This commit is contained in:
@@ -1,28 +1,6 @@
|
||||
#import "@preview/starter-journal-article:0.4.0": article, author-meta
|
||||
#import "@preview/tablem:0.2.0": tablem
|
||||
#import "@preview/physica:0.9.5": pdv, super-T-as-transpose
|
||||
#show: super-T-as-transpose
|
||||
|
||||
#set par.line(numbering: "1")
|
||||
#set par(justify: true)
|
||||
// 思源宋体,也算是宋体吧
|
||||
#set text(font: ("Times New Roman", "Source Han Serif SC"))
|
||||
// TODO: fix indent of first line
|
||||
#show figure.caption: it => {
|
||||
set text(10pt)
|
||||
// TODO: how to align correctly?
|
||||
align(center, box(align(left, it), width: 80%))
|
||||
}
|
||||
#set page(
|
||||
// paper: "us-letter",
|
||||
// header: align(right)[
|
||||
// A fluid dynamic model for
|
||||
// glacier flow
|
||||
// ],
|
||||
numbering: "1/1",
|
||||
)
|
||||
// TODO: why globally set placement not work?
|
||||
// #set figure(placement: none)
|
||||
#show: article.with(
|
||||
title: "Article Title",
|
||||
authors: (
|
||||
@@ -40,17 +18,32 @@
|
||||
),
|
||||
abstract: [#lorem(100)],
|
||||
keywords: ("Typst", "Template", "Journal Article"),
|
||||
// template: (body: (body) => {
|
||||
// show heading.where(level: 1): it => block(above: 1.5em, below: 1.5em)[
|
||||
// #set pad(bottom: 2em, top: 1em)
|
||||
// #it.body
|
||||
// ]
|
||||
// set par(first-line-indent: (amount: 2em, all: true))
|
||||
// set footnote(numbering: "1")
|
||||
// body
|
||||
// })
|
||||
)
|
||||
|
||||
// 行号
|
||||
#set par.line(numbering: "1")
|
||||
|
||||
// 两端对齐
|
||||
#set par(justify: true)
|
||||
|
||||
// 中文使用思源宋体,英文使用 Times New Roman
|
||||
#set text(font: ("Times New Roman", "Source Han Serif SC"))
|
||||
|
||||
// 图表标题
|
||||
#show figure.caption: it => {
|
||||
set text(10pt)
|
||||
align(center, box(align(left, it), width: 80%))
|
||||
}
|
||||
|
||||
// 页码
|
||||
#set page(
|
||||
numbering: "1/1",
|
||||
)
|
||||
|
||||
// TODO: why globally set placement not work?
|
||||
// #set figure(placement: none)
|
||||
|
||||
// 标题序号
|
||||
#set heading(numbering: "1.")
|
||||
|
||||
= Introduction
|
||||
@@ -59,34 +52,23 @@
|
||||
|
||||
= Method
|
||||
|
||||
// TODO
|
||||
|
||||
calc
|
||||
|
||||
experiment
|
||||
#include "section/method.typ"
|
||||
|
||||
= Results and Discussion
|
||||
|
||||
- 无缺陷:
|
||||
我们将声子分为两类,一类是极性比较弱的(18个),一类是比较强的(3个)。
|
||||
- 弱极性的声子:
|
||||
- 使用 Gamma 点的声子模式来近似。根据对称性可以预测它们的拉曼张量。
|
||||
- 我们提出了一个方法,直接根据对称性来估计声子模式的拉曼张量,或者反过来,估计拉曼光谱中峰对应的原子振动模式。估计的结果大多数是正确的。、
|
||||
- TODO: 可能换成使用原子对(键)来估计,要比使用原子来估计要更合理。
|
||||
- 我们使用第一性原理计算了各种性质,它与实验、预测相符。
|
||||
- TODO: 将峰宽列出来,将模拟图画出来。
|
||||
- 某某峰 is reported 在某人的实验中可以看到而在某人的实验中看不到。我们 propose 它的确存在,但只能通过共振拉曼或者zz偏振才能看到。
|
||||
- TODO: 引用文献。
|
||||
- TODO: 确认一下最后一次实验中,峰偏移等是否与掺杂有明显关系,以及这个关系与之前是否相同。
|
||||
- 强极性的声子:
|
||||
- 强极性声子在 Gamma 附近散射谱不连续,它的声子模式由入射光的方向决定。在入射光不沿 z 轴的情况下,使用 C6v 群不再适用。
|
||||
- TODO: 写文字
|
||||
- 在接近 y 轴入射时,可以看到分裂。这个模式可能对表面敏感。
|
||||
- TODO: 佐证它对表面敏感
|
||||
- 对于 LO,可能形成 LOPC
|
||||
- 有缺陷的情况:
|
||||
- TODO: 描述缺陷原子的振动
|
||||
- TODO: 计算拉曼张量,描述光谱的可能变化
|
||||
// - 无缺陷:
|
||||
// 我们将声子分为两类,一类是极性比较弱的(18个),一类是比较强的(3个)。
|
||||
// - 弱极性的声子:
|
||||
// - TODO: 确认一下最后一次实验中,峰偏移等是否与掺杂有明显关系,以及这个关系与之前是否相同。
|
||||
// - 强极性的声子:
|
||||
// - 强极性声子在 Gamma 附近散射谱不连续,它的声子模式由入射光的方向决定。在入射光不沿 z 轴的情况下,使用 C6v 群不再适用。
|
||||
// - TODO: 写文字
|
||||
// - 在接近 y 轴入射时,可以看到分裂。这个模式可能对表面敏感。
|
||||
// - TODO: 佐证它对表面敏感
|
||||
// - 对于 LO,可能形成 LOPC
|
||||
// - 有缺陷的情况:
|
||||
// - TODO: 描述缺陷原子的振动
|
||||
// - TODO: 计算拉曼张量,描述光谱的可能变化
|
||||
|
||||
== Phonons in Perfect 4H-SiC
|
||||
|
||||
@@ -157,229 +139,7 @@ experiment
|
||||
)
|
||||
]
|
||||
|
||||
The center principle is to assign the Raman tensor (i.e., change of polarizability caused by atomic displacement)
|
||||
to each atom in the unit cell.
|
||||
This including the following steps:
|
||||
- Write out the change of polarizability caused by displacement of Si atom in A and C layer,
|
||||
Where unknown non-zero components are denoted by $a_1$, $a_2$, $a_5$, $a_6$.
|
||||
For example, when we move the Si atom in A layer slightly towards the x+ direction in $d$ distance,
|
||||
the change of polarizability should be $mat(,a_2,a_1;a_2,,;a_1,,)d$.
|
||||
This could be done by conclusion above.
|
||||
- The Si atom in B layer have similar local environment as the A and C layer, with only a little difference.
|
||||
We denote these difference by $epsilon_1$, $epsilon_2$, $epsilon_5$, $epsilon_6$,
|
||||
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
|
||||
For example, when we move the Si atom in B layer slightly towards the x+ direction in $d$ distance,
|
||||
the change of polarizability should be $mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,)d$.
|
||||
- The local environment of C atom in A layer is similar to the Si atom in A layer with charge reversed and
|
||||
the system reversed along xy plane.
|
||||
We denote these difference by $eta_1$, $eta_2$, $eta_5$, $eta_6$,
|
||||
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
|
||||
For example, when we move the C atom in A layer slightly towards the x+ direction in $d$ distance,
|
||||
the change of polarizability should be $mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,)d$.
|
||||
- Similar to the case in Si atoms, we derive the change of polarizability
|
||||
caused by moving C atom in B layer slightly towards the x+ direction in $d$ distance,
|
||||
which should be $mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,)d$.
|
||||
|
||||
Lets assign Raman tensor onto each atom.
|
||||
That is, Raman tensor is derivative of the polarizability with respect to the atomic displacement:
|
||||
$
|
||||
alpha = pdv(chi, u)
|
||||
$
|
||||
where $u$ should be the displacement of the atom corresponding to a phonon mode.
|
||||
But, even when $u$ is *NOT* the displacement of a phonon
|
||||
(for example, lets only slightly move Si atom in A layer, keeping other atoms fixed),
|
||||
the (high-frequency) polarizability is still well-defined,
|
||||
and the will still cause a change in the polarizability.
|
||||
Even more, the group representation theory is still applicable in this condition:
|
||||
the only thing that matters is, when applying $g$ to the system,
|
||||
the tensor transformed into $g^(-1) alpha g$ or $g alpha g^(-1)$,
|
||||
no matter $alpha$ is Raman tensor or something else, or it is related to a phonon or not.
|
||||
|
||||
Thus, we can, in principle, "assign" Raman tensor of a phonon, to each atom.
|
||||
This "assign" is unique since both the atom movement and all phonons have 24 dimensions.
|
||||
|
||||
Next, we consider what these single-atom-caused "Raman tensors" looks like.
|
||||
For example, what happens if we move the Si atom in A layer slightly along the x+ direction?
|
||||
Consider also move the Si atom in C layer slightly, along x+ or x- direction.
|
||||
How about the Raman tensor caused by the both two atoms?
|
||||
In first case, this is B2 representation in E1 representation. Thus the Raman tensor should be something like:
|
||||
$
|
||||
mat(,,2a_1;,,;2a_1,,;)
|
||||
$
|
||||
In the second case, it is A2 in E2. It turns out:
|
||||
$
|
||||
mat(,2a_2,;2a_2,,;,,;)
|
||||
$
|
||||
The average of these two tensors should be the s"Raman tensor" cause by move only the Si atom in A layer,
|
||||
slightly towards x+ direction.
|
||||
$
|
||||
mat(,a_2,a_1;a_2,,;a_1,,;)
|
||||
$
|
||||
The difference should be the "Raman tensor" of the second atom.
|
||||
$
|
||||
mat(,-a_2,a_1;-a_2,,;a_1,,;)
|
||||
$
|
||||
|
||||
// This approach applied relied on the fact that, all Si atom in 4H-SiC is "distinguishable" by the symmetry operations.
|
||||
// I mean, what will happen if we have two Si atoms in A layer?
|
||||
// Apparently, we could not extract the "Raman tensor" of only one of the two atoms.
|
||||
// This is the case for the 6H-SiC.
|
||||
// Hence, we will provide a more general approach to estimate the "Raman tensor" of a single atom.
|
||||
|
||||
Consider the Si atom in the B1 layer.
|
||||
It lives in an environment quite similar to the A layer.
|
||||
Thus, the "Raman tensor" caused by it should be similar to the one caused by the A layer:
|
||||
$
|
||||
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)
|
||||
$
|
||||
Similar to the Si atom in B2 layer:
|
||||
$
|
||||
mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)
|
||||
$
|
||||
|
||||
Same approach applied for Si atom vibrate in y direction.
|
||||
When we move both Si atoms in A and C layer in y+ direction,
|
||||
it is B1 in E1, thus the "Raman tensor" should be:
|
||||
$
|
||||
mat(,,;,,2a_3;,2a_3,;)
|
||||
$
|
||||
And if we move Si in A layer towards y+ but Si in C layer towards y-,
|
||||
it is A2 in E2:
|
||||
$
|
||||
mat(2a_4,,;,-2a_4,;,,;)
|
||||
$
|
||||
Thus we get the "Raman tensor" of Si atom in A layer sololy move towards y+ direction:
|
||||
$
|
||||
mat(a_4,,;,-a_4,a_3;,a_3,;)
|
||||
$
|
||||
and the "Raman tensor" of Si atom in C layer towards y+ direction:
|
||||
$
|
||||
mat(-a_4,,;,a_4,a_3;,a_3,;)
|
||||
$
|
||||
Same applied for the Si atom in B layer:
|
||||
$
|
||||
mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
|
||||
$
|
||||
$
|
||||
mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
|
||||
$
|
||||
|
||||
Before consider z-direction, it is important to note that, $a_1$ $a_2$ $a_3$ $a_4$ are not independent.
|
||||
Consider vibration along x+ direction (lets say the distance is $d$).
|
||||
System energy caused by external electric field and vibration is:
|
||||
$
|
||||
E^T (mat(,,2a_1;,,;2a_1,,) d) E
|
||||
$
|
||||
Apply C#sub[3] to atom vibration and external field, energy should not change. We got:
|
||||
$
|
||||
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)^T ( mat(,,2a_1;,,;2a_1,,)(-1/2 d) + mat(,,;,,2a_3;,2a_3,)(sqrt(3)/2 d) )
|
||||
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)
|
||||
$
|
||||
It is equal to:
|
||||
$
|
||||
E^T (mat(,,1/2 a_1 + 3/2 a_3;,,sqrt(3)/2 a_1 - sqrt(3)/2 a_3;1/2 a_1 + 3/2 a_3,sqrt(3)/2 a_1 - sqrt(3)/2 a_3,) d) E
|
||||
$
|
||||
Thus:
|
||||
$
|
||||
1/2 a_1 + 3/2 a_3 = 2a_1 #linebreak()
|
||||
sqrt(3)/2 a_1 - sqrt(3)/2 a_3 = 0
|
||||
$
|
||||
Thus $a_1 = a_3$.
|
||||
Apply the same method, we get $abs(a_2) = abs(a_4)$.
|
||||
Since we have not define the sign of $a_4$, we could take $a_2 = a_4$.
|
||||
Same for $epsilon$.
|
||||
|
||||
Now consider what if we move the Si atom in A layer along z+ direction.
|
||||
If we move the Si atom in C layer along z+ direction, it is A1:
|
||||
$
|
||||
mat(2a_5,,;,2a_5,;,,2a_6;)
|
||||
$
|
||||
If we move the Si atom in C layer along z- direction, it is B1:
|
||||
$
|
||||
0
|
||||
$
|
||||
Thus we get the "Raman tensor" of Si atom in A or C layer towards z+ direction:
|
||||
$
|
||||
mat(a_5,,;,a_5,;,,a_6;)
|
||||
$
|
||||
|
||||
Lets consider the C atom in A layer.
|
||||
It should be somehow similar to the Si atom in A layer, but with a negative sign in some places,
|
||||
and then add or subtract some little value.
|
||||
Actually, the "transformation" of Si atom in A layer to C atom in A layer applied in the following steps:
|
||||
- reverse charge.
|
||||
- reverse system along xy plane.
|
||||
First we consider the first step.
|
||||
Taking the define of electricity tenser:
|
||||
$
|
||||
P = chi E
|
||||
$
|
||||
Lets reverse charge of the system, say we now have electricity tensor $chi'$. We get:
|
||||
$
|
||||
-P = chi'(-E)
|
||||
$
|
||||
Thus we get $chi' = chi$, the first step does not change the electricity tensor, nor the "Raman tensor".
|
||||
|
||||
Now we consider the second step.
|
||||
For electricity tensor, it will become:
|
||||
$
|
||||
mat(1,,;,1,;,,-1) chi mat(1,,;,1,;,,-1)
|
||||
$
|
||||
For $u$, when it is along x or y direction, it will not change. When it is along z direction, it will become $-u$.
|
||||
|
||||
So in conclusion, Raman tensor of C atom in A layer could be estimated from the Raman tensor of Si atom in A layer, by:
|
||||
- for movement alone x and y direction, xz yz should be applied a negative sign.
|
||||
- for movement alone z direction, xx xy yy zz should be applied a negative sign.
|
||||
|
||||
Export "Raman tensor" of C atom in C layer from C atom in A layer, in the same way.
|
||||
|
||||
Now consider the C atom in B1 layer.
|
||||
Is it similar to the C atom in A layer, just like that for Si atom?
|
||||
No. It turns out to be similar to the C atom in C layer.
|
||||
|
||||
We summarize these stuff into @table-singleatom.
|
||||
|
||||
Until now, we only consider the "Raman tensor" caused by single atom or atoms move in the same amplitudes.
|
||||
However, that is not the case in real phonon.
|
||||
- In some A1 modes, only Si or C atom moves. If we take the magnitude of eigenvector as 1,
|
||||
then amplitude of each atom is $1/(4sqrt(m_#text[Si]))$ or $1/(4sqrt(m_#text[C]))$.
|
||||
- In other cases, the amplitude of Si and C are in the ration of $m_#text[C] : m_#text[Si]$.
|
||||
thus the amplitude of Si atom is $1/2 sqrt(1/(m_#text[Si]+m_#text[Si]^2/m_#text[C]))$, so do the C atom.
|
||||
|
||||
|
||||
Furthermore, we list predicted modes and their Raman tensors, in @table-predmode.
|
||||
|
||||
- $a$: Raman tensor of Si atom in A layer, large value.
|
||||
- $epsilon$: Difference of Raman tensors of Si atom in A and B1 layer, small value.
|
||||
- $eta$: Difference of Raman tensors of C and Si atom in A layer, small value.
|
||||
- $zeta$: Difference of Raman tensors of C atoms in A and B layer, small value.
|
||||
|
||||
|
||||
#page(flipped: true)[#figure({
|
||||
table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Move Direction*], [x], [y], [z],
|
||||
[Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_2,,;,-a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
|
||||
[C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$],
|
||||
[$mat(a_2+eta_2,,;,-a_2-eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
|
||||
[Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
|
||||
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||||
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
|
||||
[C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
|
||||
[$mat(-a_2-eta_2-zeta_2,,;,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
|
||||
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
|
||||
[Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_2,,;,a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
|
||||
[C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$],
|
||||
[$mat(-a_2-eta_2,,;,a_2+eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
|
||||
[Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
|
||||
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||||
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
|
||||
[C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
|
||||
[$mat(a_2+eta_2+zeta_2,,;,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
|
||||
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
|
||||
)},
|
||||
caption: ["Raman tensor" caused by single atom],
|
||||
placement: none,
|
||||
)<table-singleatom>]
|
||||
#include "section/appendix/default.typ"
|
||||
|
||||
#include "掺杂晶格变化.typ"
|
||||
#include "晶格变化导致的频率变化.typ"
|
||||
|
||||
226
test-typst/section/appendix/default.typ
Normal file
226
test-typst/section/appendix/default.typ
Normal file
@@ -0,0 +1,226 @@
|
||||
#import "@preview/physica:0.9.5": pdv, super-T-as-transpose
|
||||
#show: super-T-as-transpose
|
||||
|
||||
The center principle is to assign the Raman tensor (i.e., change of polarizability caused by atomic displacement)
|
||||
to each atom in the unit cell.
|
||||
This including the following steps:
|
||||
- Write out the change of polarizability caused by displacement of Si atom in A and C layer,
|
||||
Where unknown non-zero components are denoted by $a_1$, $a_2$, $a_5$, $a_6$.
|
||||
For example, when we move the Si atom in A layer slightly towards the x+ direction in $d$ distance,
|
||||
the change of polarizability should be $mat(,a_2,a_1;a_2,,;a_1,,)d$.
|
||||
This could be done by conclusion above.
|
||||
- The Si atom in B layer have similar local environment as the A and C layer, with only a little difference.
|
||||
We denote these difference by $epsilon_1$, $epsilon_2$, $epsilon_5$, $epsilon_6$,
|
||||
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
|
||||
For example, when we move the Si atom in B layer slightly towards the x+ direction in $d$ distance,
|
||||
the change of polarizability should be $mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,)d$.
|
||||
- The local environment of C atom in A layer is similar to the Si atom in A layer with charge reversed and
|
||||
the system reversed along xy plane.
|
||||
We denote these difference by $eta_1$, $eta_2$, $eta_5$, $eta_6$,
|
||||
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
|
||||
For example, when we move the C atom in A layer slightly towards the x+ direction in $d$ distance,
|
||||
the change of polarizability should be $mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,)d$.
|
||||
- Similar to the case in Si atoms, we derive the change of polarizability
|
||||
caused by moving C atom in B layer slightly towards the x+ direction in $d$ distance,
|
||||
which should be $mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,)d$.
|
||||
|
||||
Lets assign Raman tensor onto each atom.
|
||||
That is, Raman tensor is derivative of the polarizability with respect to the atomic displacement:
|
||||
$
|
||||
alpha = pdv(chi, u)
|
||||
$
|
||||
where $u$ should be the displacement of the atom corresponding to a phonon mode.
|
||||
But, even when $u$ is *NOT* the displacement of a phonon
|
||||
(for example, lets only slightly move Si atom in A layer, keeping other atoms fixed),
|
||||
the (high-frequency) polarizability is still well-defined,
|
||||
and the will still cause a change in the polarizability.
|
||||
Even more, the group representation theory is still applicable in this condition:
|
||||
the only thing that matters is, when applying $g$ to the system,
|
||||
the tensor transformed into $g^(-1) alpha g$ or $g alpha g^(-1)$,
|
||||
no matter $alpha$ is Raman tensor or something else, or it is related to a phonon or not.
|
||||
|
||||
Thus, we can, in principle, "assign" Raman tensor of a phonon, to each atom.
|
||||
This "assign" is unique since both the atom movement and all phonons have 24 dimensions.
|
||||
|
||||
Next, we consider what these single-atom-caused "Raman tensors" looks like.
|
||||
For example, what happens if we move the Si atom in A layer slightly along the x+ direction?
|
||||
Consider also move the Si atom in C layer slightly, along x+ or x- direction.
|
||||
How about the Raman tensor caused by the both two atoms?
|
||||
In first case, this is B2 representation in E1 representation. Thus the Raman tensor should be something like:
|
||||
$
|
||||
mat(,,2a_1;,,;2a_1,,;)
|
||||
$
|
||||
In the second case, it is A2 in E2. It turns out:
|
||||
$
|
||||
mat(,2a_2,;2a_2,,;,,;)
|
||||
$
|
||||
The average of these two tensors should be the s"Raman tensor" cause by move only the Si atom in A layer,
|
||||
slightly towards x+ direction.
|
||||
$
|
||||
mat(,a_2,a_1;a_2,,;a_1,,;)
|
||||
$
|
||||
The difference should be the "Raman tensor" of the second atom.
|
||||
$
|
||||
mat(,-a_2,a_1;-a_2,,;a_1,,;)
|
||||
$
|
||||
|
||||
// This approach applied relied on the fact that, all Si atom in 4H-SiC is "distinguishable" by the symmetry operations.
|
||||
// I mean, what will happen if we have two Si atoms in A layer?
|
||||
// Apparently, we could not extract the "Raman tensor" of only one of the two atoms.
|
||||
// This is the case for the 6H-SiC.
|
||||
// Hence, we will provide a more general approach to estimate the "Raman tensor" of a single atom.
|
||||
|
||||
Consider the Si atom in the B1 layer.
|
||||
It lives in an environment quite similar to the A layer.
|
||||
Thus, the "Raman tensor" caused by it should be similar to the one caused by the A layer:
|
||||
$
|
||||
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)
|
||||
$
|
||||
Similar to the Si atom in B2 layer:
|
||||
$
|
||||
mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)
|
||||
$
|
||||
|
||||
Same approach applied for Si atom vibrate in y direction.
|
||||
When we move both Si atoms in A and C layer in y+ direction,
|
||||
it is B1 in E1, thus the "Raman tensor" should be:
|
||||
$
|
||||
mat(,,;,,2a_3;,2a_3,;)
|
||||
$
|
||||
And if we move Si in A layer towards y+ but Si in C layer towards y-,
|
||||
it is A2 in E2:
|
||||
$
|
||||
mat(2a_4,,;,-2a_4,;,,;)
|
||||
$
|
||||
Thus we get the "Raman tensor" of Si atom in A layer sololy move towards y+ direction:
|
||||
$
|
||||
mat(a_4,,;,-a_4,a_3;,a_3,;)
|
||||
$
|
||||
and the "Raman tensor" of Si atom in C layer towards y+ direction:
|
||||
$
|
||||
mat(-a_4,,;,a_4,a_3;,a_3,;)
|
||||
$
|
||||
Same applied for the Si atom in B layer:
|
||||
$
|
||||
mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
|
||||
$
|
||||
$
|
||||
mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
|
||||
$
|
||||
|
||||
Before consider z-direction, it is important to note that, $a_1$ $a_2$ $a_3$ $a_4$ are not independent.
|
||||
Consider vibration along x+ direction (lets say the distance is $d$).
|
||||
System energy caused by external electric field and vibration is:
|
||||
$
|
||||
E^T (mat(,,2a_1;,,;2a_1,,) d) E
|
||||
$
|
||||
Apply C#sub[3] to atom vibration and external field, energy should not change. We got:
|
||||
$
|
||||
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)^T ( mat(,,2a_1;,,;2a_1,,)(-1/2 d) + mat(,,;,,2a_3;,2a_3,)(sqrt(3)/2 d) )
|
||||
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)
|
||||
$
|
||||
It is equal to:
|
||||
$
|
||||
E^T (mat(,,1/2 a_1 + 3/2 a_3;,,sqrt(3)/2 a_1 - sqrt(3)/2 a_3;1/2 a_1 + 3/2 a_3,sqrt(3)/2 a_1 - sqrt(3)/2 a_3,) d) E
|
||||
$
|
||||
Thus:
|
||||
$
|
||||
1/2 a_1 + 3/2 a_3 = 2a_1 #linebreak()
|
||||
sqrt(3)/2 a_1 - sqrt(3)/2 a_3 = 0
|
||||
$
|
||||
Thus $a_1 = a_3$.
|
||||
Apply the same method, we get $abs(a_2) = abs(a_4)$.
|
||||
Since we have not define the sign of $a_4$, we could take $a_2 = a_4$.
|
||||
Same for $epsilon$.
|
||||
|
||||
Now consider what if we move the Si atom in A layer along z+ direction.
|
||||
If we move the Si atom in C layer along z+ direction, it is A1:
|
||||
$
|
||||
mat(2a_5,,;,2a_5,;,,2a_6;)
|
||||
$
|
||||
If we move the Si atom in C layer along z- direction, it is B1:
|
||||
$
|
||||
0
|
||||
$
|
||||
Thus we get the "Raman tensor" of Si atom in A or C layer towards z+ direction:
|
||||
$
|
||||
mat(a_5,,;,a_5,;,,a_6;)
|
||||
$
|
||||
|
||||
Lets consider the C atom in A layer.
|
||||
It should be somehow similar to the Si atom in A layer, but with a negative sign in some places,
|
||||
and then add or subtract some little value.
|
||||
Actually, the "transformation" of Si atom in A layer to C atom in A layer applied in the following steps:
|
||||
- reverse charge.
|
||||
- reverse system along xy plane.
|
||||
First we consider the first step.
|
||||
Taking the define of electricity tenser:
|
||||
$
|
||||
P = chi E
|
||||
$
|
||||
Lets reverse charge of the system, say we now have electricity tensor $chi'$. We get:
|
||||
$
|
||||
-P = chi'(-E)
|
||||
$
|
||||
Thus we get $chi' = chi$, the first step does not change the electricity tensor, nor the "Raman tensor".
|
||||
|
||||
Now we consider the second step.
|
||||
For electricity tensor, it will become:
|
||||
$
|
||||
mat(1,,;,1,;,,-1) chi mat(1,,;,1,;,,-1)
|
||||
$
|
||||
For $u$, when it is along x or y direction, it will not change. When it is along z direction, it will become $-u$.
|
||||
|
||||
So in conclusion, Raman tensor of C atom in A layer could be estimated from the Raman tensor of Si atom in A layer, by:
|
||||
- for movement alone x and y direction, xz yz should be applied a negative sign.
|
||||
- for movement alone z direction, xx xy yy zz should be applied a negative sign.
|
||||
|
||||
Export "Raman tensor" of C atom in C layer from C atom in A layer, in the same way.
|
||||
|
||||
Now consider the C atom in B1 layer.
|
||||
Is it similar to the C atom in A layer, just like that for Si atom?
|
||||
No. It turns out to be similar to the C atom in C layer.
|
||||
|
||||
We summarize these stuff into @table-singleatom.
|
||||
|
||||
Until now, we only consider the "Raman tensor" caused by single atom or atoms move in the same amplitudes.
|
||||
However, that is not the case in real phonon.
|
||||
- In some A1 modes, only Si or C atom moves. If we take the magnitude of eigenvector as 1,
|
||||
then amplitude of each atom is $1/(4sqrt(m_#text[Si]))$ or $1/(4sqrt(m_#text[C]))$.
|
||||
- In other cases, the amplitude of Si and C are in the ration of $m_#text[C] : m_#text[Si]$.
|
||||
thus the amplitude of Si atom is $1/2 sqrt(1/(m_#text[Si]+m_#text[Si]^2/m_#text[C]))$, so do the C atom.
|
||||
|
||||
|
||||
Furthermore, we list predicted modes and their Raman tensors, in @table-predmode.
|
||||
|
||||
- $a$: Raman tensor of Si atom in A layer, large value.
|
||||
- $epsilon$: Difference of Raman tensors of Si atom in A and B1 layer, small value.
|
||||
- $eta$: Difference of Raman tensors of C and Si atom in A layer, small value.
|
||||
- $zeta$: Difference of Raman tensors of C atoms in A and B layer, small value.
|
||||
|
||||
|
||||
#page(flipped: true)[#figure({
|
||||
table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Move Direction*], [x], [y], [z],
|
||||
[Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_2,,;,-a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
|
||||
[C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$],
|
||||
[$mat(a_2+eta_2,,;,-a_2-eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
|
||||
[Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
|
||||
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||||
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
|
||||
[C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
|
||||
[$mat(-a_2-eta_2-zeta_2,,;,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
|
||||
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
|
||||
[Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_2,,;,a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
|
||||
[C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$],
|
||||
[$mat(-a_2-eta_2,,;,a_2+eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
|
||||
[Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
|
||||
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
|
||||
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
|
||||
[C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
|
||||
[$mat(a_2+eta_2+zeta_2,,;,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
|
||||
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
|
||||
)},
|
||||
caption: ["Raman tensor" caused by single atom],
|
||||
placement: none,
|
||||
)<table-singleatom>]
|
||||
1
test-typst/section/method.typ
Normal file
1
test-typst/section/method.typ
Normal file
@@ -0,0 +1 @@
|
||||
Only back-scattering configurations were considered in this study.
|
||||
@@ -1,10 +1,7 @@
|
||||
(There are 21 phonons in total.
|
||||
We classified them into two categories: 18 negligible-polar phonons and 3 strong-polar phonons.)
|
||||
|
||||
// 拉曼活性的声子模式对应于 Gamma 点附近的声子模式。
|
||||
// 根据这些声子模式的极性,我们将这些声子分成两类。
|
||||
// There are 21 phonons in total.
|
||||
// We classified them into two categories: 18 negligible-polar phonons and 3 strong-polar phonons.
|
||||
The phonons involved in Raman scattering are located in reciprocal space around the #sym.Gamma point,
|
||||
at the exact positions are determined by the wavevectors of the incident and scattered light.
|
||||
and the exact positions are determined by the wavevectors of the incident and scattered light.
|
||||
At each such position, there are 21 phonon modes (degenerate modes are counted as their multiplicity).
|
||||
We classify these 21 phonons into two categories based on their polarities.
|
||||
The 18 of 21 phonons are classified into negligible-polar phonons (i.e., phonons with zero or very weak polarity),
|
||||
@@ -12,8 +9,7 @@ The 18 of 21 phonons are classified into negligible-polar phonons (i.e., phonons
|
||||
and the other three phonons are strong-polar phonons,
|
||||
where the polarity gives rise to observable effects in the Raman spectra.
|
||||
|
||||
(This classification make sense.)
|
||||
|
||||
// This classification make sense.
|
||||
This classification is based on the fact that
|
||||
the four Si atoms in the primitive cell of 4H-SiC carry similar positive Born effective charges (BECs),
|
||||
and the four C atoms carry similar negative BECs (see @table-bec).
|
||||
@@ -25,4 +21,4 @@ In contrast, in the three strong-polar phonons,
|
||||
all Si atoms vibrate in the same direction, and all the C atoms vibrate in the opposite direction,
|
||||
resulting in a strong dipole moment.
|
||||
|
||||
#include "bec.typ"
|
||||
#include "table-bec.typ"
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
// We investigate phonons at Gamma instead of the exact location near Gamma.
|
||||
Phonons at the #sym.Gamma point were used
|
||||
to approximate negligible-polar phonons that participating in Raman processes of any incident/scattered light.
|
||||
This approximation is widely adopted and justified by the fact that, // TODO: cite
|
||||
to approximate negligible-polar phonons that participating in Raman processes
|
||||
regardless of the wavevector of the incident and scattered light.
|
||||
This approximation is widely adopted (cite) and justified by the fact that,
|
||||
although the phonons participating in Raman processes are not these strictly located at the #sym.Gamma point,
|
||||
they are very close to the #sym.Gamma point in reciprocal space
|
||||
(about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
|
||||
@@ -9,11 +10,9 @@ This approximation is widely adopted and justified by the fact that, // TODO: ci
|
||||
see orange dotted line in @figure-discont),
|
||||
and their dispersion at #sym.Gamma point is continuous with vanishing derivatives.
|
||||
Therefore, negligible-polar phonons involved in Raman processes
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point,
|
||||
and the phonon participating in Raman processes of different incident/scattered light directions
|
||||
are all nearly identical to the phonons at the #sym.Gamma point.
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point.
|
||||
|
||||
#include "discont.typ"
|
||||
#include "figure-discont.typ"
|
||||
|
||||
// Representation of these 18 phonons, and the shape of their Raman tensors could be determined in advance.)
|
||||
Phonons at the #sym.Gamma point satisfy the C#sub[6v] point group symmetry,
|
||||
@@ -30,7 +29,7 @@ However, whether a mode is sufficiently strong to be experimentally visible
|
||||
depends on the magnitudes of its Raman tensor components,
|
||||
which cannot be determined solely from symmetry analysis.
|
||||
|
||||
#include "rep.typ"
|
||||
#include "table-rep.typ"
|
||||
|
||||
// We propose a method to estimate the magnitudes of the Raman tensors of these phonons,
|
||||
// without first-principle calculations.
|
||||
|
||||
@@ -1,18 +0,0 @@
|
||||
#figure({
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
set text(size: 9pt);
|
||||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Representations in C#sub[6v]*], [A#sub[1]], m2[E#sub[1]], m2[E#sub[2]],
|
||||
[*Representations in C#sub[2v]*], [A#sub[1]], [B#sub[2]], [B#sub[1]], [A#sub[2]], [A#sub[1]],
|
||||
[*Vibration Direction*], [z], [x], [y], [x], [y],
|
||||
[*Raman Tensor of #linebreak() Individual Phonons*],
|
||||
[$mat(a,,;,a,;,,b)$], [$mat(,,a;,,;a,,;)$], [$mat(,,;,,a;,a,;)$], [$mat(,a,;a,,;,,;)$], [$mat(a,,;,-a,;,,;)$],
|
||||
[*Raman Intensity with Different #linebreak() Polarization Configurations*],
|
||||
[xx/yy: $a^2$ #linebreak() zz: $b^2$ #linebreak() others: 0],
|
||||
m2[xz/yz: $a^2$ #linebreak() others: 0], m2[xx/xy/yy: $a^2$ #linebreak() others: 0],
|
||||
)},
|
||||
caption: [
|
||||
Raman-active representations of C#sub[6v] and C#sub[2v] point groups.
|
||||
],
|
||||
placement: none,
|
||||
)<table-rep>
|
||||
25
test-typst/section/perfect/non-polar/table-rep.typ
Normal file
25
test-typst/section/perfect/non-polar/table-rep.typ
Normal file
@@ -0,0 +1,25 @@
|
||||
#figure({
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
table(columns: 7, align: center + horizon,
|
||||
[*Representations in C#sub[6v]*], A1, B1, m2(E1), m2(E2),
|
||||
[*Representations in C#sub[2v]*], A1, B1, B2, B1, A2, A1,
|
||||
[*Vibration Direction*], [z], [z], [x], [y], [x], [y],
|
||||
[*Raman Tensor*],
|
||||
[$mat(a,,;,a,;,,b)$], [$0$], [$mat(,,a;,,;a,,;)$], [$mat(,,;,,a;,a,;)$], [$mat(,a,;a,,;,,;)$], [$mat(a,,;,-a,;,,;)$],
|
||||
[*Raman scatter Intensity* #linebreak() (polarization of incident and scattered light)],
|
||||
[xx/yy: $a^2$ #linebreak() zz: $b^2$ #linebreak() others: 0], [0],
|
||||
m2[xz/yz: $a^2$ #linebreak() others: 0], m2[xx/xy/yy: $a^2$ #linebreak() others: 0],
|
||||
)},
|
||||
caption: [
|
||||
Irreducible representations and raman tensors of phonons in 4H-SiC.
|
||||
],
|
||||
placement: none,
|
||||
)<table-rep>
|
||||
0
test-typst/section/perfect/polar/default.typ
Normal file
0
test-typst/section/perfect/polar/default.typ
Normal file
@@ -1,12 +1,10 @@
|
||||
#figure({
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
table(columns: 4, align: center + horizon,
|
||||
table.cell(colspan: 2)[], table.cell(colspan: 2)[*BEC* (unit: |e|)],
|
||||
table.cell(colspan: 2)[], [x / y direction], [z direction],
|
||||
table.cell(rowspan: 2)[Si atom], [A/C layer], [2.667], [2.626],
|
||||
[B layer], [2.674], [2.903],
|
||||
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730],
|
||||
[B layer], [-2.648], [-2.800],
|
||||
table.cell(colspan: 2, rowspan: 2)[], table.cell(colspan: 2)[BEC (unit: |e|)], [x / y direction], [z direction],
|
||||
table.cell(rowspan: 2)[Si atom], [A/C layer], [2.667], [2.626], [B layer], [2.674], [2.903],
|
||||
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730], [B layer], [-2.648], [-2.800],
|
||||
)},
|
||||
caption: [
|
||||
Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC, calculated using first principle method.
|
||||
Reference in New Issue
Block a user