This commit is contained in:
@@ -1,10 +1,12 @@
|
||||
#import "@preview/starter-journal-article:0.4.0": article, author-meta
|
||||
#import "@preview/tablem:0.2.0": tablem
|
||||
#import "@preview/physica:0.9.4": pdv, super-T-as-transpose
|
||||
#import "@preview/physica:0.9.5": pdv, super-T-as-transpose
|
||||
#show: super-T-as-transpose
|
||||
|
||||
#set par.line(numbering: "1")
|
||||
#set par(justify: true)
|
||||
// 思源宋体,也算是宋体吧
|
||||
#set text(font: ("Times New Roman", "Source Han Serif SC"))
|
||||
// TODO: fix indent of first line
|
||||
#show figure.caption: it => {
|
||||
set text(10pt)
|
||||
@@ -112,16 +114,40 @@ experiment
|
||||
|
||||
= Results and Discussion
|
||||
|
||||
- 无缺陷:
|
||||
我们将声子分为两类,一类是极性比较弱的(18个),一类是比较强的(3个)。
|
||||
- 弱极性的声子:
|
||||
- 使用 Gamma 点的声子模式来近似。根据对称性可以明确预测它们的拉曼张量。
|
||||
- 我们提出了一个方法,直接根据对称性来估计声子模式的拉曼张量,或者反过来,估计拉曼光谱中峰对应的原子振动模式。估计的结果大多数是正确的。、
|
||||
- TODO: 可能换成使用原子对(键)来估计,要比使用原子来估计要更合理。
|
||||
- TODO: 描述估计频率的方法,以及确认 x 的定义的正确性。
|
||||
- 我们使用第一性原理计算了各种性质,它与实验、预测相符。
|
||||
- TODO: 将峰宽列出来,将模拟图画出来。
|
||||
- 某某峰 is reported 在某人的实验中可以看到而在某人的实验中看不到。我们 propose 它的确存在,但只能通过共振拉曼或者zz偏振才能看到。
|
||||
- TODO: 引用文献。
|
||||
- TODO: 确认一下最后一次实验中,峰偏移等是否与掺杂有明显关系,以及这个关系与之前是否相同。
|
||||
- 强极性的声子:
|
||||
- 强极性声子在 Gamma 附近散射谱不连续,它的声子模式由入射光的方向决定。在入射光不沿 z 轴的情况下,使用 C6v 群不再适用。
|
||||
- TODO: 写文字
|
||||
- 在接近 y 轴入射时,可以看到分裂。这个模式可能对表面敏感。
|
||||
- TODO: 佐证它对表面敏感
|
||||
- 对于 LO,可能形成 LOPC
|
||||
- 有缺陷的情况:
|
||||
- TODO: 描述缺陷原子的振动
|
||||
- TODO: 计算拉曼张量,描述光谱的可能变化
|
||||
|
||||
== Phonons in Perfect 4H-SiC
|
||||
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(There are 21 phonons in total.
|
||||
We classified them into two categories: 18 negligible-polar phonons and 3 strong-polar phonons.)
|
||||
|
||||
// 拉曼活性的声子模式对应于 Gamma 点附近的声子模式。
|
||||
// 根据这些声子模式的极性,我们将这些声子分成两类。
|
||||
The phonons involved in Raman scattering are located in reciprocal space
|
||||
at positions determined by the difference between the wavevectors of the incident and scattered light.
|
||||
At each such position, there are 21 phonon modes (excluding translational modes).
|
||||
The phonons involved in Raman scattering are located in reciprocal space around the #sym.Gamma point,
|
||||
at the exact positions are determined by the wavevectors of the incident and scattered light.
|
||||
At each such position, there are 21 phonon modes (degenerate modes are counted as their multiplicity).
|
||||
We classify these 21 phonons into two categories based on their polarities.
|
||||
The 18 of 21 phonons are classified into negligible-polar phonons (i.e., phonons with zero or very weak polarity),
|
||||
for which the effect of polarity can be ignored in the Raman scattering process;
|
||||
@@ -135,13 +161,14 @@ This classification is based on the fact that
|
||||
and the four C atoms carry similar negative BECs (see @table-bec).
|
||||
In the 18 negligible-polar phonons,
|
||||
the vibrations of two Si atoms are approximately opposite to those of the other two Si atoms,
|
||||
so do C atoms,
|
||||
and the same holds for the C atoms,
|
||||
leading to cancellations of macroscopic polarity.
|
||||
While in the three strong-polar phonons,
|
||||
all Si atoms vibrate in the same direction, so do C atoms,
|
||||
leading to a net dipole moment.
|
||||
In contrast, in the three strong-polar phonons,
|
||||
all Si atoms vibrate in the same direction, and all the C atoms vibrate in the opposite direction,
|
||||
resulting in a strong dipole moment.
|
||||
|
||||
#figure(
|
||||
#figure({
|
||||
set text(size: 9pt);
|
||||
table(columns: 4, align: center + horizon,
|
||||
table.cell(colspan: 2)[], table.cell(colspan: 2)[*BEC* (unit: |e|)],
|
||||
table.cell(colspan: 2)[], [x / y direction], [z direction],
|
||||
@@ -149,7 +176,7 @@ While in the three strong-polar phonons,
|
||||
[B layer], [2.674], [2.903],
|
||||
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730],
|
||||
[B layer], [-2.648], [-2.800],
|
||||
),
|
||||
)},
|
||||
caption: [
|
||||
Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC, calculated using first principle method.
|
||||
],
|
||||
@@ -158,16 +185,19 @@ While in the three strong-polar phonons,
|
||||
|
||||
=== Phonons with Negligible Polarities
|
||||
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(We investigate phonons at Gamma instead of the exact location near Gamma.)
|
||||
|
||||
Phonons at the #sym.Gamma point were used
|
||||
to approximate negligible-polar phonons that participating in Raman processes of any incident/scattered light.
|
||||
This approximation is widely adopted and justified by the fact that, // TODO: cite
|
||||
although the phonons participating in Raman processes are not these strictly located at the #sym.Gamma point,
|
||||
dispersion of negligible-polar phonons near the #sym.Gamma point is continuous with vanishing derivatives,
|
||||
and their wavevector is very small (about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
|
||||
which corresponds to only 1% of the smallest reciprocal lattice vector of 4H-SiC),
|
||||
as shown by the orange dotted line in @figure-discont.
|
||||
they are very close to the #sym.Gamma point in reciprocal space
|
||||
(about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
|
||||
which corresponds to only 1% of the smallest reciprocal lattice vector of 4H-SiC,
|
||||
see orange dotted line in @figure-discont),
|
||||
and their dispersion at #sym.Gamma point is continuous with vanishing derivatives.
|
||||
Therefore, negligible-polar phonons involved in Raman processes
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point,
|
||||
and the phonon participating in Raman processes of different incident/scattered light directions
|
||||
@@ -189,17 +219,12 @@ Therefore, negligible-polar phonons involved in Raman processes
|
||||
placement: none,
|
||||
)<figure-discont>
|
||||
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(Representation of these 18 phonons, and the shape of their Raman tensors could be determined in advance.)
|
||||
|
||||
Phonons of the B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
|
||||
In contrast, phonons of the other representations are Raman-active,
|
||||
and the non-zero components of their Raman tensors
|
||||
can be determined by further considering the C#sub[2v] point group (see @table-rep).
|
||||
These Raman-active phonons may appear in Raman spectra under appropriate polarization configurations.
|
||||
However, the actual visibility of each mode depends on the magnitude of its Raman tensor components,
|
||||
which cannot be determined solely from symmetry analysis.
|
||||
|
||||
The 18 negligible-polar phonons correspond to 12 irreducible representations of the C#sub[6v] point group:
|
||||
Phonons at the #sym.Gamma point satisfy the C#sub[6v] point group symmetry,
|
||||
and the 18 negligible-polar phonons correspond to 12 irreducible representations of the C#sub[6v] point group:
|
||||
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
|
||||
Phonons belonging to the A#sub[1] and B#sub[1] representations vibrate along the z-axis and are non-degenerate,
|
||||
while those belonging to the E#sub[1] and E#sub[2] representations vibrate in-plane and are doubly degenerate.
|
||||
@@ -207,16 +232,17 @@ Phonons of the B#sub[1] representation are Raman-inactive, as their Raman tensor
|
||||
In contrast, phonons of the other representations are Raman-active,
|
||||
and the non-zero components of their Raman tensor
|
||||
can be determined by further considering their representation in the C#sub[2v] point group (see @table-rep).
|
||||
These Raman-active phonons might be visible in Raman experiment under appropriate polarization configurations.
|
||||
However, whethear a mode is sufficiently strong to be experimentally visible
|
||||
These Raman-active phonons are potentially be visible in Raman experiment under appropriate polarization configurations.
|
||||
However, whether a mode is sufficiently strong to be experimentally visible
|
||||
depends on the magnitudes of its Raman tensor components,
|
||||
which cannot be determined solely from symmetry analysis.
|
||||
|
||||
#figure({
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
set text(size: 9pt);
|
||||
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Representations in C6v*], [A#sub[1]], m2[E#sub[1]], m2[E#sub[2]],
|
||||
[*Representations in C2v*], [A#sub[1]], [B#sub[2]], [B#sub[1]], [A#sub[2]], [A#sub[1]],
|
||||
[*Representations in C#sub[6v]*], [A#sub[1]], m2[E#sub[1]], m2[E#sub[2]],
|
||||
[*Representations in C#sub[2v]*], [A#sub[1]], [B#sub[2]], [B#sub[1]], [A#sub[2]], [A#sub[1]],
|
||||
[*Vibration Direction*], [z], [x], [y], [x], [y],
|
||||
[*Raman Tensor of #linebreak() Individual Phonons*],
|
||||
[$mat(a,,;,a,;,,b)$], [$mat(,,a;,,;a,,;)$], [$mat(,,;,,a;,a,;)$], [$mat(,a,;a,,;,,;)$], [$mat(a,,;,-a,;,,;)$],
|
||||
@@ -230,13 +256,244 @@ However, whethear a mode is sufficiently strong to be experimentally visible
|
||||
placement: none,
|
||||
)<table-rep>
|
||||
|
||||
(We propose a method to estimate the magnitudes of the Raman tensors of these phonons.
|
||||
Here we write out its main steps, details are in appendix.)
|
||||
#par()[#text()[#h(0.0em)]]
|
||||
|
||||
(We propose a method to estimate the magnitudes of the Raman tensors of these phonons,
|
||||
without first-principle calculations.
|
||||
Here we only write out results, details are in appendix.)
|
||||
|
||||
// TODO: maybe it is better to assign Raman tensor to each bond, instead of atom
|
||||
|
||||
We propose a method to estimate the magnitudes of the Raman tensors by symmetry analysis (see appendix for details).
|
||||
We propose a method to estimate the magnitudes of the Raman tensors of these phonons by symmetry analysis.
|
||||
The method only takes the vibration directions of each atom in each phonon mode,
|
||||
leaving the amplitudes unconsidered (see appendix for details),
|
||||
and the result was summarized in @table-predmode.
|
||||
In the Raman tensors in @table-predmode,
|
||||
$a_i$ corresponding to the change of polarizability caused by movement of the Si atoms in A and C layers,
|
||||
$epsilon_i$ and $eta_i$ corresponding to the difference between the A/C layers and B layers,
|
||||
and $eta_i$ corresponding the difference between the Si and C atoms.
|
||||
The absolute values of $a_i$ is expected to be much larger than that of $epsilon_i$, $eta_i$ and $zeta_i$,
|
||||
thus the Raman tensors containing $a_i$ are expected to be much larger than those not containing $a_i$.
|
||||
It could be seen that,
|
||||
our prediction is mostly consistent with the first principle calculation and experiment.
|
||||
|
||||
// Raman Tensor for A1: line1 xz/yz; line2 zz
|
||||
// Raman Tensor for E1: x-dirc xz or y-dirc yx
|
||||
// Raman Tensor for E2: x-dirc xy or y-dirc xx or y-dirc -yy
|
||||
// Relative Vibration Direction: col1 C ABCB col2 Si ABCB
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let m4(content) = table.cell(colspan: 4, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
set text(size: 9pt);
|
||||
set par(justify: false)
|
||||
table(columns: 9, align: center + horizon, inset: (x: 2pt, y: 5pt),
|
||||
// TODO: explain where x comes from
|
||||
// TODO: 校验这个表的数据(确认没有标错列、没有标错正负号)
|
||||
[*$x$*], m2[0.25], m4[0.5], m2[0.75],
|
||||
[*Representation in C#sub[6v]*], m2(E2), E1, A1, E1, A1, m2(E2),
|
||||
table.cell(rowspan: 2, [*Vibration Direction* (ABCB layer)]), m2[x/y], [x/y], [z], [x/y], [z], m2[x/y],
|
||||
[Si: $+--+$ #linebreak() C: $++--$], [Si: $+--+$ #linebreak() C: $+--+$],
|
||||
m2[Si: $+-+-$ #linebreak() C: $+-+-$], m2[Si: $-+-+$ #linebreak() C: $+-+-$],
|
||||
[Si: $++--$ #linebreak() C: $+--+$], [Si: $-++-$ #linebreak() C: $++--$],
|
||||
[*Raman Tensor Predicted*],
|
||||
[$-2(zeta_2+epsilon_2)$], [$2(2eta_2+zeta_2-epsilon_2)$],
|
||||
[$2(zeta_1-epsilon_1)$], [$2(zeta_5-epsilon_5)$ #linebreak() $2(zeta_6-epsilon_6)$],
|
||||
[$2(epsilon_1+zeta_1)$], [$2(epsilon_5+zeta_5)$ #linebreak() $2(epsilon_6+zeta_6)$],
|
||||
[$2(4a_2+2eta_2+zeta_2+epsilon_2)$], [$2(epsilon_2-zeta_2)$],
|
||||
[*Raman Intensity Predicted*], m2[weak], m4[weak], [strong], [weak],
|
||||
[*Raman Tensor Calculated*],
|
||||
[1.06], [0.41], [-1.56], [0.10 #linebreak() -1.33], [-0.30], [-1.68 #linebreak() 1.34], [9.41], [0.17],
|
||||
[*Move-towards Atom-pairs* (In-plane/Out-plane)], [0/2], [2/0], m2[4/0], m2[0/4], m2[4/2],
|
||||
[*Predicted Frequency*], [low], [medium], [medium], [low], [low], [medium], m2[high],
|
||||
[*Calculated Frequency*],
|
||||
[197.84], [190.51], [746.91], [591.90], [257.35], [812.87], [756.25], [764.33]
|
||||
)},
|
||||
caption: [Predicted modes and their "Raman tensor"],
|
||||
placement: none,
|
||||
)<table-predmode>]
|
||||
|
||||
as well as the frequencies
|
||||
|
||||
,
|
||||
except for the E#sub[2] mode experimentally at 200 cm#super[-1], which we expected to be at higher frequencies.
|
||||
|
||||
// 我们计算了拉曼活性声子的频率及拉曼张量,并与实验对比,如表如图所示。
|
||||
// 其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。
|
||||
// 其中,xxx 和xxx 位于强模式的附近,它们在实验上无法看到;xxx 只在 z 方向入射/散射时可以看到;xxx 则在任意方向都能看到。
|
||||
// 我们同样计算了这些声子在 300K 下的展宽,并与实验对比,结果如表所示。原子的振幅另外列于附录中。
|
||||
The Raman tensors of these Raman-active phonons were calculated using first-principles methods,
|
||||
and the results are summarized and compared with experimental results in @table-nopol.
|
||||
Two Raman-active modes are not observed in our experiments,
|
||||
including the E#sub[1] mode at 746.91 cm#super[-1] and the E#sub[2] mode at 764.33 cm#super[-1],
|
||||
due to their relatively low Raman intensities, broad FWHM values, and their proximity to stronger modes.
|
||||
The A#sub[1] phonon at 812.87 cm#super[-1] is Raman-active
|
||||
in both in-plane (xx and xy) and out-of-plane (zz) polarization configurations,
|
||||
but it is only visible when both the incident and scattered light propagate along the z-direction (zz),
|
||||
as its Raman intensity in basal plane is too week to be distinguished from the noise.
|
||||
We also calculated the linewidths of these phonons at 300 K and compared them with experimental results,
|
||||
as summarized in the @table-nopol.
|
||||
The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
|
||||
// TODO: 将一部分 phonons 改为 phonon modes
|
||||
// 在论文中我们这样来称呼:phonon 对应某一个特征向量,而 modes 对应于一个子空间。
|
||||
// 也就是说,简并的里面有两个或者无数个 phonon,但只有一个 mode
|
||||
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let A1 = [A#sub[1]];
|
||||
// let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
// let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
// [*Direction of Incident & Scattered Light*],
|
||||
// m(26)[Any direction (not depend on direction of incident & scattered light)],
|
||||
// TODO: 整理表格,使用 m2 m3 来代替
|
||||
[*Number of Phonon*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[1], m2[2], [3], m2[4], [5], [6], [7], [8], m3[9], [10], [11], [12], m2[13], [14], m2[15], m3[16], [17], [18],
|
||||
[*Vibration Direction*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[x], m2[y], [x], m(2)[y], [x], [y], m(2)[z], m(3)[z],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], m(2)[z],
|
||||
[*Representation #linebreak() in Group C#sub[6v]*],
|
||||
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
|
||||
[*Raman-active or Not*],
|
||||
m(8)[Raman-active], m(2)[Raman-inactive], m(14)[Raman-active], m(2)[Raman-inactive],
|
||||
// [*Representation in Group C#sub[2v]*],
|
||||
// // E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
// A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
|
||||
[*Scattering in Polarization #linebreak() (non-zero Raman #linebreak() tenser components)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[xy], [xx], [yy], [xy], [xx], [yy], [xz], [yz], m(2)[-], [xx], [yy], [zz],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[xz], [yz], [xy], [xx], [yy], [xy], [xx], [yy], [xx], [yy], [zz], m(2)[-],
|
||||
[*Raman Intensity (a.u.)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.17], m(3)[1.13], m(2)[2.43], m(2)[0], m(2)[2.83], [1.79],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[0.09], m(3)[88.54], m(3)[0.50], m(2)[0.01], [1.78], m(2)[0],
|
||||
[*Visible in Common #linebreak() Raman Experiment or Not*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(8)[Visible], m(2)[-], m(3)[Visible],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[Invisible], m(3)[Visible], m(5)[Invisible], [Visible], m(2)[-],
|
||||
[*Wavenumber #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[190.51], m(3)[197.84], m(2)[257.35], [389.96], [397.49], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[746.91], m(3)[756.25], m(3)[764.33], m(3)[812.87], [885.68], [894.13],
|
||||
[*Wavenumber #linebreak() (Experiment) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[195.5], m(3)[203.3], m(2)[269.7], m(2)[-], m(3)[609.5],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[776], m(5)[-], [839], m(2)[-],
|
||||
[*FWHM #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.08], m(3)[0.09], m(2)[0.08], m(2)[-], m(3)[0.61],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[3.97], m(3)[4.62], m(3)[4.01], m(3)[0.89], m(2)[-],
|
||||
[*FWHM #linebreak() (Experiment) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[1.11], m(3)[1.11], m(2)[1.11], m(2)[-], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[1.11], m(3)[-], m(3)[1.11], m(2)[-],
|
||||
[*Electrical Polarity*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m(6)[None], m(2)[Weak], m(2)[None], m(5)[Weak], m(6)[None], m(3)[Weak], m(2)[None],
|
||||
)},
|
||||
caption: [Negaligible-polarized Phonons at $Gamma$ Point],
|
||||
)<table-nopol>]
|
||||
|
||||
#figure(
|
||||
image("/画图/拉曼整体图/main.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
]
|
||||
)<raman>
|
||||
|
||||
// TODO: 画一个模拟的图,与实验图对比。
|
||||
|
||||
// 实验与计算基本相符。对于声子频率,计算总是低估大约 3%。
|
||||
// 此外,一些较强的模式在预测无法看到的偏振中也可以看到。例如,一些在 xy 偏振中不应该看到的模式可以被看到了。
|
||||
// 这个现象可以由 4度的斜切所解释:我们将材料略微踮起一些角度,就可以使得该模式减小。
|
||||
// 这个现象也可以由材料或偏振片的微小角度来解释。
|
||||
// 例如,我们将偏振方向转动 5 度,就可以得到这个模拟结果。
|
||||
// 此外,由于使用的材料是沿着 c 轴切片的,所以我们在测量 y 入射时不得不将片子以略小于 90 度(约 75 度)的角度放置。这也导致实验与计算的偏差。
|
||||
// TODO: 翻译成英文
|
||||
|
||||
=== Strong-polar Phonons
|
||||
|
||||
// 在半导体的极性声子模式中,原子间存在长距离的库伦相互作用,导致散射谱在 Gamma 附近不再连续(引用),如图中的彩色线所示。
|
||||
// 这导致不同方向的入射/散射光的声子模式不同。
|
||||
// 具体来说,当入射光/散射光沿着 z 方向时,起作用的是 A-Gamma 线上的声子模式(图中的左半边的橘线),它们适用于群 C6v。
|
||||
// 这时会有一个 E1 模式(TO,振动方向在面内)和一个 A1 模式(LO,沿 z 振动)。
|
||||
// 而当沿着 y 方向入射时,起作用的是 Gamma-K 线上的声子模式(图中的右半边的橘线),它们不再适用于群 C6v,而只适用于群 C2v;
|
||||
// 它会分裂成沿x、y、z 方向的三个声子模式(图中的右半边的蓝线),它们分别对应于群 C2v 的 A1、B1 和 B2 表示 TODO: 确认这个几个表示的名字。
|
||||
// 若考虑到到入射光不是严格沿着 z 方向,而是有一个小的角度(例如 10 度),则此时有一个声子模式沿着 x 方向,另外两个声子模式则为 y-z 两个方向的混合。
|
||||
// (没有在图上表示)
|
||||
|
||||
// 极性声子模式还会与载流子发生较强的相互作用。
|
||||
|
||||
#page(flipped: true)[
|
||||
#figure({
|
||||
// 使用 m2 m3
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
let NA = [Not Applicable]
|
||||
let yzmix = [y-z mixed#linebreak() (LO-TO mixed)];
|
||||
let lopc = [Yes#linebreak() (LOPC)];
|
||||
let overf = [Yes#linebreak() (overfocused)];
|
||||
table(columns: 20, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Direction of Incident & Scattered Light*], m(5)[z], m(5)[y], m(9)[between z and y, 10#sym.degree to z],
|
||||
// z y 45 y&z
|
||||
[*Number of Phonon*], [1], [2], m(3)[3], m(3)[1], [2], [3], m(4)[1], [2], m(4)[3],
|
||||
[*Vibration Direction*],
|
||||
[x#linebreak() (TO)], [y#linebreak() (TO)], m(3)[z (LO)], // z
|
||||
m(3)[z (TO)], [x#linebreak() (TO)], [y (LO)], // y
|
||||
m(4, yzmix), [x#linebreak() (TO)], m(4, yzmix), // 45 y&z
|
||||
[*Representation in Group C#sub[6v]*], m(2, E1), m(3, A1), m(14, NA),
|
||||
// z y 45 y&z
|
||||
[*Representation in Group C#sub[2v]*], B2, B1, m(3, A1), m(3, A1), B2, B1, m(4, NA), B2, m(4, NA),
|
||||
[*Scattering in Polarization*],
|
||||
[xz], [yz], [xx], [yy], [zz], // z
|
||||
[xx], [yy], [zz], [xz], [yz], // y
|
||||
[xx], [yy], [yz], [zz], [xz], [xx], [yy], [yz], [zz], // 45 y&z
|
||||
[*Raman Intensity (a.u.)*],
|
||||
m(2)[53.52], m(2)[58.26], [464.69], // z
|
||||
m(2)[58.26], [454.09], [53.52], [53.55], // y
|
||||
m(2)[53.71], [3.20], [425.98], [53.56], m(2)[3.60], [50.36], [27.99], // 45 y&z
|
||||
[*Visible in Common Raman Experiment*],
|
||||
m(2)[Yes], m(2, lopc), [No], // z
|
||||
overf, [No], overf, [Yes], lopc, // y
|
||||
m(4)[???], [???], m(4)[???], // 45 y&z
|
||||
[*Wavenumber (Simulation) (cm#super[-1])*],
|
||||
// z y 45 y&z
|
||||
m(2)[776.57], m(3)[933.80], m(3)[761.80], [776.57], [941.33], m(4)[762.76], [776.57], m(4)[940.86],
|
||||
[*Electrical Polarity*], m(19)[Strong]
|
||||
)},
|
||||
caption: [Strong-polarized phonons near $Gamma$ point],
|
||||
)
|
||||
]
|
||||
|
||||
The center principle is to assign the Raman tensor (i.e., change of polarizability caused by atomic displacement)
|
||||
to each atom in the unit cell.
|
||||
@@ -425,7 +682,6 @@ Furthermore, we list predicted modes and their Raman tensors, in @table-predmode
|
||||
- $eta$: Difference of Raman tensors of C and Si atom in A layer, small value.
|
||||
- $zeta$: Difference of Raman tensors of C atoms in A and B layer, small value.
|
||||
|
||||
Frequency could be estimated by, how many atoms are moving towards its neighbor.
|
||||
|
||||
#page(flipped: true)[#figure({
|
||||
table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
@@ -453,213 +709,6 @@ Frequency could be estimated by, how many atoms are moving towards its neighbor.
|
||||
placement: none,
|
||||
)<table-singleatom>]
|
||||
|
||||
// Raman Tensor for A1: line1 xz/yz; line2 zz
|
||||
// Raman Tensor for E1: x-dirc xz or y-dirc yx
|
||||
// Raman Tensor for E2: x-dirc xy or y-dirc xx or y-dirc -yy
|
||||
// Relative Vibration Direction: col1 C ABCB col2 Si ABCB
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let m4(content) = table.cell(colspan: 4, content);
|
||||
table(columns: 11, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Representation in C#sub[6v]*], m3[A#sub[1]], m3[E#sub[1]], m4[E#sub[2]],
|
||||
[*x*], m2[0.5], [1], m2[0.5], [1], m2[0.25], m2[0.75],
|
||||
[*Relative Vibration Direction*],
|
||||
[$++\ --\ ++\ --$], [$+-\ -+\ +-\ -+$], [$+-\ +-\ +-\ +-$],
|
||||
[$++\ --\ ++\ --$], [$+-\ -+\ +-\ -+$], [$+-\ +-\ +-\ +-$],
|
||||
[$++\ +-\ --\ -+$], [$++\ --\ --\ ++$], [$++\ -+\ --\ +-$], [$+-\ ++\ -+\ --$],
|
||||
[*Vibration Direction*], m3[z], m3[x/y], m4[x/y],
|
||||
[*Raman Tensor Predicted*], [$2(zeta_5-epsilon_5)$ #linebreak() $2(zeta_6-epsilon_6)$],
|
||||
[$2(epsilon_5+zeta_5)$ #linebreak() $2(epsilon_6+zeta_6)$],
|
||||
[$-4(2a_5+eta_5+epsilon_5+zeta_5)$ #linebreak() $-4(2a_6+eta_6+epsilon_6+zeta_6)$],
|
||||
[$2(zeta_1-epsilon_1)$], [$2(epsilon_1+zeta_1)$], [$-4(2a_1+eta_1+epsilon_1+zeta_1)$],
|
||||
[$-2(zeta_2+epsilon_2)$], [$2(2eta_2+zeta_2-epsilon_2)$], [$2(4a_2+2eta_2+zeta_2+epsilon_2)$],
|
||||
[$2(epsilon_2-zeta_2)$],
|
||||
[*Raman Intensity Predicted*], m2[weak], [strong], m2[weak], [strong], m2[weak], [strong], [weak],
|
||||
[*Raman Tensor Calculated*],
|
||||
[0.10 #linebreak() -1.33], [-1.68 #linebreak() 1.34], [7.68 #linebreak() -21.65],
|
||||
[-1.56], [-0.30], [7.32], [1.06], [0.41], [9.41], [0.17],
|
||||
[*Atom-pair that Move Relatively In-plane*], [4], [0], [4], [4], [0], [4], [0], [2], [4], [4],
|
||||
[*Atom-pair that Move Relatively Out-plane*], [0], [4], [4], [0], [4], [4], [2], [0], [2], [2],
|
||||
[*Predicted Frequency*], [low], [medium], [high], [medium], [low], [high], [low], [medium], m2[high],
|
||||
[*Calculated Frequency*],
|
||||
[591.90], [812.87], [933.80], [746.91], [257.35], [776.57], [197.84], [190.51], [756.25], [764.33]
|
||||
)},
|
||||
caption: [Predicted modes and their "Raman tensor"],
|
||||
placement: none,
|
||||
)<table-predmode>]
|
||||
|
||||
// 我们计算了拉曼活性声子的频率及拉曼张量,并与实验对比,如表如图所示。
|
||||
// 其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。
|
||||
// 其中,xxx 和xxx 位于强模式的附近,它们在实验上无法看到;xxx 只在 z 方向入射/散射时可以看到;xxx 则在任意方向都能看到。
|
||||
// 我们同样计算了这些声子在 300K 下的展宽,并与实验对比,结果如表所示。原子的振幅另外列于附录中。
|
||||
The Raman tensors of these Raman-active phonons were calculated using first-principles methods,
|
||||
and the results are summarized and compared with experimental results in @table-nopol.
|
||||
Two Raman-active modes are not observed in our experiments,
|
||||
including the E#sub[1] mode at 746.91 cm#super[-1] and the E#sub[2] mode at 764.33 cm#super[-1],
|
||||
due to their relatively low Raman intensities, broad FWHM values, and their proximity to stronger modes.
|
||||
The A#sub[1] phonon at 812.87 cm#super[-1] is Raman-active
|
||||
in both in-plane (xx and xy) and out-of-plane (zz) polarization configurations,
|
||||
but it is only visible when both the incident and scattered light propagate along the z-direction (zz),
|
||||
as its Raman intensity in basal plane is too week to be distinguished from the noise.
|
||||
We also calculated the linewidths of these phonons at 300 K and compared them with experimental results,
|
||||
as summarized in the @table-nopol.
|
||||
The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
|
||||
// TODO: 将一部分 phonons 改为 phonon modes
|
||||
// 在论文中我们这样来称呼:phonon 对应某一个特征向量,而 modes 对应于一个子空间。
|
||||
// 也就是说,简并的里面有两个或者无数个 phonon,但只有一个 mode
|
||||
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let A1 = [A#sub[1]];
|
||||
// let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
// let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
// [*Direction of Incident & Scattered Light*],
|
||||
// m(26)[Any direction (not depend on direction of incident & scattered light)],
|
||||
// TODO: 整理表格,使用 m2 m3 来代替
|
||||
[*Number of Phonon*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[1], m2[2], [3], m2[4], [5], [6], [7], [8], m3[9], [10], [11], [12], m2[13], [14], m2[15], m3[16], [17], [18],
|
||||
[*Vibration Direction*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[x], m2[y], [x], m(2)[y], [x], [y], m(2)[z], m(3)[z],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], m(2)[z],
|
||||
[*Representation #linebreak() in Group C#sub[6v]*],
|
||||
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
|
||||
[*Raman-active or Not*],
|
||||
m(8)[Raman-active], m(2)[Raman-inactive], m(14)[Raman-active], m(2)[Raman-inactive],
|
||||
// [*Representation in Group C#sub[2v]*],
|
||||
// // E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
// A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
|
||||
[*Scattering in Polarization #linebreak() (non-zero Raman #linebreak() tenser components)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[xy], [xx], [yy], [xy], [xx], [yy], [xz], [yz], m(2)[-], [xx], [yy], [zz],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[xz], [yz], [xy], [xx], [yy], [xy], [xx], [yy], [xx], [yy], [zz], m(2)[-],
|
||||
[*Raman Intensity (a.u.)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.17], m(3)[1.13], m(2)[2.43], m(2)[0], m(2)[2.83], [1.79],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[0.09], m(3)[88.54], m(3)[0.50], m(2)[0.01], [1.78], m(2)[0],
|
||||
[*Visible in Common #linebreak() Raman Experiment or Not*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(8)[Visible], m(2)[-], m(3)[Visible],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[Invisible], m(3)[Visible], m(5)[Invisible], [Visible], m(2)[-],
|
||||
[*Wavenumber #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[190.51], m(3)[197.84], m(2)[257.35], [389.96], [397.49], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[746.91], m(3)[756.25], m(3)[764.33], m(3)[812.87], [885.68], [894.13],
|
||||
[*Wavenumber #linebreak() (Experiment) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[195.5], m(3)[203.3], m(2)[269.7], m(2)[-], m(3)[609.5],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[776], m(5)[-], [839], m(2)[-],
|
||||
[*FWHM #linebreak() (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[0.08], m(3)[0.09], m(2)[0.08], m(2)[-], m(3)[0.61],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[3.97], m(3)[4.62], m(3)[4.01], m(3)[0.89], m(2)[-],
|
||||
[*FWHM #linebreak() (Experiment) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[1.11], m(3)[1.11], m(2)[1.11], m(2)[-], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[1.11], m(3)[-], m(3)[1.11], m(2)[-],
|
||||
[*Electrical Polarity*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m(6)[None], m(2)[Weak], m(2)[None], m(5)[Weak], m(6)[None], m(3)[Weak], m(2)[None],
|
||||
)},
|
||||
caption: [Negaligible-polarized Phonons at $Gamma$ Point],
|
||||
)<table-nopol>]
|
||||
|
||||
#figure(
|
||||
image("/画图/拉曼整体图/main.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
]
|
||||
)<raman>
|
||||
|
||||
// TODO: 画一个模拟的图,与实验图对比。
|
||||
|
||||
// 实验与计算基本相符。对于声子频率,计算总是低估大约 3%。
|
||||
// 此外,一些较强的模式在预测无法看到的偏振中也可以看到。例如,一些在 xy 偏振中不应该看到的模式可以被看到了。
|
||||
// 这个现象可以由 4度的斜切所解释:我们将材料略微踮起一些角度,就可以使得该模式减小。
|
||||
// 这个现象也可以由材料或偏振片的微小角度来解释。
|
||||
// 例如,我们将偏振方向转动 5 度,就可以得到这个模拟结果。
|
||||
// 此外,由于使用的材料是沿着 c 轴切片的,所以我们在测量 y 入射时不得不将片子以略小于 90 度(约 75 度)的角度放置。这也导致实验与计算的偏差。
|
||||
// TODO: 翻译成英文
|
||||
|
||||
=== Strong-polar Phonons
|
||||
|
||||
// 在半导体的极性声子模式中,原子间存在长距离的库伦相互作用,导致散射谱在 Gamma 附近不再连续(引用),如图中的彩色线所示。
|
||||
// 这导致不同方向的入射/散射光的声子模式不同。
|
||||
// 具体来说,当入射光/散射光沿着 z 方向时,起作用的是 A-Gamma 线上的声子模式(图中的左半边的橘线),它们适用于群 C6v。
|
||||
// 这时会有一个 E1 模式(TO,振动方向在面内)和一个 A1 模式(LO,沿 z 振动)。
|
||||
// 而当沿着 y 方向入射时,起作用的是 Gamma-K 线上的声子模式(图中的右半边的橘线),它们不再适用于群 C6v,而只适用于群 C2v;
|
||||
// 它会分裂成沿x、y、z 方向的三个声子模式(图中的右半边的蓝线),它们分别对应于群 C2v 的 A1、B1 和 B2 表示 TODO: 确认这个几个表示的名字。
|
||||
// 若考虑到到入射光不是严格沿着 z 方向,而是有一个小的角度(例如 10 度),则此时有一个声子模式沿着 x 方向,另外两个声子模式则为 y-z 两个方向的混合。
|
||||
// (没有在图上表示)
|
||||
|
||||
#page(flipped: true)[
|
||||
#figure({
|
||||
// 使用 m2 m3
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
let NA = [Not Applicable]
|
||||
let yzmix = [y-z mixed#linebreak() (LO-TO mixed)];
|
||||
let lopc = [Yes#linebreak() (LOPC)];
|
||||
let overf = [Yes#linebreak() (overfocused)];
|
||||
table(columns: 20, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Direction of Incident & Scattered Light*], m(5)[z], m(5)[y], m(9)[between z and y, 10#sym.degree to z],
|
||||
// z y 45 y&z
|
||||
[*Number of Phonon*], [1], [2], m(3)[3], m(3)[1], [2], [3], m(4)[1], [2], m(4)[3],
|
||||
[*Vibration Direction*],
|
||||
[x#linebreak() (TO)], [y#linebreak() (TO)], m(3)[z (LO)], // z
|
||||
m(3)[z (TO)], [x#linebreak() (TO)], [y (LO)], // y
|
||||
m(4, yzmix), [x#linebreak() (TO)], m(4, yzmix), // 45 y&z
|
||||
[*Representation in Group C#sub[6v]*], m(2, E1), m(3, A1), m(14, NA),
|
||||
// z y 45 y&z
|
||||
[*Representation in Group C#sub[2v]*], B2, B1, m(3, A1), m(3, A1), B2, B1, m(4, NA), B2, m(4, NA),
|
||||
[*Scattering in Polarization*],
|
||||
[xz], [yz], [xx], [yy], [zz], // z
|
||||
[xx], [yy], [zz], [xz], [yz], // y
|
||||
[xx], [yy], [yz], [zz], [xz], [xx], [yy], [yz], [zz], // 45 y&z
|
||||
[*Raman Intensity (a.u.)*],
|
||||
m(2)[53.52], m(2)[58.26], [464.69], // z
|
||||
m(2)[58.26], [454.09], [53.52], [53.55], // y
|
||||
m(2)[53.71], [3.20], [425.98], [53.56], m(2)[3.60], [50.36], [27.99], // 45 y&z
|
||||
[*Visible in Common Raman Experiment*],
|
||||
m(2)[Yes], m(2, lopc), [No], // z
|
||||
overf, [No], overf, [Yes], lopc, // y
|
||||
m(4)[???], [???], m(4)[???], // 45 y&z
|
||||
[*Wavenumber (Simulation) (cm#super[-1])*],
|
||||
// z y 45 y&z
|
||||
m(2)[776.57], m(3)[933.80], m(3)[761.80], [776.57], [941.33], m(4)[762.76], [776.57], m(4)[940.86],
|
||||
[*Electrical Polarity*], m(19)[Strong]
|
||||
)},
|
||||
caption: [Strong-polarized phonons near $Gamma$ point],
|
||||
)
|
||||
]
|
||||
|
||||
// TODO: 这句话放哪里?
|
||||
// whose dispersion curves exhibit discontinuity near the #sym.Gamma point (also shown in @phonon),
|
||||
|
||||
Reference in New Issue
Block a user