
Articles
https://doi.org/10.1038/s41563-020-0677-9

1Materials Department, University of California, Santa Barbara, CA, USA. 2Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.  
3Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum, Germany. 4Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität 
Bochum, Bochum, Germany. 5Center for Interface-Dominated High Performance Materials (ZGH), Ruhr-Universität Bochum, Bochum, Germany.  
✉e-mail: xiezhang@ucsb.edu; hongcai.wang@rub.de

Alloying is one of most efficient ways to improve the struc-
tural and electronic properties of materials. The alloying 
atoms enter the host lattice as interstitials or substitutionals. 

Due to differences in the chemistry and atomic sizes, each inter-
stitial or substitutional atom creates a local strain field, displacing 
its neighbouring host atoms away from their original lattice posi-
tions. At high alloying concentrations, the interstitial or subsitu-
tional atoms strongly interact with each other both chemically and 
elastically, leading to ordering/disordering phenomena and severe 
lattice distortions. This concept is often employed in designing, 
for example, phase-change materials1, battery electrode materials2 
and high-entropy alloys3. However, even at dilute alloying concen-
trations, the interstitial or substitutional atoms can still interact 
via the host lattice, mediated by long-range strain-induced inter-
actions between the local distortion fields. An interplay between 
short-range chemical interaction and long-range strain-induced 
interaction may lead to an ordering of interstitial or substitutional 
atoms, substantially impacting the performance of the material4–7. 
For instance, the presence of ordered oxygen complexes may 
simultaneously enhance the strength and ductility of alloys by 
changing their microscopic deformation mechanism7. Interstitials 
interact not only with each other, but, in real materials, also with 
extended defects, leading to interstitial segregation and a competi-
tion between interstitial segregation and ordering. Understanding 
the mechanism of the collective interstitial ordering is thus key in 
designing ultra-high-performance alloys.

A prototype of broad interest for interstitial ordering is the Fe–C 
system8,9, which is the central ingredient for advanced steels10–12. 
Carbon atoms occupy octahedral interstitial sites in body-centred 
cubic (bcc) Fe, and there exist three octahedral sublattices (Fig. 1a–c)  
associated with a local tetragonal distortion along the three prin-
cipal axes13. When C atoms randomly occupy the three sublattices  
(Fig. 1d), a disordered bcc phase is formed. Once the C concentration  
reaches a critical value, all C atoms occupy only one sublattice in bcc 
Fe (Fig. 1d), and the bcc phase transforms to an ordered body-centred 
tetragonal (bct) phase14. Although steels have been extensively 
researched for more than a century, and the above-mentioned phase 

transition is basic textbook knowledge in materials science, the 
ordering mechanism of C atoms in Fe is still actively debated15–19.

Here, we identify two components that substantially affect the col-
lective interstitial ordering. First, the strain fields induced by C inter-
stitials in bcc Fe reveal pronounced anharmonicity, which reduces 
the critical C concentration of the disorder–order transition by two 
to three times. Second, C segregation into extended defects is favour-
able at low C concentrations, but it is strongly suppressed due to a 
lowering of the C chemical potential in ordered martensite at high 
C concentrations. Both the surprising magnitude of the anharmonic 
contributions and the abrupt change in segregation behaviour are 
decisive for the transformation mechanism and constitute important 
fundamental knowledge about phase transitions in general.

To capture all aspects of the complex mechanism underlying the 
collective interstitial ordering, a set of computational approaches 
needs to be developed. We will start by establishing a reliable meth-
odology for interstitial interactions and ordering, and subsequently 
determine the impact of anharmonicity on the interstitial ordering. 
Further, we will formulate a self-consistent defect-chemistry (SC) 
approach that allows us to investigate the competition between 
interstitial ordering and segregation.

An efficient approach to computing the interactions between 
point defects is based on the microscopic elasticity theory (MET) 
developed by Khachaturyan20. The long-range strain-induced (si) 
interaction between two interstitials separated by R in a bcc lattice 
is computed by,

V si
mn Rð Þ ¼ 1

N

X

q

V si
mn qð ÞeiqR ð1Þ

V si
mn qð Þ ¼ �Fm qð ÞG qð ÞF*n qð Þ þ Qmmδmn ð2Þ

where Qmm is the self-interaction correction:

Qmm ¼ 1
N
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q

Fm qð ÞG qð ÞF*m qð Þ ð3Þ
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G(q) are the Fourier components of the lattice Green’s function 
at q in reciprocal space. F(q) are the Fourier components of the 
equivalent forces on the host Fe lattice inducing the lattice distor-
tion generated by an interstitial, commonly referred to as Kanzaki 
forces21,22. F*m

I
 is the matrix transpose of Fm. The m and n are the 

sublattice indices of two interstitial atoms, N is the total number of 
q points and δmn is the Kronecker delta.

The major tasks to calculate the strain-induced interaction 
comprise the computation of the lattice Green’s function and 
Kanzaki forces. Conventionally, the lattice Green’s function and 
Kanzaki forces are obtained using analytical formulas for a par-
ticular defect and host lattice (see Supplementary Note 1). This 
is computationally very efficient, but not sufficiently accurate 
and lacks generalizability and transferability. Hence, we general-
ize MET by computing the lattice Green’s function and Kanzaki 
forces from atomistic calculations. To benchmark the accuracy 
of our approach, we also compute the strain-induced interaction 
directly from atomistic calculations using a carefully tested embed-
ded atom method (EAM) potential23.

Figure 2 shows the strain-induced interaction between two C 
interstitials in bcc Fe calculated with these different approaches. 
Clearly, MET completely fails for the first three interaction shells. 
This is understandable, because when two interstitials are too close 
to each other, linear elasticity theory does not apply. However, even 
if we focus on larger separation distances, MET is still insufficiently 
accurate, especially when we use an analytical parametrization. By 
using Kanzaki forces and a lattice Green’s function obtained from 
atomistic calculations, the accuracy of MET is improved, but still 
unsatisfactory. To narrow down the origin of the discrepancy, we 
inspect the lattice Green’s function and Kanzaki forces individu-
ally. We find that the discrepancy in the long-range strain-induced 
interaction does not stem from the lattice Green’s function (see 
Supplementary Note 2).

Figure 3a presents the displacements (in percentage of the lattice 
constant) of the neighbouring Fe atoms induced by a C interstitial 
computed with different methods. The displacement of the host Fe 

atoms at the first interaction shell obtained from atomistic calcula-
tions is ~11.6%, similar to the value from density functional theory 
(DFT), ∼12.6%, which confirms that the large displacement is not 
an artefact of the EAM potential. The displacement is so large that 
the linear elasticity theory (on which MET is based) may not apply 
anymore. Even if we use input from atomistic calculations, the dis-
placement of the first-nearest-neighbour Fe atoms computed from 
MET (that is, d Rð Þ ¼ 1=N

P
q G qð ÞF* qð ÞeiqR

I
) is still much smaller 

than the one from atomistic relaxations.
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Fig. 1 | Disorder–order transition in Fe–C alloys. a–c, C occupation on three octahedral sublattices and its induced tetragonal deformation (green arrows). 
Large orange spheres denote Fe atoms, and small green spheres denote C atoms. d, Schematic illustration of the disorder–order transition. Green spheres 
show the possible sites for C to randomly occupy in a unit cell, but they are not all occupied.
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Fig. 2 | strain-induced interaction. Strain-induced interaction between 
two C interstitials in bcc Fe from different approaches. the inset provides 
an enlarged view for the interactions at the fifth to twelfth shells. AHC, 
anharmonic contribution.
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More intuitively, we can directly map the potential energy 
surface of the Fe lattice as a function of the displacement of the 
first-nearest-neighbour Fe atoms. As shown by the comparison 
between the orange line and its harmonic fit (within ±1% displace-
ments) in Fig. 3b, the potential energy surface is highly asymmetric at 
large displacements. As a result, when using the Kanzaki forces (fAH) 
obtained at large displacements (dAH) on the anharmonic potential 
energy surface to compute the harmonic displacement with MET, 
the actual displacement is only dH (Fig. 3b). Apparently, the dis-
placement is underestimated, which, as we will show, is the origin 
of the discrepancy in the long-range strain-induced interaction. To 
account for the anharmonic contribution and recover the correct 
strain field induced by a C interstitial, we need to use an effective 
Kanzaki force f Heff

� �

I
 in the harmonic MET. By taking into account 

the anharmonic contribution in the first-neighbour shell, the sub-
sequent displacements of Fe atoms at different interaction shells are 
much better captured. Moreover, the accuracy of the strain-induced 
interaction is substantially improved, showing excellent agreement 
with our benchmarking result (Fig. 2). Qualitatively, we have also 
observed such strong lattice distortions in high-resolution trans-
mission electron microscopy (HRTEM) images (see Supplementary 
Note 3 and Fig. 2).

Having established the above approach for the long-range 
strain-induced interaction between two C interstitials, we set up an 
Ising-type Hamiltonian and efficiently simulate the disorder–order 

transition with Monte Carlo sampling. This methodology over-
comes the limitation of standard Ising-type Hamiltonians with pair 
interactions truncated at certain distances.

Figure 3c shows the order parameter (θ) as a function of temper-
ature for three scenarios at a representative C concentration, 0.3 at.% 
(atomic percentage). In the first scenario, we take into account only 
the short-range interactions (less than or equal to seventh shell, 
blue curve) and ignore the long-range strain-induced interactions. 
As a comparison, for the other two scenarios we further include the 
long-range strain-induced interactions computed from MET with-
out (orange) and with (green) the anharmonic contribution for the 
first-nearest neighbours. It is evident that even though C tends to 
be ordered for the first scenario, the critical temperature is very low. 
We plot the critical temperatures as a function of C concentration 
in Fig. 3d. At room temperature, the critical C concentration for 
the disorder–order transition including only short-range interac-
tions is ∼3 at.%, which is very high, indicating that the formation of 
ordered Fe–C martensite would be unlikely at low C concentrations 
and mainly driven by one particular attractive C–C interaction at 
the seventh shell (see Supplementary Fig. 3). When we include the 
long-range strain-induced interaction without the anharmonic con-
tribution, the ordered Fe–C martensite is stabilized and the criti-
cal C concentration at room temperature is reduced to ∼1.8 at.%. 
This makes the formation of ordered martensite easier, but the 
critical concentration is still much higher than dilute C conditions 
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Fig. 3 | impact of local anharmonicity on the disorder–order transition. a, Displacements of Fe atoms at different interaction shells around a C interstitial 
in bcc Fe. b, Anharmonic potential energy surface of the Fe lattice as a function of the displacement of the first-nearest-neighbour Fe atoms induced  
by a C interstitial. the inset schematically shows the local displacements (d) and forces (f) of the first-nearest-neighbour Fe atoms induced by the  
C interstitial. the sign of d indicates whether the first-nearest-neighbour Fe atoms displace away from (positive) or towards (negative) the C atom.  
the fAH is the anharmonic force at the displacement dAH. the dH is the resulting harmonic displacement associated with fAH. the fHeff

I
 is the effective 

harmonic force in order to achieve the anharmonic displacement dAH. c, Simulated order parameter as a function of temperature for three scenarios for a 
representative C concentration of 0.3 at.%. SRI and LRI stand for short-range and long-range interaction, respectively. d, Calculated critical temperature as 
a function of C concentration in comparison with the result obtained from the DOS sampling approach.

NaTuRe MaTeRiaLs | VOL 19 | AUGUSt 2020 | 849–854 | www.nature.com/naturematerials 851

http://www.nature.com/naturematerials


Articles NaTurE MaTErials

(<1 at.%). However, once we include the anharmonic contribution, 
the critical C concentration at room temperature is substantially 
reduced to 0.9 at.%. In principle, even for the first two scenarios, 
the impact of the local anharmonicity is partly included, since the 
displacement of the first-nearest-neighbour Fe atom in this case 
falls already within the anharmonic region (Fig. 3a). Hence, over-
all, the local anharmonicity in the C-induced strain fields reduces 
the critical C concentration by a factor of two to three, which is an 
unexpectedly large effect.

To cross-validate the accuracy of our Monte Carlo simulations, 
we calculate the critical temperature of the disorder–order transi-
tion with a density of states (DOS) sampling approach using the 
same EAM potential (see Supplementary Note 4). The compari-
son in Fig. 3d shows that the two independent approaches yield  
very similar results. Since within the DOS sampling approach 
anharmonicity is implicitly included, the agreement indicates  
that MET with an anharmonic contribution correctly captures  
the C interactions.

The critical C concentration derived above corresponds to 
the net C concentration in the matrix, which is different from  
the nominal C concentration, since C can also segregate into 
extended defects such as dislocations and grain boundaries. As a 
second aspect to establish a comprehensive understanding of the 
mechanism, we consider the competition between C solution in 
the matrix and its segregation into extended defects. To achieve 

this, we have developed a SC approach (see Supplementary Note 5)  
for the chemical potential of C in the disordered/ordered martens-
ite, which can be directly compared with the chemical potential 
of C at extended defects. We benchmark the accuracy of the SC 
approach against the DOS sampling results. Using the same EAM  
potential, the two approaches produce very consistent results  
(Fig. 4a), validating the reliability of the SC approach. With the  
SC approach we can further improve the accuracy of our results by 
using DFT input, yielding a critical C concentration of 0.8 at.% at 
room temperature, which is slightly lower than the one (1.0 at.%) 
obtained using EAM input.

Figure 4b shows the calculated chemical potential of C (μC) at 
room temperature as a function of C concentration. First, μC in 
Fe–C martensite gradually increases with increasing C concentra-
tion, until at 0.8 at.% μC starts to rapidly decrease, corresponding 
to the disorder–order transition. At extended defects μC is constant 
for low C concentrations when the C–C interaction at the defect is 
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small and can be determined by the binding energy (Eb) between 
C and an extended defect, that is, μC = −Eb. By taking an averaged 
value for Eb from the existing literature24–30, we find that the μC at 
extended defects is much lower than that in the disordered mar-
tensite and is competitive against the ordered martensite at C con-
centrations below ∼2.6 at.%. This, in principle, indicates that below 
∼2.6 at.% no Fe–C martensite can form. However, there is a limit 
for the amount of C atoms that extended defects can accommodate. 
It is challenging to determine the exact value from theory, since it 
depends on the density of extended defects. According to experi-
ments31,32, the limit is around 0.8 at.%. We note that this value of 
0.8 at.% is only by coincidence equal to the critical C concentration 
of the disorder–order transition at room temperature, but the two 
values have clearly different meanings. Hence, above ∼0.8 at.% the 
excess C triggers the formation of disordered martensite, which 
transforms to ordered martensite at ∼1.6 at.% (0.8 at.% trapped 
at defects plus 0.8 at.% triggering the disorder–order transition). 
Furthermore, after reaching 2.6 at.%, C segregation into extended 
defects is suppressed, since it is energetically more favourable for C 
to form ordered martensite.

To verify the mechanism proposed above, we compare our theo-
retically predicted c/a ratio (c and a are the lattice constants of a 
bct unit cell along the tetragonal deformation and lateral direction, 
respectively) of Fe–C alloys as a function of C concentration at room 
temperature with experiment33–37 in Fig. 5a. We divide this plot into 
four distinct regimes. In regime I (<∼0.8 at.% C), C is trapped at 
extended defects, and the bulk region is primarily composed of pure 
Fe, which thus has a c/a ratio of 1. In regime II (0.8−1.6 at.%), dis-
ordered martensite and C-saturated traps coexist, leading to a c/a 
ratio of 1 as well. In regime III (1.6−2.6 at.%), ordered martensite 
becomes energetically more favourable than disordered martensite, 
coexisting with C-saturated traps. The c/a ratio is already larger than 
1, but since it is still relatively small, it is experimentally difficult to 
determine the exact c/a ratio by fitting slightly split X-ray diffrac-
tion peaks37. In regime IV (>∼2.6 at.%), fully ordered martensite is 
formed with negligible C segregation into extended defects, which 
is supported by the fact that the experimental c/a ratios agree well 
with those of the fully ordered martensite across a large range of 
C concentrations. We also show that if the anharmonic contribu-
tion is neglected, the critical C concentrations for the transitions 
of regime II ↔ III and III ↔ IV are shifted upward by ∼0.93 at.%, 
strongly deviating from the experimental data. (We note that with 
the SC approach, anharmonicity is inherently included. The differ-
ence in the c/a ratio caused by anharmonicity as presented in Fig. 5a 
is derived from the results in Fig. 3d.)

Our proposed mechanism of a competition between C segrega-
tion and ordering is also compatible with atom probe tomography 
(APT) experiments. We analyse the distribution of C atoms across 
the geometrically necessary dislocations (GNDs) in grain boundar-
ies for samples with two representative C concentrations (0.8 and 
2.6 at.%). For a low C concentration of 0.8 at.%, C atoms strongly 
segregate to the GNDs, while they are more homogeneously dis-
tributed in the sample with 2.6 at.% C (Fig. 5b). To quantitatively 
compare the excess of segregation between samples with different C 
concentrations, we analyse the Gibbsian interfacial excess of C atoms 
(Γ), that is, the number of excess C atoms per grain boundary area38.

Figure 5c shows the cumulative number of C atoms versus that 
of all atoms along the grain boundary normal (see the arrows in 
Fig. 5b). For samples without segregation, that is, with a C concen-
tration in the defect that is identical to that of the bulk, a straight 
line with a slope equal to the C concentration is expected. The 
steps observed in both curves imply C segregation and allow us to 
quantify Γ in each sample. Based on our theoretical calculations  
(Fig. 5a), the low-C sample is located between regimes I and 
II; C atoms are mostly segregated into extended defects, which 
implies a large Γ. By contrast, the high-C sample sits at the  

border between regimes III and IV; the chemical potentials of C in 
the extended-defect-free bulk and at extended defects are compara-
ble (Fig. 4b), which indicates only a slight accumulation of C at the 
GNDs inside the grain boundary and thus a very small Γ. Indeed, by 
increasing the C concentration from 0.8 to 2.6 at.%, Γ decreases from 
21 to 10 atoms per nm2. We note that the grain boundary rough-
ness in the low-C sample has only a minor impact on Γ. To account 
for the interface roughness, we average over several flat regions, 
yielding a Γ value of 20 ± 2 atoms per nm2 (see Supplementary  
Fig. 10), which encompasses the value estimated over the entire 
grain boundary region (the green rectangle in Fig. 5b).

The above analysis has two important implications: (1) there is 
substantial C segregation into extended defects at low C concentra-
tions, which cannot be ignored; and (2) C segregation into extended 
defects at high C concentrations is suppressed due to the forma-
tion of energetically favourable ordered Fe–C martensite. The exact 
critical C concentrations also depend on the microstructure of the 
material sample and the binding energy between C and a specific 
extended defect. Hence, the two critical concentrations derived 
in Fig. 5a are not universal across different samples and extended 
defects. Nevertheless, if an estimate of the exact binding energy 
between C and the extended defect and the maximum C concentra-
tion that can be accommodated by the extended defect is accessible, 
the critical concentrations can be rigorously derived using the SC 
approach presented in Fig. 4.

In conclusion, we have elucidated the role of anharmonicity 
and segregation in the mechanism of interstitial ordering in Fe–C 
alloys. The local anharmonicity in the strain field induced by inter-
stitials substantially stabilizes the collective interstitial ordering. 
Furthermore, interstitial segregation into extended defects predom-
inates over interstitial ordering at low interstitial concentrations, 
but is strongly suppressed at high interstitial concentrations. This 
somewhat counter-intuitive behaviour can be understood from the 
chemical potential of the interstitials in ordered martensite, which 
rapidly decreases with increasing interstitial concentration. Our 
results clearly show that theoretical concepts to compute accurate 
critical temperatures or concentrations of disorder–order phase 
transitions in interstitial alloys require the inclusion of anharmonic 
effects, which is presently not standard. Disorder–order phase tran-
sitions are relevant not only in interstitial alloys but for a wide range 
of materials. Examples are substitutional ordering in high-entropy 
alloys39, cation ordering in perovskites40 and vacancy ordering in 
various oxides5. Since in all these systems large relaxations occur, 
anharmonic effects will be important and affect phase transition 
temperatures. Thus, only when these effects are included does pre-
dictive materials design become possible.
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Methods
Direct computation of C–C interactions. To directly compute the C–C 
interactions, two C interstitials are placed at two octahedral sites (with sublattice 
indices m and n) separated by R in a 10 × 10 × 10 supercell of bcc Fe. The chemical 
interaction between the two C atoms is then computed by,

Vch
mnðRÞ ¼ EFeþ2C

mn Rð Þ � EFe � 2ðEFeþC � EFeÞ ð4Þ

where EFeþ2C
mn ðRÞ
I

 and EFeþC
mn
I

 are the energies of the systems containing two C 
interstitials separated by R and a single C atom in the Fe lattice, respectively. EFe is 
the energy of the Fe lattice. The three energies are computed with the same EAM 
potential23 at the optimized lattice constant of bcc Fe (2.867 Å) and fixed atomic 
positions. All of the calculations with the EAM potential are performed using the 
LAMMPS package41.

Similarly, we can also compute the total interactions (Vtot(R)) between two 
C interstitials using equation (4) but fully relax the atomic positions. Then the 
strain-induced interactions (Vsi(R)) between two C interstitials can be evaluated by,

V si
mn Rð Þ ¼ V tot

mn Rð Þ � Vch
mn Rð Þ ð5Þ

MET calculations. The Kanzaki forces are computed by placing a C atom at an 
octahedral site of the three sublattices in a 10 × 10 × 10 supercell of bcc Fe, relaxing 
the atomic positions and evaluating the forces on the host Fe atoms after removing 
the C interstitial from the relaxed lattice. Then a Fourier transform is performed to 
compute the Fourier components of the Kanzaki forces on a 20 × 20 × 20 q-point 
grid in reciprocal space, that is,

Fm qð Þ ¼
X

j

Fm;jðR0
jÞe�iqR0

j ð6Þ

where Fm;jðR0
jÞ

I
 are the real-space Kanzaki forces on lattice site j of sublattice m. R0

j

I
 

is the atomic coordinates of lattice site j relative to the location of the C interstitial 
and symmetrized by taking into account the periodic boundary condition.

The lattice Green’s function is computed by inverting the dynamical matrix in 
reciprocal space on the same 20 × 20 × 20 q-point grid. The dynamical matrix is 
computed by using the finite displacement method in real space with a 10 × 10 × 10 
supercell of bcc Fe and a 0.02 Bohr radii (0.0106 Å) displacement. A Fourier 
transform is performed to compute the reciprocal-space dynamical matrix and 
a Fourier interpolation is employed to obtain the dynamical matrix on the dense 
q-point grid as implemented in the S/PHI/nX package42.

DFT calculations. Spin-polarized DFT calculations are performed using the 
Vienna Ab initio Simulation Package (VASP)43 to fully relax (shape, volume and 
atomic positions) atomic structures using 4 × 4 × 4 supercells of bcc Fe containing 
one C atom at an octahedral interstitial site or one Cr atom at a substitutional 
site. Projector augmented-wave (PAW)44 pseudopotentials within the Perdew, 
Burke and Ernzerhof (PBE)45 parametrization are used. A plane-wave energy 
cut-off of 400 eV and a 5 × 5 × 5 Monkhorst–Pack46 k-point grid are employed 
to ensure convergences of total energy and forces. For structural relaxations, 
forces are minimized to below 0.01 eV Å–1. Our DFT calculations indicate that the 
displacement of nearest-neighbour Fe atoms induced by a Cr substitutional atom 
is less than 1%, which is substantially smaller than the one induced  
by a C interstitial.

Sample preparation. The specimens for APT are fabricated using a dual-beam 
focused-ion-beam (FIB) instrument (FEI Helios G4). The bulk sample is slightly 
etched using 5% Nital with a few drops of concentrated HCl acid to outline the 
grain boundaries. FIB milling is applied for site-specific preparation of APT 
samples containing (prior austenite) grain boundaries (see Supplementary Fig. 9).  
One grain boundary (shown in Fig. 5b) is cut in situ and then milled to a 
needle-like tip with a size below 50 nm.

APT characterization. APT analysis is performed using a local electrode atom 
probe (LEAP 5000 XR, Cameca Instruments) in voltage mode at 75 K, using a 
pulse fraction of 20%, a pulse repetition rate of 200 kHz and detection rates of 
0.005−0.01 atoms per pulse. The APT data are reconstructed and analysed using 
the commercial IVAS 3.8.2 software.

Monte Carlo simulations. Metropolis Monte Carlo simulations are performed 
using the following Ising-type Hamiltonian:

H ¼ Etot
Fe þ 1

2

Xi< j

ij

V tot
ij ðRijÞ ð7Þ

where Etot
Fe
I

 is the total energy of the undistorted Fe lattice. V tot
ij ðRijÞ
I

 is the total 
interaction energy between two C interstitials (indexed by i and j) separated by 
Rij. For the current Hamiltonian, we ignore the vibrational entropy difference 
between the ordered and disordered phases, since it is small compared to the 

configurational entropy difference and also beyond the current capability of 
sampling. Our tests for two representative ordered and disordered configurations 
show a difference of ∼2.5 meV per C atom at room temperature in the vibrational 
free energy, which is only around 3% of the total energy difference at T = 0 K 
between the ordered and disordered configurations (see Supplementary Fig. 7). 
When the distance between two C interstitials is shorter than a cut-off distance rc, 
we use total interactions computed from the EAM potential, otherwise from the 
MET by inverse Fourier transforms, that is,

V tot Rð Þ ¼
V tot
EAM Rð Þ; jRj≤rc

Vch
EAM Rð Þ þ 1

N

P
q
V si
mn qð ÞeiqR; jRj>rc

8
<
: ð8Þ

As the short-range chemical interaction vanishes after reaching the  
seventh interaction shell, we set rc to the seventh interaction shell (see 
Supplementary Fig. 3).

We use a 10 × 10 × 10 supercell of bcc Fe including different numbers of C atoms. 
At each C concentration and each temperature, we sample 106 configurations  
in order to achieve a well-converged ensemble average of the order parameter.  
For each configuration sampled, the order parameter θ is defined as a combination 
of three sublattice order parameters47, namely,

θ ¼
ffiffiffi
6

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21 þ θ22 þ θ23

q
ð9Þ

where θ1, θ2 and θ3 are three sublattice order parameters as given by,

θ1 ¼ x1 �
x2 þ x3

2
; θ2 ¼ x2 �

x3 þ x1
2

; θ3 ¼ x3 �
x1 þ x2

2
ð10Þ

where xi (i = 1, 2 or 3) is the fraction of interstitials occupying sublattice i. A finite 
size correction is performed in order to ensure the correct asymptotic behaviour of 
the order parameter at high temperatures.

To quantitatively determine the critical temperatures at different C 
concentrations, we use the following asymmetric sigmoid function48 to fit our 
simulation result in Fig. 3c:

θ ¼ 1

1þ ð2 1
A3 � 1ÞeA1ðT�A2Þ

h iA3 ð11Þ

where A1, A2 and A3 are fitting parameters. After fitting, the critical temperature Tc 
can be determined directly by setting d2θ/d2T to 0, namely,

Tc ¼
1
A1

ln
21=A3 � 1

A3
þ A2 ð12Þ
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The datasets generated during the current study are available from the 
corresponding authors on request.

Code availability
The computer code developed during the current study is available from the 
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