This commit is contained in:
2025-05-13 12:55:43 +08:00
parent 9328e3f50c
commit 2bbcb75a5c
2 changed files with 230 additions and 6 deletions

1
test-typst/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
main.pdf

View File

@@ -1,5 +1,7 @@
#import "@preview/starter-journal-article:0.4.0": article, author-meta
#import "@preview/tablem:0.2.0": tablem
#import "@preview/physica:0.9.4": pdv
#set par.line(numbering: "1")
// TODO: fix indent of first line
#show figure.caption: it => {
@@ -187,20 +189,226 @@ The 18 negligible-polar phonons correspond to 14 irreducible representations of
Phonons belonging to A#sub[1] and B#sub[1] representations vibration along z-axis and are non-degenerate,
while phonons belonging to E#sub[1] and E#sub[2] representations vibrate in plane and are doubly degenerate.
Phonons belonging to B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
// TODO: 调整英语
In contrast, phonons belonging to other representations are Raman-active,
the Raman tensors of them have non-zero components,
indicating that these phonons might be visible in Raman experiment under appropriate polarization configurations.
// 各个模式的声子可以使用怎样的偏振光看到(即拉曼张量的非零分量)可以联合考虑 C6v 和 C2v 的表示来判断,如表所示。
// TODO: 翻译
and the non-zero components of Raman tensor of each phonon
could be determined by considering further in the C#sub[2v] point group @table-rep.
These Raman-active phonons might be visible in Raman experiment under appropriate polarization configurations.
However, the actual visibility of each phonon depends on the magnitudes of its Raman tensor components,
which cannot be computed solely from symmetry analysis.
// TODO: 画个表
// TODO: 完善表格
#figure({
let m2(content) = table.cell(colspan: 2, content);
table(columns: 7, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Rep in C6v*], [A#sub[1]], [B#sub[1]], m2[E#sub[1]], m2[E#sub[2]],
[*Rep in C2v*], [A#sub[1]], [B#sub[1]], [B#sub[2]], [B#sub[1]], [A#sub[2]], [A#sub[1]],
[*Vib Direction*], [z], [z], [x], [y], [x], [y],
[*Raman Tensor*],
[$mat(a, , ; , a, ; , , b)$], [$0$], [$mat( , , a; , , ; a, , ;)$], [$mat( , , ; , , a; , a, ;)$],
[$mat( , a, ; a, , ; , , ;)$], [$mat( a, , ; , -a, ; , , ;)$],
[*Raman Intensity*],
[$mat(a^2, , ; , a^2, ; , , b^2)$], [$0$], m2[$mat( , , a^2; , , a^2; a^2, a^2, ;)$],
m2[$mat( a^2, a^2, ; a^2, a^2, ; , , ;)$]
)},
caption: [Rep],
placement: none,
)<table-rep>
Here we propose a method to estimate the magnitudes of the Raman tensors of these phonons.
// TODO: 写出来这个方法,并验证。
/*
Lets assign Raman tensor onto each atom.
That is, Raman tensor is derivative of the polarizability with respect to the atomic displacement:
$
alpha = pdv(chi, u)
$
where $u$ should be the displacement of the atom corresponding to a phonon mode.
But, even when $u$ is *NOT* the displacement of a phonon
(for example, lets only slightly move Si atom in A layer, keeping other atoms fixed),
the (high-frequency) polarizability is still well-defined,
and the will still cause a change in the polarizability.
Even more, the group representation theory is still applicable in this condition:
the only thing that matters is, when applying $g$ to the system,
the tensor transformed into $g^(-1) alpha g$ or $g alpha g^(-1)$,
no matter $alpha$ is Raman tensor or something else, or it is related to a phonon or not.
Thus, we can, in principle, "assign" Raman tensor of a phonon, to each atom.
This "assign" is unique since both the atom movement and all phonons have 24 dimensions.
Next, we consider what these single-atom-caused "Raman tensors" looks like.
For example, what happens if we move the Si atom in A layer slightly along the x+ direction?
Consider also move the Si atom in C layer slightly, along x+ or x- direction.
How about the Raman tensor caused by the both two atoms?
In first case, this is B2 representation in E1 representation. Thus the Raman tensor should be something like:
$
mat(,,2a_1;,,;2a_1,,;)
$
In the second case, it is A2 in E2. It turns out:
$
mat(,2a_2,;2a_2,,;,,;)
$
The average of these two tensors should be the s"Raman tensor" cause by move only the Si atom in A layer,
slightly towards x+ direction.
$
mat(,a_2,a_1;a_2,,;a_1,,;)
$
The difference should be the "Raman tensor" of the second atom.
$
mat(,-a_2,a_1;-a_2,,;a_1,,;)
$
// This approach applied relied on the fact that, all Si atom in 4H-SiC is "distinguishable" by the symmetry operations.
// I mean, what will happen if we have two Si atoms in A layer?
// Apparently, we could not extract the "Raman tensor" of only one of the two atoms.
// This is the case for the 6H-SiC.
// Hence, we will provide a more general approach to estimate the "Raman tensor" of a single atom.
Consider the Si atom in the B1 layer.
It lives in an environment quite similar to the A layer.
Thus, the "Raman tensor" caused by it should be similar to the one caused by the A layer:
$
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)
$
Similar to the Si atom in B2 layer:
$
mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)
$
Same approach applied for Si atom vibrate in y direction.
When we move both Si atoms in A and C layer in y+ direction,
it is B1 in E1, thus the "Raman tensor" should be:
$
mat(,,;,,2a_3;,2a_3,;)
$
And if we move Si in A layer towards y+ but Si in C layer towards y-,
it is A2 in E2:
$
mat(2a_4,,;,-2a_4,;,,;)
$
Thus we get the "Raman tensor" of Si atom in A layer sololy move towards y+ direction:
$
mat(a_4,,;,-a_4,a_3;,a_3,;)
$
and the "Raman tensor" of Si atom in C layer towards y+ direction:
$
mat(-a_4,,;,a_4,a_3;,a_3,;)
$
Same applied for the Si atom in B layer:
$
mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
$
$
mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
$
Now consider what if we move the Si atom in A layer along z+ direction.
If we move the Si atom in C layer along z+ direction, it is A1:
$
mat(2a_5,,;,2a_5,;,,2a_6;)
$
If we move the Si atom in C layer along z- direction, it is B1:
$
0
$
Thus we get the "Raman tensor" of Si atom in A or C layer towards z+ direction:
$
mat(a_5,,;,a_5,;,,a_6;)
$
Lets consider the C atom in A layer.
It should be somehow similar to the Si atom in A layer, but with a negative sign in some places,
and then add or subtract some little value.
Actually, the "transformation" of Si atom in A layer to C atom in A layer applied in the following steps:
- reverse charge.
- reverse system along xy plane.
First we consider the first step.
Taking the define of electricity tenser:
$
P = chi E
$
Lets reverse charge of the system, say we now have electricity tensor $chi'$. We get:
$
-P = chi'(-E)
$
Thus we get $chi' = chi$, the first step does not change the electricity tensor, nor the "Raman tensor".
Now we consider the second step.
For electricity tensor, it will become:
$
mat(1,,;,1,;,,-1) chi mat(1,,;,1,;,,-1)
$
For $u$, when it is along x or y direction, it will not change. When it is along z direction, it will become $-u$.
So in conclusion, Raman tensor of C atom in A layer could be estimated from the Raman tensor of Si atom in A layer, by:
- for movement alone x and y direction, xz yz should be applied a negative sign.
- for movement alone z direction, xx xy yy zz should be applied a negative sign.
Export "Raman tensor" of C atom in C layer from C atom in A layer, in the same way.
Now consider the C atom in B1 layer.
Is it similar to the C atom in A layer, just like that for Si atom?
No. It turns out to be similar to the C atom in C layer.
We summarize these stuff into @table-singleatom.
Furthermore, we list predicted modes and their Raman tensors, in @table-predmode.
Frequency could be estimated by, how many atoms are moving towards its neighbor.
#page(flipped: true)[#figure({
table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Move Direction*], [x], [y], [z],
[C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$],
[$mat(a_4+eta_4,,;,-a_4-eta_4,-a_3-eta_3;,-a_3-eta_3,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
[Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_4,,;,-a_4,a_3;,a_3,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
[C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
[$mat(-a_4-eta_4-zeta_4,,;,a_4+eta_4+zeta_4,-a_3-eta_3-zeta_3;,-a_3-eta_3-zeta_3,;)$],
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
[Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
[C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$],
[$mat(-a_4-eta_4,,;,a_4+eta_4,-a_3-eta_3;,-a_3-eta_3,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
[Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_4,,;,a_4,a_3;,a_3,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
[C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
[$mat(a_4+eta_4+zeta_4,,;,-a_4-eta_4-zeta_4,-a_3-eta_3-zeta_3;,-a_3-eta_3-zeta_3,;)$],
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
[Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
)},
caption: ["Raman tensor" caused by single atom],
placement: none,
)<table-singleatom>]
// Raman Tensor for A1: line1 xz/yz; line2 zz
#page(flipped: true)[#figure({
let m2(content) = table.cell(colspan: 2, content);
let m3(content) = table.cell(colspan: 3, content);
table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Representation in C#sub[6v]*], m3[A1],
[*Representation in C#sub[2v]*], m3[A1],
[*x*], m2[0.5], [1],
[*Relative Vibration Direction*], [$++--++--$], [$+--++--+$], [$+-+-+-+-$],
[*Vibration Direction*], m3[z],
[*Raman Tensor Predicted*], [$2(-epsilon_5+zeta_5)$ #linebreak() $2(-epsilon_6+zeta_6)$],
[$2(epsilon_5+zeta_5)$ #linebreak() $2(epsilon_6+zeta_6)$],
[$-4(2a_5+eta_5+epsilon_5+zeta_5)$ #linebreak() $-4(2a_6+eta_6+epsilon_6+zeta_6)$],
[*Raman Intensity Predicted*], m2[weak], [strong],
[*Raman Tensor Calculated*],
[0.10 #linebreak() -1.33], [-1.68 #linebreak() 1.34], [7.68 #linebreak() -21.65],
[*Atom-pair that Move Relatively In-plane*], [4], [0], [4],
[*Atom-pair that Move Relatively Out-plane*], [0], [4], [4],
[*Predicted Frequency*], [low], [medium], [high],
[*Calculated Frequency*], [591.90], [812.87], [933.80],
)},
caption: [Predicted modes and their "Raman tensor"],
placement: none,
)<table-predmode>]
/*
这里应该有办法来估计。下面是我总结的规律:
按照我们规定的 ABCB 层序,并将拉曼张量的大小归结为键长的变化的话:
* 对于 E2 表示AC层运动方向必须相反B1/B2层运动方向必须相反因此只讨论A和B1层
@@ -216,6 +424,21 @@ Here we propose a method to estimate the magnitudes of the Raman tensors of thes
* 对于其它键,根据对称性由上面的结果直接写出。
* 写出各个模式的拉曼张量(上面的线性组合)。即可以直接看到结果。
*/
//
// 考虑 A 层的竖着的键。面内的振动模式对应的拉曼张量落在两个空间中。
// 在第一个空间中,它的形式为:
//
// $
// mat(a, , ; , -a, ; , , ;)
// mat(, a, ; a, , ; , , ;)
// $
//
// 在第二个空间中,它的形式为:
//
// $
// mat(, , a; , , ; a, , ;)
// mat(, , ; , , a; , a, ;)
// $
// 我们计算了拉曼活性声子的频率及拉曼张量,并与实验对比,如表如图所示。
// 其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。