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ABSTRACT: Despite the long history of dislocation−phonon inter-
action studies, there are many problems that have not been fully resolved
during this development. These include an incompatibility between a
perturbative approach and the long-range nature of a dislocation, the
relation between static and dynamic scattering, and their capability of
dealing with thermal transport phenomena for bulk material only. Here by
utilizing a fully quantized dislocation field, which we called a “dislon”, a
phonon interacting with a dislocation is renormalized as a quasi-phonon,
with shifted quasi-phonon energy, and accompanied by a finite quasi-
phonon lifetime, which are reducible to classical results. A series of
outstanding legacy issues including those above can be directly explained
within this unified phonon renormalization approach. For instance, a
renormalized phonon naturally resolves the decade-long debate between
dynamic and static dislocation−phonon scattering approaches, as two
limiting cases. In particular, at nanoscale, both the dynamic and static approaches break down, while the present renormalization
approach remains valid by capturing the size effect, showing good agreement with lattice dynamics simulations.

KEYWORDS: Dislocations, dislocation−phonon interaction, thermal conductivity, phonon transport, effective field theory,
renormalization

A dislocation is a type of line defect within a crystal
structure. The presence of dislocations determines the

plastic mechanical properties of a material, while it also has
widespread influence to the electrical, thermal, and thermo-
electric properties of materials.1 It is well-known that phonons
are strongly scattered by crystal dislocations, resulting in
dislocation-induced thermal resistivity. However, after over a
half-century long dislocation−phonon interaction (DPI)
research, starting from the pioneer studies of static anharmonic
scattering by Klemens2 and Carruthers,3 the understanding of
the DPI is still not entirely satisfactory,4 leaving behind a series
of mysteries remaining to be clarified.
The first problem deals with the degree of validity of the

perturbation theory, in particular the Born approximation. This
issue was pointed out by Carruthers himself as “possibly invalid
but still desirable before more sophisticated calculation,”3 but
was often neglected in later developments. To remedy the large
quantitative disagreement between the Carruthers’ theory and
thermal conductivity measurements, such as in a prototype
material LiF,5 later developments gradually adopted an
alternative dynamic scattering mechanism.6−8 However, there

is another possibility that the weak DPI comes from the
perturbative analysis procedure other than from static strain
scattering itself.3 A weakly interacting approximation, such as
the Born approximation, may underestimate the dislocation-
induced thermal resistivity. In fact, the Born approximation
breaks down in treating the DPI due to the divergence caused
by the dislocation’s long-range strain field (See Supporting
Information A). To the best of our knowledge, a non-
perturbative approach has not been implemented in DPI
studies to truly capture the long-range nature of this interaction.
The unsatisfactory early developments triggered a second

problem, which is a decade-long debate regarding the origin of
dislocation−phonon interaction, namely, static strain field
scattering2,9−12 or dynamic vibrating dislocation scattering.13−18

This debate is partly due to the similar temperature
dependence of the thermal conductivity k ∝ T2−3 in either
scenario, and such a dependence is further limited by only
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measuring the temperature dependence k(T), which gives little
parameter space to fully compare a theory with an experiment.
When dynamic scattering occurs, a dislocation starts to vibrate
by absorbing a phonon and subsequently emits a phonon
(Figure 1a). A consensus gradually formed that a type of
viscous dynamic scattering called fluttering plays a significant
role in DPI.4,6,8,17,18 However, the relationship between the
static and dynamic scattering is still unclear. In fact, a formalism
being able to treat both from an equal footing was still
unavailable. What’s worse, since both approaches are
formulated for bulk materials under thermodynamic limit,
what will happen to DPI when the sample size is reduced to
nanoscale has been a no man’s land.
Third, the dislocation−phonon resonant scattering process

can well be described by the Granato−Lücke model where a
dislocation is treated as a vibrating string.15,19,20 However, this
simplification fails to describe many features of resonance, such
as the phonon polarization dependence, anisotropy, and long-
range strain effect.4,21 In particular, because of the restrictive
framework of a classical string, most of the studies until now are

limited to the classical elastic wave-dislocation scattering
mechanism without referring to a quantized phonon.14,21−23

In this study, we show that a quantum field theory of DPI,
based on a quantized field of dislocations, called a “dislon”,24

can easily resolve all the above-mentioned problems beyond all
expectations (and also solve a few other problems as described
below). The vibrating nature coexisting with the long-range
strain field of the lattice displacement field of a dislocation
makes a quantum-field description of dislocation reasonable. A
dislon is similar to a phonon as a type of lattice displacement
with both kinetic energy caused by the vibration and potential
energy originating from the strain field, yet a dislon exists only
near a dislocation core as a collection of localized modes
perpendicular to the dislocation line direction, instead of the
extended plane waves as the case of a phonon (Table 1). For
phonon−dislon interaction, to avoid the uncontrolled
expansion in perturbative analysis, an exact functional integral
approach is applied, resulting in a renormalized quasi-phonon.
The quasi-phonon naturally unifies the static and dynamic DPI
having the same origin as the dislon field, where the imaginary

Figure 1. (a) Schematics of classical dynamic dislocation−phonon scattering, where scattering is accomplished when the dislocation absorbs an
incoming phonon ωk and re-emits another phonon ωk′. (b) Due to the electron−ion drag force, an electron is renormalized to a quasi-particle called
a “polaron”. (c) The quantum picture of the dislocation−phonon interaction. Due to the long-range field of the dislocation, a phonon ωk starts to
interact with the dislocation even far away from the core region, making renormalization a more suitable picture than scattering. After
renormalization, the strong DPI disappears. We are left with the weakly interacting quasi-phonons with a renormalized energy Ek and a finite lifetime
Γk.

Table 1. Brief Comparison between a Phonon and a Dislocationa

phonons dislocations

essence small lattice displacement u lattice displacement u with topological constraint ∮ du = −b
energy kinetic energy + potential energy kinetic energy + potential energy
interacting with
electrons

yes, metallic resistivity yes, increased resistivity

interacting with a
phonon

yes, anharmonicity hence thermal expansion; anharmonicity
induced thermal resistivity

yes, dislocation induced thermal resistivity, “fluttering mechanism”

interacting with a
dislocation

yes, dislocation induced thermal resistivity yes, climbing, gliding and pile-up hence polycrystal yield and work hardening

fundamental
quantum theory

plenty dislon theory is one attempt, treating both vibrating dislocation line and long-
range strain field from equal footing

nature of quantized
modes

plane waves excitation as fluctuation of atomic positions
around periodic atomic arrangement

localized waves nearby a dislocation core as fluctuation of atomic positions
around a static dislocation

statistics 3D Bosonic quasiparticle Bosonic quasiparticle in 1D or two independent half-Bosonic quasiparticles
in 3D41

aThis provides an intuitive understanding as to why dislocation can and shall be quantized prior to any rigorous math as shown in the main text.
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part of the quasi-phonon can be reduced to the well-known
DPI relaxation time. In particular, since neither the previous
static scattering nor the dynamic scattering approach
considered the situation of phonon frequency change in a
confined environment, but only took into account the
scattering between bulk phonons, they both are not capable
of dealing with the thermal transport in a dislocated
nanocrystal. However, the present phonon renormalization
comes from a nonperturbative approach, resulting in a size-
dependent DPI coupling strength and therefore can capture the
DPI even at nanoscale, becoming a great advantage of this
quasi-phonon approach.
In fact, before the formal introduction, classical DPI studies

have already hinted at phonon renormalization, due to the drag
force nature in the DPI.16,20,25 This can be better understood
from a direct comparison of the DPI with a polaron, where in
both cases a drag force leads to the renormalization.26 An
electron moving in materials coupling with a phonon will
induce a local polarization known as the polaron (Figure 1b).
In the case of the Fröhlich large polaron, the electron−phonon
coupling matrix M(q) has component ∝ vq where vq is the
electron group velocity.26 In the case of DPI, due to the similar
drag interaction proportional to the velocity (eq 2), it is not
difficult to foresee that a phonon can also be renormalized as a
quasi-phonon (Figure 1c). Unlike the classical picture in which
a phonon collides with a dislocation and then is scattered
(Figure 1a), this phonon experiences the long-range dislocation
strain field even far away from the dislocation core. This gives
the heuristic reason that a quantum field theory of a dislocation
capable of describing both its vibrating feature and long-range
spatial distribution is more suitable to describe the DPI process
than the classical particle-like scattering due to the extended
nature of the dislocation.
To study the quantum interaction between a phonon and a

dislocation, we adopt a fully quantized field of a dislocation,
“dislon”, defined in a separate study.24 A dislon is a quantized
collective excitation associated with a dislocation with vibration
and strain energy, where the dislocation’s definition ∮ du = −b
is maintained (see Table 1 for an intuitive comparison with
phonon, and see Supporting Information B for the associated
formalism). Starting from the second quantized Hamiltonian of
the phonon and dislon fields, the total Hamiltonian can be
written as (Supporting Information C)

∑ ∑ω κ

= + +

= + + Ω + +
λ

λ λ λ
κ

κ κ
+ +⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

H H H H

b b a a H
1
2

( )
1
2k

k k k

ph D int

int

(1)

where aκ and bkλ are dislon and phonon field operators with
dispersion Ω(κ)and ωkλ, respectively, and κ ≡ kz since the
dislocation line is chosen to be along the z-direction.
The interaction between the dislocation and phonon

originates from the fact that the total lattice displacement utot
is the vector addition of the phonon displacement uph and the
dislocation displacement udis, i.e., utot = uph + udis. This gives a
kinetic energy cross term u̇phu̇dis, harmonic potential cross term
uphudis, and anharmonic cross terms uph

2udis
1 and uph

1udis
2. Since

the anharmonic terms only dominate at high temperature with
weak cross terms (Supporting Information I), while the
harmonic potential cross term vanishes,18,27 the dominant
term at low temperature is widely accepted to be u̇phuḋis,

4 called
fluttering.17 The corresponding interacting DPI Hamiltonian

for a single-mode phonon can be written as (Supporting
Information D)

∫

∑

ρ

ρω κ
κ

ε

= ̇ · ̇

= ℏ Ω *· − +

−

λ
λ

κ κ

+
−

−
+
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R R R( ) ( ) d

2
( )
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( ( ))( )

( )
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k

int ph D
3

(2)

where ρ is the mass density, εkλ* is the phonon polarization
vector, F(k) and m(κ) are parameters defined in Supporting
Information D. By rewriting a dislocation line as an extended
quantized field, the static dislocation feature is already
incorporated into this formalism since the static case becomes
a special case of a full quantized dynamic field. Or rigorously,
the definition of a dislocation ∮ du = −b is maintained through
the dislon field definition, treating the static strain and vibration
from an equal footing.24

Equations 1 and 2 can be solved by using an infinite-order
Green’s function method (see Supporting Information G), but
is too complicated to directly see the essential physics. To gain
more physical intuition onto the influence of dislocations on
phonons but to avoid the uncontrolled uncertainty arising from
low-order perturbative analysis, we take a nonperturbative
functional integral approach,28 which is capable to treat a
strongly interacting system with more physical intuition but
without the summation of infinite number of Feynman
diagrams. The actions of the noninteracting phonon and dislon
field in eq 1 in the Matsubara frequency domain can be written
as (see Supporting Information C)

∑ ∑

∑

ϕ ϕ ϕ ω ω ϕ ϕ ϕ

χ χ χ ω κ χ

̅ = ̅ − + ≡ ̅

̅ = ̅ − + Ω
κ

κ κ

−S G
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( , ) ( i )

( , ) ( i ( ))

n
n n n

n
n n n

n
n n n

k
k k k

k
k k kph 0

1

D

(3)

where ωn ≡ 2πnkBT is the Matsubara frequency, and ϕkn and
χκn are the phonon and dislon field, respectively. The DPI
action can be written as (see Supporting Information D)

∑ ρω κ
κ

ε ϕ χ χ

ϕ χ χ

=
Ω *· − ̅ − ̅

+ ̅ −

κ κ

κ κ

− −

− − −
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2
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( ))

n
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k
k k

k

int ,

(4)

In order to eliminate the dislon degree of freedom, the effective
phonon action is defined by integrating out the dislon degree of
freedom as

∫ϕ ϕ ϕ ϕ χ χ̅ ≡ ̅ − ̅
− −⎡

⎣⎢
⎤
⎦⎥S S D( , ) ( , ) log ( , ) e S S

eff ph
D int

(5)

The effective action can finally be simplified using the Keldysh
rotation29 and matrix operation as (see Supporting Information
E)

∑

∑

φ φ φ δ δ

δ δ φ

φ φ

̅ = ̅ − *

+ + *

≡ ̅

κ κκ

κ κκ

′
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−
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−
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−
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2

2

4( )

n
n n n

n n n

n
n n n

kk
k k kk k k

k kk k k k

kk
k k k k

eff 0
1
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1

(6)
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with ε ω κ= *· = ρ κ
κ

Ωg RF k( ( )) , ( )
A mk k k 4

( )
( )

, and φ denotes the

effective phonon field to distinguish from the bare phonon field

ϕ, where ≡κ
κ κ

ω κ
Ω

+ Ω
Jn

R( ) ( )
( )n

2 2 is the phonon−dislon coupling

strength, containing both dynamic scattering ωn ≠ 0 and static
scattering ωn = 0 contributions. Gnkk

−1 is the expression inside
the square brackets in eq 6, giving the scattering amplitude of
an incoming phonon k, after being scattered by a dislocation,
resulting in an outing phonon k′. Equation 6 is the main result
of this theory and contains rich physics: (a) When Jκn = 0 (no
DPI), the effective action eq 6 directly reduces to the free
phonon action eq 3. (b) The δκκ′ term indicates that only two
phonons with identical z-momentum can be coupled by a
dislocation, which makes good physical sense. (c) It treats static
and dynamic scattering from an equal footing. (d) Most
importantly, eq 6 shows that a phonon is dressed to a quasi-
phonon upon interaction with a dislocation, i.e., ωk → Ek + iΓk.
To see this, we note that eq 6 contains many off-diagonal k ≠
k′ elements, and Gnk′k

−1 = −iωn + Hnk′k can be understood as
an inverse Green’s function, in which Hnk′k is the off-diagonal
Hamiltonian. To obtain the quasi-phonon spectra, a diagonal-
ization procedure shall be performed:

∑

∑

∑

φ φ φ φ

φ ω φ

φ ω φ

̅ = ̅

= ̅ − +
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kk
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k k k k

eff
1

(7)

As a very rough approximation, the diagonal matrix element in
eq 6 gives the renormalized quasi-phonon energy Ek while the
off-diagonal part gives quasi-phonon relaxation rate Γk in the
acoustic limit (see Supporting Information F),

∑

ω

δ
π ω

ω

≈ − | |

Γ ≈ *
≈

∝

κ

κ κκ
′

′ ′⎪

⎪⎧⎨
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E J g

J g g
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2

2
( / ) , static
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n

n

k k k

k
k

k k

2

0
2

(8)

For the static scattering, eq 8 is consistent with the classical
Carruthers’ result3 1/τs ≈ Ndγ

2b2ω where γ is the Grüneisen
parameter.
For dynamic scattering, for a given dislon excitation at small

κ, eq 8 gives Jκn ∝ 1/ω2 after analytical continuation. This

Figure 2. Numerical diagonalization of quasi-phonon spectra, when a linear-dispersive free phonon (a) interacts with an edge (red; b,d,f,h) or a
screw (blue; c,e,g,i) dislocation. The quasi-phonon energies (b−e) are lowered upon renormalization compared with a bare phonon (a), and the
energy shift is greater at high κ magnitude, which is reasonable since higher κ indicates a larger dislocation vibration hence larger dislon excitation.
The quasi-phonon relaxation rates Γ(f−i) show fruitful structures beyond the perturbation theories where only monotonic changes occur. On one
hand, whether relaxation rate Γ increases or decreases as a function of phonon wavevector kx depends on dislocation type (f vs g). However, the
resonance scattering where Γ is peaked can be seen directly from this nonperturbative approach (h,i).
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finally leads to 1/τd ∝ 1/ω, which is consistent with the
dynamic scattering results where the relaxation rate is
independent of the Burgers vector b.15,18,30

Intriguingly, compared to the perturbation theories that
contain only an averaged, structureless simple ω-dependence of
relaxation rate Γk as in eq 8, eq 6 has additional power to
consider the anisotropic k-dependence of the scattering process
and hence is able to capture the effects caused by the
dislocation type, anisotropy, and DPI resonance, as shown in
Figure 2. Compared to the free phonon with linear dispersion
ωk = vsk, where the shear velocity vs = 1 (Figure 2a), the
renormalized quasi-phonon dispersions and the quasi-phonon
lifetimes are plotted in Figure 2b−e and Figure 2f−i,

respectively. The results are obtained by numerically diagonal-
izing eq 6. In all computations, we have assumed that the
Debye wavenumber kD = 1, the sample area A = 1, and the
Poisson ratio ν = 0.3, and we have defined the xz-plane as the
slip plane (all are dimensionless for numerical comparisons). In
all cases in Figures 2b−e, it can be seen clearly that there is a
phonon energy renormalization effect, where the phonon
energy experiences a red-shift upon renormalization, indicating
a drop of group velocity with the presence of dislocation. This
effect is qualitatively consistent with the estimation of eq 8 and
lattice dynamics simulation in Figures 3 and 4. The
renormalized phonon dispersions are plotted for both an
edge dislocation (b = [1 0 0], Figure 2b,d) and a screw

Figure 3. Lattice dynamics simulation of a dislocated cubic supercell. (a) A 10 × 10 supercell configuration showing the schematics for lattice
dynamics simulation; in this simulation, a larger 30 × 30 supercell is used. The computed phonon spectra without (b) and with (c) a dislocation in a
supercell Brillouin zone. It is clearly seen that phonon energies are experiencing an anisotropic shift, where the dispersion mostly changes along Γ−X
direction but not Γ−Y direction, accompanied by a reduction of phonon group velocity (see for instance, the LA mode). This is in excellent
agreement with the effective quasi-phonon theory prediction using eq 6 (yellow dashed lines), where the phonon dispersion does not change along
Γ−Y direction, but the group velocity is dropped along Γ−X direction. In (c), the splitting of TA modes along Γ−Y direction is not captured since it
may be caused by the interaction between supercells instead of one single dislocation, while along Γ−X direction, the splitting is captured since it is
caused by phonon polarization effect.

Figure 4. Classical size effect of the phonon spectra. (a−c) The lattice dynamics simulation of the phonon spectra at various N × N supercells (N =
10, 20, 40; results for N = 30 are in Figure 3). Since there is no phonon energy shift along Γ−Y direction, only the spectra long Γ−X direction are
plotted. The black-dashed lines are the LA mode without dislocation as a comparison. (d) The ratio of the LA mode sound velocity with the
presence of dislocation (v) to the velocity without dislocation (v0), at various supercell sizes. Both the lattice dynamics simulation (red curve) and
the quasi-phonon theory (blue curve) show the same trend qualitatively, which is a classical size effect of group velocity reduction, where smaller
supercell gives smaller grow velocity. To perform the comparison, a κ = 0.01 value is chosen. When the cell size grows larger, the ratio approaches to
the bulk value (v/v0 = 1). The quantitative difference, such as a stronger size dependence from the quasi-phonon theory is caused by different
boundary conditions. Unlike the simulation that has periodic boundary condition, the theory considers only one dislocation, leading to the faster
fading of the DPI strength when the supercell size is larger.
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dislocation (b = [0 0 1], Figure 2c,e), in both transverse mode
(Figure 2b,c, εk = [0 1 0], k ⊥ εk) and longitudinal mode
(Figure 2d,e, εk = [1 1 1], k ∥ εk). It can also be seen that a
larger change of the quasi-phonon energy is expected at high κ
magnitude, which is reasonable since higher κ indicates
dislocation that is vibrating strongly.
Figure 2f−i shows the quasi-phonon relaxation rate Γk of

edge (Figure 2f,h) and screw (Figure 2g,i) dislocations, with the
incidence of transverse (Figure 2f,g) and longitudinal phonons
(Figure 2h,i). On one hand, for the transverse incidence, at
given κ, Γk increases monotonically with kx for an edge
dislocation (Figure 2f), making the relaxation process more like
static-strain relaxation (Γ ∝1/ω, discussed in Supporting
Information F), but decreases with kx for a screw dislocation
(Figure 2g), making the relaxation process resemble a vibrating-
string relaxation (Γ ∝1/ω, discussed in Supporting Information
F). In other words, even for the same type of phonon
incidence, the DPI can be dominated by either dynamic or
static scattering, depending on the dislocation type. This fact
can only be revealed when the anisotropic k-dependence is
taken into account properly and is completely ignored in
previous theoretical treatments where only the explicit ω-
dependence was considered, leading to a much simpler
monotonic phonon relaxation structure regardless of disloca-
tion type. On the other hand, for the longitudinal instance, Γk
shows a peaked value at certain k values (Figure 2h,i), which
can be understood as a resonant DPI process. Such resonance
scattering can never be obtained through any perturbative
approach, where Γk can only vary monotonically with ω.
In the past, phonon spectra are assumed to be unchanged in

almost all DPI studies. This assumption is plausible for large
samples due to the 1/A prefactor in the coupling strength Jκn,
but breaks down for small samples where dislocation has a
higher weight, such as the case of phonon transport at the
nanoscale. To further validate the prediction of eq 6 and to see
whether this anisotropic energy renormalization is possibly
observable, we performed a lattice dynamics simulation to
compute the phonon dispersion (see Lattice Dynamics
Simulation). Compared with the nondislocated dispersion
(Figure 3b), the anisotropic energy red-shift (for instance, no
shift along the Γ−Y direction, shift from 85 to 70 cm−1 for the
LA mode along the Γ−X direction) and the reduction of group
velocity by lattice dynamics simulation are also correctly
predicted through the effective theory eq 6 (yellow dashed lines
in Figure 3c). It is also worthwhile mentioning that, in either
the static DPI approach or dynamic DPI approach, the phonon
spectra are assumed to be fixed. This indicates a breakdown of
both approaches when applied to the nanoscale, where a >10%
change of phonon energy is expected with the presence of a
dislocation (Figure 3c). However, the present phonon
renormalization theory can deal with the nanoscale DPI, as
shown in Figure 4. At various simulated sample cell sizes
(Figure 4a−c), the phonon spectra are clearly different from
one to the other, as is expected physically. This finally results in
a size effect of the acoustic sound velocity (Figure 4d), which
approaches to the bulk value, then the sample is getting bigger.
It is also worth mentioning that the change of phonon spectra
in a confined environment has recently been observed in an
experimental study.31 Since we are dealing with one single
dislocation without periodic boundary condition, the size
dependence in the theory is more drastic than the simulation
where periodic boundary condition is assumed.

All of the above DPI mechanisms are dominant at very low
temperature where anharmonic phonon−phonon interaction is
weak. Dislocations may also reduce the thermal conductivity
above the thermal conductivity maximum temperature.12,15,30

This is explained as contributions beyond the sole dislocation,
such as dislocation dipoles15 or stacking faults.30 In such cases,
the question whether this phenomenon is intrinsic (meaning
that such phenomenon can be induced by dislocation itself) or
is extrinsic (such as stacking fault scattering) has not been
resolved. In the present work, by using the quasi-phonon
picture, it can be shown directly that a dislocation can actually
reduce thermal conductivity at all temperatures due to the
reduction of sound velocity. From eq 6, the Matsubara Green
function can be written as

φ φ

δ

δ δ δ δ

≡ = ⟨ ̅ ⟩
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The corresponding thermal conductivity Kubo formula
compatible with eq 9 can then be computed as (see Supporting
Information H)
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where vk ≡ ∂Ek/∂k is the quasi-phonon group velocity, GR(ω)
and GA(ω) are the retarded and advanced Green functions
obtained by analytical continuation of eq 9. This indicates that
the impact of dislocation ranges in all temperatures is due to
the reduction of the group velocity vk. To the best of our
knowledge, this is also the first time the change of the phonon
dispersion caused by DPI is considered in dealing with thermal
transport problems.
The effective theory approach using eq 6 resolves another

problem related to symmetry breaking. Phonons are well-
defined within the first Brillouin zone as a result of lattice
translational symmetry. The long-range strain field caused by
dislocations breaks lattice periodicity and thereby blurs the
definition of crystal momentum k as a good quantum number.
In the process of phonon renormalization, according to eq 5,
the symmetry-breaking dislon field χ is integrated out, the effect
of the dislocation on the phonons can be discussed using
weakly interacting quasi-phonons within the restored first
Brillouin zone using the effective theory approach.
Since the effective quasi-phonon theory is based on a

continuum elastic theory of a crystal dislocation, we must be
cautious in applying the theory to a nanosized crystal, where
certain conditions have to be met in order for the quasi-phonon
theory to be valid. The first condition deals with the dislocation
core size. Since the linear elasticity theory remains valid except
at the dislocation core region,32−36 the crystal size L must be at
least greater than the dislocation core radius r0, i.e.,

≫ = μ
π γ

L r b
0 8

2

2 , where γ represents the specific surface energy

of the crystal.37 The second condition deals with phonon−
phonon anharmonicity, which increases as a function of
temperature. As long as Γk ≫ Γk,an, where Γk,an is the relaxation
rate caused by anharmonicity,38,39 the present quasi-phonon
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theory still produces a good approximation due to relatively
weaker anharmonicity. In addition, the phonon−dislocation
anharmonic effect is shown to be weak (Supporting
Information I), so that we could focus on the fluttering effect
without considering the anharmonic effects in the present DPI
study. The third condition deals with boundary scattering,
where the phonon−crystal surface scattering is increased due to
the increase surface to bulk ratio. In this scenario, Γk ≫ ΓB,
where ΓB is the relaxation rate from boundary scattering, needs
to be satisfied in order for the quasi-phonon theory to remain
valid. In a simple estimation, ΓB is given by Casimir limit

Γ =
v

LB
g in which vg is the phonon group velocity.40 The fourth

condition deals with the independent-dislocation assumption,
where strongly interacting dislocations may dominate the
phonon−dislocation interaction at high dislocation density.
According to the present simulation, at N = 40 (corresponding
to interdislocation distance ∼9 nm and dislocation density
∼1012/cm2), the dislocation−dislocation interaction effect still
persists, hence an independent dislocation assumption shall be
valid when dislocation density is much lower than ∼1012/cm2.
As long as all above conditions are met, the current quasi-
phonon theory can be considered as a good approach in
describing the DPI at nanoscale.
To summarize, we have shown that the dislocation−phonon

interaction has the nature of phonon renormalization. This
feature has been overlooked in previous perturbative analysis
and only becomes clear through a nonperturbative approach as
is adopted in the present work. A renormalized phonon unifies
the decades-long debate between static and dynamic dis-
location−phonon scattering mechanisms. In particular, both
approaches break down at the nanoscale, while the
renormalized phonon theory remains valid by capturing the
size effect. By treating a dislocation line as a quantized field,
both its long-range nature and vibrational properties are
automatically captured. In the present study, we focus on
providing a theoretical framework, but do not intend to seek
quantitative agreement with realistic materials, for the following
reasons: (a) The classical fluttering model18 prior to
quantization has already obtained excellent agreement with
experiments. (b) The quasi-phonon relaxation rate is shown to
be reducible to classical results of DPI relaxation rate. (c)
Experimental agreement of k(T) is not a sufficient condition to
reveal the nature of dislocation induced thermal resistivity since
the k-dependence of the relaxation is ignored in classical
theories, thereby resulting in a simpler ω-dependence. Instead,
we focus on the multiple possibilities of what a quantized
dislocation, “dislon”, can bring. It opens up an unexplored
territory of the dislocation−phonon relaxation structure,
depending on energy, momentum, anisotropy, and dislocation
types and phonon modes. The picture of the renormalized
phonon provides insights not only as a conceptual break-
through but also as a framework to study the influence of
dislocation on the thermal properties of a nanomaterial from a
fundamental level.
Lattice Dynamics Simulation. We perform lattice

dynamics simulation with four supercells with size N × N ×
1 (N = 10, 20, 30, 40) with a hypothetical simple cubic crystal
with lattice parameter a = 2.2 Å, Poisson ratio ν = 0, Young’s
modulus 540 GPa, and creating an edge dislocation with
Burgers vector b = ax ̂ (Figure 3a). This theory does not intend
to fully reproduce the existing theory since it contains only one
dislocation while the simulation is a periodic dislocation array.

To perform the comparison between the theory and simulation
the following parameters were used: a shear velocity vs = 1,
temperature T = 1, Poisson ratio ν = 0, Matsubara index n = 0,
and dislon excitation κ = 0.01. Other values may result in some
quantitative difference, but the size effect of phonon group
velocity reduction always exists.
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