
在科学计算中
使用 NIX
实战经验与挑战

陈浩南 – 2025-08-09

2 / 24

目录

1. 自我介绍

2. 科学计算在实践中面临的困难

3. 使用 Nix搭建科学计算环境

4. 一些开放性问题

5. 总结

3 / 24

自我介绍

4 / 24

关于我自己

▶现居厦门，学生，搞物理的。
▶在联邦宇宙活动。
▶希望和大家成为朋友！

扫码看主页

5 / 24

使用过的发行版

▶桌面：2018年起主力使用 Linux，Deepin → Arch → Gentoo → NixOS (2023-05-28)
▶个人服务器：OpenWRT → Ubuntu → Arch → Gentoo → NixOS

■ 著名作品：xmurp-ua
▶科学计算：2020年硕士入组，Gentoo + Ubuntu → NixOS (2023-09)

6 / 24

科研方向

▶组内：宽禁带半导体（氮化物、碳化硅等）。
▶个人：第一性原理计算，兼职管理服务器。

■ 第一性原理计算：仅依赖最基础的物理原理（量子力学），原则上不引入经验值。

→→→→→→→→→→→→→→
𝐻̂𝜑=𝐸̂𝜑 稳定结构？

电学/热学/光学性质？

缺陷/杂质？

7 / 24

科学计算在实践中面临
的困难

8 / 24

科学计算特点

（*更专业报告见明天的《高性能计算》@VickieGPT。）

▶相比于爱好者折腾/软件开发的环境，科学计算的环境有两个特别需求：
■ 计算量大 → 高性能。
■ 使用者缺乏 CS技能 → 易于使用和维护。

矛盾：高性能 → 复杂的软硬件配置 → 难以实现 易于使用和维护。

9 / 24

科学计算现状

高性能 和 易于使用和维护 的矛盾，导致充满妥协：

▶ 不存在的包管理：手动收集依赖、修改Makefile
▶ 老旧的基础环境：10+ 年前
▶ 随意的编程习惯：无视标准、能用就行
▶ 闭源的编译器：Intel (OneAPI)，Nvidia (HPC SDK)
▶ 混乱的用户权限：账户多人共用
（*仅身边统计学，没有 diss别的组的意思）

10 / 24

使用 NIX搭建科学计算
环境

11 / 24

Nix / NixOS的优势

▶编译软件超方便
■ 超多软件包：Nix: 100k+, Arch: 70k+, Ubuntu: 39k+, CentOS: 2k+
■ 方便打新包/打补丁。

▶配置服务不易错
■ SLURM、NFS 等都有现成模块。
■ 多机器/服务/用户共用配置。

Nix 的优势：将 编译/配置过程 抽象成 可复现、可版本管理的代码，从而重复使用，用
机器的自动化运作代替人力的劳动。

12 / 24

用 Nix 解决问题

▶不存在的包管理：用 Nix提供依赖/打包
▶老旧的基础环境：关我 /nix/store 什么事？
▶随意的编程习惯：Nix保证如果今天能用，那么一年后也能用。
▶闭源的编译器：打包进 Nix 了
▶混乱的用户权限：系统级环境/复用 hm 配置

13 / 24

配置细节

▶组内小集群：NixOS。
▶超算（无 root 权限）：使用 Nix 安装小工具（e.g. gnuplot）。

■ 编译器、MPI、VASP 等已经使用传统方式安装，下一次更新时再考虑使用 Nix。

14 / 24

配置细节
编译器、MPI

▶ Intel 编译器（OneAPI）：
■ 必需，因为对一些软件有优化，比 gfortran 更宽容。
■ 在 bscpkgs 基础上修改。

▶ Nvidia 编译器（HPC SDK）：
■ 必需，提供 nvfortran、QD 库等。
■ 自行打包（nvhpcPackages.stdenv）。

▶ OpenMPI：
■ 需要修改才能与闭源编译器兼容。（还没有提 pr）
■ NVIDIA 需要使用修改过的源代码。

▶提供 overlay 及示例：github:CHN-beta/nix-hpc-test。
▶仍有需要改进的地方（详见下文）。

15 / 24

配置细节
NixOS上的其它软件和服务

▶文件系统：
■ NFS 共享 /home；Btrfs 透明压缩 RAID1。
■ hm 和 impermanence 需要单独处理（详见下文）。

▶队列系统：
■ 使用 SLURM。
■ MPI 尽量使用 OpenMPI、尽量用 srun 启动。
■ 提供 TUI 代替 sbatch。

▶ native 优化：
■ 针对硬件优化（设置 hostPlatform.gcc.arch、oneapiArch、nvhpcArch）。
■ nixpkgs 半年更新一次，期间仅 cherry-pick 个别提交。平衡“新”、“稳定”与编译
整个系统需要的代价。

16 / 24

配置细节
超算上使用 Nix

▶没有 user namespace。proot 影响性能。
▶使用可读写的 store 目录。编译机上建立相同的目录，编译好再上传。

■ 不能设置 real 参数指向 /nix/store，否则会破坏编译机的 Nix 数据库。

this will break the build machine's nix database
sudo nix build --store 'local?store=/data/gpfs01/jykang/.nix/
store&real=/nix/store' .#jykang
this is safe
sudo nix build --store 'local?store=/data/gpfs01/jykang/.nix/
store&state=/data/gpfs01/jykang/.nix/state&log=/data/gpfs01/
jykang/.nix/log' .#jykang

17 / 24

一些开放性问题

18 / 24

闭源编译器打包

能工作但质量不高。

▶依赖 gcc：
■ 在非 FHS 环境下，用参数/环境变量指定 gcc。
■ gcc/gfortran 分包/wrap，如何合并得到“完整”的 gcc？

▶支持参数与 gcc 不同。需要仔细调整。

Call for help：很需要了解 stdenv 的同学的帮忙。

19 / 24

impermanence / hm on NFS

▶ .bashrc 等需禁用软连接、改为 bind mount。
▶父目录的父目录的所有者会出错（bug？）

20 / 24

构建时 FHS环境（FHSStdenv）

▶在构建时提供 FHS 环境，以快速（但低质量地）打包上游提供了 installer的软件？
▶这不美观，但很有用！
▶目前不能复用 stdenv 中 setup hook / xxxPhase。能否编写 FHSStdenv？

21 / 24

构建时 FHS环境（FHSStdenv）
一个例子（曾经的 NVIDIA HPC SDK 打包）

let
 builder = buildFHSEnv
 { extraBwrapArgs = ["--bind" "$out" "$out"]; };
 buildScript = writeShellScript "build.sh" ''xxxxx'';
in stdenvNoCC.mkDerivation
{
 pname = "nvhpc";
 installPhase =
 ''
 mkdir -p $out
 ${builder}/bin/builder ${buildScript}
 '';
}

22 / 24

总结

23 / 24

理想 vs 现实

▶理想：
■ 软件开发者使用 Nix，我们一键安装/配置；
■ 论文作者使用 Nix，我们一键复现，略作修改继续研究；
■ 超算管理员使用 Nix，必要时一键回滚，方便互相参考。

▶现实：
■ 在现实中没有遇到除我以外的科研人员使用 Nix。
■ 网上有一些。Barcelona Supercomputing Center（巴塞罗那，西班牙）开源了

bscpkgs，其中包含 Intel 闭源编译器。

24 / 24

展望

我认为 Nix 在科学计算中有很大的潜力，但：
▶使用不够广泛；我也不知道怎么办。

■ 明天上午《如何在公司里把 Nix 安利给同事》@Noa Virellia
▶缺少一些“垫脚石”，还需要开源社区努力（包括我在内）。

	自我介绍
	关于我自己
	使用过的发行版
	科研方向

	科学计算在实践中面临的困难
	科学计算特点
	科学计算现状

	使用Nix搭建科学计算环境
	Nix / NixOS的优势
	用 Nix 解决问题
	配置细节
	编译器、MPI
	NixOS上的其它软件和服务
	超算上使用 Nix

	一些开放性问题
	闭源编译器打包
	impermanence / hm on NFS
	构建时FHS环境（FHSStdenv）
	一个例子（曾经的 NVIDIA HPC SDK 打包）

	总结
	理想 vs 现实
	展望

