastModified": 1718796561,
"narHash": "sha256-RKAAHve17lrJokgAPkM2k/E+f9djencwwg3Xcd70Yfw=",
"owner": "maunium",
"repo": "stickerpicker",
"rev": "333567f481e60443360aa7199d481e1a45b3a523",
"type": "github"
},
"original": {
"owner": "maunium",
"repo": "stickerpicker",
"type": "github"
}
},
"systems": {
"locked": {
"lastModified": 1681028828,
@@ -1622,6 +1659,22 @@
"type": "github"
}
},
"ufo": {
"flake": false,
"locked": {
"lastModified": 1732177086,
"narHash": "sha256-zmrzTQGXkR54igJUhYp0pFqS2RdV69Wi/wgyFME/K+E=",
"ref": "refs/heads/main",
"rev": "28e4d29f2c70d1f3b80a092b75b81a4793455980",
"revCount": 65,
"type": "git",
"url": "https://git.chn.moe/chn/ufo.git"
},
"original": {
"type": "git",
"url": "https://git.chn.moe/chn/ufo.git"
}
},
"v-sim": {
"flake": false,
"locked": {

View File

@@ -65,6 +65,9 @@
nixos-wallpaper = { url = "git+https://git.chn.moe/chn/nixos-wallpaper.git"; flake = false; };
spectroscopy = { url = "github:skelton-group/Phonopy-Spectroscopy"; flake = false; };
vaspberry = { url = "github:Infant83/VASPBERRY"; flake = false; };
ufo = { url = "git+https://git.chn.moe/chn/ufo.git"; flake = false; };
highfive = { url = "git+https://github.com/CHN-beta/HighFive?submodules=1"; flake = false; };
stickerpicker = { url = "github:maunium/stickerpicker"; flake = false; };
};
outputs = inputs: let localLib = import ./flake/lib.nix inputs.nixpkgs.lib; in

View File

@@ -5,24 +5,28 @@
inputsFrom = [ pkgs.localPackages.biu ];
packages = [ pkgs.clang-tools_18 ];
CMAKE_EXPORT_COMPILE_COMMANDS = "1";
hardeningDisable = [ "all" ];
};
hpcstat = pkgs.mkShell.override { stdenv = pkgs.clang18Stdenv; }
{
inputsFrom = [ (pkgs.localPackages.hpcstat.override { version = null; }) ];
packages = [ pkgs.clang-tools_18 ];
CMAKE_EXPORT_COMPILE_COMMANDS = "1";
hardeningDisable = [ "all" ];
};
sbatch-tui = pkgs.mkShell.override { stdenv = pkgs.clang18Stdenv; }
{
inputsFrom = [ pkgs.localPackages.sbatch-tui ];
packages = [ pkgs.clang-tools_18 ];
CMAKE_EXPORT_COMPILE_COMMANDS = "1";
hardeningDisable = [ "all" ];
};
ufo = pkgs.mkShell.override { stdenv = pkgs.clang18Stdenv; }
{
inputsFrom = [ pkgs.localPackages.ufo ];
packages = [ pkgs.clang-tools_18 ];
CMAKE_EXPORT_COMPILE_COMMANDS = "1";
hardeningDisable = [ "all" ];
};
chn-bsub = pkgs.mkShell
{

View File

@@ -16,7 +16,7 @@ inputs:
# system management
# TODO: module should add yubikey-touch-detector into path
gparted wayland-utils clinfo glxinfo vulkan-tools dracut yubikey-touch-detector btrfs-assistant snapper-gui
kdePackages.qtstyleplugin-kvantum ventoy-full cpu-x wl-mirror geekbench
kdePackages.qtstyleplugin-kvantum ventoy-full cpu-x wl-mirror geekbench xpra
(
writeShellScriptBin "xclip"
''
@@ -65,9 +65,13 @@ inputs:
google-chrome tor-browser microsoft-edge
# office
crow-translate zotero pandoc libreoffice-qt texliveFull poppler_utils pdftk pdfchain davinci-resolve
# TODO: enable in next release
# hdfview
ydict texstudio
# TODO: remove override in next update
(panoply.overrideAttrs { src = inputs.pkgs.fetchurl
{
url = "https://www.giss.nasa.gov/tools/panoply/download/PanoplyJ-5.5.5.tgz";
hash = "sha256-rvJ3pyAbHI2/g3v+eKQF0Q9mx6+lLozaB8CLAAzOXRs=";
};})
# matplot++ needs old gnuplot
inputs.pkgs."pkgs-23.11".gnuplot
# math, physics and chemistry

View File

@@ -36,7 +36,7 @@ inputs:
# development
gdb try inputs.topInputs.plasma-manager.packages.${inputs.pkgs.system}.rc2nix rr hexo-cli gh nix-init hugo
# stupid things
toilet lolcat
toilet lolcat localPackages.stickerpicker
# office
pdfgrep ffmpeg-full # todo-txt-cli
]

View File

@@ -0,0 +1 @@
/config.json

View File

@@ -0,0 +1,22 @@
inputs:
{
options.nixos.services.nginx.applications.sticker = let inherit (inputs.lib) mkOption types; in mkOption
{
type = types.nullOr (types.submodule {});
default = {};
};
config = let inherit (inputs.config.nixos.services.nginx.applications) sticker; in inputs.lib.mkIf (sticker != null)
{
nixos.services.nginx.https."sticker.chn.moe".location."/".static =
{
root = builtins.toString (inputs.pkgs.runCommand "web" {}
''
mkdir -p $out
cp -r ${inputs.topInputs.stickerpicker}/web/* $out
chmod -R +w $out
cp -r ${./web}/* $out
'');
index = [ "index.html" ];
};
};
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,7 @@
{
"packs": [
"Mare_by_WuMingv2Bot.json",
"line_191054124446_by_moe_sticker_bot.json"
],
"homeserver_url": "https://matrix.chn.moe"
}

File diff suppressed because one or more lines are too long

View File

@@ -8,20 +8,14 @@ inputs:
default = "xanmod-lts";
};
patches = mkOption { type = types.listOf types.nonEmptyStr; default = []; };
modules =
{
install = mkOption { type = types.listOf types.str; default = []; };
load = mkOption { type = types.listOf types.str; default = []; };
initrd = mkOption { type = types.listOf types.str; default = []; };
modprobeConfig = mkOption { type = types.listOf types.str; default = []; };
};
modules.modprobeConfig = mkOption { type = types.listOf types.str; default = []; };
};
config = let inherit (inputs.config.nixos.system) kernel; in inputs.lib.mkMerge
[
{
boot =
{
kernelModules = [ "br_netfilter" ] ++ kernel.modules.load;
kernelModules = [ "br_netfilter" ];
# modprobe --show-depends
initrd.availableKernelModules =
[
@@ -41,7 +35,7 @@ inputs:
++ (inputs.lib.optionals (kernel.variant != "nixos") [ "crypto_simd" ])
# for pi3b to show message over hdmi while boot
++ (inputs.lib.optionals (kernel.variant == "nixos") [ "vc4" "bcm2835_dma" "i2c_bcm2835" ]);
extraModulePackages = (with inputs.config.boot.kernelPackages; [ v4l2loopback ]) ++ kernel.modules.install;
extraModulePackages = with inputs.config.boot.kernelPackages; [ v4l2loopback zenpower ];
extraModprobeConfig = builtins.concatStringsSep "\n" kernel.modules.modprobeConfig;
kernelParams = [ "delayacct" ];
kernelPackages =

View File

@@ -28,7 +28,7 @@ find_package(concurrencpp REQUIRED)
find_path(POCKETFFT_INCLUDE_DIR pocketfft.h REQUIRED)
find_package(yaml-cpp REQUIRED)
add_library(biu src/common.cpp src/hdf5.cpp src/logger.cpp src/string.cpp)
add_library(biu src/common.cpp src/hdf5.cpp src/string.cpp)
target_include_directories(biu PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}> ${NAMEOF_INCLUDE_DIR} ${ZPP_BITS_INCLUDE_DIR}
${LIBBACKTRACE_INCLUDE_DIR} ${POCKETFFT_INCLUDE_DIR})
@@ -81,3 +81,8 @@ add_executable(test-yaml test/yaml.cpp)
target_link_libraries(test-yaml PRIVATE biu)
set_property(TARGET test-yaml PROPERTY CXX_STANDARD 23 CXX_STANDARD_REQUIRED ON)
add_test(NAME test-yaml COMMAND test-yaml)
add_executable(test-logger test/logger.cpp)
target_link_libraries(test-logger PRIVATE biu)
target_compile_definitions(test-logger PRIVATE BIU_LOGGING_DEBUG BIU_LOGGING_SOURCE_ROOT="${CMAKE_CURRENT_SOURCE_DIR}")
set_property(TARGET test-logger PROPERTY CXX_STANDARD 23 CXX_STANDARD_REQUIRED ON)
add_test(NAME test-logger COMMAND test-logger)

View File

@@ -7,7 +7,10 @@
# include <biu/format.tpp>
# include <biu/eigen.tpp>
# include <biu/hdf5.tpp>
# include <biu/logger.tpp>
# ifndef BIU_INTERNAL
// while building the library, the logger should not be included, to ensure inline members are not compiled
# include <biu/logger.tpp>
# endif
# include <biu/smartref.tpp>
# include <biu/fft.tpp>
# include <biu/yaml.tpp>

View File

@@ -117,9 +117,11 @@ namespace biu
template <typename T> T& operator|(T&& obj, const ToLvalueHelper&);
}
constexpr detail_::ToLvalueHelper toLvalue;
template <typename Function, typename T, typename... Ts> void for_each(Function&& function, T&& arg, Ts&&... args);
}
using common::hash, common::unused, common::block_forever, common::is_interactive, common::env, common::int128_t,
common::uint128_t, common::Empty, common::CaseInsensitiveStringLessComparator, common::RemoveMemberPointer,
common::MoveQualifiers, common::FallbackIfNoTypeDeclared, common::exec, common::sequence, common::read,
common::toLvalue;
common::toLvalue, common::for_each;
}

View File

@@ -46,4 +46,31 @@ namespace biu::common
return sequence(from, to);
}
template <typename T> T& detail_::operator|(T&& obj, const ToLvalueHelper&) { return static_cast<T&>(obj); }
template <typename Function, typename T, typename... Ts> void for_each(Function&& function, T&& arg, Ts&&... args)
{
if constexpr (sizeof...(Ts) == 0)
{
[&]<std::size_t... Is>(std::index_sequence<Is...>)
{ (std::forward<Function>(function)(std::get<Is>(std::forward<T>(arg))) , ...); }
(std::make_index_sequence<sizeof...(Ts)>{});
}
else
{
[&]<typename Tuple, std::size_t... Is>(std::index_sequence<Is...>, Tuple&& tuple)
{
([&]<std::size_t I, std::size_t... Js>(std::index_sequence<Js...>) -> decltype(auto)
{
std::apply
(
std::forward<Function>(function),
std::forward_as_tuple(std::get<I>(std::get<Js>(std::forward<Tuple>(tuple)))...));
}.template operator()<Is>(std::make_index_sequence<std::tuple_size_v<Tuple>>{}), ...);
}
(
std::make_index_sequence<std::tuple_size_v<T>>{},
std::forward_as_tuple(std::forward<T>(arg), std::forward<Ts>(args)...)
);
}
}
}

View File

@@ -81,8 +81,8 @@ namespace biu
namespace detail_
{
template <typename Matrix> class EigenMatrix : public std::false_type {};
template <typename Scalar, int Rows, int Cols, int Options>
class EigenMatrix<Eigen::Matrix<Scalar, Rows, Cols, Options>> : public std::true_type {};
template <typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class EigenMatrix<Eigen::Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols>> : public std::true_type {};
}
template <typename Matrix> concept EigenMatrix = detail_::EigenMatrix<Matrix>::value;
}

View File

@@ -2,6 +2,7 @@
# include <utility>
# include <biu/eigen.hpp>
# include <biu/common.hpp>
# include <biu/format.hpp>
# include <range/v3/view.hpp>
# include <zpp_bits.h>
@@ -304,3 +305,15 @@ template <typename Matrix> constexpr auto Eigen::serialize(auto & archive, Matri
return result;
}
}
template <typename Matrix, typename Char> requires
(
biu::EigenMatrix<std::remove_cvref_t<Matrix>>
// should not be vector, vector is handled by fmt ranges
&& []
{
constexpr auto nrows = Matrix::CompileTimeTraits::RowsAtCompileTime,
ncols = Matrix::CompileTimeTraits::ColsAtCompileTime;
return (nrows == Eigen::Dynamic || nrows > 1) && (ncols == Eigen::Dynamic || ncols > 1);
}()
)
struct fmt::formatter<Matrix, Char> : fmt::basic_ostream_formatter<Char> {};

View File

@@ -1,6 +1,7 @@
# pragma once
# define BOOST_STACKTRACE_USE_BACKTRACE
# include <fmt/chrono.h>
# include <tgbot/tgbot.h>
# include <biu/logger.hpp>
# include <biu/common.hpp>
# include <biu/format.hpp>
@@ -17,6 +18,27 @@ namespace biu
Logger::Level::Debug
# endif
};
inline void Logger::init(std::experimental::observer_ptr<std::ostream> stream, Level level)
{ LoggerConfig_ = LoggerConfigType_{stream, nullptr, level}; }
inline void Logger::init(std::shared_ptr<std::ostream> stream, Level level)
{
LoggerConfig_ = LoggerConfigType_
{std::experimental::make_observer(stream.get()), stream, level};
}
inline Atomic<std::optional<std::pair<std::string, std::string>>> Logger::TelegramConfig_;
inline void Logger::telegram_init(const std::string& token, const std::string& chat_id)
{ TelegramConfig_ = std::make_pair(token, chat_id); }
inline void Logger::telegram_notify(const std::string& message, bool async)
{
auto notify = [](const std::string& message)
{
auto&& lock = TelegramConfig_.lock();
TgBot::Bot bot(lock.value()->first);
bot.getApi().sendMessage(lock.value()->first, message);
};
if (async) std::thread(notify, message).detach();
else notify(message);
}
template <typename T> Logger::ObjectMonitor<T>::ObjectMonitor()
: CreateTime_{std::chrono::steady_clock::now()}
{
@@ -39,6 +61,7 @@ namespace biu
{ lock->erase(it); return; }
guard.error("{} {} not found in Logger::Objects."_f(fmt::ptr(this), nameof::nameof_full_type<T>()));
}
inline Atomic<std::multimap<const void*, std::string_view>> Logger::Objects_;
template <typename FinalException> Logger::Exception<FinalException>::Exception(const std::string& message)
{
@@ -46,6 +69,14 @@ namespace biu
log.print_exception(nameof::nameof_full_type<FinalException>(), message, Stacktrace_, {});
}
inline thread_local unsigned Logger::Guard::Indent_ = 0;
inline std::size_t Logger::Guard::get_time_ms() const
{
return std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::steady_clock::now() - StartTime_).count();
}
inline std::size_t Logger::Guard::get_thread_id() const
{ return std::hash<std::thread::id>{}(std::this_thread::get_id()); }
template <typename... Param> Logger::Guard::Guard(Param&&... param)
: StartTime_{std::chrono::steady_clock::now()}
{
@@ -71,22 +102,37 @@ namespace biu
void Logger::Guard::operator()() const { debug("reached after {} ms."_f(get_time_ms())); }
template <Logger::Level L> void Logger::Guard::log(const std::string& message) const
{
# ifndef BIU_LOGGER_DEBUG
if constexpr (L == Level::Debug) return;
# endif
if (auto&& lock = LoggerConfig_.lock(); lock->Level >= L)
{
static_assert(std::same_as<std::size_t, std::uint64_t>);
auto time = std::chrono::system_clock::now();
auto time = std::chrono::time_point_cast<std::chrono::milliseconds>(std::chrono::system_clock::now());
# ifdef BIU_LOGGER_DEBUG
boost::stacktrace::stacktrace stack;
*lock->Stream << "[ {:%Y-%m-%d %H:%M:%S}:{:03} {:08x} {:04} {}:{} {} ] {}\n"_f
# ifdef BIU_LOGGER_SOURCE_ROOT
auto source_root = std::string_view(BIU_LOGGER_SOURCE_ROOT "/");
auto source_file = stack[0].source_file().starts_with(source_root) ?
stack[0].source_file().substr(source_root.size()) : stack[0].source_file();
# else
auto source_file = stack[0].source_file();
# endif
*lock->Stream << "[ {:%T} {:02x} {:02} ] {} (at {}:{} {} )\n"_f
(
time,
std::chrono::time_point_cast<std::chrono::milliseconds>(time).time_since_epoch().count() % 1000,
get_thread_id() % std::numeric_limits<std::uint64_t>::max(),
get_thread_id() % std::numeric_limits<std::uint16_t>::max(),
Indent_,
stack[0].source_file().empty() ? "??"s : stack[0].source_file(),
source_file.empty() ? "??"s : source_file,
stack[0].source_line() == 0 ? "??"s : "{}"_f(stack[0].source_line()),
stack[0].name(),
message
) << std::flush;
# else
*lock->Stream << "[ {:%T} {:02x} {:02} ] {}\n"_f
(time, get_thread_id() % std::numeric_limits<std::uint16_t>::max(), Indent_, message)
<< std::flush;
# endif
}
}
void Logger::Guard::error(const std::string& message) const { log<Level::Error>(message); }
@@ -119,4 +165,6 @@ namespace biu
*lock->Stream << std::flush;
}
}
inline Atomic<std::map<std::size_t, std::size_t>> Logger::Threads_;
}

View File

@@ -1,6 +1,7 @@
# include <future>
# include <utility>
# include <cstdio>
# define BIU_INTERNAL
# include <biu.hpp>
# include <boost/process.hpp>
# include <boost/preprocessor.hpp>

View File

@@ -1,3 +1,4 @@
# define BIU_INTERNAL
# include <biu.hpp>
namespace biu::hdf5

View File

@@ -1,41 +0,0 @@
# include <tgbot/tgbot.h>
# include <biu.hpp>
namespace biu
{
void Logger::init(std::experimental::observer_ptr<std::ostream> stream, Level level)
{ LoggerConfig_ = LoggerConfigType_{stream, nullptr, level}; }
void Logger::init(std::shared_ptr<std::ostream> stream, Level level)
{
LoggerConfig_ = LoggerConfigType_
{std::experimental::make_observer(stream.get()), stream, level};
}
Atomic<std::optional<std::pair<std::string, std::string>>> Logger::TelegramConfig_;
void Logger::telegram_init(const std::string& token, const std::string& chat_id)
{ TelegramConfig_ = std::make_pair(token, chat_id); }
void Logger::telegram_notify(const std::string& message, bool async)
{
auto notify = [](const std::string& message)
{
auto&& lock = TelegramConfig_.lock();
TgBot::Bot bot(lock.value()->first);
bot.getApi().sendMessage(lock.value()->first, message);
};
if (async) std::thread(notify, message).detach();
else notify(message);
}
Atomic<std::multimap<const void*, std::string_view>> Logger::Objects_;
thread_local unsigned Logger::Guard::Indent_ = 0;
std::size_t Logger::Guard::get_time_ms() const
{
return std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::steady_clock::now() - StartTime_).count();
}
std::size_t Logger::Guard::get_thread_id() const
{ return std::hash<std::thread::id>{}(std::this_thread::get_id()); }
Atomic<std::map<std::size_t, std::size_t>> Logger::Threads_;
}

View File

@@ -1,3 +1,4 @@
# define BIU_INTERNAL
# include <biu.hpp>
namespace biu
@@ -5,18 +6,13 @@ namespace biu
concurrencpp::generator<std::pair<std::string_view, std::sregex_iterator>> string::find
(SmartRef<const std::string> data, SmartRef<const std::regex> regex)
{
Logger::Guard log;
std::string::const_iterator unmatched_prefix_begin = data->cbegin(), unmatched_prefix_end;
std::sregex_iterator regit;
while (true)
{
if (regit == std::sregex_iterator{}) regit = std::sregex_iterator{data->begin(), data->end(), *regex};
else regit++;
if (regit == std::sregex_iterator{})
{
unmatched_prefix_end = data->cend();
log.debug("distance: {}"_f(std::distance(unmatched_prefix_begin, unmatched_prefix_end)));
}
if (regit == std::sregex_iterator{}) unmatched_prefix_end = data->cend();
else unmatched_prefix_end = (*regit)[0].first;
co_yield
{
@@ -35,7 +31,6 @@ namespace biu
std::string string::replace
(const std::string& data, const std::regex& regex, std::function<std::string(const std::smatch&)> function)
{
Logger::Guard log;
std::string result;
for (auto matched : find(data, regex))
{

View File

@@ -10,4 +10,22 @@ int main()
| biu::toLvalue
| ranges::views::transform([](int i){ return i + 1; })
| ranges::to_vector;
struct test_struct
{
int a = 1;
double b = 2;
std::string c = "3";
} c;
biu::for_each([&](auto&& i){ std::cout << c.*i << '\n'; },
std::tuple(&test_struct::a, &test_struct::b, &test_struct::c));
struct test_struct2
{
int a = 4;
double b = 5;
std::string c = "6";
} d;
biu::for_each([&](auto&& i, auto&& j){ c.*i = d.*j; },
std::tuple(&test_struct::a, &test_struct::b, &test_struct::c),
std::tuple(&test_struct2::a, &test_struct2::b, &test_struct2::c));
}

View File

@@ -26,4 +26,7 @@ int main()
auto e = biu::deserialize<decltype(c)>(biu::serialize(c));
static_assert(std::same_as<decltype(e), decltype(c)>);
assert(c == e);
auto i = "{}"_f(a);
auto j = "{}"_f(c);
}

View File

@@ -0,0 +1,5 @@
# include <biu.hpp>
int main()
{
biu::Logger::Guard guard;
}

View File

@@ -76,7 +76,7 @@ inputs: rec
sqlite-orm = inputs.pkgs.callPackage ./sqlite-orm.nix { src = inputs.topInputs.sqlite-orm; };
mkPnpmPackage = inputs.pkgs.callPackage ./mkPnpmPackage.nix {};
sbatch-tui = inputs.pkgs.callPackage ./sbatch-tui { inherit biu; stdenv = inputs.pkgs.clang18Stdenv; };
ufo = inputs.pkgs.callPackage ./ufo
ufo = inputs.pkgs.callPackage inputs.topInputs.ufo
{
inherit biu matplotplusplus;
tbb = inputs.pkgs.tbb_2021_11;
@@ -92,6 +92,8 @@ inputs: rec
spectroscopy = inputs.pkgs.callPackage ./spectroscopy.nix { src = inputs.topInputs.spectroscopy; };
mirism = inputs.pkgs.callPackage ./mirism { inherit biu; stdenv = inputs.pkgs.clang18Stdenv; };
vaspberry = inputs.pkgs.callPackage ./vaspberry.nix { src = inputs.topInputs.vaspberry; };
highfive = inputs.pkgs.callPackage ./highfive.nix { src = inputs.topInputs.highfive; };
stickerpicker = inputs.pkgs.python3Packages.callPackage ./stickerpicker.nix { src = inputs.topInputs.stickerpicker; };
fromYaml = content: builtins.fromJSON (builtins.readFile
(inputs.pkgs.runCommand "toJSON" {}

8
packages/highfive.nix Normal file
View File

@@ -0,0 +1,8 @@
{ src, stdenv, cmake, hdf5 }: stdenv.mkDerivation
{
name = "highfive";
inherit src;
nativeBuildInputs = [ cmake ];
buildInputs = [ hdf5 ];
doCheck = true;
}

View File

@@ -14,7 +14,7 @@ namespace hpcstat
{ "uL/ZfBXKko30VpeuKb5dnnxbhJ8IAuHo8W+n2uwQhCI", { "hjp", "JiaPeng Huang" } },
{ "0tIFcYlfj/onVGVJsg9Th4mPtSZ5R+5srl4gxwZgM3k", { "wm", "Man Wang" } },
{ "Ciam/qGL/ZrXIQearsg9NvFh/soPZUG4Z8JhOFSTk48", { "lly", "Liyi Luo" } },
{ "SHA256:4C2HKaBqgAzhPLjH/BuQZOjGx85NEeUA+UkkWkRzl8k", { "yxf", "Xiaofang Ye" } },
{ "4C2HKaBqgAzhPLjH/BuQZOjGx85NEeUA+UkkWkRzl8k", { "yxf", "Xiaofang Ye" } },
{ "7bmG24muNsaAZkCy7mQ9Nf2HuNafmvUO+Hf1bId9zts", { "00", "Yaping Wu" } },
{ "dtx0QxdgFrXn2SYxtIRz43jIAH6rLgJidSdTvuTuews", { "01", "Jing Li" } },
{ "8crUO9u4JiVqw3COyjXfzZe87s6XZFhvi0LaY0Mv6bg", { "02", "Huahan Zhan" } },

View File

@@ -0,0 +1,6 @@
{ src, buildPythonApplication, aiohttp, yarl, pillow, telethon, cryptg, python-magic }: buildPythonApplication
{
name = "stickerpicker";
inherit src;
propagatedBuildInputs = [ aiohttp yarl pillow telethon cryptg python-magic ];
}

View File

@@ -1 +0,0 @@
use flake .#ufo

View File

@@ -1,31 +0,0 @@
cmake_minimum_required(VERSION 3.14)
project(ufo VERSION 0 LANGUAGES CXX)
enable_testing()
include(GNUInstallDirs)
if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
message("Setting build type to 'Release' as none was specified.")
set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build." FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
find_package(TBB REQUIRED)
find_package(Matplot++ REQUIRED)
find_package(biu REQUIRED)
find_package(Threads REQUIRED)
add_executable(ufo src/fold.cpp src/unfold.cpp src/plot.cpp src/main.cpp)
target_include_directories(ufo PRIVATE ${PROJECT_SOURCE_DIR}/include)
target_link_libraries(ufo PRIVATE TBB::tbb Matplot++::matplot biu::biu)
target_compile_features(ufo PRIVATE cxx_std_23)
target_compile_options(ufo PRIVATE -fexperimental-library)
install(TARGETS ufo RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR})
get_property(ImportedTargets DIRECTORY "${CMAKE_SOURCE_DIR}" PROPERTY IMPORTED_TARGETS)
message("Imported targets: ${ImportedTargets}")
message("List of compile features: ${CMAKE_CXX_COMPILE_FEATURES}")
include(CTest)
add_test(NAME fold COMMAND ufo fold ${PROJECT_SOURCE_DIR}/test/fold/config.yaml)

View File

@@ -1,11 +0,0 @@
{
stdenv, cmake, pkg-config, version ? null,
tbb, matplotplusplus, biu
}: stdenv.mkDerivation
{
name = "ufo";
src = ./.;
buildInputs = [ tbb matplotplusplus biu ];
nativeBuildInputs = [ cmake pkg-config ];
doCheck = true;
}

View File

@@ -1,45 +0,0 @@
分为几个功能:
* fold根据要计算的单胞的 q 点路径,计算超胞中对应的 q 点路径,生成的路径再交给 phonopy 计算。
* unfold根据 phonopy 计算的结果,将超胞的结果展开到单胞中。
* plot对计算结果画图。
主要的输入输出格式均为 yaml。对于数据特别大的情况也可以从 hdf5 中读取一部分数据或者将一部分数据写入到 hdf5 文件中。
# fold
## 输入
```yaml
# 三个整数组成的向量,表示从单胞到超胞,三个晶格矢量的倍数
# 必写
SuperCellMultiplier: [2, 2, 2]
# 一个变换矩阵,表明超胞经历了怎样的扭曲。
# 可选,默认值为单位矩阵
SuperCellDeformation: [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
# 一个由三个浮点数组成的向量,表示考虑的 q 点
# 必写
Qpoints:
- [0, 0, 0]
- [0.1, 0, 0]
- [0.2, 0, 0]
- [0.3, 0, 0]
- [0.4, 0, 0]
- [0.5, 0, 0]
# 一个 DataFile 类型的对象,表明输出结果到哪个文件
# 必写
OutputFile:
```
## 输出
```yaml
# 得到的 q 点坐标
Qpoints:
- [0, 0, 0]
- [0.1, 0, 0]
- [0.2, 0, 0]
- [0.3, 0, 0]
- [0.4, 0, 0]
- [0.5, 0, 0]
```

View File

@@ -1,72 +0,0 @@
# pragma once
# include <biu.hpp>
namespace ufo
{
// 在相位中, 约定为使用 $\exp (2 \pi i \vec{q} \cdot \vec{r})$ 来表示原子的运动状态
// (而不是 $\exp (-2 \pi i \vec{q} \cdot \vec{r})$)
// 一些书定义的倒格矢中包含了 $2 \pi$ 的部分, 我们这里约定不包含这部分.
// 也就是说, 正格子与倒格子的转置相乘, 得到单位矩阵.
using namespace biu::literals;
using namespace biu::stream_operators;
void fold(std::string config_file);
void unfold(std::string config_file);
void plot_band(std::string config_file);
void plot_point(std::string config_file);
// unfold 和 plot 都需要用到这个,所以写出来
struct UnfoldOutput
{
Eigen::Matrix3d PrimativeCell;
Eigen::Matrix3i SuperCellTransformation;
Eigen::Vector3i SuperCellMultiplier;
Eigen::Matrix3d SuperCellDeformation;
std::optional<std::vector<std::size_t>> SelectedAtoms;
// 关于各个 Q 点的数据
struct QpointDataType
{
// Q 点的坐标,单位为单胞的倒格矢
Eigen::Vector3d Qpoint;
// 来源于哪个 Q 点, 单位为超胞的倒格矢
Eigen::Vector3d Source;
std::size_t SourceIndex;
// 关于这个 Q 点上各个模式的数据
struct ModeDataType
{
// 模式的频率,单位为 THz
double Frequency;
// 模式的权重
double Weight;
};
std::vector<ModeDataType> ModeData;
};
std::vector<QpointDataType> QpointData;
struct MetaQpointDataType
{
// Q 点的坐标,单位为单胞的倒格矢
Eigen::Vector3d Qpoint;
// 关于这个 Q 点上各个模式的数据
struct ModeDataType
{
// 模式的频率,单位为 THz
double Frequency;
// 模式中各个原子的运动状态
// 这个数据应当是这样得到的:动态矩阵的 eigenvector 乘以 $\exp(-2 \pi i \vec q \cdot \vec r)$
// 这个数据可以认为是原子位移中, 关于超胞有周期性的那一部分, 再乘以原子质量的开方.
// 这个数据会在 unfold 时被归一化
Eigen::MatrixX3cd AtomMovement;
};
std::vector<ModeDataType> ModeData;
};
std::vector<MetaQpointDataType> MetaQpointData;
using serialize = zpp::bits::members<7>;
};
}

View File

@@ -1,58 +0,0 @@
# include <ufo.hpp>
void ufo::fold(std::string config_file)
{
struct Input
{
Eigen::Matrix3d SuperCellDeformation;
Eigen::Vector3i SuperCellMultiplier;
std::vector<Eigen::Vector3d> Qpoints;
std::optional<std::string> OutputFile;
};
struct Output
{
std::vector<Eigen::Vector3d> Qpoints;
};
auto fold = []
(
Eigen::Vector3d qpoint_in_reciprocal_primitive_cell_by_reciprocal_primitive_cell,
Eigen::Matrix3d super_cell_transformation
) -> Eigen::Vector3d
{
/*
首先需要将 q 点坐标的单位转换为 ModifiedSuperCell 的格矢,可知:
QpointByReciprocalModifiedSuperCell = SuperCellMultiplier * QpointByReciprocalPrimitiveCell;
接下来考虑将 q 点坐标的单位转换为 SuperCell 的格矢
ModifiedSuperCell = SuperCellMultiplier * PrimativeCell;
SuperCell = SuperCellDeformation * ModifiedSuperCell;
ReciprocalModifiedSuperCell = ModifiedSuperCell.inverse().transpose();
ReciprocalSuperCell = SuperCell.inverse().transpose();
Qpoint = QpointByReciprocalModifiedSuperCell.transpose() * ReciprocalModifiedSuperCell;
Qpoint = QpointByReciprocalSuperCell.transpose() * ReciprocalSuperCell;
整理可以得到:
QpointByReciprocalSuperCell = SuperCellDeformation * QpointByReciprocalModifiedSuperCell;
两个式子结合,可以得到:
QpointByReciprocalSuperCell = SuperCellDeformation * SuperCellMultiplier * QpointByReciprocalPrimitiveCell;
*/
auto qpoint_by_reciprocal_super_cell =
(
super_cell_transformation * qpoint_in_reciprocal_primitive_cell_by_reciprocal_primitive_cell
).eval();
/*
到目前为止,我们还没有移动过 q 点的坐标。现在,我们将它移动整数个 ReciprocalSuperCell直到它落在超胞的倒格子中。
这等价于直接取 QpointByReciprocalSuperCell - QpointByReciprocalSuperCell.floor()。
*/
return (qpoint_by_reciprocal_super_cell.array() - qpoint_by_reciprocal_super_cell.array().floor()).matrix();
};
auto input = YAML::LoadFile(config_file).as<Input>();
Output output;
output.Qpoints = input.Qpoints
| ranges::views::transform([&](auto& qpoint)
{
return fold(qpoint, input.SuperCellDeformation * input.SuperCellMultiplier.cast<double>().asDiagonal());
})
| ranges::to_vector;
// 默认的输出太丑了,但是不想手动写了,忍一下
std::ofstream(input.OutputFile.value_or("output.yaml")) << YAML::Node(output);
}

View File

@@ -1,17 +0,0 @@
# include <ufo.hpp>
int main(int argc, const char** argv)
{
if (argc != 3)
throw std::runtime_error(fmt::format("Usage: {} task config.yaml", argv[0]));
if (argv[1] == std::string("fold"))
ufo::fold(argv[2]);
else if (argv[1] == std::string("unfold"))
ufo::unfold(argv[2]);
else if (argv[1] == std::string("plot-band"))
ufo::plot_band(argv[2]);
else if (argv[1] == std::string("plot-point"))
ufo::plot_point(argv[2]);
else
throw std::runtime_error(fmt::format("Unknown task: {}", argv[1]));
}

View File

@@ -1,431 +0,0 @@
# include <ufo.hpp>
# include <matplot/matplot.h>
# include <boost/container/flat_map.hpp>
void ufo::plot_band(std::string config_file)
{
struct Input
{
std::string UnfoldedDataFile;
// 要画图的 q 点路径列表
// 内层表示一个路径上的 q 点,外层表示不同的路径
// 单位为倒格矢
std::vector<std::vector<Eigen::Vector3d>> Qpoints;
// 插值时使用的分辨率(不影响画出来图片的分辨率和横纵比)
std::array<std::size_t, 2> InterpolationResolution;
// 画图区域的y轴和x轴的比例。如果不指定则由matplot++自动调整(通常调整为正方形,即 1
std::optional<double> AspectRatio;
// 整张图片的分辨率
std::optional<std::array<std::size_t, 2>> PictureResolution;
// 画图的频率范围
std::array<double, 2> FrequencyRange;
// 搜索 q 点时的阈值,单位为埃^-1
std::optional<double> ThresholdWhenSearchingQpoints;
// 是否要在 y 轴上作一些标记
std::optional<std::vector<std::pair<double, std::string>>> YTicks;
// 是否输出图片
std::optional<std::string> OutputPictureFile;
// 是否输出数据,可以进一步使用 matplotlib 画图
std::optional<std::string> OutputDataFile;
};
// 根据 q 点路径, 搜索要使用的 q 点,返回的是 q 点在 QpointData 中的索引以及到路径起点的距离,以及这段路径的总长度
auto search_qpoints = []
(
const Eigen::Matrix3d& primative_cell,
const std::pair<Eigen::Vector3d, Eigen::Vector3d>& path,
const std::vector<Eigen::Vector3d>& qpoints,
double threshold, bool exclude_endpoint = false
)
{
// 对于 output 中的每一个点, 检查这个点是否在路径上. 如果在, 把它加入到 selected_qpoints 中
// 键为这个点到起点的距离
boost::container::flat_map<double, std::size_t> selected_qpoints;
auto begin = (path.first.transpose() * primative_cell.reverse()).transpose().eval();
auto end = (path.second.transpose() * primative_cell.reverse()).transpose().eval();
for (std::size_t i = 0; i < qpoints.size(); i++)
for (auto cell_shift
: biu::sequence(Eigen::Vector3i(-1, -1, -1), Eigen::Vector3i(2, 2, 2)))
{
auto qpoint
= ((qpoints[i] + cell_shift.first.cast<double>()).transpose() * primative_cell.reverse()).transpose().eval();
// 计算这个点到前两个点所在直线的距离
auto distance = (end - begin).cross(qpoint - begin).norm()
/ (path.second - path.first).norm();
// 如果这个点到前两个点所在直线的距离小于阈值, 则认为这个点在这条直线上,但不一定在这两个点之间
if (distance < threshold)
{
// 计算这个点到前两个点的距离, 两个距离都应该小于两点之间的距离
auto distance1 = (qpoint - begin).norm();
auto distance2 = (qpoint - end).norm();
auto distance3 = (end - begin).norm();
if (distance1 < distance3 + threshold && distance2 < distance3 + threshold)
// 如果这个点不在终点处, 或者不排除终点, 则加入
if (distance2 > threshold || !exclude_endpoint) selected_qpoints.emplace(distance1, i);
}
}
// 去除非常接近的点
for (auto it = selected_qpoints.begin(); it != selected_qpoints.end();)
{
auto next = std::next(it);
if (next == selected_qpoints.end()) break;
else if (next->first - it->first < threshold) selected_qpoints.erase(next);
else it = next;
}
if (selected_qpoints.empty()) throw std::runtime_error("No q points found");
return std::make_pair(selected_qpoints, (end - begin).norm());
};
// 根据搜索到的 q 点, 计算图中每个点的值
auto calculate_values = []
(
// search_qpoints 的第一个返回值
const boost::container::flat_map<double, std::size_t>& path,
// 每一条连续路径的第一个 q 点的索引
const std::set<std::size_t>& path_begin,
// 所有 q 点的数据(需要用到它的频率和权重)
const std::vector<UnfoldOutput::QpointDataType>& qpoints,
// 用于插值的分辨率和范围
const std::array<std::size_t, 2>& resolution,
const std::array<double, 2>& frequency_range,
// 路径的总长度
double total_distance
)
{
// 按比例混合两个 q 点的结果,得到可以用于画图的那一列数据
auto blend = [&]
(
// 两个点的索引
std::size_t a, std::size_t b,
// 按照连续路径混合还是按照断开的路径混合
bool continuous,
// 第一个点占的比例
double ratio,
std::size_t resolution, std::array<double, 2> frequency_range
) -> std::vector<double>
{
// 混合得到的频率和权重
std::vector<double> frequency, weight;
// 如果是连续路径,将每个模式的频率和权重按照比例混合
if (continuous)
{
assert(qpoints[a].ModeData.size() == qpoints[b].ModeData.size());
for (std::size_t i = 0; i < qpoints[a].ModeData.size(); i++)
{
frequency.push_back
(qpoints[a].ModeData[i].Frequency * ratio + qpoints[b].ModeData[i].Frequency * (1 - ratio));
weight.push_back(qpoints[a].ModeData[i].Weight * ratio + qpoints[b].ModeData[i].Weight * (1 - ratio));
}
}
// 如果是不连续路径,将每个模式的权重乘以比例,最后相加
else
{
for (std::size_t i = 0; i < qpoints[a].ModeData.size(); i++)
{
frequency.push_back(qpoints[a].ModeData[i].Frequency);
weight.push_back(qpoints[a].ModeData[i].Weight * ratio);
}
for (std::size_t i = 0; i < qpoints[b].ModeData.size(); i++)
{
frequency.push_back(qpoints[b].ModeData[i].Frequency);
weight.push_back(qpoints[b].ModeData[i].Weight * (1 - ratio));
}
}
std::vector<double> result(resolution);
for (std::size_t i = 0; i < frequency.size(); i++)
{
std::ptrdiff_t index = (frequency[i] - frequency_range[0]) / (frequency_range[1] - frequency_range[0])
* resolution;
if (index >= 0 && index < static_cast<std::ptrdiff_t>(resolution)) result[index] += weight[i];
}
return result;
};
std::vector<std::vector<double>> values;
for (std::size_t i = 0; i < resolution[0]; i++)
{
auto current_distance = total_distance * i / resolution[0];
auto it = path.lower_bound(current_distance);
if (it == path.begin()) values.push_back(blend
(it->second, it->second, true, 1, resolution[1], frequency_range));
else if (it == path.end()) values.push_back(blend
(
std::prev(it)->second, std::prev(it)->second, true, 1,
resolution[1], frequency_range
));
else values.push_back(blend
(
std::prev(it)->second, it->second, !path_begin.contains(it->second),
(it->first - current_distance) / (it->first - std::prev(it)->first),
resolution[1], frequency_range
));
}
return values;
};
// 根据数值, 画图
auto plot = []
(
const std::vector<std::vector<double>>& values,
const std::string& filename,
const std::vector<double>& x_ticks, const std::vector<double>& y_ticks,
const std::vector<std::string>& y_ticklabels,
const std::optional<double>& aspect_ratio,
const std::optional<std::array<std::size_t, 2>>& resolution
)
{
std::vector<std::vector<double>>
r(values[0].size(), std::vector<double>(values.size(), 0)),
g(values[0].size(), std::vector<double>(values.size(), 0)),
b(values[0].size(), std::vector<double>(values.size(), 0)),
a(values[0].size(), std::vector<double>(values.size(), 0));
for (std::size_t i = 0; i < values[0].size(); i++)
for (std::size_t j = 0; j < values.size(); j++)
{
auto v = values[j][i];
if (v < 0.05) v = 0;
a[i][j] = v * 100 * 255;
if (a[i][j] > 255) a[i][j] = 255;
r[i][j] = 255 - v * 2 * 255;
if (r[i][j] < 0) r[i][j] = 0;
g[i][j] = 255 - v * 2 * 255;
if (g[i][j] < 0) g[i][j] = 0;
b[i][j] = 255;
}
auto f = matplot::figure(true);
auto ax = f->current_axes();
auto image = ax->image(std::tie(r, g, b));
image->matrix_a(a);
ax->y_axis().reverse(false);
ax->x_axis().tick_values(x_ticks);
ax->x_axis().tick_length(1);
ax->x_axis().ticklabels(std::vector<std::string>(x_ticks.size()));
ax->y_axis().tick_values(y_ticks);
ax->y_axis().tick_length(1);
ax->y_axis().ticklabels(y_ticklabels);
if (aspect_ratio)
{
ax->axes_aspect_ratio_auto(false);
ax->axes_aspect_ratio(*aspect_ratio);
}
if (resolution)
{
f->width((*resolution)[0]);
f->height((*resolution)[1]);
}
f->save(filename, "png");
};
auto input = YAML::LoadFile(config_file).as<Input>();
auto unfolded_data = biu::deserialize<UnfoldOutput>
(biu::read<std::byte>(input.UnfoldedDataFile));
// 搜索画图需要用到的 q 点
// key 到起点的距离value 为 q 点在 QpointData 中的索引
boost::container::flat_map<double, std::size_t> path;
// 每一条连续路径的第一个 q 点在 path 中的索引
std::set<std::size_t> path_begin;
// x 轴的刻度,为 path 中的索引
std::set<std::size_t> x_ticks_index;
double total_distance = 0;
for (auto& line : input.Qpoints)
{
assert(line.size() >= 2);
path_begin.insert(path.size());
for (std::size_t i = 0; i < line.size() - 1; i++)
{
x_ticks_index.insert(path.size());
auto [this_path, this_distance] = search_qpoints
(
unfolded_data.PrimativeCell, {line[i], line[i + 1]},
unfolded_data.QpointData
| ranges::views::transform(&UnfoldOutput::QpointDataType::Qpoint)
| ranges::to_vector,
input.ThresholdWhenSearchingQpoints.value_or(0.001),
i != line.size() - 2
);
path.merge
(
this_path
| ranges::views::transform([&](auto& p)
{ return std::make_pair(p.first + total_distance, p.second); })
| ranges::to<boost::container::flat_map>
);
total_distance += this_distance;
}
}
// 计算画图的数据
auto values = calculate_values
(
path, path_begin, unfolded_data.QpointData, input.InterpolationResolution,
input.FrequencyRange, total_distance
);
auto x_ticks = x_ticks_index | ranges::views::transform([&](auto i)
{ return path.nth(i)->first / total_distance * input.InterpolationResolution[0]; }) | ranges::to<std::vector>;
auto y_ticks = input.YTicks.value_or(std::vector<std::pair<double, std::string>>{})
| biu::toLvalue | ranges::views::keys
| ranges::views::transform([&](auto i)
{
return (i - input.FrequencyRange[0]) / (input.FrequencyRange[1] - input.FrequencyRange[0])
* input.InterpolationResolution[1];
})
| ranges::to_vector;
auto y_ticklabels = input.YTicks.value_or(std::vector<std::pair<double, std::string>>{})
| biu::toLvalue | ranges::views::values | ranges::to_vector;
if (input.OutputPictureFile) plot
(
values, input.OutputPictureFile.value(),
x_ticks, y_ticks, y_ticklabels, input.AspectRatio, input.PictureResolution
);
if (input.OutputDataFile)
biu::Hdf5file(input.OutputDataFile.value(), true)
.write("Values", values)
.write("XTicks", x_ticks)
.write("YTicks", y_ticks)
.write("YTickLabels", y_ticklabels)
.write("InterpolationResolution", input.InterpolationResolution)
.write("FrequencyRange", input.FrequencyRange);
}
void ufo::plot_point(std::string config_file)
{
struct Input
{
std::string UnfoldedDataFile;
// 要画图的 q 点
Eigen::Vector3d Qpoint;
// 插值的分辨率
std::size_t InterpolationResolution;
std::optional<double> AspectRatio;
std::optional<std::array<std::size_t, 2>> PictureResolution;
// 画图的频率范围
std::array<double, 2> FrequencyRange;
// 搜索 q 点时的阈值,单位为埃^-1
std::optional<double> ThresholdWhenSearchingQpoints;
// 是否要在 z 轴上作一些标记
std::optional<std::vector<std::pair<double, std::string>>> XTicks;
// 是否输出图片
std::optional<std::string> OutputPictureFile;
// 是否输出插值后数据,可以进一步使用 matplotlib 画图
std::optional<std::string> OutputDataFile;
// 是否输出插值前数据,可以配合 phonopy 结果深入研究
std::optional<std::string> OutputRawDataFile;
};
// 根据 q 点路径, 搜索要使用的 q 点,返回的是 q 点在 QpointData 中的索引
auto search_qpoints = []
(
const Eigen::Matrix3d& primative_cell,
const Eigen::Vector3d& qpoint, const std::vector<Eigen::Vector3d>& qpoints,
double threshold
)
{
biu::Logger::Guard log(qpoint);
// 对于 output 中的每一个点, 检查这个点是否与所寻找的点足够近,如果足够近则返回
for (std::size_t i = 0; i < qpoints.size(); i++)
for (auto cell_shift
: biu::sequence(Eigen::Vector3i(-1, -1, -1), Eigen::Vector3i(2, 2, 2)))
{
auto this_qpoint
= (primative_cell.reverse().transpose() * (qpoints[i] + cell_shift.first.cast<double>())).eval();
if ((this_qpoint - primative_cell.reverse().transpose() * qpoint).norm() < threshold) return log.rtn(i);
}
throw std::runtime_error("No q points found");
};
// 根据搜索到的 q 点, 计算图中每个点的值
auto calculate_values = []
(
// q 点的数据(需要用到它的频率和权重)
const UnfoldOutput::QpointDataType& qpoint,
// 用于插值的分辨率和范围
std::size_t resolution,
const std::array<double, 2>& frequency_range
)
{
biu::Logger::Guard log;
std::vector<double> result(resolution);
for (auto& mode : qpoint.ModeData)
{
double index_double = (mode.Frequency - frequency_range[0]) / (frequency_range[1] - frequency_range[0])
* (resolution - 1);
std::ptrdiff_t index = std::round(index_double);
if (index >= 0 && index < static_cast<std::ptrdiff_t>(resolution)) result[index] += mode.Weight;
}
return log.rtn(result);
};
// 根据数值, 画图
auto plot = []
(
const std::vector<double>& values, const std::string& filename,
const std::vector<double>& x_ticks, const std::vector<std::string>& x_ticklabels,
const std::optional<double>& aspect_ratio, const std::optional<std::array<std::size_t, 2>>& resolution
)
{
biu::Logger::Guard log;
auto f = matplot::figure(true);
auto ax = f->current_axes();
auto image = ax->area(values, 0, false, "");
ax->y_axis().reverse(false);
ax->x_axis().tick_values(x_ticks);
ax->x_axis().tick_length(1);
ax->x_axis().ticklabels(x_ticklabels);
ax->y_axis().tick_values({});
if (aspect_ratio)
{
ax->axes_aspect_ratio_auto(false);
ax->axes_aspect_ratio(*aspect_ratio);
}
if (resolution)
{
f->width((*resolution)[0]);
f->height((*resolution)[1]);
}
f->save(filename, "png");
};
biu::Logger::Guard log;
auto input = YAML::LoadFile(config_file).as<Input>();
auto unfolded_data = biu::deserialize<UnfoldOutput>
(biu::read<std::byte>(input.UnfoldedDataFile));
auto qpoint_index = search_qpoints
(
unfolded_data.PrimativeCell, input.Qpoint,
unfolded_data.QpointData
| ranges::views::transform(&UnfoldOutput::QpointDataType::Qpoint)
| ranges::to_vector,
input.ThresholdWhenSearchingQpoints.value_or(0.001)
);
auto values = calculate_values
(
unfolded_data.QpointData[qpoint_index],
input.InterpolationResolution, input.FrequencyRange
);
auto x_ticks = input.XTicks.value_or(std::vector<std::pair<double, std::string>>{})
| biu::toLvalue | ranges::views::keys
| ranges::views::transform([&](auto i)
{
return (i - input.FrequencyRange[0]) / (input.FrequencyRange[1] - input.FrequencyRange[0])
* input.InterpolationResolution;
})
| ranges::to_vector;
auto x_ticklabels = input.XTicks.value_or(std::vector<std::pair<double, std::string>>{})
| biu::toLvalue | ranges::views::values | ranges::to_vector;
if (input.OutputPictureFile) plot
(
values, input.OutputPictureFile.value(),
x_ticks, x_ticklabels, input.AspectRatio, input.PictureResolution
);
if (input.OutputDataFile)
biu::Hdf5file(input.OutputDataFile.value(), true)
.write("Values", values)
.write("XTicks", x_ticks)
.write("XTickLabels", x_ticklabels)
.write("InterpolationResolution", input.InterpolationResolution)
.write("FrequencyRange", input.FrequencyRange);
if (input.OutputRawDataFile)
std::ofstream(*input.OutputRawDataFile) << YAML::Node(unfolded_data.QpointData[qpoint_index]);
}

View File

@@ -1,345 +0,0 @@
# include <ufo.hpp>
# include <thread>
# include <syncstream>
# include <execution>
void ufo::unfold(std::string config_file)
{
// 反折叠的原理: 将超胞中的原子运动状态, 投影到一组平面波构成的基矢中.
// 每一个平面波的波矢由两部分相加得到: 一部分是单胞倒格子的整数倍, 所取的个数有一定任意性, 论文中建议取大约单胞中原子个数那么多个;
// 对于没有缺陷的情况, 取一个应该就足够了.
// 这些平面波以原胞为周期。
// 另一部分是超胞倒格子的整数倍, 取 n 个, n 为超胞对应的单胞的倍数, 其实也就是倒空间中单胞对应倒格子中超胞的格点.
// 只要第一部分取得足够多, 那么单胞中原子的状态就可以完全被这些平面波描述.
// 将超胞中原子的运动状态投影到这些基矢上, 计算出投影的系数, 就可以将超胞的原子运动状态分解到单胞中的多个 q 点上.
struct Input
{
// 单胞的三个格矢,每行表示一个格矢的坐标,单位为埃
Eigen::Matrix3d PrimativeCell;
// 单胞到超胞的格矢转换时用到的矩阵
// SuperCellMultiplier 是一个三维列向量且各个元素都是整数,表示单胞在各个方向扩大到多少倍之后,可以得到和超胞一样的体积
// SuperCellDeformation 是一个行列式为 1 的矩阵,它表示经过 SuperCellMultiplier 扩大后,还需要怎样的变换才能得到超胞
// SuperCell = (SuperCellDeformation * SuperCellMultiplier.asDiagonal()) * PrimativeCell
// ReciprocalPrimativeCell = (SuperCellDeformation * SuperCellMultiplier.asDiagonal()).transpose()
// * ReciprocalSuperCell
// Position = PositionToCell(line vector) * Cell
// InversePosition = InversePositionToCell(line vector) * ReciprocalCell
// PositionToSuperCell(line vector) * SuperCell = PositionToPrimativeCell(line vector) * PrimativeCell
// ReciprocalPositionToSuperCell(line vector) * ReciprocalSuperCell
// = ReciprocalPositionToPrimativeCell(line vector) * ReciprocalPrimativeCell
Eigen::Matrix3d SuperCellDeformation;
Eigen::Vector3i SuperCellMultiplier;
// 在单胞内取几个平面波的基矢
Eigen::Vector<std::size_t, 3> PrimativeCellBasisNumber;
// 超胞中原子的坐标,每行表示一个原子的坐标,单位为超胞的格矢
Eigen::MatrixX3d AtomPositionBySuperCell;
// 从 band.hdf5 读入 QpointData
std::optional<std::string> QpointDataInputFile;
// 输出到哪些文件
struct QpointDataOutputFileType
{
std::string Filename;
// 如果指定,则将结果投影到那些原子上
std::optional<std::vector<std::size_t>> SelectedAtoms;
// 默认输出为 zpp 文件,如果指定为 true则输出为 yaml 文件
std::optional<bool> OutputAsYaml;
};
std::vector<QpointDataOutputFileType> QpointDataOutputFile;
};
// 从文件中读取 QpointData
auto read_qpoint_data = [](std::string filename)
{
// 读入原始数据
// phonopy 的输出有两种可能
// 直接指定计算的 q 点时frequency 是 2 维,这时第一个维度是 q 点,第二个维度是不同模式
// 计算能带时frequency 是 3 维,相比于二维的情况多了第一个维度,表示 q 点所在路径
// qpoint 或 path以及 eigenvector 也有类似的变化
// eigenvector 是三维或四维的数组,后两个维度分别表示原子运动和模式(而不是模式和原子),
// 因为后两个维度的尺寸总是一样的(模式个数等于原子坐标个数),非常容易搞错
std::vector<std::array<double, 3>> qpoint;
std::vector<std::vector<double>> frequency;
std::vector<std::vector<std::vector<biu::PhonopyComplex>>> eigenvector_vector;
auto file = biu::Hdf5file(filename);
if (file.File.getDataSet("/frequency").getDimensions().size() == 2)
file.read("/frequency", frequency)
.read("/eigenvector", eigenvector_vector)
.read("/qpoint", qpoint);
else
{
std::vector<std::vector<std::array<double, 3>>> temp_path;
std::vector<std::vector<std::vector<double>>> temp_frequency;
std::vector<std::vector<std::vector<std::vector<biu::PhonopyComplex>>>> temp_eigenvector_vector;
file.read("/frequency", temp_frequency)
.read("/eigenvector", temp_eigenvector_vector)
.read("/path", temp_path);
frequency = temp_frequency | ranges::views::join | ranges::to_vector;
qpoint = temp_path | ranges::views::join | ranges::to_vector;
eigenvector_vector = temp_eigenvector_vector | ranges::views::join | ranges::to_vector;
}
// 整理得到结果
auto number_of_qpoints = frequency.size(), num_of_modes = frequency[0].size();
std::vector<UnfoldOutput::MetaQpointDataType> qpoint_data(number_of_qpoints);
for (std::size_t i = 0; i < number_of_qpoints; i++)
{
qpoint_data[i].Qpoint = qpoint[i] | biu::toEigen<>;
qpoint_data[i].ModeData.resize(num_of_modes);
for (std::size_t j = 0; j < num_of_modes; j++)
{
qpoint_data[i].ModeData[j].Frequency = frequency[i][j];
auto number_of_atoms = eigenvector_vector[i].size() / 3;
Eigen::MatrixX3cd eigenvectors(number_of_atoms, 3);
for (std::size_t k = 0; k < number_of_atoms; k++) for (std::size_t l = 0; l < 3; l++)
eigenvectors(k, l)
= eigenvector_vector[i][k * 3 + l][j].r + eigenvector_vector[i][k * 3 + l][j].i * 1i;
// 原则上讲,需要对读入的原子运动状态作相位转换, 使得它们与我们的约定一致(对超胞周期性重复),但这个转换 phonopy 已经做了
// 这里还要需要做归一化处理 (指将数据简单地作为向量处理的归一化)
qpoint_data[i].ModeData[j].AtomMovement = eigenvectors / eigenvectors.norm();
}
}
return qpoint_data;
};
// 构建基
// 每个 q 点对应一组 sub qpoint。不同的 q 点所对应的 sub qpoint 是不一样的,但 sub qpoint 与 q 点的相对位移在不同 q 点之间是相同的。
// 由于基只与这个相对位置有关(也就是说,不同 q 点的基是一样的),因此可以先计算出所有的基,这样降低计算量。
// 外层下标对应超胞倒格子的整数倍那部分(第二部分), 也就是不同的 sub qpoint
// 内层下标对应单胞倒格子的整数倍那部分(第一部分), 也就是 sub qpoint 上的不同平面波(取的数量越多,结果越精确)
auto construct_basis = []
(
Eigen::Matrix3d primative_cell, Eigen::Vector3i super_cell_multiplier,
Eigen::Vector<std::size_t, 3> primative_cell_basis_number, Eigen::MatrixX3d atom_position
)
{
biu::Logger::Guard log;
std::vector<std::vector<Eigen::VectorXcd>> basis(super_cell_multiplier.prod());
// diff_of_sub_qpoint 表示 sub qpoint 与 qpoint 的相对位置,单位为超胞的倒格矢
for (auto [diff_of_sub_qpoint_by_reciprocal_modified_super_cell, i_of_sub_qpoint]
: biu::sequence(super_cell_multiplier))
{
basis[i_of_sub_qpoint].resize(primative_cell_basis_number.prod());
for (auto [xyz_of_basis, i_of_basis]
: biu::sequence(primative_cell_basis_number))
{
// 计算 q 点的坐标, 单位为单胞的倒格矢
auto diff_of_sub_qpoint_by_reciprocal_primative_cell = xyz_of_basis.cast<double>()
+ super_cell_multiplier.cast<double>().cwiseInverse().asDiagonal()
* diff_of_sub_qpoint_by_reciprocal_modified_super_cell.cast<double>();
// 将单位转换为埃^-1
auto diff_of_sub_qpoint = (diff_of_sub_qpoint_by_reciprocal_primative_cell.transpose()
* (primative_cell.transpose().inverse())).transpose();
// 计算基矢
basis[i_of_sub_qpoint][i_of_basis]
= (2i * std::numbers::pi_v<double> * (atom_position * diff_of_sub_qpoint)).array().exp();
}
}
return basis;
};
// 计算从超胞到原胞的投影系数(不是分原子的投影系数),是反折叠的核心步骤
// 返回的投影系数是一个三维数组,第一维对应不同的 q 点,第二维对应不同的模式,第三维对应不同的 sub qpoint
auto construct_projection_coefficient = []
(
const std::vector<std::vector<Eigen::VectorXcd>>& basis,
// 实际上只需要其中的 AtomMovement
const std::vector<UnfoldOutput::MetaQpointDataType>& qpoint_data,
std::atomic<std::size_t>& number_of_finished_modes
)
{
// 将所有的模式取出,组成一个一维数组,稍后并行计算
std::vector<std::reference_wrapper<const Eigen::MatrixX3cd>> mode_data;
for (auto& qpoint : qpoint_data) for (auto& mode : qpoint.ModeData)
mode_data.emplace_back(mode.AtomMovement);
// 第一层下标对应不同模式, 第二层下标对应这个模式在反折叠后的 q 点(sub qpoint)
std::vector<std::vector<double>> projection_coefficient(mode_data.size());
// 对每个模式并行
std::transform
(
std::execution::par_unseq, mode_data.begin(), mode_data.end(),
projection_coefficient.begin(), [&](const auto& mode_data)
{
// 这里, mode_data 和 projection_coefficient 均指对应于一个模式的数据
std::vector<double> projection_coefficient(basis.size());
for (std::size_t i_of_sub_qpoint = 0; i_of_sub_qpoint < basis.size(); i_of_sub_qpoint++)
// 对于 basis 中, 对应于单胞倒格子的部分, 以及对应于不同方向的部分, 分别求内积, 然后求模方和
for (std::size_t i_of_basis = 0; i_of_basis < basis[i_of_sub_qpoint].size(); i_of_basis++)
projection_coefficient[i_of_sub_qpoint] +=
(basis[i_of_sub_qpoint][i_of_basis].transpose().conjugate() * mode_data.get())
.array().abs2().sum();
// 如果是严格地将向量分解到一组完备的基矢上, 那么不需要对计算得到的权重再做归一化处理
// 但这里并不是这样一个严格的概念. 因此对分解到各个 sub qpoint 上的权重做归一化处理
auto sum = ranges::accumulate(projection_coefficient, 0.);
for (auto& _ : projection_coefficient) _ /= sum;
number_of_finished_modes++;
return projection_coefficient;
}
);
// 将计算得到的投影系数重新组装成三维数组
// 第一维是 meta qpoint第二维是模式第三维是 sub qpoint
std::vector<std::vector<std::vector<double>>> projection_coefficient_output;
for
(
std::size_t i_of_meta_qpoint = 0, num_of_mode_manipulated = 0;
i_of_meta_qpoint < qpoint_data.size();
i_of_meta_qpoint++, num_of_mode_manipulated += qpoint_data[i_of_meta_qpoint].ModeData.size()
)
projection_coefficient_output.emplace_back
(
projection_coefficient.begin() + num_of_mode_manipulated,
projection_coefficient.begin() + num_of_mode_manipulated + qpoint_data[i_of_meta_qpoint].ModeData.size()
);
return projection_coefficient_output;
};
// 组装输出,即将投影系数应用到原始数据上
auto construct_output = []
(
const Input& input,
const std::vector<std::vector<std::vector<double>>>& projection_coefficient,
const std::vector<UnfoldOutput::MetaQpointDataType>& qpoint_data,
const std::optional<std::vector<std::size_t>>& selected_atoms
)
{
UnfoldOutput output;
output.PrimativeCell = input.PrimativeCell;
output.SuperCellMultiplier = input.SuperCellMultiplier;
output.SuperCellDeformation = input.SuperCellDeformation;
output.SelectedAtoms = selected_atoms;
output.MetaQpointData = qpoint_data;
for (std::size_t i_of_meta_qpoint = 0; i_of_meta_qpoint < qpoint_data.size(); i_of_meta_qpoint++)
{
// 如果需要投影到特定的原子上,需要先计算当前 meta qpoint 的不同模式的投影系数
std::optional<std::vector<double>> projection_coefficient_on_atoms;
if (selected_atoms)
{
projection_coefficient_on_atoms.emplace();
for (std::size_t i_of_mode = 0; i_of_mode < qpoint_data[i_of_meta_qpoint].ModeData.size(); i_of_mode++)
{
projection_coefficient_on_atoms->emplace_back(0);
for (auto atom : *selected_atoms)
projection_coefficient_on_atoms->back()
+= qpoint_data[i_of_meta_qpoint].ModeData[i_of_mode].AtomMovement.row(atom).array().abs2().sum();
projection_coefficient_on_atoms->back() *=
static_cast<double>(qpoint_data[i_of_meta_qpoint].ModeData[i_of_mode].AtomMovement.rows())
/ selected_atoms->size();
}
}
for
(
auto [diff_of_sub_qpoint_by_reciprocal_modified_super_cell, i_of_sub_qpoint]
: biu::sequence(input.SuperCellMultiplier)
)
{
auto& _ = output.QpointData.emplace_back();
/*
SubQpointByReciprocalModifiedSuperCell = XyzOfDiffOfSubQpointByReciprocalModifiedSuperCell +
MetaQpointByReciprocalModifiedSuperCell;
SubQpoint = SubQpointByReciprocalModifiedSuperCell.transpose() * ReciprocalModifiedSuperCell;
SubQpoint = SubQpointByReciprocalPrimativeCell.transpose() * ReciprocalPrimativeCell;
ReciprocalModifiedSuperCell = ModifiedSuperCell.inverse().transpose();
ReciprocalPrimativeCell = PrimativeCell.inverse().transpose();
ModifiedSuperCell = SuperCellMultiplier.asDiagonal() * PrimativeCell;
MetaQpoint = MetaQpointByReciprocalModifiedSuperCell.transpose() * ReciprocalModifiedSuperCell;
MetaQpoint = MetaQpointByReciprocalSuperCell.transpose() * ReciprocalSuperCell;
ReciprocalSuperCell = SuperCell.inverse().transpose();
ModifiedSuperCell = SuperCellDeformation * SuperCell;
SuperCell = SuperCellMultiplier.asDiagonal() * PrimativeCell;
整理可以得到:
SubQpointByReciprocalPrimativeCell = SuperCellMultiplier.asDiagonal().inverse() *
(XyzOfDiffOfSubQpointByReciprocalModifiedSuperCell +
SuperCellDeformation.inverse() * MetaQpointByReciprocalSuperCell);
但注意到, 这样得到的 SubQpoint 可能不在 ReciprocalPrimativeCell 中
(当 SuperCellDeformation 不是单位矩阵时, 边界附近的一两条 SubQpoint 会出现这种情况).
解决办法是, 在赋值时, 仅取 SubQpointByReciprocalPrimativeCell 的小数部分.
*/
auto sub_qpoint_by_reciprocal_primative_cell =
(
input.SuperCellMultiplier.cast<double>().cwiseInverse().asDiagonal()
* (
diff_of_sub_qpoint_by_reciprocal_modified_super_cell.cast<double>()
+ input.SuperCellDeformation.inverse() * qpoint_data[i_of_meta_qpoint].Qpoint
)
).eval();
_.Qpoint = sub_qpoint_by_reciprocal_primative_cell.array()
- sub_qpoint_by_reciprocal_primative_cell.array().floor();
_.Source = qpoint_data[i_of_meta_qpoint].Qpoint;
_.SourceIndex = i_of_meta_qpoint;
for (std::size_t i_of_mode = 0; i_of_mode < qpoint_data[i_of_meta_qpoint].ModeData.size(); i_of_mode++)
{
auto& __ = _.ModeData.emplace_back();
__.Frequency = qpoint_data[i_of_meta_qpoint].ModeData[i_of_mode].Frequency;
__.Weight = projection_coefficient[i_of_meta_qpoint][i_of_mode][i_of_sub_qpoint];
if (selected_atoms)
__.Weight *= projection_coefficient_on_atoms.value()[i_of_mode];
}
}
}
return output;
};
biu::Logger::Guard log;
log.info("Reading input file... ");
auto input = YAML::LoadFile(config_file).as<Input>();
auto qpoint_data = read_qpoint_data(input.QpointDataInputFile.value_or("band.hdf5"));
log.info("Done.");
std::clog << "Constructing basis... " << std::flush;
auto basis = construct_basis
(
input.PrimativeCell, input.SuperCellMultiplier,
input.PrimativeCellBasisNumber,
input.AtomPositionBySuperCell
* (input.SuperCellDeformation * input.SuperCellMultiplier.cast<double>().asDiagonal() * input.PrimativeCell)
);
std::clog << "Done." << std::endl;
std::clog << "Calculating projection coefficient... " << std::flush;
// 用来在屏幕上输出进度的计数器和线程
std::atomic<std::size_t> number_of_finished_modes(0);
auto number_of_modes = ranges::accumulate
(
qpoint_data
| ranges::views::transform([](const auto& qpoint)
{ return qpoint.ModeData.size(); }),
0ul
);
std::atomic<bool> finished;
std::thread print_thread([&]
{
while (true)
{
std::osyncstream(std::clog)
<< "\rCalculating projection coefficient... ({}/{})"_f(number_of_finished_modes, number_of_modes)
<< std::flush;
std::this_thread::sleep_for(100ms);
if (finished) break;
}
});
auto projection_coefficient = construct_projection_coefficient(basis, qpoint_data, number_of_finished_modes);
finished = true;
print_thread.join();
std::clog << "\33[2K\rCalculating projection coefficient... Done." << std::endl;
std::clog << "Writing data... " << std::flush;
for (auto& output_file : input.QpointDataOutputFile)
{
auto output = construct_output
(input, projection_coefficient, qpoint_data, output_file.SelectedAtoms);
if (output_file.OutputAsYaml.value_or(false)) std::ofstream(output_file.Filename) << YAML::Node(output);
else std::ofstream(output_file.Filename, std::ios::binary) << biu::serialize<char>(output);
}
std::clog << "Done." << std::endl;
}

View File

@@ -1,18 +0,0 @@
SuperCellMultiplier: [3, 4, 1]
SuperCellDeformation:
- [ 1, 0, 0 ]
- [ 0.6666, 1, 0 ]
- [ 0, 0, 1 ]
Qpoints:
- [0, 0, 0]
- [0.05, 0, 0]
- [0.1, 0, 0]
- [0.15, 0, 0]
- [0.2, 0, 0]
- [0.25, 0, 0]
- [0.3, 0, 0]
- [0.35, 0, 0]
- [0.4, 0, 0]
- [0.45, 0, 0]
- [0.5, 0, 0]
OutputFile: fold-output.yaml