remove latex template
This commit is contained in:
99
paper/result/perfect/non-polar/default.typ
Normal file
99
paper/result/perfect/non-polar/default.typ
Normal file
@@ -0,0 +1,99 @@
|
||||
=== Phonons with Negligible Polarities
|
||||
|
||||
我们用 gamma 点的声子来近似弱极性的声子。
|
||||
|
||||
// We investigate phonons at Gamma instead of the exact location near Gamma.
|
||||
Phonons at the #sym.Gamma point were used
|
||||
to approximate negligible-polar phonons that participating in Raman processes
|
||||
regardless of the wavevector of the incident and scattered light.
|
||||
This approximation is widely adopted (cite) and justified by the fact that,
|
||||
although the phonons participating in Raman processes are not these strictly located at the #sym.Gamma point,
|
||||
they are very close to the #sym.Gamma point in reciprocal space
|
||||
(about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
|
||||
which corresponds to only 1% of the smallest reciprocal lattice vector of 4H-SiC,
|
||||
see orange dotted line in @figure-discont),
|
||||
and their dispersion at #sym.Gamma point is continuous with vanishing derivatives.
|
||||
Therefore, negligible-polar phonons involved in Raman processes
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point.
|
||||
|
||||
#include "figure-discont.typ"
|
||||
|
||||
gamma 点处 18 个声子的表示。它们的拉曼张量的形状可以确定,但大小无法确定。
|
||||
|
||||
// Representation of these 18 phonons, and the shape of their Raman tensors could be determined in advance.)
|
||||
Phonons at the #sym.Gamma point satisfy the C#sub[6v] point group symmetry,
|
||||
and the 18 negligible-polar phonons correspond to 12 irreducible representations of the C#sub[6v] point group:
|
||||
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
|
||||
Phonons belonging to the A#sub[1] and B#sub[1] representations vibrate along the z-axis and are non-degenerate,
|
||||
while those belonging to the E#sub[1] and E#sub[2] representations vibrate in-plane and are doubly degenerate.
|
||||
Phonons of the B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
|
||||
In contrast, phonons of the other representations are Raman-active,
|
||||
and the non-zero components of their Raman tensor
|
||||
can be determined by further considering their representation in the C#sub[2v] point group (see @table-rep).
|
||||
These Raman-active phonons are potentially be visible in Raman experiment under appropriate polarization configurations.
|
||||
However, whether a mode is sufficiently strong to be experimentally visible
|
||||
depends on the magnitudes of its Raman tensor components,
|
||||
which cannot be determined solely from symmetry analysis.
|
||||
|
||||
#include "table-rep.typ"
|
||||
|
||||
// We propose a method to estimate the magnitudes of the Raman tensors of these phonons,
|
||||
// without first-principle calculations.
|
||||
// Here we only write out results, details are in appendix.
|
||||
|
||||
我们提出了一个新的办法来估计拉曼张量大小。
|
||||
|
||||
We propose a method to estimate the magnitudes of the Raman tensors of these phonons based on symmetry analysis.
|
||||
This approach is founded on the assumption that the change in polarizability induced by atomic displacements in 4H-SiC
|
||||
is primarily determined by the first- and second-nearest neighbors of the atom and the sign of the atomic charge,
|
||||
while other factors (mass, bond length, etc.) only have small contributions.
|
||||
Consequently, the Raman tensors of the calculated phonon modes can be estimated
|
||||
before additional first-principles computations (see appendix for details),
|
||||
and the results are summarized in @table-nopol.
|
||||
The parameters $a_i$ exhibit significantly larger absolute values compared to $epsilon_i$, $eta_i$, and $zeta_i$,
|
||||
indicating the E#sub[2] mode at 756.25 cm#super[-1] in simulation (mode 8)
|
||||
possess a much higher Raman intensity than the others.
|
||||
|
||||
我们使用第一性原理计算得到了拉曼张量的大小,并与我们的结果进行了比较。
|
||||
|
||||
The Raman tensors and frequencies of the negligible-polar phonons were calculated using first-principles methods,
|
||||
and the results are compared with both experimental data and theoretical predictions (@table-nopol).
|
||||
The calculated phonon frequencies show good agreement with experimental data with a slight underestimation of 2-5%,
|
||||
where the error may be attributed to the underestimation of interatomic forces by the PBE functional (cite).
|
||||
The calculated Raman tensors are also consistent with experimental and theoretical results.
|
||||
Among negligible-polar modes, the E#sub[2] mode at 776 cm#super[-1] in experiment (mode 8)
|
||||
exhibits the highest Raman intensity,
|
||||
followed by four modes with lower intensities that are also experimentally visible,
|
||||
including the E#sub[2] modes at 195.5 cm#super[-1] (mode 1) and 203.3 cm#super[-1] (mode 2),
|
||||
the E#sub[1] mode at 269.7 cm#super[-1] (mode 3), and the A#sub[1] mode at 609.5 cm#super[-1] (mode 6).
|
||||
The E#sub[1] mode calculated at 746.91 cm#super[-1] (mode 7)
|
||||
and the E#sub[2] mode calculated at 756.25 cm#super[-1] (mode 9)
|
||||
are predicted to have much weaker Raman intensities and are located close to the most intense mode (mode 8),
|
||||
making them indistinguishable in experimental spectra.
|
||||
Additionally, the A#sub[1] mode calculated at 812.87 cm#super[-1] (mode 10)
|
||||
exhibits a very weak Raman intensity in the basal-plane polarized configurations (xx and yy, only 0.01)
|
||||
but shows an observable intensity when the polarization is along the z-axis (1.78).
|
||||
Since most Raman experiments are performed in a back-scattering configuration with light incident along the z-direction
|
||||
(i.e., with in-plane polarization)
|
||||
and with photon energies much lower than the band gap,
|
||||
this mode is typically not observed (cite).
|
||||
However, it should become detectable if the incident light has a polarization component along the z-direction
|
||||
(as in our experiment),
|
||||
or when the excitation wavelength approaches resonance conditions (cite).
|
||||
|
||||
其它峰在其它章节中解释。
|
||||
|
||||
Besides, there are other peeks in the experiment.
|
||||
The peek at 796 and 980 are caused by strong-polar phonons which will be discussed later.
|
||||
Besides, there are small peeks at xxx,
|
||||
which could not be explained in perfect 4H-SiC and will be discussed in the next section.
|
||||
|
||||
// TODO: 将一部分 phonons 改为 phonon modes
|
||||
// 在论文中我们这样来称呼:phonon 对应某一个特征向量,而 modes 对应于一个子空间。
|
||||
// 也就是说,简并的里面有两个或者无数个 phonon,但只有一个 mode
|
||||
|
||||
#include "table-nopol.typ"
|
||||
|
||||
#include "figure-raman.typ"
|
||||
|
||||
// TODO: 解释为什么 E1 可以看到
|
||||
15
paper/result/perfect/non-polar/figure-discont.typ
Normal file
15
paper/result/perfect/non-polar/figure-discont.typ
Normal file
@@ -0,0 +1,15 @@
|
||||
#figure(
|
||||
image("/画图/声子不连续/embed.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
The green, red and blue lines indicate the mode along the z-direction, y-direction and x-direction, respectively.
|
||||
Along A-#sym.Gamma path, strong-polar modes along x- and y-directions are degenerated,
|
||||
showing as a single purple line.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
],
|
||||
placement: none,
|
||||
)<figure-discont>
|
||||
11
paper/result/perfect/non-polar/figure-raman.typ
Normal file
11
paper/result/perfect/non-polar/figure-raman.typ
Normal file
@@ -0,0 +1,11 @@
|
||||
#figure(
|
||||
image("/画图/拉曼整体图/main.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
]
|
||||
)<raman>
|
||||
67
paper/result/perfect/non-polar/table-nopol.typ
Normal file
67
paper/result/perfect/non-polar/table-nopol.typ
Normal file
@@ -0,0 +1,67 @@
|
||||
#page(flipped: true)[#figure({
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
table(columns: 22, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
m2[*Number of Mode*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m2[1], m2[2], m2[3], [4], [5], m2[6], m2[7], m2[8], m2[9], m2[10], [11], [12],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m2[*Vibration Direction*], [x], [y], [x], [y], [x], [y], m(4)[z], [x], [y], [x], [y], [x], [y], m(4)[z],
|
||||
table.cell(rowspan: 2)[*Representation*],
|
||||
[C#sub[6v]], m2(E2), m2(E2), m2(E1), B1, B1, m2(A1), m2(E1), m2(E2), m2(E2), m2(A1), B1, B1,
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[C#sub[2v]], A2, A1, A2, A1, B2, B1, B1, B1, m2(A1), B2, B1, A2, A1, A2, A1, m2(A1), B1, B1,
|
||||
// TODO: 重新检查数据是否正确(主要是正负号)
|
||||
table.cell(rowspan: 4)[*Raman Tensor*],
|
||||
[Non-zero components],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[xy], [xx, -yy], [xy], [xx, -yy], [xz], [yz], m2[None], [xx, yy], [zz],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[xz], [yz], [xy], [xx, -yy], [xy], [xx, -yy], [xx, yy], [zz], m2[None],
|
||||
[Analysis result (a.u.)],
|
||||
// E2 E2 E1 2B1
|
||||
m2[$2epsilon_2-2zeta_2-4eta_2$], m2[$2epsilon_2-2zeta_2$], m2[$-2epsilon_1-2zeta_1$], m2[-],
|
||||
// A1 E1 E2
|
||||
[$-2epsilon_5$], [$-2epsilon_6$], m2[$-2epsilon_1+2zeta_1$], m2[$8a_2+2epsilon_2-2zeta_2-4eta_2$],
|
||||
// E2 A1 2B1
|
||||
m2[$-2epsilon_2+2zeta_2$], [$-2zeta_5$], [$-2zeta_6$], m2[-],
|
||||
[Calculation result (a.u.)],
|
||||
// TODO: 改正正负号
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m2[0.17], m2[1.13], m2[2.43], m2[-], [2.83], [1.79], m2[0.09], m2[88.54], m2[0.50], [0.01], [1.78], m2[-],
|
||||
[Experiment result (a.u.)],
|
||||
// TODO: 填充
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m2[], m2[], m2[], m2[-], [], [], m2[Invisible], m2[], m3[Invisible], [], m2[-],
|
||||
table.cell(rowspan: 3)[*Frequency*],
|
||||
[Simulation (cm#super[-1])],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m2[190.51], m2[197.84], m2[257.35], [389.96], [397.49], m2[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m2[746.91], m2[756.25], m2[764.33], m2[812.87], [885.68], [894.13],
|
||||
[Experiment (cm#super[-1])],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m2[195.5], m2[203.3], m2[269.7], m2[-], m2[609.5], m2[Invisible], m2[776], m(3)[Invisible], [839], m2[-],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[Error (%)], m2[2.6], m2[2.7], m2[4.6], m2[-], m2[2.9], m2[-], m2[2.5], m(3)[-], [3.1], m2[-],
|
||||
table.cell(rowspan: 2)[*FWHM* (cm#super[-1])],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[Simulation], m2[0.08], m2[0.09], m2[0.08], m2[-], m2[0.61], m2[3.97], m2[4.62], m2[4.01], m2[0.89], m2[-],
|
||||
// TODO: 选取合适的实验并填充数据
|
||||
[Experiment, zxxz],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m2[2.61], m2[2.09], m2[1.98], m2[-], m2[2.64], m2[Invisible], m2[3.27], m3[Invisible], [], m2[-],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m2[*Polarity*], m(4)[None], m2[Weak], m2[None], m(4)[Weak], m(4)[None], m2[Weak], m2[None],
|
||||
)},
|
||||
caption: [Negaligible-polarized Phonons at $Gamma$ Point.],
|
||||
)<table-nopol>]
|
||||
25
paper/result/perfect/non-polar/table-rep.typ
Normal file
25
paper/result/perfect/non-polar/table-rep.typ
Normal file
@@ -0,0 +1,25 @@
|
||||
#figure({
|
||||
set text(size: 9pt);
|
||||
set par(justify: false);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
table(columns: 7, align: center + horizon,
|
||||
[*Representations in C#sub[6v]*], A1, B1, m2(E1), m2(E2),
|
||||
[*Representations in C#sub[2v]*], A1, B1, B2, B1, A2, A1,
|
||||
[*Vibration Direction*], [z], [z], [x], [y], [x], [y],
|
||||
[*Raman Tensor*],
|
||||
[$mat(a,,;,a,;,,b)$], [$0$], [$mat(,,a;,,;a,,;)$], [$mat(,,;,,a;,a,;)$], [$mat(,a,;a,,;,,;)$], [$mat(a,,;,-a,;,,;)$],
|
||||
[*Raman scatter Intensity* #linebreak() (polarization of incident and scattered light)],
|
||||
[xx/yy: $a^2$ #linebreak() zz: $b^2$ #linebreak() others: 0], [0],
|
||||
m2[xz/yz: $a^2$ #linebreak() others: 0], m2[xx/xy/yy: $a^2$ #linebreak() others: 0],
|
||||
)},
|
||||
caption: [
|
||||
Irreducible representations and raman tensors of phonons in 4H-SiC.
|
||||
],
|
||||
placement: none,
|
||||
)<table-rep>
|
||||
Reference in New Issue
Block a user