book/quantum information/量子力学 卷Ⅱ.md
2024-03-30 19:02:39 +08:00

1.9 KiB

第 1 章 量子态的描述

1.1 量子力学基本原理的回顾

如果取算符 F 的一系列本征态作为基矢表示所有的向量和算符,那么就称为 F 表象。

1.2 密度矩阵

1.2.1 密度算符与密度矩阵

定义某个量子态(这里考虑的都是纯态)的密度算符(或者密度矩阵,如果已经取定了一个基的话)为:


\rho = \left| \psi \right\rangle \left\langle \psi \right|

它本质上就是到 |\psi\rangle 的投影算符。

对于力学量 $G$,要计算它的期望值,可以用密度算符来简化计算(在 G 左右两边各插入一个单位矩阵,然后仔细推导即可得到):


\left\langle \psi \right| G \left| \psi \right\rangle = \operatorname{tr}(G \rho) = \operatorname{tr}(\rho G)

波函数随时间发生改变(随时间演化),密度算符也会随时间演化。可以证明:


\frac{d}{dt} \rho = \frac{1}{i\hbar} [H, \rho]

特别地,如果使用能量表象(即哈密顿算符的本征态作为基矢),那么可以知道密度矩阵的矩阵元随时间演化的规律为:


\frac{d}{dt} \rho_{mn}(t) = \rho_{mn}(0) \exp\left( \frac{t}{i\hbar} (E_m - E_n) \right)

也就是,对角元素不变,非对角元的相位一般会随时间改变。

在泡利表象(\sigma_z 表象)下,沿着空间中某个方向(按照通常的球坐标系定义 \theta 和 $\phi$)的自旋算符对应矩阵为:


\begin{pmatrix}
\cos\theta & \sin\theta e^{-i\varphi} \\
\sin\theta e^{i\varphi} & -\cos\theta
\end{pmatrix}

1.2.2 混合态的密度矩阵

定义混合态的密度矩阵为按照比例直接相加(这里的纯态不需要互相正交,甚至不需要互相线性无关)。 它会保有一部分纯态的密度矩阵才有的性质。 容易证明,相当多的情况下,混合态用于计算的时候,形式上也是纯态按照比例直接相加。