This commit is contained in:
陈浩南 2024-04-11 20:48:28 +08:00
parent 315444a9e0
commit 5c70abbf0d
37 changed files with 188 additions and 1 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
SiC/Compensation of p-type doping in Al-doped 4H-SiC.pdf (Stored with Git LFS) Normal file

Binary file not shown.

BIN
SiC/Crack healing behavior of 4H-SiC Effect of dopants.pdf (Stored with Git LFS) Normal file

Binary file not shown.

BIN
SiC/Defect Inspection Techniques in SiC.pdf (Stored with Git LFS) Normal file

Binary file not shown.

Binary file not shown.

BIN
SiC/Dislocations in 4H silicon carbide.pdf (Stored with Git LFS) Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
SiC/Floating Electron States in Covalent Semiconductors.pdf (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,50 @@
# ABSTRACT
本篇是个关于 SiC 中的缺陷和杂质的总结性的文章。
# INTRODUCTION
TODO: First-principles calculations indicate that the conduction-band minimum (CBM)
tends to float in interstitial channels of SiC.
# DOPING AND IMPURITY ENGINEERING OF 4H-SiC
## Doping and impurity engineering of 4H-SiC used in modern electronics
在 h 位和 k 位的施主杂质电离能差别很大,但受主杂质的电离能几乎一样。
n 型掺杂一般使用 NN 的浓度在很大的范围内可以控制,并且几乎全部电离。
但 Al 的电离随着掺杂浓度变化而变化,从 $10^{14}$ cm^-3 到 $10^{19}$ cm^-3电离率从 90% 到 5%。
如果掺杂浓度继续增加,电离率会因为 VRH 效应继续增加。
TODO: VRH 是什么?
Al 掺杂导致的是一个二重简并的能级。可以共掺一个具有相似对称性的杂质IVB 杂质,例如 Ti使得杂质能级互相微扰而降低 Al 的杂质能级,更容易电离。
在 Si 面在富 C 的情况下,更容易掺 Al。
一些间隙位杂质I 族)也可以被用于 p 型掺杂。
除了电离不充分,本征缺陷的补偿作用也降低了掺 Al 的效果(减少了电导率)。
VC2+ 会导致 Fermi level pinning 从而补偿。
TODO: 这是什么l
外延后C 离子注入并退火可以缓解这个问题。
注入 H 原子也可以缓解这个问题,但 H 与 VC 形成的团簇不是热稳定的,因此需要其他方法辅助(光照射、电荷注入等)。
曾经使用钒来中和非故意掺杂。
## Doping of 4H-SiC for quantum technologies
6H 中的杂质的量子特性没有被广泛研究过,因此 6H 的生长技术还不成熟。
大多数杂质的能级分裂导致的 ZPL 位于红外,因此可以用于通讯。
本文认为,可以用于发光的色心都不是热稳定的。
TODO: 哪里来的结论?
# DEFECTS AND DEFECT ENGINEERING OF 4H-SiC
## Zero-dimensional defects
在 p 型和 n 型的 4H-SiC 中C 空位和 C 位 Si 是最常见的零维缺陷。

View File

@ -31,4 +31,39 @@ Al 扩散的 activation energy 不同的估计不同,大约为 6 到 8 eV。
Al 原子的迁移路径是使用 Cl-NEB 方法计算的。
关于原子迁移
关于原子迁移时,作者将它近似看作了各向同性的,使用这个方向计算迁移率:
$$
D = D_0 \exp\left(-\frac{E}{kT}\right)
$$
其中:
$$
D_0 = \frac{z}{6}\alpha^2\nu
$$
TODO: 这个公式没有标注引用,不确定定义和推导过程。
最后可以算出 $D_0$ 约为 $4.3\tiems10^{4}$ cm^2/s。
# RESULTS AND DISCUSSIONS
TODO: 在 DFT 中,体系总能量是否等于 KS 轨道的能量之和?
TODO: 在 DFT 中,可否近似认为,当电子数增加时,就会占据更高的 KS 轨道?
TODO: 在 DFT 中,未被占据的能级是否与空的 KS 轨道有一定关联?是否存在空的 KS 轨道?
计算了 C 空位和 Si 位 Al 的 formation energy包括
* 极端富 Si 和极端富 C 的情况;
* C 空位位于不同位点的情况;
* 单独 C 空位、单独 Si 位 Al、C 空位和 Si 位 Al 同时存在时的情况。
* 计算了费米能级不同时的形成能和缺陷的电荷量(实际计算时,可能是先设定电荷量,然后计算对应的形成能和费米能级)。
TODO: 复现一部分形成能的计算结果,看看结果是否一致。
TODO: 使用 NEB 计算迁移路径,看看结果是否一致。
类似地Si 位于间隙位时的情况也计算了。
只不过,它将这个过程分成了两个部分:一个 kick-out一个 kick-in即一个原子先出来另外一个才能进去。
另外,代公式,还计算了不同温度下的迁移率。
结果是,迁移率随富 C 和富 Si 变化不大,而费米能级会影响迁移的机制;主要是间隙位 Si 导致的迁移而不是 C 空位。

Binary file not shown.

Binary file not shown.

Binary file not shown.