From cd606acf6da831ba12e82ca20e941a2e4277219b Mon Sep 17 00:00:00 2001 From: chn Date: Fri, 9 May 2025 11:28:36 +0800 Subject: [PATCH] --- test-typst/main.typ | 83 ++++++++++++++++++++++++++++----------------- 1 file changed, 52 insertions(+), 31 deletions(-) diff --git a/test-typst/main.typ b/test-typst/main.typ index c45e92a..d963e04 100644 --- a/test-typst/main.typ +++ b/test-typst/main.typ @@ -34,6 +34,7 @@ // body // }) ) +#set figure(placement: none) = Introduction @@ -109,8 +110,7 @@ We classified these phonons into two categories based on their polarities: (b) Magnified view of the boxed region in (a). The orange dashed lines mark the phonon wavevectors involved in Raman scattering with incident light along the z- and y-directions. - ], - placement: none + ] ) === Phonons with Negligible Polarities @@ -155,18 +155,39 @@ In these 18 modes, the vibrations of two Si atoms are approximately opposite to caption: [Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC.] ) +// 这18个声子对应于 $\mathrm{C_{6v}}$ 点群的 14 个表示:2A1 + 4B1 + 2E_1 + 4E2 +// 其中,B1 表示没有拉曼活性,它的拉曼张量为零;其它表示的拉曼张量不为零,但张量的大小是否足够大到可以在实验上看到,则还需要第一性原理计算,不能直接通过表示来判断。 +// 我们的计算结果如表所示。其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。 +// 其中,xxx 和xxx 位于强模式的附近,它们在实验上无法看到;xxx 只在 z 方向入射/散射时可以看到;xxx 则在任意方向都能看到。 -// These phonon modes correspond to twelve irreducible representations of the $\mathrm{C_{6v}}$ point group: $\mathrm{3A_1 + 4B_1 + 3E_1 + 4E_2}$. +The 18 negligible-polar phonons correspond to 14 irreducible representations of the C#sub[6v] point group: + 2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2]. +Phonons belonging to A#sub[1] and B#sub[1] representations are non-degenerate, + while phonons belonging to E#sub[1] and E#sub[2] representations are doubly degenerate. +Phonons belonging to B#sub[1] representation are Raman inactive, as their Raman tensors vanish. +In contrast, the Raman tensors of phonons belonging to other representations have non-zero components, + indicating that these phonons might be visible in Raman experiment under appropriate polarization configurations. +However, the actual visibility of each phonon depends on the magnitudes of its Raman tensor components, + which cannot be inferred solely from symmetry analysis. +/* +这里应该有办法来估计。下面是我总结的规律: +按照我们规定的 ABCB 层序,并将拉曼张量的大小归结为键长的变化的话: +* 对于 E2 表示(AC层运动方向必须相反,B1/B2层运动方向必须相反,因此只讨论A和B1层) + * A 层内部的那个竖的键,同向运动会导致比较大的拉曼张量 + * B1 层内部的那个竖的键,反向运动会导致比较大的拉曼张量 + * A 层和 B1 层之间的那个横的键,反向运动会导致比较大的拉曼张量 +我们或许可以通过这个路径来探索: +* 首先,根据 C3v 点群的表示,写出每个键的拉曼张量。这包括: + * 对于 A 内竖着的键,考虑连着的两个原子和第一近邻原子,对称性为 C3v。写出此时的拉曼张量。 + * 对于 B1 内竖着的键,它也是 C3v,它此时的拉曼张量是 h 下稍微变动的结果。写下这个结果。 + * 对于 A 到 B1 的横着的键,它是 C3v 。写下这个结果。 + * 对于 B1 到 C 的横着的键,它是 C3v 。写下这个结果为之前的结果的微微变动。 + * 对于其它键,根据对称性由上面的结果直接写出。 +* 写出各个模式的拉曼张量(上面的线性组合)。即可以直接看到结果。 +*/ -18 of them are classified as negligible-polar phonons, - since - -// TODO: 列个表格 - - -// -// +// 我们计算了这些声子的拉曼张量与线宽,并与实验对比,结果如表所示。 // 不同方向入射/散射光的拉曼实验对应于 Gamma 附近、偏向于不同方向的声子。 // 其中 $\mathrm{A_1}$、$\mathrm{B_1}$ 为一维表示,对应于无简并的声子;$\mathrm{E_1}$、$\mathrm{E_2}$ 为二维表示,对应于二重简并的声子。 // 在拉曼实验中,起作用的声子并不严格在 Gamma 点;但大多数声子的色散谱在 Gamma 点连续且导数(斜率)为零,因此大多情况下可以沿用这个分类,少数情况我们稍后会专门讨论。 @@ -185,26 +206,26 @@ In these 18 modes, the vibrations of two Si atoms are approximately opposite to // 拉曼散射强度足够大且极性不强的模式,它们在拉曼散射谱上可以看到,且频率与拉曼入射光方向无关; // 极性声子,它们在拉曼散射谱上可以看到,不仅频率与入射光方向有关,而且可与载流子发生一些相互作用。 -Phonons in defect-free 4H-SiC are calculated at A-$Gamma$ and $Gamma$-M, - as shown in Figure \ref{fig:phonon} and Table \ref{tab:phonon}. -Raman active phonons are very close to $Gamma$, - as indicated by the points in the figure. -Because of the consistency of the most phonon modes near $Gamma$, - most of the phonon frequencies are insensitive to the direction of the incident light. -However, some phonons have strong polarities, - which leads to long-range Coulomb interactions between phonons, - and results in different frequencies near $Gamma$, - as shown by the two lines in the figure. -Thus, we divide the phonons of defect-free 4H-SiC into three categories: - (1) Raman inactive or too weak Raman intensity, - which are invisible in the Raman scattering spectrum; - (2) Raman active phonons with strong polarities, - which are visible in the Raman scattering spectrum, - and their frequencies are independent of the direction of the incident light; - (3) Polar phonons, - which are visible in the Raman scattering spectrum, - and their frequencies depend on the direction of the incident light, - and can interact with carriers. +// Phonons in defect-free 4H-SiC are calculated at A-$Gamma$ and $Gamma$-M, +// as shown in Figure \ref{fig:phonon} and Table \ref{tab:phonon}. +// Raman active phonons are very close to $Gamma$, +// as indicated by the points in the figure. +// Because of the consistency of the most phonon modes near $Gamma$, +// most of the phonon frequencies are insensitive to the direction of the incident light. +// However, some phonons have strong polarities, +// which leads to long-range Coulomb interactions between phonons, +// and results in different frequencies near $Gamma$, +// as shown by the two lines in the figure. +// Thus, we divide the phonons of defect-free 4H-SiC into three categories: +// (1) Raman inactive or too weak Raman intensity, +// which are invisible in the Raman scattering spectrum; +// (2) Raman active phonons with strong polarities, +// which are visible in the Raman scattering spectrum, +// and their frequencies are independent of the direction of the incident light; +// (3) Polar phonons, +// which are visible in the Raman scattering spectrum, +// and their frequencies depend on the direction of the incident light, +// and can interact with carriers. #page(flipped: true)[ #let m(n, content) = table.cell(colspan: n, content);