Files
SiC-2nd-paper/paper/method/default.typ
2025-06-28 12:52:14 +08:00

122 lines
6.5 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
= Method
== 4H-SiC wafer details and Raman experiments setup
外延片的厚度、掺杂浓度、生长 C/Si 比,斜切角度。
5 个 6 寸的 p 型外延片被使用,我们将它们称为 W#sub[i]。
使用的衬底都是 n 型,前四个外延片的厚度为 1 微米,第五个外延片的厚度为 2 微米。
外延层的 Al 掺杂浓度分别为 0.1 3.8 5.1 6.4 10 E18 cm#super[-3],使用 SIMS 测试。
生长时 Si/C 比分别为 0.7 1.2 1.6 2.4 2.0。、
所有外延片都有 4 度斜切。
Five 6-inch p-type epitaxial wafers (W#sub[1]W#sub[5]) were fabricated on n-type substrates
using the step-flow growth method with a 4° offcut angle.
The Al doping concentrations, determined by SIMS,
were 0.1, 3.8, 5.1, 6.4, and 10 #sym.times 10 cm#super[-3] for W#sub[1]W#sub[5], respectively.
W#sub[1]W#sub[4] had an epitaxial layer thickness of 1 μm, while W#sub[5] had a thickness of 2 μm.
The Si/C ratios during growth were 0.7, 1.2, 1.6, 2.4, and 2.0 for the five wafers, respectively.
拉曼设备的型号。激光的波长,背散射。共焦针孔。
拉曼设备的型号是 LabRAM HR Evolution使用背散射。
大部分实验中,我们使用 532 nm 的激光,少部分实验中使用 325 nm 的激光以观测紫外拉曼。
有三个不同的入射配置,包括正入射、掠入射、边入射。
考虑到 4 度斜切和 4H-SiC 几乎各向同性的折射率2.73 @shaffer_refractive_1971 ,掠入射的入射角大约为 25 度。
在正散射过程中,我们使用 100 微米的共焦针孔,以尽可能提高 z 方向的分辨率 @song_depth_2020。
All our Raman experiments were performed using a LabRAM HR Evolution system with back-scattering configuration,
where collected scattered light has a reversed wavevector direction compared to the incident light.
A 532 nm laser was used in most experiments,
while a 325 nm laser was used to observe Raman signals under ultraviolet excitation.
Three different incidece configurations were used, as shown in @figure-incidence,
including normal incidence, where the laser beam is perpendicular to the epitaxial surface;
grazing incidence, where the laser beam is nearly parallel to the epitaxial surface;
and edge incidence, where the laser beam is incident at the edge of the wafer, instead of the epitaxial surface.
Taking the 4° offcut angle
and the nearly isotropic refractive index 2.73 of 4H-SiC @shaffer_refractive_1971 into account,
the wavevector in 4H-SiC during grazing incidence is about 25° to the c axis.
During normal incidence, a 100 μm confocal pinhole was used to improve the z-direction resolution @song_depth_2020;
while during other configurations, 200 μm confocal pinhole was used to improve the signal-to-noise ratio.
#include "figure-incidence.typ"
== Simulation details
我们建立了三类模型:无缺陷、点缺陷和面缺陷。
Three types of models were established: defect-free models, point defect models, and surface defect models.
无缺陷和点缺陷的模型
无缺陷和点缺陷的模型尺寸为 xxA x xxA x xxA。
我们认为是足够大的,因为无缺陷模型的结果与实验差距在一定范围内,且继续扩大模型对准确程度没有提升。
对于点缺陷模型,我们考虑了 Si 空位、C 空位、N 替位、Al 替位。
分别记为 V#sub[Si]、V#sub[C]、N#sub[Si] 和 Al#sub[C]。
考虑到 SiC 的对称性 p63mc (引用),有两个不同的位点,记为 k 和 h
根据局部环境近似为立方k还是六角h
此外还有人提出N 替换 C、C 替换 Si 的模型(引用),
此结构除了 h 位与 k 位的区别以外,还需要考虑发生替换的两个原子位于面内还是面外(将会导致对称性的不同)。
The defect-free and point defect models were established with a size of xxA x xxA x xxA.
This size should be large enough to calculate phonon properties for defect-free and point defect 4H-SiC,
since the defect-free results obtained with these models were within 5% errors of the experimental data,
and further increasing the model size did not improve the accuracy.
Twelve point defect models were considered, including Si vacancies (V#sub[Si]),
C vacancies (V#sub[C]), nitrogen substitutions (N#sub[Si]), and aluminum substitutions (Al#sub[C]).
Considering the symmetry of 4H-SiC, which is p63mc (cite),
there are two different sites, k and h,
which can be approximated as cubic (k) or hexagonal (h) based on the local environment.
For point defect models, we considered five different structures,
including Si vacancies (V#sub[Si]), C vacancies (V#sub[C]),
nitrogen substitutions (N#sub[Si]), aluminum substitutions (Al#sub[C]),
and the structure of a nitrogen substitute carbon and carbon substitute silicon (N#sub[C]C#sub[Si])
which is proposed by xxx (ref) to be a possible structure of nitrogen doping.
Besides,
For surface defect models, larger models where used to ensure the accuracy of the phonon properties.
a k 位与 h 位对比 b 面内与面外对比)
因此对于无缺陷和点缺陷的模型,我们使用 xxA x xxA x xxA 的模型大小。
对于面缺陷,一个更大的 xxA x xxA x xxA 的模型被使用。
点缺陷模型考虑了哪些结构
面缺陷模型考虑了哪些结构
对于面缺陷模型,我们主要考虑了三类 BPD引用自己的文章这些缺陷在室温下被认为是可以稳定存在的。
对于每类BPD我们考虑两个模型一个将两个 PD 包括在内,为了模拟 PBD 未分解或分解后边缘处的信号;
另一类则仅仅包含一个贯穿的层错,为了模拟 BPD 分解后在层错处的信号。
计算工具和参数
第一性原理计算使用 VASP使用 PBE PAW平面波截断能在弛豫时使用 xx在计算声子时提高到 xx。
K 点网格根据模型大小不同,分别使用 xxx 和 xxx。
涂抹使用 xxx 以统一比较点缺陷和无缺陷的模型。
弛豫的精度为 xxx。
声子计算使用 phonopy phono3py ufoBEC 修正使用 xxx 的算法。(引用)
First-principles calculations were performed using Vienna Ab-initio Simulation Package (VASP) @kresse_efficiency_1996.
The PerdewBurkeErnzerhof (PBE) exchange energy @ernzerhof_assessment_1999
and projector-augmented wave (PAW) representation @kresse_ultrasoft_1999
were used along with a cutoff energy of 400 eV,
a Gamma-centered k-point mesh of 3 #sym.times 3 #sym.times 1,
and a self-consistent convergence criterion of $1 times 10^(-3)$ eV.
The ionic relaxation was performed until the energies converged to $1 times 10^(-2)$ eV.