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A B S T R A C T

We developed and validated an accurate inter-atomic potential for molecular dynamics simulation in cubic
silicon carbide (3C-SiC) using a deep learning framework combined with smooth Ziegler–Biersack–Littmark
(ZBL) screened nuclear repulsion potential interpolation. Comparisons of multiple important properties were
made between the deep-learning potential and existing analytical potentials which are most commonly used
in molecular dynamics simulations of 3C-SiC. Not only for equilibrium properties but also for significant
properties of radiation damage such as defect formation energies and threshold displacement energies, our
deep-learning potential gave closer predictions to the DFT criterion than analytical potentials. The deep-
learning potential framework solved the long-standing dilemma that traditional empirical potentials currently
applied in 3C-SiC radiation damage simulations gave large disparities with each other and were inconsistent
with ab initio calculations. A more realistic depiction of the primary irradiation damage process in 3C-SiC can
be given and the accuracy of classical molecular dynamics simulation for cubic silicon carbide can be expected
to the level of quantum mechanics.
1. Introduction

Cubic silicon carbide has been widely used for electronic and
nuclear applications due to its outstanding mechanical properties,
high thermal conductivity, chemical stability, and good radiation re-
sponse [1–3]. The mechanical and electrical properties of 3C-SiC are
degraded due to the changes in microstructure when it subjects to
high energy neutron in the nuclear environment. Understanding the
primary irradiation process is of crucial importance to estimate the
usable lifetime of this material [4].

Ab-initio molecular dynamics (AIMD) with density functional the-
ory (DFT) and classical molecular dynamics (CMD) are the main tools
to simulate the primary irradiation damage process at the atomic level
beyond the limits of experimental techniques [5]. On the one hand,
AIMD is accurate but computationally cost, which can only involve a
few hundred atoms and several hundred picoseconds long [6]. Many
thousands of atoms can be knocked out of equilibrium position by one
energetic ion or neutron generated from a nuclear reaction. Therefore,
AIMD cannot cover the atomic scale required to simulate the primary
radiation damage process [7]. On the other hand, CMD is efficient
enough to satisfy the computational demand of primary irradiation
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dynamics simulation but the accuracy of simulation results greatly
depends upon the employed inter-atomic potential.

The widely used potential functions for CMD simulations of silicon
carbide materials and their applications were summarized in Table 1.
Although the expression forms of different empirical analytic potentials
are distinguished, the processes of their development are basically
the same. First, a mathematical function based on a physical under-
standing of interatomic interactions in the material was proposed,
with a handful of global fitting parameters. Then a series of labeled
physical properties from experimental or ab-initio calculations were
used to fit these adjustable parameters. Finally, this fixed expression
will be used for predicting the energies and forces of the new con-
figurations in MD simulations. Although all these potential functions
in Table 1 have taken the three-body effect and bond-angle effect
into account to describe the many-body interaction in material and
strong directionality of the covalent bonds, the true interactions in
silicon carbide are determined by complex many-body interactions.
The ability of traditional analytical force fields to fit the corresponding
potential energy surface is inherently limited by their relatively simple
functional forms and a few adjustable parameters. G. Lucas and L.
Pizzagalli pointed out that the use of available empirical potentials is
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Table 1
The widely used empirical potentials for MD simulations of silicon carbide materials
[13].

Potentials Applications

Tersoff [11,14,15] Thermal properties, Mechanical properties,
Electrical properties, Polishing,
Ion implantation, Crystal growth,
Irradiation damage, Amorphization,
Fatigue damage, Shock damage

Tersoff/ZBL [16] Ion implantation, Irradiation damage
GW [17] Irradiation damage
GW/ZBL [18] Crystal growth, Irradiation damage
Vashishta [19] Mechanical properties, Electrical properties,

Deposition, Shock damage, Polishing
MEAM [20,21] Crystal growth, Thermal properties,

Irradiation damage
EDIP [22,23] Mechanical properties

the largest source of errors to calculate threshold displacement energies
in 3C-SiC and called for the improvement of existing potentials [8].
G.D.Samolyuk’s study shows that the most commonly used Tersoff and
MEAM potentials for SiC are inconsistent with the ab-initio calculation
of defect energetics. Tersoff potential predicts a very high interstitial
formation energy and high defect migration energy [9]. GW-ZBL poten-
tial gives a more realistic description of defect formation energy but still
overestimates the defect migration energy barrier. [9]. Andrey Sarikov
got divergent simulation results from different potentials (including
Tersoff, Vashishta [10] and an analytical bond order potential [11])
in their study of partial dislocations and stacking faults in 3C-SiC [12].
The inaccurate depiction of these key physical quantities makes us lose
confidence in the correctness of MD simulation results of radiation in
3C-SiC. A new potential that can accurately describe the inter-atomic
interactions is urgently needed to be developed.

Recently, machine learning methods combined with DFT training
data to build potential energy surfaces (PES) have been developed
rapidly [24–29]. Compared with the construction method of traditional
empirical potential, machine-learning potentials have a more powerful
fitting ability due to their unintended preset expressions and abundant
adjustable parameters [30]. Moreover, unlike the empirical potentials,
which only fit a subset of properties, machine-learning potentials can
sample configurations to train the PES as many as needed. Due to more
general expressions and more complete training data, machine learning
potentials can give a more accurate prediction of the PES to capture
the underlying physical mechanism. A variety of CMD simulations with
DFT accuracy in different areas have been carried out with the help of
machine-learning potentials [31–34]. In the field of radiation damage, a
set of machine learning potentials have also been developed to simulate
the irradiation damage processes for different materials such as fcc-
aluminum [35], tungsten [29], silicon [36], and bcc-iron [37]. So far,
most of the machine learning potentials are for single-substance sys-
tems because the number of configurations needed to train the model
increases exponentially with the increase of the number of principle
elements.

In this work, we applied the DP-ZBL (Deep-learning Potential in-
terpolated with ZBL) model [35] to train a deep-learning inter-atomic
potential hybrid with ZBL screened nuclear repulsion potential for 3C-
SiC. In order to capture the right pictures when atoms are extremely
close to each other, which are frequent events happening in the ir-
radiation damage process due to the high kinetic energy of atoms,
the generally used ZBL screened nuclear repulsion potential [38] has
been interpolated into the deep learning framework so that short-range
repulsion interaction between atoms can be accurately described. Here
we refer Ref. [35] for more details about the interpolation mecha-
nism. Compared to the analytics empirical potential including Tersoff,
MEAM, Vashishta, EIDP, and GW-ZBL, the DP-ZBL potential not only
get the DFT accuracy for the near-equilibrium properties such as lattice
constant, elastic properties, equation of state, and phonon dispersion
2

Table 2
Configurations included in the initial training database for corresponding properties.

Concerned properties Configuration type

Bulk properties Equilibrium state
Compressed
Stretched

Thermo properties Atom displaced
Elastic properties Elastically distorted
Defect properties Vacancies with strain

Antisites with strain
Interstitials with strain

Liquid phase Frames of liquid trajectory
Short-range interactions Dimers
Irradiation damage Frames of MD trajectory

but also give a correct description of short-range repulsion interaction.
We put our concentration on correct prediction for defect formation
energies and threshold displacement energies because these physical
quantities play decisive roles in the irradiation process and there are
large disparities between different studies using distinct inter-atomic
potentials. The DP-ZBL model can terminate these controversies and get
a more realistic molecular dynamics simulation of radiation damage in
3C-SiC.

2. Method

2.1. Training process

The accuracy and transferability of DP models are determined by
the quality of the training dataset. The training dataset should be
complete enough to cover the target simulation space. To get a good
description of the energy and force of dimer (Si-Si, Si-C, C-C), elastic
properties, phonon dispersion, and defect formation energies, the cor-
responding configurations recorded in Table 2 are taken as the initial
training dataset.

Data used to train the neural network were all generated by DFT
calculations with VASP code [39–41]. General gradient approximate
(GGA) with PBE [42] exchange–correlation functional has been used.
The plane-wave cutoff energy was set high enough to 600 eV to
cover large deformation in the irradiation process. Consistent spacing
between k-points in Brillouin zone (KSPACING = 0.15 Å−1) was in-
tegrated using Gamma centered grid for all configurations. Gaussian
smearing with 0.03 eV width was applied to help convergence. Spin-
polarized calculations were considered to account for the possible spin
polarization of various defect configurations.

After the initial training dataset was used to kick off the first
round train, an active learning training process was performed by
DPGEN [43] to sample more configurations into the training dataset.
The active learning process terminated when we validated that the
potential energy is good enough. In this work, we went through fifty
active learning iterations to get the final potential energy model, which
made the training dataset sampling 33 898 configurations in total. The
temperature of NVT setting in the exploration stage went up from 300 K
to 4000 K and the environmental pressure is set to one atmosphere.

2.2. Interpolation for short range repulsion

We refer to our previous work Ref. [35] to get the details of the
interpolation method between DP and ZBL. Meanwhile, R.E.Stoller’s
work in Ref. [44] provides a more systematic and effective procedure
to bridge the equilibrium and short-range parts, which can avoid lots of
invalid tests. First, the table recording the energy of dimer Si-Si, Si-C,
C-C at a short range (0.001 Å, 1.200 Å) with 0.001 Å step was generated
y ZBL formula. The dimer configurations of Si-Si, Si-C, and C-C in
ange (0.5, 5.0) with 0.05 Å step were calculated by DFT and added to
he training dataset. Then the DP and the ZBL potential were smoothly
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Fig. 1. The calculated energy versus distance curve of Si-C dimer by DFT, ZBL and
DP-ZBL.

Fig. 2. Comparison of energy prediction by DFT and DP for the final training set. Both
axes represent the energy of the configuration divided by the number of total atoms
in the configuration.

docked in the interval (1.0 Å, 1.2 Å) to let ZBL plays its role in the short
range and the DP model dominates at equilibrium condition.

As shown in Fig. 1, when Si-C dimer’s distance is less than 1.0 Å,
DP-ZBL is consistent with pure ZBL potential and when Si-C dimer’s
distance is larger than 1.2 Å, DP-ZBL gives results dominated by DFT
calculation. And for the Si-C dimer’s distance between 1.0 and 1.2 Å,
DP-ZBL has smoothly switched from ZBL to DFT.

3. Results

3.1. Near-equilibrium properties

We compared the energies calculated by the DP-ZBL model and the
DFT method for all the configurations in the training dataset. As shown
in Figs. 2 and 3, DP-ZBL prediction is consistent with DFT calculation as
the points basically distribute around the y = x reference line. The root-
mean-squared-errors (RMSEs) of the energies and the forces are 0.01
meV∕atom and 0.16 eV∕Å respectively, which are within the accuracy
allowed for typical Deepmd-kit training [45] compared with the range
of energy and force.
3

Fig. 3. Comparison of force prediction by DFT and DP for the final training set. The
color bar indicates the density of data. Force greater than 50 eV/Å are not shown in
the figure.

Several near-equilibrium material properties have been calculated
by the DP-ZBL and the DFT method and four different empirical poten-
tials including Tersoff-ZBL, GW-ZBL, MEAM, and Vashishta for com-
parison, as shown in Table 3. including lattice parameter a0, elas-
tic constants C11, C12, C44, bulk modulus KH, Young’s modulus EH,
shear modulus GH (all the moduli are in Hill noting), cohesive en-
ergy Ecoh, and defect formation energy. All results were in excellent
agreement with DFT data computed in this work or referred from
other works. In contrast, most empirical potentials do not give good
predictions for most properties. For instance, the Tersoff-ZBL potential
underestimates the lattice constant which is the most basic physical
quantity in simulations. However, Tersoff-ZBL works well with the
elastic constants including C11, C12, C44. The GW-ZBL potential almost
mispredicts the elastic response relationship. Meanwhile, the MEAM
potential has a slight error and the Vashishta potential underestimates
the C44 constant.

The formation energy of defects in 3C-SiC is defined as follows:

Ef = Edefect − Eperfect + nSi𝜇Si + nC𝜇C (1)

where Eperfect and Edefect are the total energy of a perfect 3C-SiC
supercell and a supercell containing a defect, respectively. The integer
nSi gives the number of Si atoms removed from (nSi > 0) or add to
(nSi < 0) the perfect supercell, and nC follows the same logic. The
𝜇Si and 𝜇C are respectively the chemical potential of the Si atom and
the C atom in the 3C-SiC bulk environment. In this work, all defect
formation energies were calculated for the Si-rich condition, which
means the chemical potential of the Si atom in 3C-SiC is limited to
that in the cubic silicon crystal. In this context, 𝜇Si = 𝜇Si(bulk) and
𝜇C = 𝜇SiC − 𝜇Si, where 𝜇SiC is the chemical potential of Si-C atom pair
in 3C-SiC [46]. The results calculated by the DP-ZBL model match well
with the DFT results for all the defect configurations in this work. The
GW-ZBL potential underestimates the defect formation energies of most
configurations except the antisite of C replacing Si. The Tersoff-ZBL
potential underestimates the defect formation energies of vacancies and
antisites but overestimates the defect formation energies of the tetrahe-
dral interstitial. Defect formation energy is a key physical quantity that
reflects the accuracy of irradiation simulation. To sum up, the DP-ZBL
model performs much better than the four listed empirical potentials
for the predictions of the near-equilibrium properties.

The equation of state curves of the 3C-SiC phase computed by
different empirical potentials, the DP-ZBL model and the DFT method
are illustrated in Fig. 4. The DP-ZBL model well reproduces the DFT re-
sults, which indicates that the DP-ZBL potential is capable to cover the
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Table 3
Basic properties of 3C-SiC: lattice constant a, cohesive energy Ecoh, elastic constants 𝐶11, 𝐶12 and 𝐶44, bulk modulus 𝐾H, Young’s modulus 𝐸H,
shear modulus 𝐺H, Poisson’s ratio vH (all the elastic properties are in Hill notation), and defect formation energies of different point defects in
3C-SiC.

Properties DFTRef DFTCurrent DP-ZBL Tersoff-ZBL GW-ZBL MEAM Vashishta EDIP

a0 (Å) 4.3805a 4.3784 4.3778 4.2796 4.3600 4.3595 4.3582 4.3624
Ecoh (eV) −15.0624a −15.0643 −15.0630 −12.68 −12.82 −12.86 −12.68 −12.67
C11 (GPa) 383.9a 380.8 375.3 445.7 265.2 396.5 390.1 396.8
C12 (GPa) 127.6a 126.8 124.0 138.7 219.3 147.1 142.8 140.5
C44 (GPa) 239.5a 240.1 223.1 220.0 101.1 135.6 136.9 170.3
KH (GPa) 213.0a 211.5 207.7 241.0 234.6 230.3 225.2 226.0
EH (GPa) 432.8a 431.4 413.9 452.2 156.5 330.6 330.1 372.5
GH (GPa) 186.3a 186.0 177.2 190.4 56.4 131.1 131.4 152.0
vH 0.16a 0.16 0.17 0.19 0.39 0.26 0.26 0.23
VSi (eV) 7.75b 7.72 7.66 8.24 6.89 4.90 12.73 4.60
VC (eV) 4.09b 4.21 4.10 3.76 −0.84 1.06 −3.38 1.22
CSi (eV) 3.94b 3.92 3.91 3.29 8.87 2.74 33.48 3.02
SiC (eV) 3.29b 3.35 3.31 4.90 0.74 3.84 −3.32 2.04
SiTSi (eV) 10.87c 10.22 10.26 16.65 3.23 4.00 −2.07 11.69
SiTC (eV) 9.04b 8.47 8.34 16.48 0.33 3.22 −3.41 12.24
CTSi (eV) 10.09c 9.97 9.88 4.89 7.86 9.08 17.84 6.69
CTC (eV) 11.10b 10.96 10.86 7.89 8.22 3.05 21.16 8.29

a Ref. [47].
b Ref. [48].
c Ref. [49].
Fig. 4. Equation of state of the 3C-SiC phase as computed by different empirical
potentials and the DP-ZBL model and the DFT method.

high compressing and stretching conditions. By contrast, the Tersoff-
ZBL and Vashishta potentials produce large errors compared with the
DFT criterion in the compressing condition. The GW-ZBL and Tersoff-
ZBL potentials overestimate the potential energy when the system is
stretched to 1.2 times relative to the equilibrium state.

The phonon dispersion curve of the 3C-SiC phase has been calcu-
lated along the high symmetry directions of Γ-X-K-Γ-L by our DP-ZBL
model and the DFT method. The force constants were calculated by
density functional perturbation theory using VASP for the DFT method
and were calculated using PhonoLammps for the DP-ZBL model. Then
the Phonopy package [50] was used to compute the phonon dispersion
relations. Non-metallic crystals are polarized by atomic displacements
and the generated macroscopic field changes force constants near Γ
point [51]. To take this into consideration, phonon frequencies at gen-
eral q-points with long-range dipole–dipole interaction were calculated
by the method of Gonze et al. [52,53]. The Bron effective charges
(Z∗) and dieletric constant (𝜖0) calculated by GGA functional (Z∗

Si =
Z∗
C = 2.69, 𝜖0 = 6.99) are in agreement with the experimental value
Z∗
Si = Z∗

C = 2.69 [54], 𝜖0 = 6.52 [55]). As shown in Fig. 5, both acoustic
ranches and optical branches of the six phonon modes generated by
4

Fig. 5. Phonon dispersion curve of 3C-SiC calculated by our DP-ZBL model and the
DFT method, as well as the experimental data measured by Serrano et al. [56] using
IXS.

the DP-ZBL model are close to the DFT results. In addition, the results
from both theoretical models match well with the experimental data
measured by Serrano et al. [56] at room temperature using inelastic
x-ray scattering (IXS) with the synchrotron radiation source, which
means a good description of crystal thermal response of 3C-SiC can be
predicted with our DP-ZBL potential.

3.2. Threshold displacement energies

Threshold displacement energy (Ed) is defined as the minimum
kinetic energy transferred to a lattice atom to displace it from its
original Wigner-Seitz cell and form a stable Frenkel pair [57]. Ed is
a critical physical parameter for estimating damage production and
predicting the defect profile under ion, neutron, and electron irradi-
ation [58]. For example, Ed is a key input in large-scale irradiation
simulation packages such as SRIM and TRIM to determine implanta-
tion profiles in doping processes or calculate damage accumulation in
materials [59]. In this work, the Ed for both Si and C primary knock-on
atoms (PKAs) along four typical low-index crystallographic directions

111] were calculated using different
including [100], [110], [111], and [
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Table 4
Threshold displacement energy calculated by DFT, DP-ZBL, and a range of empirical
interatomic potentials.

DFT [60] DP-ZBL Tersoff-ZBL GW-ZBL MEAM Vashishta EDIP

Si [100] 41 33.5 47.0 20.5 36.5 29.5 42.0
Si [110] 50 47.0 41.0 23.5 26.5 22.5 42.0
Si [111] 21 23.0 26.0 12.5 25.5 46.0 21.5
Si [111] 33 43.5 44.0 31.5 26.0 35.0 22.5
C [100] 18 15.0 15.5 11.5 23.0 47.5 15.5
C [110] 19 17.0 29.0 15.5 27.0 47.5 15.5
C [111] 17 15.5 23.5 8.0 19.5 150.5 15.0
C [111] 50 43.5 53.0 23.0 33.5 15.5 16.0

interatomic potentials for comparison. The simulations were performed
at 300 K. A noncubic simulation box of 10 × 10 × 12 supercell (9600
atoms) with periodic boundary conditions was used. Kinetic energies
in 0.5 eV increments were progressively assigned to a specific PKA
atom in the central area to find the minimum energy. The simulation
system was relaxed in the canonical ensemble (NVT) for 10 ps at 300 K
followed by cascade simulation in the microcanonical ensemble (NVE)
for 10 ps. The Wigner-Seitz defect method was used to identify defects.
From the calculation results summarized in Table 4, the Ed values
generated by our DP-ZBL are close to the DFT calculations carried out
by Zhao et al. [60]. GW-ZBL, MEAM, and Vashishta show divergence
from the DFT calculation in multiple crystal directions. Tersoff performs
better than the three other empirical potentials, but it is also out of line
with the DFT values for Si PKA in direction [111] and C PKA in direction
[110]. After the comparison, it is clear that the DP-ZBL potential yield
better Ed values than the empirical potential functions.

3.3. Defect production caused by a single PKA

Then we carried out cascade simulations involving 60 × 60 × 60 unit
cells (1 728 000 atoms) using different potentials including Tersoff-ZBL,
MEAM, GW-ZBL, and our DP-ZBL, which are widely used in the simula-
tions of irradiation damage. The simulated system was equilibrated for
10 ps with timesteps of 1 fs in NVT ensemble at 300 K. Then a single
Si atom in the central area was given kinetic energy of 5.0 keV in [135]
direction to initialize the cascade while holding zero total momentum
of the system. The cascade evolved for 10 ps in the NVE ensemble
and during this period the timesteps were modified in order that the
distance traveled by the fastest particle in the system was less than 0.1
Å per timestep. To dissipate the heat generated by the PKA, the NVT
ensemble of 300 K was applied to the boundary region (2 times the
lattice constant, about 8.8 Å). The Wigner-Seitz cell analysis method
was used to determine the defects number with Ovito software [61].
The time-dependent curves of defect amount are shown in Fig. 6. The
peak of defects amount with the GW-ZBL potential is much higher than
the results calculated by the other three potentials and so is the number
of residual defects. We infer this is because the GW-ZBL potential
underestimates the threshold displacement energy of either silicon or
carbon atom. There are more than 65% recombine of interstitials and
vacancies during the annealing process with the GW-ZBL potential
and the DP-ZBL potential, while only 20% ∼ 30% recombine with
the two other potentials. Defect yields and ratios predicted by the
four potentials are distinguishing. Among the different point defects,
vacancies and interstitials of carbon and silicon are dominant whether
in thermal peak or stable state as shown in Fig. 7. The DP-ZBL model
predicts slightly more vacancies and interstitials of silicon than carbon
at the thermal peak and residual vacancies and interstitials of carbon
but domains after annealing.

4. Discussions

The potential energy surface that can accurately describe the in-
teraction between atoms has always been the key to MD simulations.
5

Fig. 6. Comparison of the production of vacancies time dependent relationship caused
by a single 5 keV Si PKA.

Fig. 7. Peak (slightly transparent) and stable numbers (solid) of defects caused by a
single 5 keV Si PKA.

The deep learning potential method provides a convenient and efficient
method to train a potential energy surface using a deep neural network
with the first-principle dataset, and it combines the accuracy of the
first-principle calculations with the efficiency of classical molecular
dynamics. As the above results show, the deep potential can obtain
more accurate results than the empirical potential energy in a series of
results, such as lattice constant, elastic coefficients, equation of state,
phonon dispersion, defect formation energies, threshold displacement
energy because the deep neural network of the deep potential has a
stronger fitting ability than the relatively simple analytic expression
of the empirical potentials and it can collect more configurations into
the training dataset than the empirical potentials. The configurations
involved in irradiation simulation are very diverse and complex, in-
cluding collisions, melting, amorphous, defects, etc. These properties
usually lack experimental data and can only be calculated from first
principles. The traditional empirical potentials gave little or no consid-
eration to such configurations when they were constructed. In contrast,
the deep potential can sample more irradiation-related configurations
into the training dataset. Therefore, the deep potential can provide
a more accurate radiation damage simulation than existing empirical
potentials.

Meanwhile, deep potential still has some shortcomings that need
to be improved. For example, although the computational efficiency

of deep potential is far higher than the first-principle calculations,
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it is also about 100 times slower than the empirical potential. We
believe that better algorithms and more hardware improvements may
solve this problem in the future. More crucially, the accuracy of deep
potential energy depends on the dataset used for training. Therefore,
how to efficiently construct a complete training dataset for the target
problem is the critical problem that the deep learning potentials and
even all the machine learning potentials need to answer. There are
ongoing efforts within the field to address this issue. Despite these
temporary drawbacks, deep learning potential energy is bound to play a
more important role in the molecular dynamics simulations of material
irradiation damage in the future.

5. Conclusions

In this work, a potential energy surface for silicon carbide was
developed with our DP-ZBL model. Compared with the four most
commonly used empirical interatomic potentials for SiC, the DP-ZBL
potential can not only give a better performance on the prediction
of near-equilibrium properties including lattice constant, elastic coef-
ficients, equation of state, phonon dispersion, and defect formation
energies but also depict a more precise picture of irradiation damage.
More accurate values of key parameters in irradiation such as threshold
displacement energy can be gotten by using the DP-ZBL potential.
Furthermore, our work provides a feasible approach to figuring out the
primary irradiation damage process in covalent compound materials
with ab-initio accuracy.
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