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ABSTRACT: The generation and expansion of stacking faults
(SFs) during the physical-vapor-transport (PVT) growth of n-type
4H-SiC single-crystal boules are investigated by combining
photochemical etching, transmission electron microscopy, micro-
photoluminescence, and micro-Raman investigations. SFs with the
Si−C bilayer stacking sequence of (3,3) in Zhdanov’s notation are
found near the seed crystal of the n-type 4H-SiC. Interestingly, we
find that the facet region of the n-type 4H-SiC single-crystal boule
is free of SFs (3,3). Most of the SFs (3,3) are constrained in the
nonfaceted region of n-type 4H-SiC. Micro-Raman analysis
indicates that the shear stress exerted in the nonfacet region gives rise to the formation and expansion of SFs (3,3), which
releases the shear stress during the PVT growth of n-type 4H-SiC single-crystal boules. Due to the differences of nitrogen
concentrations and growth velocities between the facet and nonfacet regions of the n-type 4H-SiC single-crystal boule, high
compressive stress appears in the interface of the facet and nonfacet regions, which impedes the expansion of SFs (3,3).
Furthermore, the shear stress in the facet region of a PVT-grown n-type 4H-SiC single-crystal boule is nearly zero, which eliminates
the generation and expansion of SFs in the 4H-SiC single-crystal boule.

1. INTRODUCTION
4H silicon carbide (4H-SiC) is a promising wide-bandgap
semiconductor that has shown great potential in high-power
and high-frequency electronics as well as quantum information
technologies.1,2 Physical-vapor-transport (PVT) technology
has successfully realized commercialization in the growth of
4H-SiC single-crystal boules.3,4 During the PVT growth of 4H-
SiC single-crystal boules, the generation and expansion of
stacking faults (SFs) pose a risk for severe degradation of the
quality of 4H-SiC single crystals because the SF energy of 4H-
SiC is as low as 14.7 ± 2.5 mJ/m2.5 SFs in 4H-SiC serve as the
nucleation center of threading dislocations, micropipes, and
secondary polymorphs.6 More importantly, SFs in 4H-SiC
substrates may be replicated into homoepitaxial layers, which
would degrade the blocking capabilities and reduce the
breakdown voltages of 4H-SiC-based high-power devices.7,8

Therefore, understanding the nucleation and expansion of SFs
during the PVT growth of 4H-SiC single-crystal boules is
critical to the optimization of 4H-SiC single crystals.
SFs in 4H-SiC can be classified into the Shockley-type SFs

and the Frank-type SFs. The Shockley-type SF is created by
the in-plane displacement vector, which is separated by two
partial dislocations with Burgers vectors of [1010]a/3 and
[0110]a/3. Shockley-type SFs can be inherited from the seed
crystal or originate from the dissociation of basal plane

dislocations.9,10 The Frank-type SFs are created by climbing of
an out-of-plane displacement, which inserts or removes a Si−C
bilayer in 4H-SiC. Frank-type SFs are mostly formed by the 2D
nucleation or by the conversion from threading screw
dislocations (TSDs) during the single-crystal growth.11,12

Various characterization methods, such as X-ray topography
(XRT), photoluminescence (PL), cathodoluminescence (CL),
and electroluminescence (EL), have been used to investigate
the properties of SFs in 4H-SiC single crystals.13−17 Trans-
mission electron microscopy (TEM) observations have
revealed that the stacking sequences of Si−C bilayers of
Shockley-type SFs include (3, 1), (6, 2), (5, 3), and (4, 4) in
Zhdanov’s notation, and Frank-type SFs have the stacking
sequences of (4, 1), (4, 2), and (5, 2). The local PL, CL, and
EL investigations indicate that the luminescence peaks of SFs
in 4H-SiC locate in the range from 420 to 500 nm.7,16,18 The
transition between a threading edge dislocation (TED) and a
Shockley-type SF as well as the transition between a TSD and
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a Frank-type SF are also found in XRT, TEM, and EL
observations.13,19 However, these technologies mainly concen-
trate on the nanoscale atomic structures as well as local
electronic and optical properties of a SF in 4H-SiC. Up to now,
there has been limited understanding on the formation and
expansion mechanisms of SFs during the PVT-growth of 4H-
SiC boules.
In this work, we investigate the generation and expansion of

SFs during the PVT growth of n-type 4H-SiC single-crystal
boules by combining photochemical etching, TEM, micro-PL
and micro-Raman investigations. SFs with the Si−C bilayer
stacking sequence of (3,3) in Zhdanov’s notation are found
near the seed crystal of n-type 4H-SiC. Interestingly, the facet
region of the n-type 4H-SiC single-crystal boule is free of SFs
(3,3). Most of the SFs (3,3) are constrained in the nonfaceted
region of n-type 4H-SiC. Micro-Raman analysis indicates that
the shear stress exerted in the nonfacet region gives rise to the
formation and expansion of SFs (3,3), which releases the shear
stress during the PVT growth of n-type 4H-SiC single-crystal
boules. Due to the differences of nitrogen concentrations and
growth velocities between the facet and nonfacet regions of the
n-type 4H-SiC single-crystal boule, the high compressive stress
appears in the interface of the facet and nonfacet regions,
which impedes the expansion of SFs (3,3). Furthermore, the
shear stress in the facet region of a PVT-grown n-type 4H-SiC
single-crystal boule is nearly zero, which eliminates the
generation and expansion of SFs in the n-type 4H-SiC
single-crystal boule.

2. EXPERIMENTAL SECTION
2.1. Sample Preparation. As shown in Figure 1 (a),

nitrogen (N)-doped 4H-SiC single-crystal boules were grown

on the (0001) plane (C face) of a 4H-SiC seed crystal by the
PVT technology, with high-purity N2 gas being used as the
doping source. The growth temperature ranging from 2200 to
2300 °C and the growth pressure ranging from 1 to 10 mbar
were adopted. The n-type 4H-SiC single-crystal boules were
vertically sliced along the growth direction (c-axis). After
sequential lapping and chemical−mechanical polishing, n-type

4H-SiC wafers with nonpolar (1100) surfaces were obtained
[Figure 1(b)]. As shown in Figure 1(c), the vertically sliced
(1100) wafer consists of two regions. One region is associated
with the growth facet, in which the crystal growth firstly occurs
during the PVT growth, and is presented as a convex dome
toward the growth direction. The other portion is the shoulder
region (nonfacet) near the growth facet, on which the crystal
grows slower than that at the growth facet. The n-type 4H-SiC
(1100) wafers were sequentially washed by ultrasonic acetone,
ethanol, and deionized water for 15 min and finally immersed
in the HF solution to remove surface oxides.
2.2. Photochemical Etching (PCE). Photochemical

etching (PCE) was adopted to reveal SFs on the n-type 4H-
SiC (1100) wafer by removing perfect 4H-SiC surrounding
SFs. Before PCE, a 100 nm thick titanium (Ti) layer was
evaporated on one of the sides of the n-type 4H-SiC (1100)
wafer to enhance the separation of UV-excited electrons and
holes. As shown in Figure 1(d), a 500 W Hg lamp was
vertically illuminated to the surface of the n-type 4H-SiC
(1100) wafer. Under UV illumination, the selective PCE was
carried out in a dilute KOH solution via short-circuiting n-type
4H-SiC (1100) wafers to a platinum (Pt) net by directly
connecting the 4H-SiC sample with the Pt counter electrode.
The PCE experiment was carried out in 0.05 M KOH solution
for 10 min. The onset potential of the oxygen reduction
reaction at Pt is more positive than that of the photoanodic
oxidation of n-type 4H-SiC, which initiates the photoetching
reaction of the n-type 4H-SiC sample.20 During the PCE of the
perfect region of n-type 4H-SiC, the UV-generated electron−
hole pairs are separated by the electric field of the surficial
space-charge layer. The UV-generated electrons (e) trans-
porting to the Pt net via the circuit are captured by the
dissolved oxygen and form OH− species by O2 + 2H2O + 4e →
4OH−. The holes (h) are left at the face of the n-type 4H-SiC
(1100) wafer and participate in the oxidation and dissolution
of the perfect region of n-type 4H-SiC by SiC + 10OH− + 8h
→ SiO3

2− + CO2↑ + 5H2O.
21 Because SFs in 4H-SiC crystals

have been identified as quantum wells for highly efficient
recombination of UV-generated electrons and holes,20,22 UV-
generated holes are only involved in the oxidation and removal
of the n-type 4H-SiC perfect region during the PCE, and SFs
appear on the n-type 4H-SiC (1100) wafer surface in some sort
of convex forms.
2.3. Characterization. The surface morphologies of n-type

4H-SiC samples after PCE were examined by differential
interference contrast (DIC) optical microscopy (Novel,
NMM-820TRF) and atomic force microscopy (AFM)
(Bruker, Dimension XR). Micro-Raman spectroscopy and
photoluminescence spectroscopy were obtained by using a
HORIBA LabRAM Odyssey and were excited by lasers of 532
and 266 nm, respectively. TEM specimens were fabricated by
using a scanning electron microscope (SEM) (Thermo
Scientific, Helios 5 UX) focused ion beam (FIB) microscope
with an energy of 1 nA Ga+ for final milling. TEM observations
were performed in a transmission electron microscope
(Thermo Scientific, Talos F200X) operated at 200 kV, and a
Themis Z (Thermo Scientific, America) microscope equipped
with a probe-side Cs corrector operating at 200 kV.

3. RESULTS AND DISCUSSION
Figure 2(a) shows the OM image of an n-type 4H-SiC sample
after 10 min of PCE. It is clear that high density of horizontal
lines appears along the [1120] direction on the n-type 4H-SiC

Figure 1. Schematic diagrams of (a) the PVT growth, (b) the vertical
slicing of the n-type 4H-SiC boule along the growth direction, (c) the
obtained n-type 4H-SiC (1100) wafers with the growth-facet region
(within the white dashed frame) and the shoulder region, and (d) the
setup of the PCE of n-type 4H-SiC (1100) wafers.
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(1100) wafer near the seed crystal. These horizontal lines
exhibit as horizontal ridges with a height of 125 nm on the
(1100) surface of n-type 4H-SiC [Figure 2(b)]. Interestingly,
we find that these horizontal ridges tend to terminate around
the growth-facet region, forming a distinct boundary along the
crystal growth direction [Figure 2(c)].
Cross-sectional TEM analysis is then carried out to identify

the atomic structure of the horizontal-ridge defects on the
photochemically etched n-type 4H-SiC(1100) wafer. The FIB
sampling region is taken at the end of the horizontal-ridge
defect, as shown by the red frame in Figure 3(a). TEM
observations are carried out along the [1120] direction, which

is indicated by the red arrow in Figure 3(a). Dark-field TEM
(DF-TEM) images of the sample acquired under two beam
conditions with diffraction vectors (g) of [1100] and [0004]
are shown in Figure 3(b,c), respectively. It is found that the
horizontal-ridge defect has a bright contrast with the diffraction
vector of [1100]. The contrast of the defect disappears with
the diffraction vector of [0004]. According to the g·b contrast
analysis, this type of the horizontal-ridge defect is attributed to
Shockley-type SF.9,13,23 High-angle annular dark-field scanning
TEM (HAADF-STEM) further verifies that the atomic
structure of the horizontal-ridge defect is a SF, with the
stacking sequence of (3,3) in Zhdanov’s notation. The stacking
sequence of the Si−C bilayers of the horizontal-ridge region is
identical to that of 6H-SiC.24,25

The micro-PL spectra are adopted to investigate the stacking
sequences of the overall SFs revealed by the PCE of n-type 4H-
SiC. As shown in Figure 3(e), the band-edge emission at 390
nm and the broad-band emission ranging from 450 to 650 nm
are found in the perfect n-type 4H-SiC [(1100)] sample and
the SF region. Similar to previous research, the broad-band
emission is attributed to oxygen complexes in 4H-SiC.26−29 In
addition, the emission band centered at 426 nm appears on the
PL spectra of the SF region, which is the same as the band-
edge emission of 6H-SiC.30,31 The intensity mapping of the PL
peak located at 426 nm is carried out across several horizontal-
ridge SFs. As shown in Figure 3(f), all SFs have a higher PL
intensity at 426 nm, indicating that the SFs revealed by the
PCE in this work have the Si−C stacking sequence of (3,3).
Combined with the distribution of horizontal-ridge defects
across the n-type 4H-SiC (1100) sample, we find that the SFs
(3,3) may concentrate on the region below the nonfacet region
but barely expand to the facet region of the n-type 4H-SiC
boule.
Micro-Raman spectroscopy is then used to verify the

distribution of SFs (3,3) across the n-type 4H-SiC (1100)

Figure 2. (a) OM image and (b) AFM image of the photochemically
etched n-type 4H-SiC (1100) wafer. (c) is the schematic diagram
showing the distribution of horizontal lines in the photochemically
etched n-type 4H-SiC (1100) wafer.

Figure 3. (a) OM image, schematic FIB sampling point (red box), and observation direction of the photochemically etched n-type 4H-SiC (1100)
wafer. The cross-sectional DF-TEM images with electron beam diffraction vectors (b) g = [1100] and (c) g = [0004]. The cross-sectional HAADF-
STEM image at the red box location is in Figure 3(b). (e) Micro-PL spectra and collected on and off SFs and (f) micro-PL mapping based on the
intensity of peaks located at 426 nm of the photochemically etched n-type 4H-SiC (1100) wafer.
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sample. As shown in Figure 4(a), the transverse acoustic
branch (FTA) located at 266 cm−1, the folded modes of the
transverse optical branches (FTO) located at 781 and 796
cm−1, as well as the folded mode of the longitudinal optical
branches (FLO) located at 980 cm−132,33 are observed in both
the SFs and the SF-free region of the n-type 4H-SiC (1100)
wafer. The intensities of the FTA mode and FTO mode of the
SF region are lower than those of the SF-free region, indicating
structural distortions in the SF region. Because the growth-
facet region has a higher N concentration34,35 and thus a
higher free-electron concentration, the peak position of FLO in
the facet region should shift to higher wavenumbers.33

Therefore, the FLO-peak mapping is used to investigate the
distribution of SFs along the growth facet of the vertically
sliced n-type 4H-SiC sample. Figure 4(b) shows the OM image
of SFs near the growth-facet region, and Figure 4(c) displays
the FLO-peak mapping of the same region. Clearly, the FLO
peak of the SF-containing region has low wavenumbers, while
the FLO peak of the SF-free region has higher wavenumbers.
This verifies that the SFs (3,3) are generated in the nonfacet
region, and the growth facet forbids the expansion of the SFs
(3,3) during the PVT-growth of the n-type 4H-SiC boule. It
has been found that the formation and glide motion of basal
plane dislocations (BPDs) during the homoepitaxy of 4H-SiC
is reduced in the facet trace region.36 Our work indicates that
the reduced formation of BPDs in the facet trace region may
be caused by the nearly zero distribution of SFs (3,3) in the
facet region of n-type 4H-SiC substrates.
It is reported that during the PVT growth of 4H-SiC single

crystals, a large amount of thermoelastic shear stress caused by
a temperature gradient in the crystal is introduced in the
nonfacet region, while the facet region is almost none,37−39

which may forbid the expansion of SFs (3,3) generated in the

nonfacet region. In order to verify the stress distribution across
the facet and nonfacet regions, we plot the FTO-peak mapping
of the region in Figure 4(b). As shown in Figure 4(d), the
interface between the facet and nonfacet regions of n-type 4H-
SiC has prominent higher wavenumbers because of the
differences of N concentration and growth velocity between
the facet and nonfacet region.35 In addition, the FTO-peak
positions of SFs (3,3) tending to abruptly shift toward higher
wavenumbers always occurs, implying that the compressive
strain exists in SFs (3,3).38,40 This indicates that the shear
stress exerted in the nonfacet region is released by the
formation and expansion of SFs (3,3), due to the low
formation energies of SFs in n-type 4H-SiC. Once the
expansion of SFs (3,3) reaches the interface of the facet and
nonfacet regions, the compressive stress impedes the expansion
of SFs (3,3). Furthermore, the shear stress in the facet region
of a PVT-grown n-type 4H-SiC single-crystal boule is nearly
zero, which eliminates the generation and expansion of SFs in
the n-type 4H-SiC single-crystal boule.
At last, we discuss the effect of doping on the distribution of

SFs in PVT-grown high-purity semi-insulating (HPSI) and p-
type 4H-SiC single-crystal boules. In n-type 4H-SiC single-
crystal boules, the formation of SFs (3,3) originates from the
thermal shear stress in the nonfacet region, and the expansion
of SFs (3,3) is impeded by the compressive stress due to
different N-doping concentrations in the facet and nonfacet
regions of 4H-SiC single crystals. In PVT-grown HPSI 4H-SiC
single-crystal boules, SFs (3,3) could be formed due to the
thermal shear stress in the nonfacet region, but the expansion
of SFs (3,3) might not be impeded in the nonfacet region,
because the concentrations of unintentional induced impurities
throughout the single crystal are on the same order of
magnitude. In PVT-grown p-type 4H-SiC single-crystal boules,

Figure 4. (a) Micro-Raman spectra, (b) OM image, (c) FLO-peak mapping, and (d) FTO-peak mapping of the photochemical etched n-type 4H-
SiC (1100) wafer.
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the formation of SFs (3,3) could also happen in the nonfacet
region, and the expansion of SFs (3,3) depends on the doping
concentrations of aluminum in the facet and nonfacet regions.

4. CONCLUSIONS
In summary, we have systematically explored the generation
and expansion mechanism of SFs in PVT-grown n-type 4H-
SiC single-crystal boules. By combining PCE, TEM, micro-PL,
and micro-Raman investigations, we find that high density of
SFs (3,3) appears near the seed crystal of 4H-SiC. More
importantly, the generation and expansion of SFs (3,3) are
mainly constrained in the nonfacet region of the n-type 4H-SiC
boule. During the PVT growth of n-type 4H-SiC single-crystal
boules, the shear stress exerted in the nonfacet region gives rise
to the formation and expansion of SFs (3,3), which releases the
shear stress. Once the expansion of SFs (3,3) reaches the
interface of the facet and nonfacet regions, the compressive
stress impedes the expansion of SFs (3,3). Furthermore, the
shear stress in the facet region of a PVT-grown n-type 4H-SiC
single-crystal boule is nearly zero, which eliminates the
generation and expansion of SFs in the n-type 4H-SiC
single-crystal boule.
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