This commit is contained in:
2025-05-09 11:28:36 +08:00
parent 2bf074f68b
commit cd606acf6d

View File

@@ -34,6 +34,7 @@
// body // body
// }) // })
) )
#set figure(placement: none)
= Introduction = Introduction
@@ -109,8 +110,7 @@ We classified these phonons into two categories based on their polarities:
(b) Magnified view of the boxed region in (a). (b) Magnified view of the boxed region in (a).
The orange dashed lines mark the phonon wavevectors involved in Raman scattering The orange dashed lines mark the phonon wavevectors involved in Raman scattering
with incident light along the z- and y-directions. with incident light along the z- and y-directions.
], ]
placement: none
)<phonon> )<phonon>
=== Phonons with Negligible Polarities === Phonons with Negligible Polarities
@@ -155,18 +155,39 @@ In these 18 modes, the vibrations of two Si atoms are approximately opposite to
caption: [Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC.] caption: [Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC.]
)<bec> )<bec>
// 这18个声子对应于 $\mathrm{C_{6v}}$ 点群的 14 个表示2A1 + 4B1 + 2E_1 + 4E2
// 其中B1 表示没有拉曼活性,它的拉曼张量为零;其它表示的拉曼张量不为零,但张量的大小是否足够大到可以在实验上看到,则还需要第一性原理计算,不能直接通过表示来判断。
// 我们的计算结果如表所示。其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。
// 其中xxx 和xxx 位于强模式的附近它们在实验上无法看到xxx 只在 z 方向入射/散射时可以看到xxx 则在任意方向都能看到。
// These phonon modes correspond to twelve irreducible representations of the $\mathrm{C_{6v}}$ point group: $\mathrm{3A_1 + 4B_1 + 3E_1 + 4E_2}$. The 18 negligible-polar phonons correspond to 14 irreducible representations of the C#sub[6v] point group:
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
Phonons belonging to A#sub[1] and B#sub[1] representations are non-degenerate,
while phonons belonging to E#sub[1] and E#sub[2] representations are doubly degenerate.
Phonons belonging to B#sub[1] representation are Raman inactive, as their Raman tensors vanish.
In contrast, the Raman tensors of phonons belonging to other representations have non-zero components,
indicating that these phonons might be visible in Raman experiment under appropriate polarization configurations.
However, the actual visibility of each phonon depends on the magnitudes of its Raman tensor components,
which cannot be inferred solely from symmetry analysis.
/*
这里应该有办法来估计。下面是我总结的规律:
按照我们规定的 ABCB 层序,并将拉曼张量的大小归结为键长的变化的话:
* 对于 E2 表示AC层运动方向必须相反B1/B2层运动方向必须相反因此只讨论A和B1层
* A 层内部的那个竖的键,同向运动会导致比较大的拉曼张量
* B1 层内部的那个竖的键,反向运动会导致比较大的拉曼张量
* A 层和 B1 层之间的那个横的键,反向运动会导致比较大的拉曼张量
我们或许可以通过这个路径来探索:
* 首先,根据 C3v 点群的表示,写出每个键的拉曼张量。这包括:
* 对于 A 内竖着的键,考虑连着的两个原子和第一近邻原子,对称性为 C3v。写出此时的拉曼张量。
* 对于 B1 内竖着的键,它也是 C3v它此时的拉曼张量是 h 下稍微变动的结果。写下这个结果。
* 对于 A 到 B1 的横着的键,它是 C3v 。写下这个结果。
* 对于 B1 到 C 的横着的键,它是 C3v 。写下这个结果为之前的结果的微微变动。
* 对于其它键,根据对称性由上面的结果直接写出。
* 写出各个模式的拉曼张量(上面的线性组合)。即可以直接看到结果。
*/
18 of them are classified as negligible-polar phonons, // 我们计算了这些声子的拉曼张量与线宽,并与实验对比,结果如表所示。
since
// TODO: 列个表格
//
//
// 不同方向入射/散射光的拉曼实验对应于 Gamma 附近、偏向于不同方向的声子。 // 不同方向入射/散射光的拉曼实验对应于 Gamma 附近、偏向于不同方向的声子。
// 其中 $\mathrm{A_1}$、$\mathrm{B_1}$ 为一维表示,对应于无简并的声子;$\mathrm{E_1}$、$\mathrm{E_2}$ 为二维表示,对应于二重简并的声子。 // 其中 $\mathrm{A_1}$、$\mathrm{B_1}$ 为一维表示,对应于无简并的声子;$\mathrm{E_1}$、$\mathrm{E_2}$ 为二维表示,对应于二重简并的声子。
// 在拉曼实验中,起作用的声子并不严格在 Gamma 点;但大多数声子的色散谱在 Gamma 点连续且导数(斜率)为零,因此大多情况下可以沿用这个分类,少数情况我们稍后会专门讨论。 // 在拉曼实验中,起作用的声子并不严格在 Gamma 点;但大多数声子的色散谱在 Gamma 点连续且导数(斜率)为零,因此大多情况下可以沿用这个分类,少数情况我们稍后会专门讨论。
@@ -185,26 +206,26 @@ In these 18 modes, the vibrations of two Si atoms are approximately opposite to
// 拉曼散射强度足够大且极性不强的模式,它们在拉曼散射谱上可以看到,且频率与拉曼入射光方向无关; // 拉曼散射强度足够大且极性不强的模式,它们在拉曼散射谱上可以看到,且频率与拉曼入射光方向无关;
// 极性声子,它们在拉曼散射谱上可以看到,不仅频率与入射光方向有关,而且可与载流子发生一些相互作用。 // 极性声子,它们在拉曼散射谱上可以看到,不仅频率与入射光方向有关,而且可与载流子发生一些相互作用。
Phonons in defect-free 4H-SiC are calculated at A-$Gamma$ and $Gamma$-M, // Phonons in defect-free 4H-SiC are calculated at A-$Gamma$ and $Gamma$-M,
as shown in Figure \ref{fig:phonon} and Table \ref{tab:phonon}. // as shown in Figure \ref{fig:phonon} and Table \ref{tab:phonon}.
Raman active phonons are very close to $Gamma$, // Raman active phonons are very close to $Gamma$,
as indicated by the points in the figure. // as indicated by the points in the figure.
Because of the consistency of the most phonon modes near $Gamma$, // Because of the consistency of the most phonon modes near $Gamma$,
most of the phonon frequencies are insensitive to the direction of the incident light. // most of the phonon frequencies are insensitive to the direction of the incident light.
However, some phonons have strong polarities, // However, some phonons have strong polarities,
which leads to long-range Coulomb interactions between phonons, // which leads to long-range Coulomb interactions between phonons,
and results in different frequencies near $Gamma$, // and results in different frequencies near $Gamma$,
as shown by the two lines in the figure. // as shown by the two lines in the figure.
Thus, we divide the phonons of defect-free 4H-SiC into three categories: // Thus, we divide the phonons of defect-free 4H-SiC into three categories:
(1) Raman inactive or too weak Raman intensity, // (1) Raman inactive or too weak Raman intensity,
which are invisible in the Raman scattering spectrum; // which are invisible in the Raman scattering spectrum;
(2) Raman active phonons with strong polarities, // (2) Raman active phonons with strong polarities,
which are visible in the Raman scattering spectrum, // which are visible in the Raman scattering spectrum,
and their frequencies are independent of the direction of the incident light; // and their frequencies are independent of the direction of the incident light;
(3) Polar phonons, // (3) Polar phonons,
which are visible in the Raman scattering spectrum, // which are visible in the Raman scattering spectrum,
and their frequencies depend on the direction of the incident light, // and their frequencies depend on the direction of the incident light,
and can interact with carriers. // and can interact with carriers.
#page(flipped: true)[ #page(flipped: true)[
#let m(n, content) = table.cell(colspan: n, content); #let m(n, content) = table.cell(colspan: n, content);