分割文件
This commit is contained in:
@@ -55,54 +55,7 @@
|
||||
|
||||
= Introduction
|
||||
|
||||
// SiC 是很好的材料。
|
||||
// 其中,4H-SiC 是SiC的一种多型,它的性质更好,近年来随着外延工艺的成熟而获得了更多的关注。
|
||||
SiC is a promising wide-bandgap semiconductor material
|
||||
with high critical electric field strength and high thermal conductivity.
|
||||
It has been widely used in power electronic devices and has long attracted a lot of research
|
||||
@casady_status_1996 @okumura_present_2006.
|
||||
The 4H-SiC has a wider bandgap, higher critical electric field strength,
|
||||
higher thermal conductivity, and higher electron mobility along the c-axis than other polytypes.
|
||||
Currently, the 4H-SiC has gradually received more attention than other polytypes,
|
||||
thanks to the development of epitaxy technology and the increasing application in the new energy industry
|
||||
@tsuchida_recent_2018 @harada_suppression_2022 @sun_selection_2022. // TODO: 多引用一些近年来的文献,有很多
|
||||
|
||||
// 声子(量子化的原子振动)在理解晶体的原子结构以及热电性质方面起着重要作用。
|
||||
// 声子可以通过多种实验技术来探测,包括 EELS、IR 吸收谱等。
|
||||
// 拉曼光谱是最常用的方法,它提供了一种无损、非接触、快速和局部的声子测量方法,已被广泛用于确定晶体的原子结构(包括区分 SiC 的多型)。
|
||||
Phonons (quantized atomic vibrations) play a fundamental role
|
||||
in understanding the atomic structure
|
||||
as well as the thermal and electrical properties
|
||||
of crystals (including 4H-SiC).
|
||||
They could be probed by various experimental techniques,
|
||||
such as electron energy loss spectroscopy and infrared absorption spectroscopy.
|
||||
Among these techniques,
|
||||
Raman spectroscopy is the most commonly used method,
|
||||
as it provides non-destructive, non-contact, rapid and spatially localized measurement of phonons
|
||||
that near the #sym.Gamma point in reciprocal space.
|
||||
Studies in Raman scattering of 4H-SiC have been conducted since as early as 1983
|
||||
and have been widely employed to identification of different SiC polytypes.
|
||||
// TODO: 增加引用文献
|
||||
|
||||
// 近年来,更多信息被从拉曼光谱中挖掘出来。
|
||||
// LOPC 已经被用于快速估计 n 型 SiC 的掺杂浓度。
|
||||
// 层错的拉曼光谱也已经被研究,可以被用于检测特定结构层错的存在和位置。
|
||||
// 掺杂对拉曼光谱的潜在影响也已经被研究。
|
||||
// 然而,拉曼光谱上仍有一些不知来源的峰;同时,一些也缺少一些理论上预测应该存在的峰。
|
||||
// 此外,预测掺杂导致的新峰也没有说明原因。
|
||||
Increasingly rich information has been extracted from Raman spectra of 4H-SiC.
|
||||
Longitudinal optical phonon–plasmon coupling (LOPC) peek
|
||||
has been utilized to rapidly estimate the doping concentration in n-type SiC.
|
||||
Peeks associated with some stacking faults have also been investigated
|
||||
and used to detect the presence and location of specific structural faults.
|
||||
Moreover, the potential effects of doping on Raman spectra have been explored.
|
||||
However, some unidentified peaks still appear in the Raman spectra,
|
||||
while certain phonon modes predicted by theory remain unobserved.
|
||||
In addition, the origins of newly emerged peaks induced by doping are often unclear or unexplained.
|
||||
// TODO: 多举例,增加引用文献
|
||||
|
||||
In this paper, we do some things. Especially we do something for the first time.
|
||||
// TODO: 完善
|
||||
#include "section/introduction.typ"
|
||||
|
||||
= Method
|
||||
|
||||
@@ -137,314 +90,11 @@ experiment
|
||||
|
||||
== Phonons in Perfect 4H-SiC
|
||||
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(There are 21 phonons in total.
|
||||
We classified them into two categories: 18 negligible-polar phonons and 3 strong-polar phonons.)
|
||||
|
||||
// 拉曼活性的声子模式对应于 Gamma 点附近的声子模式。
|
||||
// 根据这些声子模式的极性,我们将这些声子分成两类。
|
||||
The phonons involved in Raman scattering are located in reciprocal space around the #sym.Gamma point,
|
||||
at the exact positions are determined by the wavevectors of the incident and scattered light.
|
||||
At each such position, there are 21 phonon modes (degenerate modes are counted as their multiplicity).
|
||||
We classify these 21 phonons into two categories based on their polarities.
|
||||
The 18 of 21 phonons are classified into negligible-polar phonons (i.e., phonons with zero or very weak polarity),
|
||||
for which the effect of polarity can be ignored in the Raman scattering process;
|
||||
and the other three phonons are strong-polar phonons,
|
||||
where the polarity gives rise to observable effects in the Raman spectra.
|
||||
|
||||
(This classification make sense.)
|
||||
|
||||
This classification is based on the fact that
|
||||
the four Si atoms in the primitive cell of 4H-SiC carry similar positive Born effective charges (BECs),
|
||||
and the four C atoms carry similar negative BECs (see @table-bec).
|
||||
In the 18 negligible-polar phonons,
|
||||
the vibrations of two Si atoms are approximately opposite to those of the other two Si atoms,
|
||||
and the same holds for the C atoms,
|
||||
leading to cancellations of macroscopic polarity.
|
||||
In contrast, in the three strong-polar phonons,
|
||||
all Si atoms vibrate in the same direction, and all the C atoms vibrate in the opposite direction,
|
||||
resulting in a strong dipole moment.
|
||||
|
||||
#figure({
|
||||
set text(size: 9pt);
|
||||
table(columns: 4, align: center + horizon,
|
||||
table.cell(colspan: 2)[], table.cell(colspan: 2)[*BEC* (unit: |e|)],
|
||||
table.cell(colspan: 2)[], [x / y direction], [z direction],
|
||||
table.cell(rowspan: 2)[Si atom], [A/C layer], [2.667], [2.626],
|
||||
[B layer], [2.674], [2.903],
|
||||
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730],
|
||||
[B layer], [-2.648], [-2.800],
|
||||
)},
|
||||
caption: [
|
||||
Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC, calculated using first principle method.
|
||||
],
|
||||
placement: none,
|
||||
)<table-bec>
|
||||
#include "section/perfect/default.typ"
|
||||
|
||||
=== Phonons with Negligible Polarities
|
||||
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(We investigate phonons at Gamma instead of the exact location near Gamma.)
|
||||
|
||||
Phonons at the #sym.Gamma point were used
|
||||
to approximate negligible-polar phonons that participating in Raman processes of any incident/scattered light.
|
||||
This approximation is widely adopted and justified by the fact that, // TODO: cite
|
||||
although the phonons participating in Raman processes are not these strictly located at the #sym.Gamma point,
|
||||
they are very close to the #sym.Gamma point in reciprocal space
|
||||
(about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
|
||||
which corresponds to only 1% of the smallest reciprocal lattice vector of 4H-SiC,
|
||||
see orange dotted line in @figure-discont),
|
||||
and their dispersion at #sym.Gamma point is continuous with vanishing derivatives.
|
||||
Therefore, negligible-polar phonons involved in Raman processes
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point,
|
||||
and the phonon participating in Raman processes of different incident/scattered light directions
|
||||
are all nearly identical to the phonons at the #sym.Gamma point.
|
||||
|
||||
#figure(
|
||||
image("/画图/声子不连续/embed.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
The green, red and blue lines indicate the mode along the z-direction, y-direction and x-direction, respectively.
|
||||
Along A-#sym.Gamma path, strong-polar modes along x- and y-directions are degenerated,
|
||||
showing as a single purple line.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
],
|
||||
placement: none,
|
||||
)<figure-discont>
|
||||
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(Representation of these 18 phonons, and the shape of their Raman tensors could be determined in advance.)
|
||||
|
||||
Phonons at the #sym.Gamma point satisfy the C#sub[6v] point group symmetry,
|
||||
and the 18 negligible-polar phonons correspond to 12 irreducible representations of the C#sub[6v] point group:
|
||||
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
|
||||
Phonons belonging to the A#sub[1] and B#sub[1] representations vibrate along the z-axis and are non-degenerate,
|
||||
while those belonging to the E#sub[1] and E#sub[2] representations vibrate in-plane and are doubly degenerate.
|
||||
Phonons of the B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
|
||||
In contrast, phonons of the other representations are Raman-active,
|
||||
and the non-zero components of their Raman tensor
|
||||
can be determined by further considering their representation in the C#sub[2v] point group (see @table-rep).
|
||||
These Raman-active phonons are potentially be visible in Raman experiment under appropriate polarization configurations.
|
||||
However, whether a mode is sufficiently strong to be experimentally visible
|
||||
depends on the magnitudes of its Raman tensor components,
|
||||
which cannot be determined solely from symmetry analysis.
|
||||
|
||||
#figure({
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
set text(size: 9pt);
|
||||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Representations in C#sub[6v]*], [A#sub[1]], m2[E#sub[1]], m2[E#sub[2]],
|
||||
[*Representations in C#sub[2v]*], [A#sub[1]], [B#sub[2]], [B#sub[1]], [A#sub[2]], [A#sub[1]],
|
||||
[*Vibration Direction*], [z], [x], [y], [x], [y],
|
||||
[*Raman Tensor of #linebreak() Individual Phonons*],
|
||||
[$mat(a,,;,a,;,,b)$], [$mat(,,a;,,;a,,;)$], [$mat(,,;,,a;,a,;)$], [$mat(,a,;a,,;,,;)$], [$mat(a,,;,-a,;,,;)$],
|
||||
[*Raman Intensity with Different #linebreak() Polarization Configurations*],
|
||||
[xx/yy: $a^2$ #linebreak() zz: $b^2$ #linebreak() others: 0],
|
||||
m2[xz/yz: $a^2$ #linebreak() others: 0], m2[xx/xy/yy: $a^2$ #linebreak() others: 0],
|
||||
)},
|
||||
caption: [
|
||||
Raman-active representations of C#sub[6v] and C#sub[2v] point groups.
|
||||
],
|
||||
placement: none,
|
||||
)<table-rep>
|
||||
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(We propose a method to estimate the magnitudes of the Raman tensors of these phonons,
|
||||
without first-principle calculations.
|
||||
Here we only write out results, details are in appendix.)
|
||||
|
||||
// TODO: maybe it is better to assign Raman tensor to each bond, instead of atom
|
||||
|
||||
We propose a method to estimate the magnitudes of the Raman tensors of these phonons by symmetry analysis.
|
||||
The method only takes the vibration directions of each atom in each phonon mode,
|
||||
leaving the amplitudes unconsidered (see appendix for details),
|
||||
and the result was summarized in @table-predmode.
|
||||
In the Raman tensors in @table-predmode,
|
||||
$a_i$ corresponding to the change of polarizability caused by movement of the Si atoms in A and C layers,
|
||||
$epsilon_i$, $eta_i$ and $eta_i$ corresponding to the difference between different bilayers and different atoms.
|
||||
Due to the similarity of environment in different bilayers and around different atoms,
|
||||
the absolute values of $epsilon_i$, $eta_i$ and $zeta_i$ are expected to be much smaller than that of $a_i$,
|
||||
thus the Raman tensors containing $a_i$ are expected to be much larger than those not containing $a_i$.
|
||||
|
||||
// Raman Tensor for A1: line1 xx/yy; line2 zz
|
||||
// Raman Tensor for E1: x-dirc xz or y-dirc yx
|
||||
// Raman Tensor for E2: x-dirc xy or y-dirc xx or y-dirc -yy
|
||||
// TODO: remove LO TO or not?
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let m4(content) = table.cell(colspan: 4, content);
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
table(columns: 11, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Representation in C#sub[6v]*], m3[A#sub[1]], m3[E#sub[1]], m4[E#sub[2]],
|
||||
[*Relative Vibration Direction*],
|
||||
[Si: $+-+-$ #linebreak() C: $0000$], [Si: $0000$ #linebreak() C: $+-+-$], [Si: $++++$ #linebreak() C: $----$],
|
||||
[Si: $+-+-$ #linebreak() C: $-+-+$], [Si: $+-+-$ #linebreak() C: $+-+-$], [Si: $++++$ #linebreak() C: $----$],
|
||||
[Si: $++--$ #linebreak() C: $-++-$], [Si: $+--+$ #linebreak() C: $++--$],
|
||||
[Si: $++--$ #linebreak() C: $+--+$], [Si: $+--+$ #linebreak() C: $--++$],
|
||||
[*Vibration Direction*], m3[z], m3[x/y], m4[x/y],
|
||||
[*Raman Tensor Predicted*], [xx/yy: $-2A_#text[Si] epsilon_5$ #linebreak() zz: $-2A_#text[Si]epsilon_6$],
|
||||
[xx/yy: $-2A_#text[C]zeta_5$ #linebreak() zz: $-A_#text[C]zeta_6$],
|
||||
[xx/yy: $2A_#text[Si] (2a_5+epsilon_5) + 2A_#text[C] (2a_5+eta_5+zeta_5)$ #linebreak() zz: $2A_#text[Si] (2a_6+epsilon_6) + 2A_#text[C] (2a_6+eta_6+zeta_6)$],
|
||||
[xz/yz: $-2A_#text[Si]epsilon_1-2A_#text[C]zeta_1$],
|
||||
[xz/yz: $-2A_#text[Si]epsilon_1+2A_#text[C]zeta_1$],
|
||||
[xz/yz: $2A_#text[Si] (2a_1+epsilon_1) +2A_#text[C] (2a_1+2eta_1+zeta_1))$],
|
||||
[xx/-yy/xy: $2A_#text[Si] (2a_2+epsilon_2) -2A_#text[C] (2a_2+2eta_2+zeta_2))$],
|
||||
[xx/-yy/xy: $-2A_#text[Si]epsilon_2-2A_#text[C]zeta_2$],
|
||||
[xx/-yy/xy: $2A_#text[Si] (2a_2+epsilon_2) +2A_#text[C] (2a_2+2eta_2+zeta_2))$],
|
||||
[xx/-yy/xy: $-2A_#text[Si]epsilon_2+2A_#text[C]zeta_2$],
|
||||
[*Raman Intensity Predicted*], m2[weak], [strong], m2[weak], [strong], m2[weak], [strong], [weak],
|
||||
[*Raman Tensor Calculated*],
|
||||
[-1.68 #linebreak() 1.34], [0.10 #linebreak() -1.33], [-7.68 #linebreak() 21.65],
|
||||
[-1.56], [-0.30], [7.32], [-0.41], [1.06], [9.41], [-0.71],
|
||||
// [*x*], [1 axial acoustic], [0 axial optical], [1 axial optical],
|
||||
// [0 axial acoustic], [1 axial optical], [1 axial optical],
|
||||
// m2[0.5 acoustic], m2[0.5 optical],
|
||||
[*Type*], [axial acoustic], [axial optical], [longitudinal optical],
|
||||
[planer acoustic], [planer optical], [transverse optical],
|
||||
m2[planer acoustic], m2[planer optical],
|
||||
[*Move-towards Atom-pairs* (In-plane/Out-plane)], [4/0], [0/4], [4/4], [0/4], [4/0], [4/4], [0/2], [2/0], m2[4/2],
|
||||
// [*Predicted Frequency*], [low], [medium], [high], [medium], [low], [high], [low], [medium], m2[high],
|
||||
[*Calculated Frequency*],
|
||||
[591.90], [812.87], [933.80], [257.35], [746.91], [776.57], [190.51], [197.84], [756.25], [764.33]
|
||||
)},
|
||||
caption: [Predicted modes and their "Raman tensor"],
|
||||
placement: none,
|
||||
)<table-predmode>]
|
||||
|
||||
The Raman tensors and frequencies of the negligible-polar phonons were calculated using first-principles methods,
|
||||
and the results are compared with experiment and theory (@table-nopol).
|
||||
Calculated frequencies of these phonons are consistent with the experimental results
|
||||
with a low-estimated error of about 2% to 5%, which might be due to the PBE functional used in the calculation (cite).
|
||||
The Raman tensors of these phonons are also consistent with the experimental and theoretical results,
|
||||
where E#sub[2] mode experimentally at 776 is the most intense phonon mode,
|
||||
followed by four modes with lesser intensities
|
||||
(E#sub[2] modes at 195.5 and 203.3, E#sub[1] mode at 269.7, A#sub[1] mode at 609.5).
|
||||
The Raman scatter of the E#sub[1] mode calculately at 746.91 and E#sub[2] mode calculately at 756.25
|
||||
are much weaker than the E#sub[2] mode calculated at 756.25 but located near it, according to our calculation,
|
||||
thus it could not be distinguished from E#sub[2] mode calculated at 756.25,
|
||||
which explains why they are not observed in experiments.
|
||||
Moveever, the A#sub[1] mode calculated at 812.87
|
||||
have a very weak Raman intensity in the basal plane (xx and yy, only 0.01)
|
||||
but an observable intensity in the zz configuration (1.78).
|
||||
Thus, this mode could not be observed in most Raman experiments (cite),
|
||||
but could be observable when incident light propagate not along the z-direction (our experiment),
|
||||
or the incident light wavelength is near the resonance condition (cite).
|
||||
|
||||
Besides, there are other peeks in the experiment.
|
||||
The peek at 796 and 980 are caused by strong-polar phonons which will be discussed later.
|
||||
Besides, there are small peeks at xxx,
|
||||
which could not be explained in perfect 4H-SiC and will be discussed in the next section.
|
||||
|
||||
// TODO: 将一部分 phonons 改为 phonon modes
|
||||
// 在论文中我们这样来称呼:phonon 对应某一个特征向量,而 modes 对应于一个子空间。
|
||||
// 也就是说,简并的里面有两个或者无数个 phonon,但只有一个 mode
|
||||
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let A1 = [A#sub[1]];
|
||||
// let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
// let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
// [*Direction of Incident & Scattered Light*],
|
||||
// m(26)[Any direction (not depend on direction of incident & scattered light)],
|
||||
// TODO: 整理表格,使用 m2 m3 来代替
|
||||
[*Number of Phonon*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[1], m2[2], [3], m2[4], [5], [6], [7], [8], m3[9], [10], [11], [12], m2[13], [14], m2[15], m3[16], [17], [18],
|
||||
[*Vibration Direction*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[x], m2[y], [x], m(2)[y], [x], [y], m(2)[z], m(3)[z],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], m(2)[z],
|
||||
[*Representation #linebreak() in Group C#sub[6v]*],
|
||||
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
|
||||
[*Raman-active or Not*],
|
||||
m(8)[Raman-active], m(2)[Raman-inactive], m(14)[Raman-active], m(2)[Raman-inactive],
|
||||
// [*Representation in Group C#sub[2v]*],
|
||||
// // E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
// A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
|
||||
[*Scattering in Polarization #linebreak() (non-zero Raman #linebreak() tenser components)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[xy], [xx], [yy], [xy], [xx], [yy], [xz], [yz], m(2)[-], [xx], [yy], [zz],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[xz], [yz], [xy], [xx], [yy], [xy], [xx], [yy], [xx], [yy], [zz], m(2)[-],
|
||||
[*Raman Intensity (a.u.)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.17], m(3)[1.13], m(2)[2.43], m(2)[0], m(2)[2.83], [1.79],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[0.09], m(3)[88.54], m(3)[0.50], m(2)[0.01], [1.78], m(2)[0],
|
||||
[*Visible in Common #linebreak() Raman Experiment or Not*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(8)[Visible], m(2)[-], m(3)[Visible],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[Invisible], m(3)[Visible], m(5)[Invisible], [Visible], m(2)[-],
|
||||
[*Wavenumber #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[190.51], m(3)[197.84], m(2)[257.35], [389.96], [397.49], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[746.91], m(3)[756.25], m(3)[764.33], m(3)[812.87], [885.68], [894.13],
|
||||
[*Wavenumber #linebreak() (Experiment) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[195.5], m(3)[203.3], m(2)[269.7], m(2)[-], m(3)[609.5],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[776], m(5)[-], [839], m(2)[-],
|
||||
[*FWHM #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.08], m(3)[0.09], m(2)[0.08], m(2)[-], m(3)[0.61],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[3.97], m(3)[4.62], m(3)[4.01], m(3)[0.89], m(2)[-],
|
||||
// TODO: 怎么选取用于比较的合适的实验?
|
||||
[*FWHM #linebreak() (Experiment, zxxz) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[2.61], m(3)[2.09], m(2)[1.98], m(2)[-], m(3)[2.64],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[3.27], m(3)[-], m(3)[-], m(2)[-],
|
||||
[*Electrical Polarity*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m(6)[None], m(2)[Weak], m(2)[None], m(5)[Weak], m(6)[None], m(3)[Weak], m(2)[None],
|
||||
)},
|
||||
caption: [Negaligible-polarized Phonons at $Gamma$ Point],
|
||||
)<table-nopol>]
|
||||
|
||||
#figure(
|
||||
image("/画图/拉曼整体图/main.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
]
|
||||
)<raman>
|
||||
|
||||
// TODO: 画一个模拟的图,与实验图对比。
|
||||
|
||||
// 实验与计算基本相符。对于声子频率,计算总是低估大约 3%。
|
||||
// 此外,一些较强的模式在预测无法看到的偏振中也可以看到。例如,一些在 xy 偏振中不应该看到的模式可以被看到了。
|
||||
// 这个现象可以由 4度的斜切所解释:我们将材料略微踮起一些角度,就可以使得该模式减小。
|
||||
// 这个现象也可以由材料或偏振片的微小角度来解释。
|
||||
// 例如,我们将偏振方向转动 5 度,就可以得到这个模拟结果。
|
||||
// 此外,由于使用的材料是沿着 c 轴切片的,所以我们在测量 y 入射时不得不将片子以略小于 90 度(约 75 度)的角度放置。这也导致实验与计算的偏差。
|
||||
// TODO: 翻译成英文
|
||||
#include "section/perfect/non-polar/default.typ"
|
||||
|
||||
=== Strong-polar Phonons
|
||||
|
||||
|
||||
48
test-typst/section/introduction.typ
Normal file
48
test-typst/section/introduction.typ
Normal file
@@ -0,0 +1,48 @@
|
||||
// SiC 是很好的材料。
|
||||
// 其中,4H-SiC 是SiC的一种多型,它的性质更好,近年来随着外延工艺的成熟而获得了更多的关注。
|
||||
SiC is a promising wide-bandgap semiconductor material
|
||||
with high critical electric field strength and high thermal conductivity.
|
||||
It has been widely used in power electronic devices and has long attracted a lot of research
|
||||
@casady_status_1996 @okumura_present_2006.
|
||||
The 4H-SiC has a wider bandgap, higher critical electric field strength,
|
||||
higher thermal conductivity, and higher electron mobility along the c-axis than other polytypes.
|
||||
Currently, the 4H-SiC has gradually received more attention than other polytypes,
|
||||
thanks to the development of epitaxy technology and the increasing application in the new energy industry
|
||||
@tsuchida_recent_2018 @harada_suppression_2022 @sun_selection_2022. // TODO: 多引用一些近年来的文献,有很多
|
||||
|
||||
// 声子(量子化的原子振动)在理解晶体的原子结构以及热电性质方面起着重要作用。
|
||||
// 声子可以通过多种实验技术来探测,包括 EELS、IR 吸收谱等。
|
||||
// 拉曼光谱是最常用的方法,它提供了一种无损、非接触、快速和局部的声子测量方法,已被广泛用于确定晶体的原子结构(包括区分 SiC 的多型)。
|
||||
Phonons (quantized atomic vibrations) play a fundamental role
|
||||
in understanding the atomic structure
|
||||
as well as the thermal and electrical properties
|
||||
of crystals (including 4H-SiC).
|
||||
They could be probed by various experimental techniques,
|
||||
such as electron energy loss spectroscopy and infrared absorption spectroscopy.
|
||||
Among these techniques,
|
||||
Raman spectroscopy is the most commonly used method,
|
||||
as it provides non-destructive, non-contact, rapid and spatially localized measurement of phonons
|
||||
that near the #sym.Gamma point in reciprocal space.
|
||||
Studies in Raman scattering of 4H-SiC have been conducted since as early as 1983
|
||||
and have been widely employed to identification of different SiC polytypes.
|
||||
// TODO: 增加引用文献
|
||||
|
||||
// 近年来,更多信息被从拉曼光谱中挖掘出来。
|
||||
// LOPC 已经被用于快速估计 n 型 SiC 的掺杂浓度。
|
||||
// 层错的拉曼光谱也已经被研究,可以被用于检测特定结构层错的存在和位置。
|
||||
// 掺杂对拉曼光谱的潜在影响也已经被研究。
|
||||
// 然而,拉曼光谱上仍有一些不知来源的峰;同时,一些也缺少一些理论上预测应该存在的峰。
|
||||
// 此外,预测掺杂导致的新峰也没有说明原因。
|
||||
Increasingly rich information has been extracted from Raman spectra of 4H-SiC.
|
||||
Longitudinal optical phonon–plasmon coupling (LOPC) peek
|
||||
has been utilized to rapidly estimate the doping concentration in n-type SiC.
|
||||
Peeks associated with some stacking faults have also been investigated
|
||||
and used to detect the presence and location of specific structural faults.
|
||||
Moreover, the potential effects of doping on Raman spectra have been explored.
|
||||
However, some unidentified peaks still appear in the Raman spectra,
|
||||
while certain phonon modes predicted by theory remain unobserved.
|
||||
In addition, the origins of newly emerged peaks induced by doping are often unclear or unexplained.
|
||||
// TODO: 多举例,增加引用文献
|
||||
|
||||
In this paper, we do some things. Especially we do something for the first time.
|
||||
// TODO: 完善
|
||||
15
test-typst/section/perfect/bec.typ
Normal file
15
test-typst/section/perfect/bec.typ
Normal file
@@ -0,0 +1,15 @@
|
||||
#figure({
|
||||
set text(size: 9pt);
|
||||
table(columns: 4, align: center + horizon,
|
||||
table.cell(colspan: 2)[], table.cell(colspan: 2)[*BEC* (unit: |e|)],
|
||||
table.cell(colspan: 2)[], [x / y direction], [z direction],
|
||||
table.cell(rowspan: 2)[Si atom], [A/C layer], [2.667], [2.626],
|
||||
[B layer], [2.674], [2.903],
|
||||
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730],
|
||||
[B layer], [-2.648], [-2.800],
|
||||
)},
|
||||
caption: [
|
||||
Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC, calculated using first principle method.
|
||||
],
|
||||
placement: none,
|
||||
)<table-bec>
|
||||
28
test-typst/section/perfect/default.typ
Normal file
28
test-typst/section/perfect/default.typ
Normal file
@@ -0,0 +1,28 @@
|
||||
(There are 21 phonons in total.
|
||||
We classified them into two categories: 18 negligible-polar phonons and 3 strong-polar phonons.)
|
||||
|
||||
// 拉曼活性的声子模式对应于 Gamma 点附近的声子模式。
|
||||
// 根据这些声子模式的极性,我们将这些声子分成两类。
|
||||
The phonons involved in Raman scattering are located in reciprocal space around the #sym.Gamma point,
|
||||
at the exact positions are determined by the wavevectors of the incident and scattered light.
|
||||
At each such position, there are 21 phonon modes (degenerate modes are counted as their multiplicity).
|
||||
We classify these 21 phonons into two categories based on their polarities.
|
||||
The 18 of 21 phonons are classified into negligible-polar phonons (i.e., phonons with zero or very weak polarity),
|
||||
for which the effect of polarity can be ignored in the Raman scattering process;
|
||||
and the other three phonons are strong-polar phonons,
|
||||
where the polarity gives rise to observable effects in the Raman spectra.
|
||||
|
||||
(This classification make sense.)
|
||||
|
||||
This classification is based on the fact that
|
||||
the four Si atoms in the primitive cell of 4H-SiC carry similar positive Born effective charges (BECs),
|
||||
and the four C atoms carry similar negative BECs (see @table-bec).
|
||||
In the 18 negligible-polar phonons,
|
||||
the vibrations of two Si atoms are approximately opposite to those of the other two Si atoms,
|
||||
and the same holds for the C atoms,
|
||||
leading to cancellations of macroscopic polarity.
|
||||
In contrast, in the three strong-polar phonons,
|
||||
all Si atoms vibrate in the same direction, and all the C atoms vibrate in the opposite direction,
|
||||
resulting in a strong dipole moment.
|
||||
|
||||
#include "bec.typ"
|
||||
94
test-typst/section/perfect/non-polar/default.typ
Normal file
94
test-typst/section/perfect/non-polar/default.typ
Normal file
@@ -0,0 +1,94 @@
|
||||
// We investigate phonons at Gamma instead of the exact location near Gamma.
|
||||
Phonons at the #sym.Gamma point were used
|
||||
to approximate negligible-polar phonons that participating in Raman processes of any incident/scattered light.
|
||||
This approximation is widely adopted and justified by the fact that, // TODO: cite
|
||||
although the phonons participating in Raman processes are not these strictly located at the #sym.Gamma point,
|
||||
they are very close to the #sym.Gamma point in reciprocal space
|
||||
(about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
|
||||
which corresponds to only 1% of the smallest reciprocal lattice vector of 4H-SiC,
|
||||
see orange dotted line in @figure-discont),
|
||||
and their dispersion at #sym.Gamma point is continuous with vanishing derivatives.
|
||||
Therefore, negligible-polar phonons involved in Raman processes
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point,
|
||||
and the phonon participating in Raman processes of different incident/scattered light directions
|
||||
are all nearly identical to the phonons at the #sym.Gamma point.
|
||||
|
||||
#include "discont.typ"
|
||||
|
||||
// Representation of these 18 phonons, and the shape of their Raman tensors could be determined in advance.)
|
||||
Phonons at the #sym.Gamma point satisfy the C#sub[6v] point group symmetry,
|
||||
and the 18 negligible-polar phonons correspond to 12 irreducible representations of the C#sub[6v] point group:
|
||||
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
|
||||
Phonons belonging to the A#sub[1] and B#sub[1] representations vibrate along the z-axis and are non-degenerate,
|
||||
while those belonging to the E#sub[1] and E#sub[2] representations vibrate in-plane and are doubly degenerate.
|
||||
Phonons of the B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
|
||||
In contrast, phonons of the other representations are Raman-active,
|
||||
and the non-zero components of their Raman tensor
|
||||
can be determined by further considering their representation in the C#sub[2v] point group (see @table-rep).
|
||||
These Raman-active phonons are potentially be visible in Raman experiment under appropriate polarization configurations.
|
||||
However, whether a mode is sufficiently strong to be experimentally visible
|
||||
depends on the magnitudes of its Raman tensor components,
|
||||
which cannot be determined solely from symmetry analysis.
|
||||
|
||||
#include "rep.typ"
|
||||
|
||||
// We propose a method to estimate the magnitudes of the Raman tensors of these phonons,
|
||||
// without first-principle calculations.
|
||||
// Here we only write out results, details are in appendix.
|
||||
|
||||
// TODO: maybe it is better to assign Raman tensor to each bond, instead of atom
|
||||
|
||||
We propose a method to estimate the magnitudes of the Raman tensors of these phonons by symmetry analysis.
|
||||
The method only takes the vibration directions of each atom in each phonon mode,
|
||||
leaving the amplitudes unconsidered (see appendix for details),
|
||||
and the result was summarized in @table-predmode.
|
||||
In the Raman tensors in @table-predmode,
|
||||
$a_i$ corresponding to the change of polarizability caused by movement of the Si atoms in A and C layers,
|
||||
$epsilon_i$, $eta_i$ and $eta_i$ corresponding to the difference between different bilayers and different atoms.
|
||||
Due to the similarity of environment in different bilayers and around different atoms,
|
||||
the absolute values of $epsilon_i$, $eta_i$ and $zeta_i$ are expected to be much smaller than that of $a_i$,
|
||||
thus the Raman tensors containing $a_i$ are expected to be much larger than those not containing $a_i$.
|
||||
|
||||
#include "predmode.typ"
|
||||
|
||||
The Raman tensors and frequencies of the negligible-polar phonons were calculated using first-principles methods,
|
||||
and the results are compared with experiment and theory (@table-nopol).
|
||||
Calculated frequencies of these phonons are consistent with the experimental results
|
||||
with a low-estimated error of about 2% to 5%, which might be due to the PBE functional used in the calculation (cite).
|
||||
The Raman tensors of these phonons are also consistent with the experimental and theoretical results,
|
||||
where E#sub[2] mode experimentally at 776 is the most intense phonon mode,
|
||||
followed by four modes with lesser intensities
|
||||
(E#sub[2] modes at 195.5 and 203.3, E#sub[1] mode at 269.7, A#sub[1] mode at 609.5).
|
||||
The Raman scatter of the E#sub[1] mode calculately at 746.91 and E#sub[2] mode calculately at 756.25
|
||||
are much weaker than the E#sub[2] mode calculated at 756.25 but located near it, according to our calculation,
|
||||
thus it could not be distinguished from E#sub[2] mode calculated at 756.25,
|
||||
which explains why they are not observed in experiments.
|
||||
Moreover, the A#sub[1] mode calculated at 812.87
|
||||
have a very weak Raman intensity in the basal plane (xx and yy, only 0.01)
|
||||
but an observable intensity in the zz configuration (1.78).
|
||||
Thus, this mode could not be observed in most Raman experiments (cite),
|
||||
but could be observable when incident light propagate not along the z-direction (our experiment),
|
||||
or the incident light wavelength is near the resonance condition (cite).
|
||||
|
||||
Besides, there are other peeks in the experiment.
|
||||
The peek at 796 and 980 are caused by strong-polar phonons which will be discussed later.
|
||||
Besides, there are small peeks at xxx,
|
||||
which could not be explained in perfect 4H-SiC and will be discussed in the next section.
|
||||
|
||||
// TODO: 将一部分 phonons 改为 phonon modes
|
||||
// 在论文中我们这样来称呼:phonon 对应某一个特征向量,而 modes 对应于一个子空间。
|
||||
// 也就是说,简并的里面有两个或者无数个 phonon,但只有一个 mode
|
||||
|
||||
#include "nopol.typ"
|
||||
|
||||
#include "raman.typ"
|
||||
|
||||
// TODO: 画一个模拟的图,与实验图对比。
|
||||
|
||||
// 实验与计算基本相符。对于声子频率,计算总是低估大约 3%。
|
||||
// 此外,一些较强的模式在预测无法看到的偏振中也可以看到。例如,一些在 xy 偏振中不应该看到的模式可以被看到了。
|
||||
// 这个现象可以由 4度的斜切所解释:我们将材料略微踮起一些角度,就可以使得该模式减小。
|
||||
// 这个现象也可以由材料或偏振片的微小角度来解释。
|
||||
// 例如,我们将偏振方向转动 5 度,就可以得到这个模拟结果。
|
||||
// 此外,由于使用的材料是沿着 c 轴切片的,所以我们在测量 y 入射时不得不将片子以略小于 90 度(约 75 度)的角度放置。这也导致实验与计算的偏差。
|
||||
// TODO: 翻译成英文
|
||||
15
test-typst/section/perfect/non-polar/discont.typ
Normal file
15
test-typst/section/perfect/non-polar/discont.typ
Normal file
@@ -0,0 +1,15 @@
|
||||
#figure(
|
||||
image("/画图/声子不连续/embed.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
The green, red and blue lines indicate the mode along the z-direction, y-direction and x-direction, respectively.
|
||||
Along A-#sym.Gamma path, strong-polar modes along x- and y-directions are degenerated,
|
||||
showing as a single purple line.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
],
|
||||
placement: none,
|
||||
)<figure-discont>
|
||||
73
test-typst/section/perfect/non-polar/nopol.typ
Normal file
73
test-typst/section/perfect/non-polar/nopol.typ
Normal file
@@ -0,0 +1,73 @@
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let A1 = [A#sub[1]];
|
||||
// let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
// let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
// [*Direction of Incident & Scattered Light*],
|
||||
// m(26)[Any direction (not depend on direction of incident & scattered light)],
|
||||
// TODO: 整理表格,使用 m2 m3 来代替
|
||||
[*Number of Phonon*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[1], m2[2], [3], m2[4], [5], [6], [7], [8], m3[9], [10], [11], [12], m2[13], [14], m2[15], m3[16], [17], [18],
|
||||
[*Vibration Direction*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[x], m2[y], [x], m(2)[y], [x], [y], m(2)[z], m(3)[z],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], m(2)[z],
|
||||
[*Representation #linebreak() in Group C#sub[6v]*],
|
||||
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
|
||||
[*Raman-active or Not*],
|
||||
m(8)[Raman-active], m(2)[Raman-inactive], m(14)[Raman-active], m(2)[Raman-inactive],
|
||||
// [*Representation in Group C#sub[2v]*],
|
||||
// // E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
// A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
|
||||
[*Scattering in Polarization #linebreak() (non-zero Raman #linebreak() tenser components)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[xy], [xx], [yy], [xy], [xx], [yy], [xz], [yz], m(2)[-], [xx], [yy], [zz],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[xz], [yz], [xy], [xx], [yy], [xy], [xx], [yy], [xx], [yy], [zz], m(2)[-],
|
||||
[*Raman Intensity (a.u.)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.17], m(3)[1.13], m(2)[2.43], m(2)[0], m(2)[2.83], [1.79],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[0.09], m(3)[88.54], m(3)[0.50], m(2)[0.01], [1.78], m(2)[0],
|
||||
[*Visible in Common #linebreak() Raman Experiment or Not*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(8)[Visible], m(2)[-], m(3)[Visible],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[Invisible], m(3)[Visible], m(5)[Invisible], [Visible], m(2)[-],
|
||||
[*Wavenumber #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[190.51], m(3)[197.84], m(2)[257.35], [389.96], [397.49], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[746.91], m(3)[756.25], m(3)[764.33], m(3)[812.87], [885.68], [894.13],
|
||||
[*Wavenumber #linebreak() (Experiment) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[195.5], m(3)[203.3], m(2)[269.7], m(2)[-], m(3)[609.5],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[776], m(5)[-], [839], m(2)[-],
|
||||
[*FWHM #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.08], m(3)[0.09], m(2)[0.08], m(2)[-], m(3)[0.61],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[3.97], m(3)[4.62], m(3)[4.01], m(3)[0.89], m(2)[-],
|
||||
// TODO: 怎么选取用于比较的合适的实验?
|
||||
[*FWHM #linebreak() (Experiment, zxxz) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[2.61], m(3)[2.09], m(2)[1.98], m(2)[-], m(3)[2.64],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[3.27], m(3)[-], m(3)[-], m(2)[-],
|
||||
[*Electrical Polarity*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m(6)[None], m(2)[Weak], m(2)[None], m(5)[Weak], m(6)[None], m(3)[Weak], m(2)[None],
|
||||
)},
|
||||
caption: [Negaligible-polarized Phonons at $Gamma$ Point],
|
||||
)<table-nopol>]
|
||||
47
test-typst/section/perfect/non-polar/predmode.typ
Normal file
47
test-typst/section/perfect/non-polar/predmode.typ
Normal file
@@ -0,0 +1,47 @@
|
||||
// Raman Tensor for A1: line1 xx/yy; line2 zz
|
||||
// Raman Tensor for E1: x-dirc xz or y-dirc yx
|
||||
// Raman Tensor for E2: x-dirc xy or y-dirc xx or y-dirc -yy
|
||||
// TODO: remove LO TO or not?
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let m4(content) = table.cell(colspan: 4, content);
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
table(columns: 11, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Representation in C#sub[6v]*], m3[A#sub[1]], m3[E#sub[1]], m4[E#sub[2]],
|
||||
[*Relative Vibration Direction*],
|
||||
[Si: $+-+-$ #linebreak() C: $0000$], [Si: $0000$ #linebreak() C: $+-+-$], [Si: $++++$ #linebreak() C: $----$],
|
||||
[Si: $+-+-$ #linebreak() C: $-+-+$], [Si: $+-+-$ #linebreak() C: $+-+-$], [Si: $++++$ #linebreak() C: $----$],
|
||||
[Si: $++--$ #linebreak() C: $-++-$], [Si: $+--+$ #linebreak() C: $++--$],
|
||||
[Si: $++--$ #linebreak() C: $+--+$], [Si: $+--+$ #linebreak() C: $--++$],
|
||||
[*Vibration Direction*], m3[z], m3[x/y], m4[x/y],
|
||||
[*Raman Tensor Predicted*], [xx/yy: $-2A_#text[Si] epsilon_5$ #linebreak() zz: $-2A_#text[Si]epsilon_6$],
|
||||
[xx/yy: $-2A_#text[C]zeta_5$ #linebreak() zz: $-A_#text[C]zeta_6$],
|
||||
[xx/yy: $2A_#text[Si] (2a_5+epsilon_5) + 2A_#text[C] (2a_5+eta_5+zeta_5)$ #linebreak() zz: $2A_#text[Si] (2a_6+epsilon_6) + 2A_#text[C] (2a_6+eta_6+zeta_6)$],
|
||||
[xz/yz: $-2A_#text[Si]epsilon_1-2A_#text[C]zeta_1$],
|
||||
[xz/yz: $-2A_#text[Si]epsilon_1+2A_#text[C]zeta_1$],
|
||||
[xz/yz: $2A_#text[Si] (2a_1+epsilon_1) +2A_#text[C] (2a_1+2eta_1+zeta_1))$],
|
||||
[xx/-yy/xy: $2A_#text[Si] (2a_2+epsilon_2) -2A_#text[C] (2a_2+2eta_2+zeta_2))$],
|
||||
[xx/-yy/xy: $-2A_#text[Si]epsilon_2-2A_#text[C]zeta_2$],
|
||||
[xx/-yy/xy: $2A_#text[Si] (2a_2+epsilon_2) +2A_#text[C] (2a_2+2eta_2+zeta_2))$],
|
||||
[xx/-yy/xy: $-2A_#text[Si]epsilon_2+2A_#text[C]zeta_2$],
|
||||
[*Raman Intensity Predicted*], m2[weak], [strong], m2[weak], [strong], m2[weak], [strong], [weak],
|
||||
[*Raman Tensor Calculated*],
|
||||
[-1.68 #linebreak() 1.34], [0.10 #linebreak() -1.33], [-7.68 #linebreak() 21.65],
|
||||
[-1.56], [-0.30], [7.32], [-0.41], [1.06], [9.41], [-0.71],
|
||||
// [*x*], [1 axial acoustic], [0 axial optical], [1 axial optical],
|
||||
// [0 axial acoustic], [1 axial optical], [1 axial optical],
|
||||
// m2[0.5 acoustic], m2[0.5 optical],
|
||||
[*Type*], [axial acoustic], [axial optical], [longitudinal optical],
|
||||
[planer acoustic], [planer optical], [transverse optical],
|
||||
m2[planer acoustic], m2[planer optical],
|
||||
[*Move-towards Atom-pairs* (In-plane/Out-plane)], [4/0], [0/4], [4/4], [0/4], [4/0], [4/4], [0/2], [2/0], m2[4/2],
|
||||
// [*Predicted Frequency*], [low], [medium], [high], [medium], [low], [high], [low], [medium], m2[high],
|
||||
[*Calculated Frequency*],
|
||||
[591.90], [812.87], [933.80], [257.35], [746.91], [776.57], [190.51], [197.84], [756.25], [764.33]
|
||||
)},
|
||||
caption: [Predicted modes and their "Raman tensor"],
|
||||
placement: none,
|
||||
)<table-predmode>]
|
||||
11
test-typst/section/perfect/non-polar/raman.typ
Normal file
11
test-typst/section/perfect/non-polar/raman.typ
Normal file
@@ -0,0 +1,11 @@
|
||||
#figure(
|
||||
image("/画图/拉曼整体图/main.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
]
|
||||
)<raman>
|
||||
18
test-typst/section/perfect/non-polar/rep.typ
Normal file
18
test-typst/section/perfect/non-polar/rep.typ
Normal file
@@ -0,0 +1,18 @@
|
||||
#figure({
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
set text(size: 9pt);
|
||||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Representations in C#sub[6v]*], [A#sub[1]], m2[E#sub[1]], m2[E#sub[2]],
|
||||
[*Representations in C#sub[2v]*], [A#sub[1]], [B#sub[2]], [B#sub[1]], [A#sub[2]], [A#sub[1]],
|
||||
[*Vibration Direction*], [z], [x], [y], [x], [y],
|
||||
[*Raman Tensor of #linebreak() Individual Phonons*],
|
||||
[$mat(a,,;,a,;,,b)$], [$mat(,,a;,,;a,,;)$], [$mat(,,;,,a;,a,;)$], [$mat(,a,;a,,;,,;)$], [$mat(a,,;,-a,;,,;)$],
|
||||
[*Raman Intensity with Different #linebreak() Polarization Configurations*],
|
||||
[xx/yy: $a^2$ #linebreak() zz: $b^2$ #linebreak() others: 0],
|
||||
m2[xz/yz: $a^2$ #linebreak() others: 0], m2[xx/xy/yy: $a^2$ #linebreak() others: 0],
|
||||
)},
|
||||
caption: [
|
||||
Raman-active representations of C#sub[6v] and C#sub[2v] point groups.
|
||||
],
|
||||
placement: none,
|
||||
)<table-rep>
|
||||
Reference in New Issue
Block a user