Files
nixpkgs/pkgs/development/python-modules/numpy/disable-failed-test.patch
2023-08-10 23:21:03 +08:00

37 lines
2.1 KiB
Diff

--- a/numpy/core/tests/test_umath_accuracy.py 2023-07-09 03:25:45.476263000 +0800
+++ b/numpy/core/tests/test_umath_accuracy.py 2023-08-10 16:42:01.847961778 +0800
@@ -38,33 +38,6 @@
str_to_float = np.vectorize(convert)
class TestAccuracy:
- @platform_skip
- def test_validate_transcendentals(self):
- with np.errstate(all='ignore'):
- data_dir = path.join(path.dirname(__file__), 'data')
- files = os.listdir(data_dir)
- files = list(filter(lambda f: f.endswith('.csv'), files))
- for filename in files:
- filepath = path.join(data_dir, filename)
- with open(filepath) as fid:
- file_without_comments = (r for r in fid if not r[0] in ('$', '#'))
- data = np.genfromtxt(file_without_comments,
- dtype=('|S39','|S39','|S39',int),
- names=('type','input','output','ulperr'),
- delimiter=',',
- skip_header=1)
- npname = path.splitext(filename)[0].split('-')[3]
- npfunc = getattr(np, npname)
- for datatype in np.unique(data['type']):
- data_subset = data[data['type'] == datatype]
- inval = np.array(str_to_float(data_subset['input'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
- outval = np.array(str_to_float(data_subset['output'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
- perm = np.random.permutation(len(inval))
- inval = inval[perm]
- outval = outval[perm]
- maxulperr = data_subset['ulperr'].max()
- assert_array_max_ulp(npfunc(inval), outval, maxulperr)
-
@pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS)
def test_validate_fp16_transcendentals(self, ufunc):
with np.errstate(all='ignore'):