支持经过变换的超胞

This commit is contained in:
2023-09-19 20:37:22 +08:00
parent c4d613e2d0
commit e3ebad1ad4
3 changed files with 78 additions and 77 deletions

1
.gitignore vendored
View File

@@ -5,3 +5,4 @@ test/*.dat
main main
plot plot
out.yaml out.yaml
.ccls-cache

View File

@@ -7,7 +7,7 @@
{ {
buildInputs = with pkgs; buildInputs = with pkgs;
[ yaml-cpp eigen fmt (localPackages.concurrencpp.override { stdenv = genericPackages.gcc13Stdenv; }) highfive ]; [ yaml-cpp eigen fmt (localPackages.concurrencpp.override { stdenv = genericPackages.gcc13Stdenv; }) highfive ];
nativeBuildInputs = with pkgs; [ gdb ]; hardeningDisable = [ "all" ];
}; };
}; };
} }

152
main.cpp
View File

@@ -22,9 +22,19 @@ struct Input
{ {
// 单胞的三个格矢,每行表示一个格矢的坐标,单位为埃 // 单胞的三个格矢,每行表示一个格矢的坐标,单位为埃
Eigen::Matrix3d PrimativeCell; Eigen::Matrix3d PrimativeCell;
// 超胞在各个方向上是单胞的多少倍,这是一个对角矩阵 // 单胞到超胞的格矢转换时用到的矩阵
// 暂时不考虑不是对角矩阵的情况 // SuperCellMultiplier 是一个三维列向量且各个元素都是整数,表示单胞在各个方向扩大到多少倍之后,可以得到和超胞一样的体积
Eigen::Matrix<unsigned, 3, 3> SuperCellMultiplier; // SuperCellDeformation 是一个行列式为 1 的矩阵,它表示经过 SuperCellMultiplier 扩大后,还需要怎样的变换才能得到超胞
// SuperCell = (SuperCellDeformation * SuperCellMultiplier.asDiagonal()) * PrimativeCell
// ReciprocalPrimativeCell = (SuperCellDeformation * SuperCellMultiplier.asDiagonal()).transpose()
// * ReciprocalSuperCell
// Position = PositionToCell(line vector) * Cell
// InversePosition = InversePositionToCell(line vector) * ReciprocalCell
// PositionToSuperCell(line vector) * SuperCell = PositionToPrimativeCell(line vector) * PrimativeCell
// ReciprocalPositionToSuperCell(line vector) * ReciprocalSuperCell
// = ReciprocalPositionToPrimativeCell(line vector) * ReciprocalPrimativeCell
Eigen::Vector<unsigned, 3> SuperCellMultiplier;
Eigen::Matrix<double, 3, 3> SuperCellDeformation;
// 在单胞内取几个平面波的基矢 // 在单胞内取几个平面波的基矢
Eigen::Vector<unsigned, 3> PrimativeCellBasisNumber; Eigen::Vector<unsigned, 3> PrimativeCellBasisNumber;
// 超胞中原子的坐标,每行表示一个原子的坐标,单位为埃 // 超胞中原子的坐标,每行表示一个原子的坐标,单位为埃
@@ -110,48 +120,50 @@ int main(int argc, const char** argv)
// 将超胞中原子的运动状态投影到这些基矢上, 计算出投影的系数, 就可以将超胞的原子运动状态分解到单胞中的多个 q 点上. // 将超胞中原子的运动状态投影到这些基矢上, 计算出投影的系数, 就可以将超胞的原子运动状态分解到单胞中的多个 q 点上.
// 构建基 // 构建基
// 外层下标对应超胞倒格子的整数倍那部分(第二部分), 也就是对应不同反折叠后的 q 点(sub qpoint) // 每个 q 点对应的一组 sub qpoint。不同的 q 点所对应的 sub qpoint 是不一样的,但 sub qpoint 与 q 点的相对位置一致。
// 内层下标对应单胞倒格子的整数倍那部分(第一部分), 也就是对应同一个反折叠后的 q 点上的不同平面波 // 这里 xyz_of_diff_of_sub_qpoint 即表示这个相对位置。
std::vector<std::vector<Eigen::VectorXcd>> basis; // 由于基只与这个相对位置有关(也就是说,不同 q 点的基是一样的),因此可以先计算出所有的基,这样降低计算量。
basis.resize(input.SuperCellMultiplier.diagonal().prod()); // 外层下标对应超胞倒格子的整数倍那部分(第二部分), 也就是不同的 sub qpoint
for (auto [xyz_of_sub_qpoint, i_of_sub_qpoint] // 内层下标对应单胞倒格子的整数倍那部分(第一部分), 也就是 sub qpoint 上的不同平面波(取的数量越多,结果越精确)
: triplet_sequence(input.SuperCellMultiplier.diagonal())) std::vector<std::vector<Eigen::VectorXcd>> basis(input.SuperCellMultiplier.prod());
// 每个 q 点对应的一组 sub qpoint。不同的 q 点所对应的 sub qpoint 是不一样的,但 sub qpoint 与 q 点的相对位置一致。
// 这里 xyz_of_diff_of_sub_qpoint 即表示这个相对位置,单位为超胞的倒格矢
for (auto [xyz_of_diff_of_sub_qpoint_by_reciprocal_super_cell, i_of_diff_of_sub_qpoint]
: triplet_sequence(input.SuperCellMultiplier))
{ {
basis[i_of_sub_qpoint].resize(input.PrimativeCellBasisNumber.prod()); basis[i_of_diff_of_sub_qpoint].resize(input.PrimativeCellBasisNumber.prod());
for (auto [xyz_of_basis, i_of_basis] : triplet_sequence(input.PrimativeCellBasisNumber)) for (auto [xyz_of_basis, i_of_basis] : triplet_sequence(input.PrimativeCellBasisNumber))
{ {
// 计算 q 点的坐标, 单位为单胞的倒格矢 // 计算 q 点的坐标, 单位为单胞的倒格矢
auto qpoint_relative_to_primative_cell = xyz_of_basis.cast<double>() auto diff_of_sub_qpoint_by_reciprocal_primative_cell = xyz_of_basis.cast<double>()
+ input.SuperCellMultiplier.cast<double>().inverse() * xyz_of_sub_qpoint.cast<double>(); + input.SuperCellMultiplier.cast<double>().cwiseInverse().asDiagonal()
* xyz_of_diff_of_sub_qpoint_by_reciprocal_super_cell.cast<double>();
// 将 q 点坐标转换为埃^-1 // 将 q 点坐标转换为埃^-1
auto qpoint = (qpoint_relative_to_primative_cell.transpose() * (input.PrimativeCell.transpose().inverse())) auto qpoint = (diff_of_sub_qpoint_by_reciprocal_primative_cell.transpose()
.transpose(); * (input.PrimativeCell.transpose().inverse())).transpose();
// 计算基矢 // 计算基矢
basis[i_of_sub_qpoint][i_of_basis] basis[i_of_diff_of_sub_qpoint][i_of_basis]
= (-2 * std::numbers::pi_v<double> * 1i * (input.AtomPosition * qpoint)).array().exp(); = (2i * std::numbers::pi_v<double> * (input.AtomPosition * qpoint)).array().exp();
} }
} }
// 计算投影的结果 // 计算投影的结果
// 最外层下标对应反折叠前的 q 点, 第二层下标对应不同模式, 第三层下标对应这个模式在反折叠后的 q 点 // 最外层下标对应反折叠前的 q 点, 第二层下标对应不同模式, 第三层下标对应这个模式在反折叠后的 q 点(sub qpoint)
std::vector<std::vector<std::vector<double>>> projection_coefficient; std::vector<std::vector<std::vector<double>>> projection_coefficient(input.QPointData.size());
projection_coefficient.resize(input.QPointData.size()); for (unsigned i_of_qpoint = 0; i_of_qpoint < input.QPointData.size(); i_of_qpoint++)
for (unsigned i_of_folded_qpoint = 0; i_of_folded_qpoint < input.QPointData.size(); i_of_folded_qpoint++)
{ {
auto num_of_mode = input.QPointData[i_of_folded_qpoint].ModeData.size(); projection_coefficient[i_of_qpoint].resize(input.QPointData[i_of_qpoint].ModeData.size());
projection_coefficient[i_of_folded_qpoint].resize(num_of_mode); for (unsigned i_of_mode = 0; i_of_mode < input.QPointData[i_of_qpoint].ModeData.size(); i_of_mode++)
for (unsigned i_of_mode = 0; i_of_mode < num_of_mode; i_of_mode++)
{ {
auto num_of_sub_qpoint = input.SuperCellMultiplier.diagonal().prod(); auto& _ = projection_coefficient[i_of_qpoint][i_of_mode];
auto& _ = projection_coefficient[i_of_folded_qpoint][i_of_mode]; _.resize(input.SuperCellMultiplier.prod());
_.resize(num_of_sub_qpoint); for (unsigned i_of_sub_qpoint = 0; i_of_sub_qpoint < input.SuperCellMultiplier.prod(); i_of_sub_qpoint++)
for (unsigned i_of_sub_qpoint = 0; i_of_sub_qpoint < num_of_sub_qpoint; i_of_sub_qpoint++) // 对于 basis 中, 对应于单胞倒格子的部分, 以及对应于不同方向的部分, 分别求内积, 然后求模方和
// 对于 basis 中, 对应于单胞倒格子的部分, 以及对应于不同方向的部分, 分别求内积, 然后求绝对值, 然后求和
for (unsigned i_of_basis = 0; i_of_basis < input.PrimativeCellBasisNumber.prod(); i_of_basis++) for (unsigned i_of_basis = 0; i_of_basis < input.PrimativeCellBasisNumber.prod(); i_of_basis++)
_[i_of_sub_qpoint] += _[i_of_sub_qpoint] +=
( (
basis[i_of_sub_qpoint][i_of_basis].transpose() basis[i_of_sub_qpoint][i_of_basis].transpose().conjugate()
* input.QPointData[i_of_folded_qpoint].ModeData[i_of_mode].AtomMovement * input.QPointData[i_of_qpoint].ModeData[i_of_mode].AtomMovement
).array().abs2().sum(); ).array().abs2().sum();
// 如果是严格地将向量分解到一组完备的基矢上, 那么不需要对计算得到的权重再做归一化处理 // 如果是严格地将向量分解到一组完备的基矢上, 那么不需要对计算得到的权重再做归一化处理
@@ -164,23 +176,32 @@ int main(int argc, const char** argv)
// 填充输出对象 // 填充输出对象
Output output; Output output;
for (unsigned i_of_folded_qpoint = 0; i_of_folded_qpoint < input.QPointData.size(); i_of_folded_qpoint++) for (unsigned i_of_qpoint = 0; i_of_qpoint < input.QPointData.size(); i_of_qpoint++)
for (auto [xyz_of_sub_qpoint, i_of_sub_qpoint] for (auto [xyz_of_diff_of_sub_qpoint_by_reciprocal_super_cell, i_of_sub_qpoint]
: triplet_sequence(input.SuperCellMultiplier.diagonal())) : triplet_sequence(input.SuperCellMultiplier))
{ {
auto& sub_qpoint = output.QPointData.emplace_back(); auto& _ = output.QPointData.emplace_back();
sub_qpoint.QPoint = input.SuperCellMultiplier.cast<double>().inverse() * auto reciprocal_super_cell =
(input.QPointData[i_of_folded_qpoint].QPoint + xyz_of_sub_qpoint.cast<double>()); (input.SuperCellDeformation * input.SuperCellMultiplier.cast<double>().asDiagonal() * input.PrimativeCell)
sub_qpoint.Source = input.QPointData[i_of_folded_qpoint].QPoint; .inverse().transpose();
// sub qpoint 的坐标,单位为埃^-1
auto sub_qpoint =
((xyz_of_diff_of_sub_qpoint_by_reciprocal_super_cell.cast<double>() + input.QPointData[i_of_qpoint].QPoint)
.transpose() * reciprocal_super_cell).transpose();
// 将坐标转换为相对于单胞的倒格矢的坐标并写入
// 由 sub_qpoint.transpose() = sub_qpoint_by_reciprocal_primative_cell.transpose()
// * PrimativeCell.transpose().inverse()
// 得到 sub_qpoint_by_reciprocal_primative_cell = PrimativeCell * sub_qpoint
_.QPoint = input.PrimativeCell * sub_qpoint;
_.Source = input.QPointData[i_of_qpoint].QPoint;
if (!input.Debug.value_or(false)) if (!input.Debug.value_or(false))
{ {
// 从小到大枚举所有的模式,并将相近的模式(相差小于 0.01 THz合并 // 从小到大枚举所有的模式,并将相近的模式(相差小于 0.01 THz合并
std::map<double, double> frequency_to_weight; std::map<double, double> frequency_to_weight;
for (unsigned i_of_mode = 0; i_of_mode < input.QPointData[i_of_folded_qpoint].ModeData.size(); i_of_mode++) for (unsigned i_of_mode = 0; i_of_mode < input.QPointData[i_of_qpoint].ModeData.size(); i_of_mode++)
{ {
auto frequency = input.QPointData[i_of_folded_qpoint].ModeData[i_of_mode].Frequency; auto frequency = input.QPointData[i_of_qpoint].ModeData[i_of_mode].Frequency;
auto weight = projection_coefficient[i_of_folded_qpoint][i_of_mode][i_of_sub_qpoint]; auto weight = projection_coefficient[i_of_qpoint][i_of_mode][i_of_sub_qpoint];
auto it_lower = frequency_to_weight.lower_bound(frequency - 0.01); auto it_lower = frequency_to_weight.lower_bound(frequency - 0.01);
auto it_upper = frequency_to_weight.upper_bound(frequency + 0.01); auto it_upper = frequency_to_weight.upper_bound(frequency + 0.01);
if (it_lower == it_upper) if (it_lower == it_upper)
@@ -201,17 +222,17 @@ int main(int argc, const char** argv)
for (auto& mode : frequency_to_weight) for (auto& mode : frequency_to_weight)
if (mode.second > 0.01) if (mode.second > 0.01)
{ {
auto& _ = sub_qpoint.ModeData.emplace_back(); auto& __ = _.ModeData.emplace_back();
_.Frequency = mode.first; __.Frequency = mode.first;
_.Weight = mode.second; __.Weight = mode.second;
} }
} }
else else
for (unsigned i_of_mode = 0; i_of_mode < input.QPointData[i_of_folded_qpoint].ModeData.size(); i_of_mode++) for (unsigned i_of_mode = 0; i_of_mode < input.QPointData[i_of_qpoint].ModeData.size(); i_of_mode++)
{ {
auto& _ = sub_qpoint.ModeData.emplace_back(); auto& __ = _.ModeData.emplace_back();
_.Frequency = input.QPointData[i_of_folded_qpoint].ModeData[i_of_mode].Frequency; __.Frequency = input.QPointData[i_of_qpoint].ModeData[i_of_mode].Frequency;
_.Weight = projection_coefficient[i_of_folded_qpoint][i_of_mode][i_of_sub_qpoint]; __.Weight = projection_coefficient[i_of_qpoint][i_of_mode][i_of_sub_qpoint];
} }
} }
@@ -254,7 +275,11 @@ bool YAML::convert<Input>::decode(const Node& node, Input& input)
input.SuperCellMultiplier.setZero(); input.SuperCellMultiplier.setZero();
for (unsigned i = 0; i < 3; i++) for (unsigned i = 0; i < 3; i++)
input.SuperCellMultiplier(i, i) = node["SuperCellMultiplier"][i].as<int>(); input.SuperCellMultiplier(i) = node["SuperCellMultiplier"][i].as<int>();
for (unsigned i = 0; i < 3; i++)
for (unsigned j = 0; j < 3; j++)
input.SuperCellDeformation(i, j) = node["SuperCellDeformation"][i][j].as<double>();
for (unsigned i = 0; i < 3; i++) for (unsigned i = 0; i < 3; i++)
input.PrimativeCellBasisNumber(i) = node["PrimativeCellBasisNumber"][i].as<int>(); input.PrimativeCellBasisNumber(i) = node["PrimativeCellBasisNumber"][i].as<int>();
@@ -267,7 +292,8 @@ bool YAML::convert<Input>::decode(const Node& node, Input& input)
for (unsigned i = 0; i < points.size(); i++) for (unsigned i = 0; i < points.size(); i++)
for (unsigned j = 0; j < 3; j++) for (unsigned j = 0; j < 3; j++)
atom_position_to_super_cell(i, j) = points[i]["coordinates"][j].as<double>(); atom_position_to_super_cell(i, j) = points[i]["coordinates"][j].as<double>();
input.AtomPosition = atom_position_to_super_cell * (input.SuperCellMultiplier.cast<double>() * input.PrimativeCell); input.AtomPosition = atom_position_to_super_cell
* (input.SuperCellDeformation * input.SuperCellMultiplier.cast<double>().asDiagonal() * input.PrimativeCell);
auto phonon = node["phonon"].as<std::vector<YAML::Node>>(); auto phonon = node["phonon"].as<std::vector<YAML::Node>>();
input.QPointData.resize(phonon.size()); input.QPointData.resize(phonon.size());
@@ -301,29 +327,3 @@ bool YAML::convert<Input>::decode(const Node& node, Input& input)
return true; return true;
} }
// auto YAML::convert<Output>::encode(const Output& output) -> Node
// {
// Node node;
// node["QPointData"] = Node(NodeType::Sequence);
// for (unsigned i = 0; i < output.QPointData.size(); i++)
// {
// node["QPointData"][i]["QPoint"] =
// ({
// auto& _ = output.QPointData[i].QPoint;
// std::vector<double>(_.data(), _.data() + _.size());
// });
// node["QPointData"][i]["ModeData"] = Node(NodeType::Sequence);
// for (unsigned j = 0; j < output.QPointData[i].ModeData.size(); j++)
// {
// node["QPointData"][i]["ModeData"][j]["Frequency"] = output.QPointData[i].ModeData[j].Frequency;
// node["QPointData"][i]["ModeData"][j]["Weight"] = output.QPointData[i].ModeData[j].Weight;
// node["QPointData"][i]["ModeData"][j]["Source"] =
// ({
// auto& _ = output.QPointData[i].ModeData[j].Source;
// std::vector<double>(_.data(), _.data() + _.size());
// });
// }
// }
// return node;
// }