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Preface

The idea for this book began about two years ago when one of us (WHW)
organized a focused session at the March Meeting of the American Physical
Society on the applications of Raman scattering in materials characterization.
The response to that session was overwhelming; we had twice as many papers
as we anticipated, and it became clear at that time that Raman spectroscopy
was becoming a standard tool for the materials scientist. Raman scattering
has evolved from a technique practiced by dedicated laser physicists working
in dark laboratories to a general-purpose characterization tool routinely ap-
plied to a wide range of materials science problems. With the addition of fiber
optics, Raman probes are now in use for monitoring thin-film deposition pro-
cesses and for such practical tasks as sorting waste polymers for recycling.
There are two reasons for this evolution. First, the new generation of Ra-
man instruments, with such improvements as array detectors, turnkey lasers,
single-stage high-throughput spectrometers and holographic notch filters to
reject Rayleigh light, made the implementation of Raman scattering sim-
pler and less expensive. Second, many scientists in the field realized that the
sort of detailed information obtainable from Raman scattering measurements
could not be obtained as easily or at all with any other methods.

The purpose of the book is to provide a link between the fields of materials
science and Raman spectroscopy. The first chapter gives an overview of the
theory of Raman scattering in solids, with experimental examples drawn from
well-known materials to illustrate most of the basic concepts. This chapter
avoids rigorous mathematical treatments, but provides ample references to
where such treatments can be found. The second chapter discusses the tre-
mendous improvements in Raman instrumentation that have been made in
the last decade and the impact this has had on the widespread use of Raman
scattering. The remaining eight chapters focus on specific materials systems
that comprise the mainstream of current research in materials science: bulk
and alloy semiconductors; semiconductor heterostructures; high-T, supercon-
ductors; catalysts materials; III-V nitrides; fullerenes, nanotubes, and other
inorganic carbon-based materials; polymers; and manganites. These chapters
form the heart of the book, and they provide extensive examples of Raman
applications to current materials science problems. To augment these chap-
ters, we have added short contributions on related subjects of historical or



VI Preface

topical interest. These short contributions are referred to as “boxes” and are
generally invited by the author(s) of the chapter after which each appears.
They range from an anecdotal account of a meeting with C.V. Raman to
a purely technical account of strain mapping in semiconductor devices. The
resulting book is the most thorough collection of Raman applications in ma-
terials science ever assembled in one volume.

April 2000 Willes H. Weber
Ann Arbor Roberto Merlin
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1 Overview of Phonon Raman Scattering
in Solids

R. Merlin, A. Pinczuk, and W.H. Weber

Abstract. This chapter provides a short review of the concepts underlying
inelastic light scattering by phonons in solids. The discussion introduces the
basic scattering mechanisms and the nomenclature used in the Raman com-
munity, but it avoids mathematical details. We give extensive references to
the literature on topics that delve more deeply into theoretical issues. In
addition, selected experimental results, obtained primarily from simple, well-
known materials such as C, Si or GaAs, are shown to illustrate Raman spe-
ctroscopy applications to materials science.

The term Raman scattering is historically associated with the scattering of
light by optical phonons in solids and molecular vibrations. In this book, the
term refers to inelastic scattering by most elementary excitations associated
with degrees of freedom of ions and electrons in crystalline and amorphous
solids. The only exceptions are long wavelength acoustic phonons (sound
waves) and acoustic magnons, which are identified with Brillouin scattering.
Inelastic scattering processes are two-photon events that involve the simul-
taneous annihilation of an incident photon and the creation of a scattered
photon [1]. If the frequency of the latter, ws, is smaller than that of the for-
mer, wy,, a quantum of energy fi(wr, — ws) is added to the scattering medium
and the event is referred to as a Stokes process (here, we use wy, to designate
the incident photon frequency, since the incident beam is invariably genera-
ted by a laser source). If, instead, ws > wy,, we have an anti-Stokes process,
where an elementary excitation of the medium is annihilated. For systems
in thermal equilibrium, the anti-Stokes intensity depends strongly on tempe-
rature, since these processes can occur only when the medium is not in its
ground state. The dominant form of Raman scattering, first-order scattering,
involves a single quantum of excitation in the medium. However, it is not
uncommon for materials to show strong higher-order processes leading to the
creation or annihilation of two or more quanta.

Close to 75 years after the phenomenon was discovered [2], Raman scat-
tering has become one of the most versatile spectroscopic tools to study the
low-lying excitations of condensed matter systems. The group of excitations
that can be accessed in Raman experiments is large and is growing as differ-
ent areas of condensed matter science evolve. In solid-state media, it includes
phonons, magnons, and impurity vibrational modes as well as the elementary

W. H. Weber et al. (eds.), Raman Scattering in Materials Science
© Springer-Verlag Berlin Heidelberg 2000



2 R. Merlin et al.

excitations of bulk and low-dimensional electronic systems. While the focus
of this chapter is on Raman scattering by phonons, the conceptual discus-
sion of conservation laws and selection rules applies, with few modifications,
to electronic excitations as well. For a general description of electronic Ra-
man scattering, particularly for doped semiconductors, we refer the reader to
Chap. 7 of the book by Hayes and Loudon [3], and the review by Klein [4].
Magnetic scattering is discussed by Cottam and Lockwood [5] and in Chap. 6
of [3]. Extensive information on the various forms of Raman scattering and
a list of original references can be found in the proceedings of topical confe-
rences [6-10] and the series Light Scattering in Solids [11-18].

The strongest inelastic light scattering processes are due to coupling of
light to the electric moments of the scattering medium [3,19-22]. Light scat-
tering processes in which light couples to magnetic moments are by far too
weak to interpret experiments. Further, the intensities of scattering processes
in which there is direct coupling of light to the motion of the ions are ne-
gligible [23]. At the relatively high frequency of light employed in current
experiments, the dominant contributions to electric moments are due to ex-
citation of electrons across energy bandgaps (these are the so-called interband
transitions in solids) [19,22]. The coupling of incident and scattered light to
the medium may be understood as the modulation of the electric susceptibi-
lity by elementary excitations [19]. It is well known that coupling of light to
optical transitions of the scattering medium is enhanced when wy, and wg are
close to interband gaps. Such optical resonances result in large enhancements
of Raman scattering cross-sections and intensities {24-26]. Events involving
light at frequencies wi, and ws that are close to interband transition energies
are referred to as resonant Raman processes (see Sect. 1.2).

The reader may find excellent classical, i.e., macroscopic presentations of
the derivation of the Raman cross-section intensities in [1,3]. In classical as
well as in quantum-mechanical descriptions [19,22,24-26], the intensities are
calculated as differential cross-sections, which represent the rate at which
energy is removed from the incident beam. The calculations of the cross-
sections incorporate parameters that describe modulations of the electric-
dipole density by elementary excitations of the scattering media. In classical
descriptions, these modulations are represented by derivatives of the electric
susceptibility. Macroscopic theories offer relatively simple, one could say intui-
tive, understandings of many light scattering phenomena [27]. With the use of
the methods of group theory, macroscopic theories also yield symmetry-based
selection rules for the polarization of the incident and scattered light [3,21,22].

Microscopic, that is quantum-mechanical, formulations are required in any
attempt to describe resonant inelastic light scattering processes [24-26]. The
microscopic description incorporates explicit interactions that account for the
coupling between the photons and the electronic states of the material. The
quantum formulation also requires precise consideration of the interactions
between electrons and the elementary excitations of the media. In the specif-
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ic case of phonons, these are the diverse forms of the electron—phonon inter-
action. Inelastic light scattering resonances in bulk semiconductors have been
investigated in considerable detail [25,26,28]. In particular, resonant scatter-
ing by optical phonons and by electronic excitations are reviewed in [26], and
specific examples are given in several of the following chapters.

The study of resonant effects continues to be of great interest because
enhanced cross-sections enable Raman scattering observations of otherwise
weak processes. Early research demonstrated resonant enhancement in the
spectra of optical phonons [29-32] and excitations of an electron gas at semi-
conductor surfaces [33]. In the latter case, light scattering occurs within ultra-
thin layers of thickness that in some instances are 10 nm or even smaller. The
enhanced cross-sections revealed in this research played a key role in seminal
light scattering studies of vibrational modes in semiconductor superlattices
and quantum wells [34-37], as discussed in Chap. 3. Resonances are also cru-
cial in studies of low-dimensional electron systems in semiconductor hetero-
structures and field-effect-devices [38-41]. Low dimensional electron systems
that reside in semiconductor quantum structures are of great interest in con-
temporary materials science, device applications and fundamental physics.

1.1 Light Scattering Mechanisms and Selection Rules

1.1.1 Conservation Laws

Consider a monochromatic light beam of frequency wy,. The magnitude of
the propagation vector, ki, is |kr,| = wi.n(wL)/c where n(wy ) is the refractive
index. Due to the scattering, a fraction of the incident photons are annihilated
with creation of a scattered field in which the photons have frequency ws.
The propagation vector of the scattered light is kg, with jks| = wsn(ws)/c.
We define the scattering frequency as

W= wp —ws, (1.1)
and the scattering wave vector as
k=ky —ks. (1.2)

Inelastic scattering must satisfy conservation of energy and momentum. To
consider these conservation laws we recall that in perfect crystals, that is, in
idealized materials that display perfect translation symmetry, the elementary
excitations can be labeled by the wave vector q, also known as the crystal
momentum [42]. These modes are represented by a dispersion relation that
specifies a frequency wy for each value of q [42]. In first-order processes, only
a single elementary excitation participates. In such situations, momentum
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conservation translates into the requirement that the scattering wave vector
equal the wave vector of the excitation:

k=gq. (1.3)
Similarly, conservation of energy leads to

W = wy. (1.4)
In higher-order scattering processes w becomes the sum of the frequencies of
two or more quanta for which the total wave vector is k (see Sect. 1.3).
1.1.2 Kinematics: Wave Vector Conservation

Processes that conserve crystal momentum obey (1.3). The magnitude and
orientation of the scattering wave vector are determined by the geometry of
the scattering experiment. Figure 1.1 shows three standard arrangements for
the propagation of incident and scattered beams. The smallest and the largest
scattering wave vector are obtained, respectively, in the forward (8 = 0°) and
the backscattering (§ = 180°) geometries. In the forward case, the magnitude
of the scattering wave vector is

[kmin| = [n(wL)wr — n(ws)ws] (1/¢) (1.5)
whereas, in the backscattering configuration, we have
|kmax| = [n(wp)wr + n(ws)ws] (1/c) - (1.6)

It follows from (1.6) that for typical experiments, in the visible and near infra-
red, kmax < 108 cm~!. This wave vector is much smaller, by about two orders
of magnitude, than the value corresponding to the Brillouin zone boundary

0=90°

Fig. 1.1. Diagrams showing various scattering geometries
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of typical crystals [28]. Thus, first-order processes that conserve wave vector
access only elementary excitations at or near the center of the Brillouin zone.
For higher-order processes, wave vector conservation is written as

k= qu , 1.7

where the summation is carried out over all the elementary excitations that
take part in the scattering. In the vector sum of (1.7), the individual excitation
wave vectors, ¢;, can range from zero to the values at the Brillouin zone
boundary. Inelastic light scattering spectra obtained under conditions of wave
vector conservation are thus of two kinds. In first-order, the spectra display
a discrete set of peaks that are associated with elementary excitations at the
center of the zone, whereas higher-order spectra give continua that probe
modes of wave vectors that span the whole Brillouin zone of the crystal.
In second- and higher-order processes, the prominent spectral features are
related to structure in the density of states of the respective modes. These
are the so-called critical points, that is, points at which (8w,/0q) = 0 [42].

1.1.3 Kinematics: Breakdown of Wave Vector Conservation

Wave vector conservation as represented by (1.3) and (1.7) breaks down when
the medium has no translation symmetry (linear momentum is, of course, al-
ways conserved). In the language of quantum mechanics, we say that the
Bloch theorem does not apply and, hence, that wave vectors are not good
quantum numbers for labeling modes [42]. This applies to mildly imperfect
crystals with a small concentration of defects as well as to solid solutions,
alloys and amorphous solids (glasses). In all these cases, the Raman spectra
are expected to display features reflecting the density of states of the parti-
cular excitation (see Sects. 1.4-1.6). We note that inelastic light scattering
studies of imperfect or non-crystalline samples play a fundamental role in the
characterization and materials science of such systems.

The condition of conservation of wave vector has to be considered with
some care in the case of quantum structures such as artificial multilayer
systems that display size quantization along one or more directions [43,44].
Size quantization, or confinement, occurs when there is a small characteris-
tic length, so that along that direction the motion is quantized into distinct
energy levels, as in a quantum well. For electrons, typical lengths are in the na-
nometer range, and these structures are often referred to as nanostructures. In
quantum structures, the crystal momentum may remain as a good quantum
number for components along directions orthogonal to that of the size quan-
tization. For example, when size quantization occurs along a single direction,
the wave vector is a good quantum number for the other two (orthogonal)
directions and the system displays two-dimensional behavior. Confinement
may also involve two directions in space and, in this case, the quantum struc-
tures known as quantum-wires exhibit one-dimensional behavior. Finally, in
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the so-called zero-dimensional case of a quantum-dot, wave vectors cannot
be used to represent states.

Wave vector conservation as described by (1.3) also breaks down in stron-
gly absorbing media. In the presence of optical absorption, which necessarily
occurs in experiments carried out under resonance conditions, the refractive
indexes n(wr,) and n(ws) are complex. The wave vectors ki, and kg are also
complex, having imaginary parts given by Im(kr. s) = wi sk(wr,s)/c, in which
k(wy) and s(ws) are the extinction coefficients at the two frequencies [42].
We recall that in solids with translation symmetry the wave vector q is a con-
tinuous, real variable. Thus, the condition of wave vector conservation (1.3)
cannot be exactly fulfilled in absorbing media. Instead, a range Aq of phonon
wave vectors can be excited. The range is defined by the magnitude of the
extinction coefficients [19], and we may write:

Agq =~ Im(ky) + Im(ks) . (1.8)

The inelastic light scattering intensities will still have a major peak from the
zone-center phonons, but there will be additional contributions from modes
extending over a range of wave vectors defined by (1.8). A similar picture of
the breakdown in wave vector conservation applies to partially disordered, or
microcrystalline, materials in which there is absence of long-range order. In
this case one defines a correlation length (or average crystallite size) £, over
which the material shows good crystalline order. Thus, the range of phonon
wave vectors that contribute to the Raman line shape is determined by the
crystallite size and is given by Aq = 27/¢ [45].

1.1.4 Light Scattering Susceptibilities

Stokes and anti-Stokes radiation are created by a fluctuating electric-dipole
set up in the scattering medium by the simultaneous action of the incident
light beam and the elementary excitations of the solid {3,19,21,22]. The ef-
fect may be understood as that from an induced polarization P (the dipole
moment per unit volume) that oscillates at the frequency wg. We mentioned
earlier that this polarization is represented by a modulation of the electric
susceptibility of the medium induced by elementary excitations of frequency
wq. It is then natural to introduce a modulated Raman susceptibility dx.;,
defined by [3,19]

P(ws) = Z oxi; Ej(wL) (1.9)

where E(wr) is the electric field of the incident beam. In its most general form
this susceptibility is a function of wy,, ws, and also of the wave vectors of the
light and the elementary excitations. The modulated susceptibility is a second
rank tensor with non-zero components determined by the symmetries of the
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scattering medium and of the elementary excitations [3,19]. The scattering
intensity, proportional to |P(ws)|? [46], becomes

I(wL,ws,k) X lés . 5Xij . éL|2 R (1.10)

where ég and éj, are the unit polarization vectors of the scattered and incident
beams, respectively. It is remarkable that an expression as simple as this
one can be used to gain significant insights into inelastic light scattering
phenomena using a purely phenomenological framework. Here, dx;; is written
as a series expansion in powers of coordinates that represent the elementary
excitations of the scattering medium, and (1.10) is used to determine the
selection rules for the polarization of the incident and scattered light. As an
example we consider optical vibrations. In infinite, perfect, crystalline media
these modes are represented by plane waves that are the Fourier components
of the motion of the ions. Explicitly, the displacement U of a particular ion
in the unit cell at r is given by [1]

Us(r, t) oc Qm(w, )e @79, (1.11)

where @, (w, q) is the phonon coordinate or, alternatively, the amplitude of
the mode of frequency w and wave vector q belonging to the mth-branch.
In a quantum mechanical description, phonons are the quanta of the displa-
cement fields associated with the harmonic oscillations. While the analysis
of phonon symmetries generally requires the full space group of the crys-
tal [47-49], the prescription for enumerating Raman-active modes and their
associated scattering tensors is considerably simpler for it involves only the
representations of the point group [3]. For instance, for the centrosymmetric
silicon with the diamond structure, the group is Oy and the optical phonons
at the center of the Brillouin zone are triply degenerate and transform like
the gerade representation Fyy. We will use Schoenfliess’ notation for the point
group and Mulliken’s for the representation symmetry, except that F will be
used for triply degenerate modes, instead of T'. This minor change in nota-
tion is now widely used since it is consistent with the sequence E, F, G, and
H being used to identify 2-fold, 3-fold, 4-fold, and 5-fold degenerate modes,
respectively. In the case of zincblende crystals such as GaAs, which belong to
the point group Ty with no center of inversion, the long-wavelength optical
modes are triply degenerate (this, ignoring the splitting between transverse
and longitudinal modes due to long ranges electrostatic forces; see later) and
transform like a vector corresponding to the F, representation. A full group
theoretical treatment is beyond the scope of this chapter. The interested rea-
der may find some guidance in [3,47-49].

In the phenomenological description, the modulated susceptibility is writ-
ten as

6xi5 = Y RGIQm©0)+ Y RT™Qum(@)Qn(p) + ... (1.12)

m mn,gp
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where the second-rank tensors Rg-") and Rg"") are referred to as the first-
and second-order Raman tensors, respectively. Here, the first term in the
right hand side has a single phonon coordinate at ¢ ~ 0 and represents
first-order scattering. The next term has two phonon coordinates and re-
presents second-order scattering (from (1.7), we have that ¢ + p ~ 0). In
this fashion we generate expressions that describe further higher-order scat-
tering events. The expansion of the modulated susceptibility is not limi-
ted to lattice vibrations (for plasma waves, which are the collective exci-
tations of an electron gas, see [43,50]) or to the wave vector representa-
tion. In fact, there are situations where it is more convenient to consider
expansions in terms of the ion displacements U or other local variables such
as the ion spin. The latter is widely used to describe light scattering by
magnons [3,5].

Equations (1.10) and (1.12) are employed in calculations of inelastic light
scattering intensities. If the first term in the right side of (1.12) does not
vanish for a particular mode, the mode is, by definition, Raman active or
Raman allowed. Equation (1.10) is then used to obtain selection rules for
the polarization of the incident and scattered light. Because Raman tensors
are of second rank (like the linear dielectric tensor), they transform like the
product of two vectors. Their non-vanishing components have been obtai-
ned for all the crystal classes long ago [21]. A list of all the Raman tensors
and their symmetries is given, e.g., in }3,26]. Raman-allowed modes are those
that transform according to one of the symmetries of second-rank tensors
and scattering processes that obey the proper selection rules are referred to
as allowed scattering. These principles apply to all elementary excitations of
ions and of electrons. In addition, and as for the dielectric tensor, Raman
tensors of vibrational modes are symmetric, i.e., R;; = Rj;, except near reso-
nances where they can have anti-symmetric components [3]. Hence, strictly
antisymmetric phonons are forbidden in off-resonance scattering. This does
not apply to excitations that are not invariant under time-reversal, such as
magnons and spin-flip transitions, for which the Raman tensors are predomi-
nantly antisymmetric [3,5].

An important case is that of materials possessing a center of inversion.
Here, the Raman tensor is of even symmetry and, accordingly, odd symmetry
modes are Raman inactive. This applies in particular to the so-called infrared-
active modes, which carry a dipole moment and couple directly to light.
Infrared-active modes are odd because the dipole moment, being a vector,
changes sign under inversion. It follows that the Raman allowed modes of
centrosymmetric materials are infrared inactive and vice versa. Depending
on the crystal structure, materials with a center of inversion may exhibit
only Raman-active or infrared-active phonons, a combination of both as well
as modes that are silent: neither Raman nor infrared active (e.g., the Aag and
B, optical phonons in the rutile structure; see Sect. 1.1.5). For instance, the
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triply degenerate optical mode of the diamond structure is infrared-forbidden
while rocksalt crystals (e.g., NaCl) show only infrared-active modes {47].

To continue with examples of first-order Raman scattering we return to
the case of the zincblende structure [47], where the optical modes at g = 0 are
described by the components of a vector. Consider now the mode for which
the displacements are along the z direction. The table of [3] indicates that
the corresponding first-order Raman tensor is

0d0
R;=|doo| . (1.13)
000

This expression offers an example of the determination of polarization selec-
tion rules. The tensor specifies that in a coordinate system aligned with the
crystal axes, Raman scattering occurs when the incident and scattered polari-
zation are orthogonal to the phonon displacement coordinate, perpendicular
to each other and lie in the z-y plane (note that, for these polarizations,
the phonon displacements along the = and y directions do not contribute
to the scattering). The short-hand notation for indicating this geometry for,
say, backscattering from a (001) surface is z(zy)Zz, following the Porto con-
vention [51]. The first and last symbols indicate the propagation directions
and the second and third symbols indicate the polarization directions of the
incident and scattered beams, respectively.

Using polarized measurements from oriented single crystals it is usually
possible to identify unequivocally the irreducible representations for all allo-
wed Raman modes of a material. In powders, polycrystalline films, and glassy
polymers polarization measurements can also give information about the pro-
perties of the Raman tensors, but the information is much more limited. In
these cases one measures the depolarization ratio g

. I(ésléy)

I(esflev) ’
which is the intensity ratio obtained when the scattered light polarization is
alternatively perpendicular and parallel to the incident polarization. Totally
symmetric vibrational modes, i.e., those that maintain the symmetry of the
crystal and whose scattering tensors have only diagonal elements, have smal-
ler depolarization ratios than the other modes. A strongly polarized mode is
one with a small value of p, a strongly depolarized mode has a large value
of ¢. In general, 0 < ¢ < 3/4, with the maximum value being obtained for
those modes with only off-diagonal matrix elements [52].

(1.14)

1.1.5 Enumeration of Raman Active Modes

Before attempting to analyze Raman spectra from a material, one would
first want to identify the number of Raman-allowed modes and their sym-
metries (i.e., their scattering tensors). This is a straightforward task, if the
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complete crystal structure of the material is known. The procedure we have
found most useful for accomplishing this task is called the nuclear site group
analysis method, as discussed in detail by Rousseau et al. [53], who also give
extensive tables used to carry out the procedure. The first step is to identify
the crystal structure, i.e., the space group, and the precise location of each
atom in the unit cell. Complete descriptions of all space groups and the al-
lowed atomic positions within the unit cell can be found in the International
Tables for Crystallography [54]. This volume also defines the Wyckoff nota-
tion [55], used to designate the various possible atomic sites, and the site
symmetries as given in Tables A of [53]. The second step is to determine the
irreducible representations of the zone-center phonons that result from each
of the non-equivalent, occupied sites in the unit cell (Tables B of [53]). The
third and final step is to identify and determine the scattering tensors for the
irreducible representations that are Raman allowed (Tables E of [53]). Two
simple examples serve to demonstrate the method.

Consider again semiconductors such as Si or Ge that crystallize in the
diamond structure, of space group O. There are eight equivalent atoms in
the cubic (non-primitive) unit cell, and they occupy the 8a sites in Wyckoff’s
notation [55]. According to Table 32A of [53], these have Ty site symmetry.
From Table 32B of [53], the irreducible representations of the zone-center
phonons (at the I"-point of the Brillouin zone) resulting from atoms occupying
the 8a sites are

I'=Fiy + Fyy . (1.15)

From Table 32E of [53], the F2, mode is Raman active. The table also shows
that translations transform like Fi,. Therefore, this symmetry corresponds
to acoustic modes. Both representations are triply degenerate, and together
they account for all six degrees of freedom required for a structure with two
atoms in the primitive unit cell. Furthermore, the three Raman tensors for
the Fyq modes are symmetric matrices with only xy, zz, or yz components,
respectively, all of which are equal.

As a second example, consider the rutile structure, which is found for
a number of metal dioxides (e.g., TiO2, RuOg, IrO2, RhO,, 0sO3) and
difluorides (e.g., CoFy, MgFy, NiFy, MgF2). The space group for the ru-
tile structure is D}%, and there are two formula units per primitive unit
cell. The cations occupy 2a sites and the anions 4f sites [565], which (from
Table 15A of [53]) have site symmetries of D)}, and Cj,, respectively. From
Table 15B of [53] the irreducible representations are Ag, + Biy + 2E, and,
Aig + Agg + Agy + Big + Biy + Byg + Eg + 2E,, for the 2a and 4f sites,
respectively, giving the result

I'= Alg + Azg + 245, + Blg + 2By + ng + Eg +4F, . (1.16)
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Finally from Table 15E [53] we identify the four Raman-active modes whose
scattering matrices have the forms:

a00 c 00 0d0
Ag : |{0a0] , Big: |0 —cO], By : [dOO] , (1.17)
00b 000 000
00e 000
and E,:|[000]|, |0O0e
e00 0e0

Note that there are 18 total zone-center vibrational modes in (1.16), counting
the doubly degenerate E modes twice, as required for 6 atoms per primi-
tive unit cell. Table 15E also indicates that translations and, hence, acoustic
modes transform like As, + E, and that the optical modes of symmetries
Agg and By, are silent.

There are two fairly common situations in which the selection rules as de-
rived above for first-order scattering may go wrong. The first of these occurs
when a Raman-allowed mode is also infrared active, which can only happen in
crystals that lack inversion symmetry. Here, the problem is not the selection
rules themselves but the fact that, due to the long-range nature of the Cou-
lomb field associated with infrared-active vibrations, the frequency of a given
mode depends on the direction of g [3]. In zincblende materials, this leads to
a splitting of the triply-degenerate optical mode at g = 0 into a transverse
doublet (TO) and a longitudinal singlet (LO) (in non-cubic structures, the
dependence of the frequency on the wave vector is complicated by the compe-
tition between electrostatic forces and crystal anisotropy; see [3]). Given that
the Raman tensor does not depend on q a particular scattering geometry may
give either TO or LO modes. This is discussed in detail in [3]. The second si-
tuation in which the simple selection rules may break down is under resonant
conditions. This type of scattering is known as forbidden Raman scattering.
Resonant forbidden Raman scattering can be much stronger than resonant
allowed scattering. We consider a particular example, namely, forbidden LO
scattering in Sect. 1.2.

1.1.6 Stokes and Anti-Stokes Scattering Intensities

Equations (1.10) and (1.12) enable simple evaluations of Raman scattering
intensities. We consider the case of first-order Stokes scattering, for which
the scattered intensity can be written as

(m)|? 2
Iij o< | R; } |(n+1QmIn)|”, (1.18)

where the Bose factor,

n(w,T) =1/ [exp(hw/ksT) — 1] , (1.19)
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gives the equilibrium population of phonons at temperature T" [42] and (n +
1|@|n) is the matrix element for adding a phonon to the crystal. In the case
of anti-Stokes processes, the corresponding matrix element is (n — 1|{Qn,|n).
In the harmonic approximation, we have [56]:

(QmIn+1) ~ (n+1)'/2, (1.20a)
and
(n|Qmln — 1) ~ n'/2. (1.20b)

These equations are used to obtain the ratio between Stokes and anti-Stokes
intensities:

(IS/IAS) = exp(hw/kBT) . (1‘21)

The same expression applies, of course, to any (bosonic) excitation that can be
described as a harmonic oscillator (e.g., plasmons) as well as to scattering by
elementary excitations of an electron gas [3]. More generally, (1.21) applies to
excitations for which the Stokes and anti-Stokes processes are related by time
reversal. This is not the case of scattering by magnetic excitations such as
magnons [5,57]. Departures from the behavior predicted by (1.21) also occur
in resonant experiments when the separation between the Stokes and anti-
Stokes frequencies is comparable to the width of the electronic resonance [22].
The thermal factors that enter in higher-order scattering processes require
some careful consideration. Consider as an example the case of second-order
Raman scattering by phonons. Here two modes of frequencies w; and ws are
involved, with thermal occupation factors n; and ng. Generally, there are two
kinds of two-phonon processes: sum and difference. In sum-processes, the two
modes are created in the Stokes- and both are annihilated in the anti-Stokes
component. In the difference-case, one mode is created and the other one is
annihilated for both Stokes and anti-Stokes. As a result, in sum processes
the Stokes intensity is proportional to (n1 + 1)(n2 + 1) while the anti-Stokes
intensity is proportional to njns. For a difference process with w; > ws, the
Stokes and anti-Stokes intensity are, respectively, proportional to (n; + 1)na,
and ni(ng + 1). We leave it as an exercise for the reader to prove that in
either case (sum or difference), the intensity ratio is still given by (1.21).

1.2 Resonant Light Scattering and Forbidden Effects

Resonant effects in inelastic light scattering represent a major field of study
(see, e.g., [26]). Measurements of the (laser) frequency dependence of the Ra-
man cross-section offer valuable insights into the physics of interband optical
excitations of the material. Also, large resonant enhancements of the cross
sections enable the observations of modes that may have very weak signals
under non-resonant conditions. It is clear that understanding resonant en-
hancements is crucial for the design of experiments. Resonant cross sections



1 Overview of Phonon Raman Scattering in Solids 13

can be calculated using the methods of time-dependent perturbation theory
of quantum mechanics. In this section we present some of the basic ideas
involved in the description of resonant processes.

We consider as an example the case of long wavelength optical phonons
in a bulk semiconductor such as GaAs. First-order Raman scattering takes
place as three distinct quantum events [19,21,22,24-26]: (i) The incident pho-
ton is annihilated with creation of an interband electron-hole pair, (ii) the
interband excitation is scattered by the optical phonons and (iii) the scatte-
red photon is created with annihilation of the interband electron-hole pair.
This sequence of events forms the basis for calculating the modulation of the
electric susceptibility of the scattering medium by the optical phonon. The
events involving photons take place through the coupling of electrons with
the radiation field while those that involve phonons rely on the electron-
phonon interaction [3,21,22,24-26]. Figure 1.2 shows Feynman diagrams des-
cribing terms that enter in the calculation of the first-order Raman tensor by
third-order time-dependent perturbation theory [3,21,22,24-26]. These band-
diagrams and the associated Feynman diagrams represent the three quantum
events that contribute to the Raman tensor of a semiconductor that has no
electrons (holes) in the conduction (valence) band. The diagrams are useful
in the discussion of resonant processes because they highlight the electron
transitions in the three events. The numbers indicate the time-sequence of
the events. In the context of time-dependent perturbation theory, there are
contributions of other terms with a different time sequence. However, the
diagrams shown are the ones that lead to the largest resonant enhancement.

In the diagrams of Fig. 1.2, the electron interband transitions involve
states of energies F, and Eg. These transitions are associated with photon

e l ® e
Q) 7 (03 103 h; o (03
Fig. 1.2. Energy band diagrams and associated Feynman diagrams for light scatter-
ing processes (see text). Parts (a) and (b) show the electron and hole contribution

to the scattering. The numbers indicate the order of the electronic transitions;
e and h denote, respectively, electron and hole states
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annihilation and creation. In Fig. 1.2a the electron-phonon coupling results
in an intraband transition, while in Fig. 1.2b the hole undergoes an interband
transition. The Raman tensor associated with these diagrams may be written
as [3,21,22]

Cijm
(hws — Ep)(hwr, — Ea) -

R{M ~ (1.22)
The coefficient Cjj,n involves the product of three matrix elements. Two
are due to the electron-radiation Hamiltonian ﬂR and the third one to the
electron-phonon interaction Vi. The diagrams of Fig. 1.2a involve only two
bands, and are called two-band terms. Those in Fig. 1.2b involve three bands,
and are called three-band terms. Given that phonon energies are much smaller
than those of interband transitions, that is E4 g > hw, the two-band dia-
grams in Fig. 1.2a give the largest enhancement when the photon energy is
in the vicinity of the gap [21,22,24-26].

The expansion (1.12) of the susceptibility in terms of the phonon coordi-
nates suggests a relationship between resonant Raman scattering and modu-
lation spectroscopy in that

8)(1‘,' % Ow
ow = 0Qm

Within this approximation, the scattering resonances follow simply the fre-
quency-dependence of the linear susceptibility probing the modulation of the
electronic band structure by the atomic displacements [26]. A more thorough,
but still simplified treatment shows that there is an additional contribution
that reflects phonon-induced shifts of the optical oscillator strength (it gives
a weaker resonance) and that 8x;;/0w should be replaced by the finite diffe-
rence [x;j(wr) — xij(ws)] /w. This latter expression often provides a reliable
order-of-magnitude estimate of the resonant enhancement [24-26].

As mentioned earlier, larger cross sections are not the only outcome of
resonant scattering; resonances often lead to the appearance of forbidden ef-
fects. A classic example is given by the work of Leite et al. [58] and Klein and
Porto [59] on CdS. When the laser frequency is in the vicinity of the band-
gap of CdS, and for ésand éj parallel to each other, a series of sharp Raman
lines is observed, corresponding to multiple excitations of near zone-center
LO phonons. As shown in Fig. 1.3, overtones of the 304cm~' LO phonon
are seen out to the ninth order. If the laser frequency is slightly lower, only
a broad luminescence is observed. Experimentally, the first-order LO scatter-
ing associated with the overtones cannot be accounted for by the expansion
in (1.12). Theory shows that it is a forbidden effect that depends both on the
phonon displacement and the finite scattering wave vector [60]. Overtones are
observed for LO but not TO phonons because the longitudinal modes carry
an electric field and, thus, they interact strongly with the carriers through
the Frohlich interaction [60]. Various models have been used to explain the

R ~ 0xij/0Qm ~

(1.23)
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Fig. 1.3. Resonant Raman scattering showing multiple LO phonon excitation from
CdS when excited with a 457.9-nm laser at room temperature. Adapted from [58]

large number of overtones including the ‘cascade model where electrons cas-
cade down the conduction band as they emit LO phonons [61] and the solid-
state analog of the configuration coordinate model which provides a simple,
molecular-like explanation for the occurrence of multiple scattering [62].

1.3 Two-Phonon Scattering

The energy and momentum conservation rules that apply to a two-phonon
scattering event, given in (1.3) and (1.4), are quite simple. In contrast, the
full theoretical treatment of the symmetry-based selection rules, which also
apply, is quite complicated. One must first determine the symmetry of each
phonon branch in terms of the irreducible representations of the group of the
wave vector ¢. These are then combined with the symmetries of the phonons
at —g to obtain the irreducible representations for all possible two-phonon
states. Only those two-phonon states whose symmetry correlates with at least
one of the Raman-active symmetries for that point group will be allowed. For
example, crystals belonging to the cubic O point group (e.g., diamond or
fluorite structures) have Raman-active symmetries A4, E4, and Fq, and
only those two-phonon states that belong to one of these will be allowed.
The general procedure for solving this problem is given by Turrell [63], and
several specific examples are discussed by others [47,64-66].

In practice the interpretation of two-phonon spectra is relatively simple.
As pointed out by Cardona [26], the scattering is typically dominated by
those phonon sum combinations whose irreducible representations contain the
identity representation. Since all overtones (phonons from the same branch,
but from opposite sides of the Brillouin zone) fall into this category, it is
often reasonable to approximate the two-phonon Raman spectrum by the one-
phonon density of states (DOS) with the frequency axis multiplied by two. We
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refer to this quantity as the 2w-DOS. This is a rather severe approximation,
but it tends to work well for many materials.

An example of the similarity between the second-order Raman spectrum
and the calculated 2w-DOS [67] is shown in Fig. 1.4 for a Si crystal. There
is a weak feature observed near 620 cm™!, arising from a combination, that
does not match structure in the 2w-DOS, but the overall agreement is quite
good. The frequency positions of all of the sharp structure in the spectrum
associated with critical points in the phonon dispersion curves are given ac-
curately by the 2w-DOS, although the relative intensities of different spectral
regions are not. Thus, the second-order spectrum is quite sensitive to the
phonon dispersion curves throughout the Brillouin zone. Although it is not
possible to determine the full dispersion curves from the second-order Raman
spectrum, one can sometimes check the accuracy of various calculations of
these curves, as has been done for example in the case of SiC [68]. This is
a particularly useful application of Raman scattering, if the material being
studied is not available in large enough single crystals to perform inelastic
neutron scattering measurements of the dispersion curves.

20-DOS

Raman spectrum

L 1 I 1 L

0 200 400 600 800 1000
Raman Shift (cm™)

Fig.1.4. Comparison between the Si 2w-DOS, upper panel, as calculated by We-
ber [67] and the Raman spectrum of Si recorded in the z(xx)Z configuration with
633-nm radiation from a (001) Si surface. The first-order mode at 521 cm™*, which
is forbidden in this geometry but was observed due to polarization leakage, was
artificially removed for clarity
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1.4 Phonons in Semiconductor Alloys

The development of semiconductor alloy materials has led to a wide assort-
ment of device applications that would have been much more limited, if not
impossible, in pure semiconductor systems. The range of devices includes de-
tectors, light emitting diodes and lasers, and high-speed transistors. Raman
scattering has played a central role in the characterization of many of these
material systems.

As an example we consider the Si;..,Ge, alloy, which was one of the first
and most thoroughly studied alloy system. These group IV elements have
the same (diamond) crystal structure, and they are totally miscible, forming
a random alloy over the full compositional range. The Raman spectrum is
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Fig. 1.5. Variation with composition of the Raman lines from bulk alloys of Si and
Ge. From Renucci et al. [69]
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dominated by three lines that can be loosely identified as Si—Si, Si—Ge,
and Ge—Ge modes. The frequencies and intensities of these lines vary in
a systematic way with composition, as shown in Fig. 1.5 [69]. The Si—Si and
Ge—Ge lines approach the frequencies and intensities of the pure crystals at
z =0 (520cm™!) and z = 1 (303 cm™?), respectively, while the Si—Ge line
falls between these limits and has maximum intensity near the middle of the
compositional range.

Another interesting aspect of Raman scattering in alloys is revealed by the
results on the system Al,Ga;_,As reproduced in Figs. 1.6 [70] and 1.7 [71].

m
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Fig. 1.6. Upper panel: Raman spectra showing two-mode behavior of LO pho-
nons in Aly_zGazAs. Lower panel: LO and TO frequency vs. Al composition. The
triangles, squares and circles are for samples grown by molecular-beam, liquid-phase
and vapor-phase epitaxy, respectively. Early Raman measurements from R. Tsu,
H. Kawamura and L. Esaki [Proc. 11th Int. Conf. Physics Semicond., ed. by M. Ma-

siek (Polish Scientific, Warsaw 1972), p. 1135] are represented by dashed lines. The
dashed-dotted curves are theoretical results. Adapted from [70]
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Fig. 1.7. Comparison between the calculated phonon DOS in GaAs (labels SM, RI
and BC refer to the shell-, rigid-ion- and bond-charge models) and the experimental
disorder-induced scattering from the alloy Alp.19Gag.s1As. The inset shows the
estimated second-order scattering contribution. From [71]

Other than the dominant AlAs- and GaAs-like zone center TO and LO modes
shown in Fig. 1.6, the spectrum of Fig. 1.7 exhibits a disorder-activated first-
order continuum, which follows closely the one-phonon DOS [71]. The ap-
pearance of TO and LO pairs is known as two-mode behavior [72]. With
the possible exception of In,Ga;_,P, all the III-V binary systems that have
been studied with Raman scattering show two-mode behavior [72]. The less
common one-mode behavior (i.e., a single TO or a single LO over some com-
positional range) is observed in a handful of II-VI mixed crystals includ-
ing Zn,Cd;_.S [73]. In either case, phonon frequency variations are usually
large enough for Raman scattering to be the preferred local probe to provide
a simple and accurate determination of the alloy composition.

1.5 Impurity Centers and Other Defects

At the ends of the compositional ranges for a binary alloy system it is more
appropriate to view the trace constituent as an impurity in an otherwise
perfect host crystal. These dilute impurities have their own local vibrational
modes, which can often be observed in Raman scattering. Momentum con-
servation is not required in the scattering process, since crystal momentum



20 R. Merlin et al.

is not a valid quantum number for the localized mode. For substitutional
impurities having the same valence state as the host crystal atoms, but a dif-
ferent mass, the sign of the mass difference determines the nature of the local
mode. If the impurity is lighter than the host, the local mode frequency is
usually well above the highest frequency phonon in the host. The mode tends
to be highly localized and long-lived (narrow in the frequency domain), since
it cannot couple directly to the continuum of one-phonon states in the host.
In an atomistic picture, the heavier host atoms cannot follow the fast motion
of the light impurity. In the opposite limit of a heavier impurity, the mode
is not truly “local”, since it couples to the host continuum. In this case we
would expect a much broader Raman line.

As examples we consider group 1V substitutional impurities in a Ge lat-
tice. For the lighter impurities, C and Si, the local modes are observed at
530 and 395cm™! [69,74], respectively. Both frequencies are well above the
top of the Ge phonon bands (= 300 cm™!), and consequently the modes are
highly localized and quite narrow. In contrast, the local mode for the heavier
element Sn in Ge is at 263 cm ™!, which falls in the middle of the Ge optical
phonon branch [74]. The relative width (Aw/w) of the Sn mode is larger by

Ge:C (x10)

Ge-Sn mode

intensity (Arb. units)

100 200 300 400 500 600
Raman Shift (cm™)

Fig. 1.8. Raman spectra obtained with 633-nm radiation in the z(zy)Z scattering
geometry of 50-nm thick C-doped (upper trace) and Sn-doped (lower trace) epitaxial
layers grown on Ge(001) at 200 °C. Adapted from [74]. The Sn concentration is
a few %; the C concentration is much lower
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about a factor of three compared with the C or Si local modes. Typical Ra-
man spectra illustrating these results for the impurity modes of C and Sn in
Ge are shown in Fig. 1.8.

Since impurity centers and defects break the translational symmetry of
the crystal, thereby relaxing the conservation of wave vector (1.3), they can
sometimes lead to scattering by phonons in the host material that have wave
vectors far away from the zone center (as for Al,Ga;_,As [71]; see Fig. 1.7).
A classic example of a material showing such defect-induced Raman lines is
given in Fig. 1.9 for graphite. Graphite has two allowed Raman modes, both
of Ea4 symmetry, whose frequencies are 42 and 1582 cm™?! [75]. In the lower
trace of Fig. 1.9, corresponding to a nearly perfect single crystal, only the
high-frequency, Raman-allowed line at 1582cm™! is seen. The upper trace
shows a spectrum from highly defective graphite, which contains in addition
to the allowed Raman line a strong defect-induced band near 1340 cm ™! and
a weaker band near 1620 cm™1.

Defect bands
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graphite 1
T " T n n T T 1 n n I
1000 1200 1400 1600 1800 2000
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Fig.1.9. Raman spectra obtained with 633-nm radiation showing the Raman-
allowed mode at 1582cm™" in a high-quality graphite single crystal (lower trace)
and the additional defect bands at 1340 and 1620cm™" that appear in defective
graphite (upper trace)
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1.6 Phonons in Amorphous Materials

The Raman spectrum from an amorphous material generally consists of
a few broad bands, with maxima at roughly the frequencies corresponding to
peaks in the broadened phonon DOS for the crystalline phase [76]. In Si, for
example, as shown in Fig. 1.10 there are two maxima, one near 500 cm~—! and
another near 150 cm™!, arising from the optic and acoustic branches, respect-
ively [77]. In an oxide glass, such as SiO,, the spectrum is more complex, since
a wider variety of vibrational excitations are possible. An example is shown
in Fig. 1.11 for fused silica (amorphous SiOs). The relatively rich spectrum
from SiO2 has been discussed by several authors [78,79]. The strong band
peaking at 450 cm™! is attributed to the symmetric stretching of the bridg-
ing oxygens; the structure at 490 and 670 cm™! to specific types of defects;
the band at 820cm™! to an unresolved TO-LO phonon pair; and the band
at 1060 cm ™! to a TO phonon whose LO partner is the band at 1190 cm™—1.

3 . JUTRA e R
=21 i LT L 1

1
0 100 200 300 400 500 600
ENERGY (cm™")

Fig. 1.10a,b. Raman spectrum of (a) amorphous Si. Calculated (dashed line) and
broadened (solid line) DOS (b) for crystalline Si. From [77]
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Fig. 1.11. Raman spectrum obtained with 633-nm radiation from fused silica

1.7 Structural Phase Transitions: Effects
of Temperature, Pressure and Composition

Raman scattering has proven to be a valuable tool in the study of structural
phase transitions [80,81]. In most experiments these transitions are induced
by changes in one of the thermodynamic variables temperature or pressure.
The effects of increased temperature are usually opposite those of increased
pressure, since the former tends to increase the inter-atomic spacings, via
thermal expansion, whereas the latter decreases inter-atomic spacings. Nor-
mally, the phonon frequencies increase slowly when the lattice contracts, and
the relative changes in frequency are small, i.e., on the order of the relative
changes in the lattice constants. Deviations from this “normal” behavior often
signal a phase transition.

When the crystal structure changes in a discontinuous manner at the
transition point, the transition is termed first order. An example of such
a transition is the transformation of carbon from graphite to diamond. When
there is a continuous change in the crystal structure through the transition
point, as can be effected with infinitesimal displacements of the atomic pos-
itions, the transition is termed second order. Second-order transitions are
generally reversible, whereas first-order transitions are not. The most inter-
esting cases for Raman studies are those second order transitions in which
a Raman-active mode has the correct symmetry to induce the transition from
one phase to the other. The mode in question is then termed a soft mode.
According to Landau’s theory of second-order phase transitions, in the vicin-
ity of the transition the soft mode frequency should behave as

w? oc |T — T¢| (or |P — P¢| with a pressure-induce transition) , (1.24)

where T.(F,.) is the critical transition temperature (pressure) [82].
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An example of a Raman study showing soft mode behavior is the tempera-
ture-induced, orthorhombic-tetragonal transition in CaClz, which is termed
a ferroelastic transition. At low temperature CaCl; has the orthorhombic
DJ? structure, which transforms into the tetragonal rutile structure (D}?) at
491K [83]. The atomic displacements that take one structure into the other
involve a rotation about the ¢ axis of the Cl octahedra surrounding each Ca.
These displacements describe the eigenvector for the Raman-active A4(B,)
mode in the orthorhombic (tetragonal) phase, thus, suggesting soft mode be-
havior. Such behavior for this mode has been observed by Unruh et al. [83],
as shown in Fig. 1.12. Note that in the vicinity of the transition temperature,
the mode frequency varies as predicted by (1.24), but its frequency never
completely vanishes, reaching a minimum of 14cm™! at the transition. Also
note that the transition temperature appears different from above and be-
low, an indication that the transformation is not of second-order but only
approximately so.

Soft mode behavior is not the only Raman signature of a second-order
(or close to second-order) phase transition. For such transitions the lower-
symmetry phase must be a subgroup of the higher-symmetry phase, and it is
often the case that a degenerate mode of the higher-symmetry phase splits un-
der the lower symmetry. An example of this splitting is shown in Fig. 1.13 for
a pressure-induced transition in RuQO; obtained in a diamond-anvil cell [84].
This is also a ferroelastic transition, and the two crystal structures involved
here are the same as those in Fig. 1.12. The transition, however, proceeds in
the opposite direction. At ambient pressure RuQO» has the rutile structure,
which transforms into the CaCly (ambient) structure at 11.8 GPa. A group
theoretic analysis of this transition indicates that the doubly degenerate E,
mode of the low-pressure tetragonal phase splits into a non-degenerate By,
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Fig. 1.12. Temperature dependence of the frequency squared for the soft mode in
CaCl; as it undergoes a nearly second-order phase transition. The dotted vertical
line indicates the transition temperature, with the D37 phase on the left and the
Dy}, phase on the right. Adapted from [83]
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Fig.1.13. Pressure dependence, obtained with 633-nm radiation in a diamond
anvil cell, of the Raman lines in RuO2 as it undergoes a second-order transition
from the Dj;. phase on the left to the D32 phase on the right. The dashed vertical
line indicates the transition pressure. From [84]

Bsg pair in the orthorhombic phase, as is observed in the experiment of
Fig. 1.13. As also shown in the figure, the rates of change of the different
lines with pressure are approximately straight lines. The slopes of these lines
are usually characterized in terms of the Grineisen parameters, +;, which
measure the relative change of the mode frequencies with volume [85]:

|4 8wz- B (9w,-

NGy = g (1.25)

where V is the volume, P is the hydrostatic pressure, and B = ~V(9P/dV)
is the isothermal bulk modulus. Knowledge of the bulk modulus is needed to
convert pressure slopes, as in Fig. 1.13, into Griineisen parameters. Typical
Griineisen parameters are of order unity [86].

Owing to their device applications, there is growing interest in solid so-
lution systems that display structural ferroelectric phase transformations as
a function of composition. Raman spectra of the Pb(Tij—Zr,)O3 system,
known as PZT, were investigated in the seventies [87,88] when it was pro-
posed that the structural instability is in some way related to a softening of
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an optical vibrational mode [89]. It is now recognized that solid solutions such
as PZT represent a distinct class of ferroelectric materials known as relaxor
ferroelectrics, which are characterized by a strong frequency dispersion of the
dielectric permittivity [90]; see the box by R. Katiyar in this book. These
materials often lack electric polarization and anisotropy on a macroscopic
scale, but the application of an electric field induces the formation of well-
defined ferroelectric states. There are numerous recent Raman investigations
of relaxor ferroelectrics and, in particular studies of low-frequency vibrational
modes [91-93].

1.8 Conclusions

This chapter offers a conceptual introduction to the Raman scattering inves-
tigations that are described in this book. We focused on optical vibrational
modes, but in many instances the concepts also apply to inelastic light scat-
tering by elementary excitations of electrons. The examples cited here are
only a sampling of the types of material properties that can be addressed
with Raman scattering. Our aim is to convince the reader that Raman appli-
cations have a very broad scope. Many of these applications will be revisited
in more detail in later chapters, as they relate to specific material systems.
Additional applications, not mentioned here, will also be discussed, some
examples of which are strain effects, free-carrier effects in semiconductors,
magnetic interactions, effects due to variations in stoichiometry, and a var-
iety of effects that relate to the structure of polymer chains.
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I The Effect of a Surface Space-Charge
Electric Field on Raman Scattering
by Optical Phonons

Elias Burstein

The changes in the macroscopic properties that result from the modification
of the symmetry of a crystal by an external generalized force (e.g., an elec-
tric field) are called morphic effects, a term first coined by Hans Mueller [1]
who was my mentor when I was a graduate student at MIT in the early
1940s. In optical phenomena, morphic effects manifest themselves as changes
in the absorption and scattering of electromagnetic radiation by the elemen-
tary excitations of the medium [2]. The effects are particularly striking when
normally forbidden optical processes become allowed. In this article, we focus
our attention on the Raman scattering by LO phonons of opaque semicon-
ductors in which a surface space-charge electric field opens a new channel for
scattering.

In 1963 Loudon [3] showed that, in the limit where the scattering wave
vector g = 0, the electron and hole contributions to the matrix elements for
the Raman scattering by LO phonons have the same magnitude but oppo-
site signs and therefore cancel (this is for two-band processes in which the
second step involves the intraband Fréhlich scattering of the excited electron
and hole in the intermediate state by the Coulomb field of the LO pho-
nons). The electron and hole contributions do not cancel when q is finite
and m. # my [4}. Under resonance conditions, this leads to a sizable wave-
vector-dependent contribution to the scattering intensity. This also applies
to situations in which the intermediate states involve the intraband Frohlich
scattering of Coulomb-correlated e-h pairs (i.e., excitons) by LO phonons [5].
Since the intraband scattering by the Coulomb field of the LO phonons does
not change the orbital parts of the excited electron and hole wavefunctions,
the g-dependent terms are observed in configurations where the polarization
of the incident light, é&;, is parallel to that of the scattered light, é.

In 1968, Pinczuk and I [6] reported an investigation of Te-doped n-type
InSb (using back-scattering from air-cleaved (110) surfaces at 80K and the
633nm radiation of a HeNe laser) to study coupled LO phonon-plasmon
modes. These modes had earlier been observed in n-type GaAs by Moora-
dian [7] and discussed by Burstein et al. [8]. Surprisingly, the back-scattering
spectra for é; || €; exhibited a forbidden LO phonon peak at its unscreened
frequency, in addition to the allowed TO mode. The intensity of the forbid-
den LO phonon peak, which was much weaker than the allowed TO peak in
the sample with the lowest carrier density, increased with increasing carrier
density, becoming larger than that of the TO mode (which was relatively in-
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Fig. I.1. Back scattering Raman spectra of LO and TO phonons from (110) surfaces

of n-InSb at 80K [10,12]

sensitive to the carrier density) before leveling off; see Fig. I.1. For all carrier
densities, the forbidden LO peak appeared at the unscreened frequency, in-
dicating an absence of coupling with plasmons. Similar results were obtained
for p-type InSb and n-type InAs [9].

The forbidden unscreened LO phonon peak and its strength dependence
on the density of free carriers, was attributed to the morphic effect of a surface
space charge electric field Esc. The surface field is due to the pinning of the
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Fermi level within the energy gap, which results in a depletion layer at the
surface and absence of free carriers within the skin depth of the incident
radiation. In these experiments, Raman scattering is resonantly enhanced
because the incident photon frequency is close to the E; gap of InSb (1.96eV).
The space-charge field manifests itself as an upwards (downwards) band-
bending at the surface of n-type (p-type) InSb. In the case of n-type InAs, the
absence of screening cannot be attributed to the absence of free carriers, since
there is an accumulation layer at the surface. It was therefore suggested that
the LO phonons that take part within the narrow accumulation layer have
wave vectors that are appreciably larger than the Fermi—Thomas screening
wave vector and are therefore uncoupled to free carriers in the accumulation
layer. Since the wave vector of the LO phonons involved is rather large, the
observed Raman scattering involves both Egc-dependent and g-dependent
contributions.

As a consequence of band bending, the envelope parts of the wave func-
tions of the electronic states in the valence and conduction bands are modified
from Bloch- to Airy-type. Moreover, the interband optical transitions in the
first and third steps of the Raman scattering process correspond to Franz-
Keldysh type (tunneling-assisted) optical interband transitions that create or
annihilate spatially separated electron-hole pairs. It was conjectured by Pinc-
zuk et al. [10] that the electric-field-induced scattering by LO phonons was
due to the spatial separation (i.e., polarization) of the excited electron-hole
pairs in the intermediate state of two-band processes and to the consequent
non-cancellation of the electron and hole intraband Fréhlich interaction ma-
trix elements. In effect, Egc and its associated band-bending open up a new,
normally forbidden two-band channel for the Raman scattering by LO pho-
nons, which is particularly strong under resonance conditions.

An electric-field-induced Raman scattering by LO phonons was subse-
quently observed by Brillson et al. [11] in the Raman inactive IV-VI com-
pounds PbTe and SnTe, which have the NaCl structure. Use was made of
the fact that the position of the Fermi level at the surface of ionic crys-
tals is not strongly pinned, and that the energy bands can be strongly bent
by the presence of metal films on the crystal surface. The bent bands and
the associated Fsc modify the Raman scattering selection rules by lowering
the symmetry of the crystal and its atomic and electronic excitations. Using
cleaved [100] surfaces of p-type samples coated with transparent films of Pb,
Raman scattering peaks were observed, whose frequencies corresponded to
those of unscreened LO phonons. Moreover, scattering was observed only for
é; || és, and the observed peaks exhibited a resonant enhancement at the
E5 gap. These peaks did not appear in the absence of the Pb films. Here
again, the Raman scattering by LO phonons involves the Franz-Keldysh and
g-dependent mechanisms.

A perturbation calculation of the contribution to the field-induced scat-
tering by LO phonons via the Franz—Keldysh mechanism for two-band Frohlich-
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scattering processes involving exciton intermediate states was carried out by
Gay et al. in 1971 [12]. They found that the Raman scattering tensor is propor-
tional to the field-induced separation of the electron and hole in the ground
state of the exciton. They also carried out a computer calculation of the
contribution from two-band processes involving continuum electron and hole
intermediate states, which confirmed the conjecture of Pinczuk et al. that
the electric field induces a spatial separation of the electron and hole in the
intermediate state, leading to a non-cancellation of the corresponding contri-
butions. Subsequently, Brillson et al. [13] carried out a theoretical calculation
of the electric-field-induced scattering by LO phonons in crossed electric and
magnetic fields where the electron and hole in the intermediate state have
well-defined, bounded wave functions. This yields a relatively simple analytic
expression for the electron and hole terms in the intraband Froéhlich inter-
action matrix elements. They found that, to first order in the electric field,
the resultant wave-vector-independent contribution to the Raman tensor is
proportional to the electric-field-induced separation of the cyclotron-orbit
centers of the excited electron and hole in the intermediate state.

Buchner et al. [15] used surface space-charge electric field induced Raman
scattering by LO phonons to probe the differences in the character of the
A(111) and B(111) surfaces of n- and p-InAs. The measurements, which
were carried out on air-exposed surfaces, showed that, in the case of p-InAs,
the space-charge electric field of the A surface is considerably smaller than
that of the B surface, whereas, in the case of n-InAs, the space charge electric
fields at both surfaces are quite large. The marked difference in the forbidden
scattering by LO phonons at the A and B surfaces of n- and p-InAs reflect
differences in the pinning of the Fermi levels at the two surfaces. Both the
(111) and (111) surfaces of n-InAs were shown, by the use of externally
applied electric fields, to be depleted of free carriers, in contrast to the (100)
surfaces which are accumulated.

These early investigations demonstrated that Raman scattering by LO
phonons in opaque crystals is a highly useful probe of energy band-bending
at semiconductor surfaces, and it has continued to be of value to the present
day.
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2 Raman Instrumentation

Sanford A. Asher and Richard Bormett

Abstract. The last decade has seen major advances in the applications
of Raman spectroscopy to materials science. We review here the dramatic
improvements in Raman instrumentation that have enabled these incisive
studies. This chapter separately discusses advances in lasers, spectrometers,
optics and detectors and illustrates some of these advances in a few examples
of new applications and instrumentation used in materials science research.

The rapidly increasing use of Raman spectroscopy as a routine method of
materials characterization is a direct result of the recent dramatic advances
in lasers, detectors and spectroscopic instrumentation [1-3]. Raman instru-
ment companies have rapidly commercialized many of these advances. Some
of these advances have made it possible to commercialize new relatively inex-
pensive instruments (< $100K including the laser). This has significantly
increased the number of Raman instruments worldwide [4]. The new genera-
tion of low cost, high performance Raman instrumentation now makes Raman
spectral measurements easy, even for nonexperts. Industrial Raman instru-
ments are now available for real time chemical process monitoring, manufac-
turing quality control and routine analytical investigations. Many of these
industrially rugged instruments utilize fiber optic probes that dramatically
simplify measurements making them routine and easy for nonexperts [5].

The Raman instrument advances have also affected the research grade
Raman instruments. Research grade instruments are available with extended
wavelength coverage from the UV into the near IR spectral regions. A com-
mon feature of most of these new research-grade Raman instruments is the
incorporation of a microscope. These new Raman microscopes permit spectral
imaging of samples with spatial resolutions< 1 mm. The high spatial resolu-
tion allows rapid chemical speciation of spatially inhomogeneous samples.

Most Raman instrumentation is fabricated by selecting the appropriate
lasers, optics, spectrometers, and detectors necessary to optimize the Raman
spectrometer for the required Raman spectral measurements. Thus, it is na-
tural to organize this chapter into separate sections that separately discuss
these individual components. The last section will give a few examples of use
of new Raman instrumentation in materials science.

W. H. Weber et al. (eds.), Raman Scattering in Materials Science
© Springer-Verlag Berlin Heidelberg 2000
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2.1 Raman Measurement Regime

2.1.1 Spontaneous, Non-resonance Raman Spectral
Measurements

Spontaneous, non-resonance (“normal”) Raman measurements require exci-
tation in a spectral region, which contains no sample absorption bands [6,7].
For most samples, this limits excitation wavelengths to either the visible or
near IR spectral regions. Excitation close to an absorption band results in the
selective preresonance Raman enhancement of vibrations of atoms localized
within the chromophoric molecular segment [8]. This will increase the relative
contribution of these vibrations to the Raman spectrum. If these vibrations
contain the information content desired, then preresonance enhancement will
be beneficial to the measurement. In contrast, this preresonance enhance-
ment may be detrimental since molecular information from the non-enhanced
bands becomes less accessible as the smaller set of preresonance Raman en-
hanced bands begins to dominate the spectrum. Preresonance enhancement
is commonly observed with UV excitation.

If there are no absorption bands in the UV, visible and near IR spec-
tral regions, the choice of laser excitation wavelength for these samples de-
pends upon other experimental requirements. Most often the experimental
requirement is optimization of the spectral signal-to-noise-ratio, which re-
quires a minimization of sample fluorescence [3,9,10]. Whether the fluores-
cence is intrinsic to the sample or the result of trace impurities, fluorescence
can significantly degrade the Raman signal-to-noise ratios. Fluorescence typ-
ically contributes broad spectral features with intensities that can be greater
than the Raman intensities of even high concentration analytes. The high
intensity fluorescence background results in significant shot-noise, which do-
minates the Raman signal-to-noise ratios. Anecdotal evidence from our la-
boratory suggests that fluorescence interference is a maximum for excitation
in the ~ 300—600 nm spectral region. Thus, both UV (< 260 nm) and near IR
Raman excitation can help avoid or minimize fluorescence interference [9,10].

Unfortunately near-IR Raman instruments have several disadvantages.
The Raman cross section decreases rapidly as the excitation wavelength de-
creases, and the most common Raman detectors (charge-coupled-detector)
have lower quantum efficiencies in the near-IR. The Raman cross sections de-
crease because of the v* dependence of the Raman scattering efficiencies [6-8].
The CCD detector efficiency decreases because the detector becomes trans-
parent to near-IR wavelength at > 1050 nm. Near-IR Raman measurements
can also show interference from blackbody radiation. Thus, near-IR excita-
tion is typically not suitable for Raman spectral measurements at elevated
temperatures.

Near-IR excitation remains attractive because the diode laser sources and
the diode pumped YAG lasers are relatively inexpensive. Unfortunately, the
near-IR Raman band frequencies occur in regions where CCD cameras and
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photomultipliers are blind. These measurements then must utilize non-shot
noise limited detectors and often require the use of interferometer multiplex
advantages to obtain acceptable Raman signal-to-noise ratios [9].

UV excitation below 260nm also avoids fluorescence interference and
occurs in a spectral region with dramatically increased Raman cross sec-
tions [8,11,12]. Molecules with their first singlet state electronic transition
below 260 nm are highly flexible. Thus, they have highly efficient nonradia-
tive relaxation processes, dramatically decreasing their excited state lifetimes.
Thus, they show negligibly small fluorescent quantum yields in condensed
phase samples [10]. Although molecular species with their first singlet states
at higher energy may fluoresce upon UV excitation, this fluorescence will
occur in a spectral region red shifted from the A < 260nm Raman spectral
window.

UV-Raman measurements show improved spectral signal to noise ratios
due to the increased Raman cross section from the v* dependence of Raman
cross sections. Thus, a > 250-fold increase in the Raman cross section occurs
for 250 nm excitation compared to 1.06 pm excitation.

UV-Raman instruments have the disadvantage that the instruments are
specialized and require special optics, and the UV laser sources are somew-
hat more complex and expensive [11,12]. These limitations may significantly
decrease in the near future upon commercialization of UV hollow cathode
sputtering lasers, as discussed below.

2.1.2 Spontaneous, Resonance Raman Spectral Measurements

Resonance Raman spectroscopy has the advantage of high selectivity and high
sensitivity [12]. Excitation within the absorption band of an analyte results
in the selective enhancement of those vibrational modes of the analyte that
selectively couple to the oscillating dipole moment induced by the excitation
electric field [7]. The intensities of the resonance Raman enhanced bands can
increase by as much as 103-fold. Thus, it becomes possible to selectively study
the vibrational spectra of dilute analytes, or chromophores in macromolecules
by choosing excitation wavelengths in resonance within a particular analyte
chromophore.

For resonance Raman measurements it is essential to choose a laser with
an excitation wavelength within the analyte absorption bands. The first la-
ser resonance Raman measurements were obtained from polyenes such as
[(-carotene, and from porphyrins and heme proteins with excitation in the
visible spectral region [14]. More recently resonance Raman measurements
have been extended into the UV spectral region where most species show
absorption bands [11,12].
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2.1.3 Nonlinear Raman Measurements

Raman scattering is a two-photon process [15]. In the case of spontaneous
Raman scattering the two photons include the laser excitation photon and
a photon from the vacuum field [15]. In most cases CW laser excitation pro-
duces only a small number of Raman photons, and this number is negligible
compared to the vacuum field photon density. Thus, the Raman intensity
is observed to increase linearly with the incident excitation beam intensity.
However, if the photon density at the Raman shifted wavelength approaches
or exceeds the vacuum field photon density, stimulated Raman scattering will
occur. This process shows a higher intensity dependence on the incident beam
intensity. This is a rich area of research with numerous important applications
in its future. Stimulated Raman scattering as well as the numerous other
nonlinear Raman scattering processes will not be discussed here, except to
note that high peak-power laser sources are required. These methodologies
generally utilize ns to ps pulsed lasers, which give high peak powers at modest
pulse energies.

2.2 Choice of Raman Excitation Wavelength

As a high intensity single frequency light source, the laser is an ideal Ra-
man excitation source. The laser excitation frequency is the major determi-
nant of the information content of a Raman spectral measurement. The laser
frequency determines the spectral range of the measurement; the operating
mode (pulsed or continuous) determines the excitation photon flux, as well as
its temporal characteristics. Essentially all Raman measurements are photon
limited. Thus, it would appear to be desirable to utilize as bright an exci-
tation source as possible. However, in reality the incident laser power must
be constrained such that the focused energy density is below the level that
causes sample photochemical or thermal degradation and below the powers
that cause nonlinear optical phenomena [16,17]. This represents a major li-
mitation for the use low duty cycle pulsed laser sources. Although they may
have an average power identical to that of a CW laser, their much higher
peak powers can result in significant nonlinear optical phenomena as well as
increased photochemical and photothermal sample damage.

Although the first laser Raman measurements were obtained by using
a pulsed Ruby laser in the near IR at 694 nm [6], pulsed laser sources gener-
ally have significant pulse-to-pulse energy fluctuations. For scanning Raman
instruments this results in low spectral S/N ratios, which are dominated by
the standard deviation in the pulse energies.

2.2.1 CW Lasers

The red 632.8nm CW He-Ne laser was the first laser to be incorporated in
commercial Raman instruments [6]. This laser was quickly replaced by the
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higher power CW Art and Kr*¥ lasers that have numerous excitation lines
in the 350—700nm region. These CW Art and Kr** lasers are available
with very high powers in many spectral lines (1—5 W) in the visible spectral
region. In addition, these lasers can be used to pump jet stream dye lasers to
obtain relatively high power excitation continuously tunable throughout the
visible spectral region. These dye lasers were mainly utilized for resonance
Raman measurements that required excitation wavelength tunability.

More recently near-IR diode lasers [18] around 780nm as well as diode
pumped YAG lasers have become popular because of their low cost, small
size, low power consumption and reliability. As discussed below these lasers
are being used as the excitation sources for a new generation of inexpensive,
small Raman spectrometers that are now being commercialized.

These CW laser sources are ideal for nonabsorbing samples because the
laser beam can be focused to a small beam waist in the sample. The small
beam waist is ideal for efficient light collection and efficient coupling of the
Raman scattered light into the spectrometer. It is possible to use very high
irradiances with CW lasers to obtain very high spectral S/N ratios. The
maximum irradiance possible is limited by the sample damage threshold and
the threshold for the onset of nonlinear optical phenomena. For example,
1W of CW excitation focused onto a 10um? area results in a fluence of
10MW /cm? which can be sufficient to induce nonlinear optical processes,
such as two-photon absorption followed by heating and sample degradation.
Thus, a practical limit exists for the fluence of a CW laser that can be practi-
cally used for Raman spectral measurements for “nonabsorbing” samples. For
absorbing samples, laser heating causes degradation at much lower incident
intensities.

2.2.2 Pulsed Lasers

The increased peak powers of pulsed lasers results in the occurrence of non-
linear optical processes at much smaller average incident laser powers than
for CW lasers [16,17]. Thus, pulsed laser sources are generally avoided whe-
never a CW laser source is available for nonresonance, spontaneous Raman
scattering experiments [19].

Until very recently pulsed laser sources were the only means of extending
Raman excitation into the UV [19,20]. Nonlinear optical processes such as
frequency doubling and mixing in nonlinear crystals such as #-barium borate
and KDP generated UV light from dye lasers pumped by Q switched YAG
lasers and excimer lasers. For example, the YAG fundamental at 1.06 um can
be frequency doubled to 532nm or tripled to 355nm to pump a dye laser.
This dye laser can be frequency doubled and mixed with the 1.06 pm YAG
fundamental to generate tunable UV excitation from 196 nm to the near IR.
Alternatively a XeCl excimer laser [19] at 308 nm can be used to pump a dye
laser. The dye laser light can be similarly frequency doubled to provide UV
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excitation from 196—350nm. Using this approach, it is possible to generate
light of any wavelength in this UV spectral region.

An alternative approach to obtain UV excitation uses stimulated Raman
scattering to shift the laser wavelength [21]. Most often the Raman shifting
material used is Hy gas which shows a ~ 4200cm™! Raman transition. It
is easy to achieve numerous excitation wavelengths by utilizing a number
of anti-Stokes Raman shifts in Hy. For example, 204 nm excitation can be
easily obtained from 5 H; anti-Stokes Raman shifts of the tripled YAG at
355nm [21,22]. Numerous additional Raman shifted lines in the UV can also
be obtained from the quadrupled YAG line at 266 nm.

A much more convenient CW UV source is obtained by frequency doubling
Ar* and Kr** lasers. For example, > 200mW of 244 and 257 nm light can
be obtained from intracavity doubled Ar™ lasers [23], while ~ 30 mW can be
obtained at 229 nm, with additional lines occurring between 229 and 257 nm.
The intracavity frequency doubled Krt* laser [24] produces a few mW of
206 nm light, which is adequate for most UV Raman measurements. A new
hollow cathode UV laser is now emerging [13] that utilizes as the gain medium
excited states of metal ions sputtered into the gas phase. These lasers are
small, energy efficient and inexpensive. Prototypes of these hollow cathode
lasers using Cu and Ag have demonstrated laser excitation at 248 and 224 nm.
These lasers operate quasi-CW at ~ 10kHz repetition rates with average
powers of ~ 1 mW, which is adequate for UV-Raman measurements.

2.3 Optical Methods for Rayleigh Rejection

The purpose of the Raman spectrometer is to reject the intense Rayleigh
scattered light and to disperse the Raman scattered light into its component
frequencies for detection. The relative intensity ratio of Rayleigh to the Ra-
man scattered light is often > 10° [6]. With such a large disparity between
the Raman and Rayleigh intensities, the Rayleigh light must be greatly at-
tenuated before the spectrograph section of the Raman spectrometer. If the
Rayleigh light is allowed to enter the spectrograph unattenuated, it will ge-
nerate sufficient stray light to obscure all or part of the much weaker Raman
spectrum. Preventing intense Rayleigh scattered light levels from entering
the spectrograph stage of the Raman spectrometer is the most challenging
task for the Raman spectrometer.

A modern Raman spectrometer can utilize a number of different tech-
nologies to attenuate the relatively intense Rayleigh scattered light such as
holographic notch filters [25], crystalline colloidal array Bragg diffraction fil-
ters [26], dielectric filters and multi-stage spectrometers [27]. Instruments
that measure Raman bands lying close (< 150cm~!) to the Rayleigh line,
utilize more costly, complex and inefficient Rayleigh rejection devices.

A band pass or band reject filter serves as the simplest Rayleigh rejection
device. Holographic notch filters are available for the visible and near IR spec-
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tral regions; these filters typically permit Raman spectral measurements of
frequency shifts greater than ~ 100cm™—!. Low cost dielectric [28] filters sui-
table for Rayleigh rejection are available from the UV ~ 230 nm [29] through
the near IR spectral regions. The hard oxide dielectric filters are suitable
for UV Raman spectral measurements within 400 cm ™' of the Rayleigh line.
However, multistage Raman spectrometers are typically required to routinely
measure Raman shifts within 50 cm ™! of the Rayleigh line in the visible, and
within 200 cm~! with UV excitation.

2.3.1 Holographic Notch Filter

The holographic notch filter [25] selectively rejects (through Bragg diffrac-
tion) a narrow band of light, while passing light outside of the band rejection
region. The notch filter is constructed in a photosensitive medium, dichrom-
ated gelatin, by exposing it to interfering laser beams, which creates a perio-
dic modulation in the refractive index. This periodicity produces a strong 3D
Bragg reflection that can efficiently (> 99.9%) diffract away the Rayleigh line,
while transmitting adjacent wavelengths with > 90% efficiency. These holo-
graphic notch filters are manufactured to have the center (or near center) dif-
fraction wavelength at the Raman excitation frequency. The sharp transition
from high diffraction efficiency to high transmission makes the holographic
notch filters a nearly ideal Rayleigh rejection filter for Raman measurements
close to the Rayleigh line (100 cm™!). Unfortunately holographic notch filters
are not yet available for excitation wavelengths shorter than 350 nm. Since
each holographic notch filter efficiently operates over only a small wavelength
range (~ 40 nm) numerous filters would be required for Raman measurements
throughout the visible and near IR spectral region. However, holographic
notch filters are ideal for Raman instruments that operate with only a few
laser frequencies.

2.3.2 Dielectric Edge Filters

Raman edge filters [28,29] (typically a dielectric stack or rugate) are a low
cost alternative to holographic notch filters for excitation wavelengths from
the NIR to the UV. The rugate filter [30] is the dielectric equivalent of the ho-
lographic notch filters; the diffracting element is a stack of dielectric coatings
with spacings and refractive index modulations sufficient to diffract the de-
sired wavelength. Unfortunately, the current Raman edge filter performance
(blocking bandwidth and edge steepness) is still inferior to that of hologra-
phic notch filters. The increased blocking bandwidth of the dielectric filters
typically obscures Raman bands closer than ~ 200cm™! to the Rayleigh line
in the visible/near-IR and ~ 400cm™! in the UV. In addition, to the in-
creased rejection bandwidth, dielectric filters typically show a 100—200 cm ™!
periodic ripple in transmittance. The transmittance variation typically re-
quires the use of an instrument intensity correction function for the Raman
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spectral measurement. However, the rugate filter technology is still emerging,
and it is likely that the rugate filter performance will dramatically improve
in the near future.

2.3.3 Pre-monochromator Rayleigh Rejection

Single or double pre-monochromators are the method of last resort for Ray-
leigh light rejection [27]. These pre-monochromators utilize multiple disper-
sive elements (gratings) and spatial filters (slits) to reduce the amount of
Rayleigh light that reaches successive spectrometer stages. The stray light
from the relatively intense Rayleigh scattering is attenuated by 103 to 10°
per monochromator stage. For example if a single stage of a monochroma-
tor reduces the stray light by 10* then a double monochromator will have
a stray light background decrease of 108, and a triple monochromator will
have a stray light background decrease of 10*2. Only double and triple mo-
nochromators permit Raman measurements below 50 cm™L.

Unfortunately, the high Rayleigh rejection efficiency of the pre-mono-
chromator stages is accompanied by a loss in light throughput. A triple
monochromator will typically have an optical throughput of 3—10% com-
pared to 30—50% for a single monochromator. These inefficient multistage
Raman spectrometers survive because they can be used over a broad range of
wavelengths and because they can uniquely measure bands close to the laser
line.

2.4 Raman Spectrometers

The availability of holographic notch filters and dielectric filters for Rayleigh
rejection has allowed the development of simple dispersive and non-dispersive
multichannel Raman spectrometers that utilize CCD detectors. The non-
dispersive Raman spectrometers separate the Raman scattered light into its
component frequencies through electronically or mechanically tunable band-
pass filters [31]. Alternatively, an interferometer can be used to construct
a Fourier transform Raman spectrometer [9]. This FT-Raman instrument
utilizes the same interferometer technology as FT-IR spectrometers. How-
ever, for the typical near IR Raman excitation (A > 900nm) they utilize
a high purity Ge or a GaAs detector. The most common and still most ver-
satile Raman spectrometers still utilize holographic dispersive gratings and
CCD multichannel detectors. These spectrometers are useful from the UV to
the near IR spectral region.

2.4.1 Dispersive Raman Spectrometers

Dispersive Raman instruments are typically characterized by their optical
design. Their figures of merit are given by their light collecting power (f/#),
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their dispersion and their optical focal lengths [3]. Dispersive spectrometers
may, for example, utilize on axis transmission optics or off axis reflecting op-
tics [2,3]. The focal length of the spectrometer and the ruled line density of
the grating determine the ultimate resolution of a dispersive instrument. The
most useful spectrometer designs permit easy grating changes with easy wave-
length calibration and rescaling of the Raman frequency scale when changing
resolution and excitation wavelengths.

Dispersive spectrometers that scan the grating angle to pass different
wavelength regions across a slit use a single channel detector, such as a pho-
tomultiplier. High precision and high accuracy cosecant scanning drives are
required if the spectrometer is to scan linearly in cm™!. Simpler grating
drives can be suitable for spectrometers that utilize multichannel detectors
if the spectrometer is calibrated at each grating setting; the entire Raman
spectrum is acquired without moving the grating. However, high precision
grating motion is still required if the spectrometer must be repeatedly reset
to a precise orientation in order to repeatedly set a particular wavelength
onto a particular pixel of the multichannel detector.

Practical optical considerations typically result in spectrometers with fo-
cal lengths between 0.25m and 1.5m and grating groove densities between
600g/mm and 3600g/mm. The dispersion of the Raman spectrometer is
increased by either increasing the spectrometer focal length or increasing
the number of lines per millimeter of the grating. Spectrometer resolution
is generally increased by increasing the grating groove density rather than
increasing the focal length.

Multichannel Raman spectrometers typically sacrifice high resolution for
a large spectral window. Table 2.1 shows the typical best resolution of a com-
mercially available 0.25m focal length multichannel Raman spectrometer
for typical laser and grating combinations with a 578 channel detector (re-
solution is typically limited to 2.5 pixels). Multichannel spectrometers are
also available that simultaneously utilize two gratings and a large multi-
channel detector (1024 elements) to acquire the entire Raman spectrum
(100—3500cm 1) in a single scan. However, the loss of effective instrument
throughput and/or loss of resolution in these instruments may not be accep-
table for some applications.

Table 2.1. Typical instrument resolutions (in cm™') utilizing various grating and
laser combinations with a 250 mm focal length spectrometer

Grating (g/mm)
Wavelength (nm) 2400 1800 1200

780 NA 06 1.6
633 0.52 1.5 2.9
514 1.6 2.8 4.9

457 24 3.8 6.5
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Optimal dispersive Raman instrument performance requires that the spec-
trometer and Raman collection optics meet three conditions: (1) The spec-
trometer operate at a slit setting that matches the detector channel size to
the spectrometer resolution. (2) The Raman light collection optics magnify
the laser spot size at the sample to the entrance slit size (avoid overfilling
the slit). (3) The Raman light collection optics match the spectrometer f-
number (avoid overfilling the spectrometer optics). The spectrometer optical
efficiency and resolution can also be degraded by optical imperfections such
as chromatic aberration, astigmatism, and coma. While transmission optics
typically minimize astigmatism and coma, chromatic aberration can become
a serious problem in the red and blue. Likewise reflective optics avoid chro-
matic aberrations, but can introduce astigmatism and often coma.

2.4.2 FT-Raman Spectrometers

As the Raman excitation wavelength increases beyond ~ 850 nm, CCD dete-
ctors and detectors, which utilize photocathodes (such as photomultipliers,
and intensified CCD and Reticons) become inefficient. Unfortunately, the
only useful near IR detectors have high background noise levels [32]. Thus,
it is necessary to utilize multiplex techniques to obtain acceptable spectral
signal-to-noise ratios. FT-Raman spectrometers are ideally suited for use with
diode pumped Nd:YAG lasers operating at 1064 nm. While FT Raman spe-
ctrometers would show no increase in S/N for shot noise limited detectors,
significant S/N increases occur with the noisy detectors used with near IR
Raman excitation. The use of near IR excitation often has the crucial ad-
vantage of reducing fluorescence interference. In addition, FT Raman spec-
trometers have both high spectral resolution and high frequency precision.
However, near IR Raman measurements are disadvantaged by the smaller
Raman scattering cross sections in the near IR and the poorer performance
of the near IR detectors. Table 2.2 compares the main advantages and disad-
vantages of near IR FT-Raman measurements versus typical visible Raman
measurements using dispersive Raman instruments.

2.4.3 Detectors

Until recently photomultipliers were the standard detectors used for Raman
spectral measurements. The entire UV, visible to near IR spectral region
(< 900nm) is well covered with an AlGaAs photocathode which has quantum
yields > 10% over this entire spectral range [32]. When cooled to —40°C
and used with photon counting detection, these detectors (such as the RCA
1420A-02 PMT) are almost ideal detectors with only a few counts per second
of background and a linear dynamic range of > 10°. In fact, PMT detectors
are still used for high resolution Raman measurements because they can be
masked by a final slit which can be as narrow as a few pm (in contrast to the
~ 25 um limits associated with the pixels of CCD and Reticon detectors).



2 Raman Instrumentation 45

Table 2.2. Relative performance characteristics of dispersive and FT-Raman in-
struments

Feature Dispersive Raman FT-Raman

Available wavelengths < 200 nm to 850 nm 1064 nm (99% systems)

Detector CCD, shot noise limited Ge or InGaAs,
detector noise limited

Best spectral resolution  typically 1-4 cm™! ~0.5cm™!

Fluorescence suppression moderate at 785 nm, Excellent

poor at 514 nm,
good at 244 nm

Operation at elevated excellent, > 1000°C poor, < 250°C
temperatures
Relative v* advantage @ 785 nm: 3.38 1
(from 1064) @ 514nm: 18.3
@ 244 nm: 362

Multichannel detectors [1,3] are far superior for lower resolution studies
(> lem™}) because their multiplex advantage increases the spectral signal-
to-noise ratios by the square root of the number of resolution elements over
a shot-noise limited detector such as a photomultiplier. The selection of a spe-
cific CCD camera for Raman spectroscopy requires careful consideration. The
wide selection of chip types, pixel sizes and operating temperatures must be
considered for background dark count rate, quantum efficiency and read out
noise. The scientific CCD detector with a quantum efficiency approaching
70% and very low dark current in the visible is almost ideal for most NIR
and visible wavelength Raman studies. With UV Raman the detector quan-
tum efficiency must be enhanced either by depositing UV fluorophores on
the CCD surface, or by utilizing a backthinned CCD. However at the lowest
light levels, where detector read noise or detector background dominates the
S/N ratio, image intensifiers significantly improve the detectivities of CCD
arrays.

With UV excitation the advantages of utilizing an intensified CCD typ-
ically far outweigh the disadvantages of a decreased detector dynamic range
and the increased statistical variance associated with the distribution of gain
in the intensifier. Most UV Raman spectral measurements involve a low pho-
ton flux. Intensified CCDs are especially helpful to align and set up a Raman
measurement; the alignment is guided by observing the real time Raman spe-
ctrum. We have found that an intensified CCD array gives significantly higher
spectral signal-to-noise values in the UV compared to any unintensified CCD
detector.

2.4.4 Imaging Raman Spectrometers

Raman spectroscopy with a microscope is rapidly becoming the method of
first choice for Raman analysis. The use of a microscope operating in a 180°
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backscattering geometry eliminates the need to continually adjust the laser
onto the sample and to focus the scattered light onto the spectrometer. Ra-
man microspectrophotometers utilize research grade microscopes to focus the
excitation onto the sample and to collect and transfer the Raman scattered
light into the Raman spectrometer. High numerical aperture microscope obje-
ctives greatly enhance the spatial resolution and the optical collection power
of the Raman instrument. Once aligned, the user is only required to place
a sample under the microscope and adjust it for best optical focus. These
Raman microscopes are easy to use and are capable of analyzing small areas
(~ 1um?) in order to determine the spatial distributions of chemical species.

Traditional Raman images are obtained by translating the sample across
the microscopic objective focus with a motorized stage (Raman image map-
ping) and constructing images from data extracted from each spectrum. How-
ever new generations of Raman microscopes are emerging that utilize novel
tunable filters to obtain Raman spectral images by illuminating a large field
of view, typically 20—200 m, and analyzing it for one or more specific Raman
wavelengths (global Raman imaging) [31}.

Commercial global Raman imaging spectrographs are available that use
dielectric filters, acousto-optic tunable filters (AOTF) or liquid crystal tu-
nable filters (LCTF). The electronic wavelength tuning ability and high image
quality and high spectral resolution (7—9 cm™!) of LCTF devices make them
the preferred global imaging dispersing elements, in spite of their lower opti-
cal efficiencies (< 20%). Although, dielectric filters have a large throughput
(60%) they have a lower resolution (~ 15cm™'). Raman imaging spectrome-
ters equipped with liquid crystal tunable filters have been demonstrated to
give 250 nm spatial resolution and 7 cm™! spectral resolution.

Still higher spatial resolution (~ 100nm) is available with the use of a Ra-
man scanning near field optical microscope (RSNOM) [33]. The RSNOM uses
a special fiber optic tapered to an aperture less than the optical wavelength
to couple the laser light to the sample. The spatial resolution is limited by
the size of the aperture, the proximity of the tip to the sample and the exci-
tation wavelength. Coupling the Raman excitation light out of the SNOM tip
remains a very inefficient process, and extremely long integration times are
required to obtain moderate S/N from very strong Raman scatterers. The
best results have been obtained where the RSNOM excitation wavelength is
in resonance with an absorption band of the sample producing a resonance
Raman spectrum [33].

2.5 Examples of New Raman Instruments
for Materials Characterization

In our laboratory we are using UV Raman spectroscopy to investigate the
growth and structure of CVD grown diamond [34-36]. One objective is to
obtain additional insight into the diamond growth mechanism, in order to
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optimize the process to increase the rate of diamond growth and to improve
CVD diamond quality. With this in mind we built two instruments to examine
CVD diamond films. For ez situ CVD diamond film studies we built a UV
Raman microscope [37] in order to spatially examine the diamond bands
to monitor stress, diamond crystal size, and to examine the structure and
location of non-diamond impurities within the CVD diamond films. In add-
ition, we built a separate UV Raman instrument to examine in situ growing
diamond films within a CVD plasma reactor [38].

2.5.1 UV Raman Microspectrometer for CVD Diamond Studies

Figure 2.1 illustrates the optical layout of the microspectrometer. We utilize
a modified Olympus U-RLA microscope with an epi-illuminator and a uni-
versal lamp housing. The excitation beam is introduced to the sample in-
dependently of the light collection optics, as opposed to the more typical
epi-illumination. Our design has the advantage that the beam focal spot size
and position are adjustable independently of the focusing conditions for col-
lecting the Raman scattered light. In addition, since we use a Cassegrain
objective, the prism in front of the objective does not obscure either the
excitation beam or collected scattered light.

We utilize an intracavity frequency doubled argon ion laser to excite the
UV Raman scattering [23]. For many of these experiments we utilized 244 and
229 nm excitation. The CW UV Raman laser beam is expanded to a ~ 10 mm

Fig. 2.1. Schematic showing the optical layout of the UV Raman microspectrome-
ter
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diameter and focused using a 5—10 cm focal-length lens onto the sample via
a Suprasil 90° turning prism mounted directly below the Cassegrain objective.
The beam can be focused to a spot size of 5—25 pm. An Opticon Corp. 36x
all-reflective Cassegrain microscope objective with a back focus of 160 mm,
a working distance of 10.5 mm and a numerical aperture (N.A.) of 0.5 is used
to collect the backscattered light. The 0.5 N.A. objective enables collection of
scattered radiation over a large solid angle (half angle = 30°). The objective
has a dielectric over-coated aluminum coating (Al/MgF5;). This Cassegrain
objective serves as a highly efficient collection optic for the scattered ra-
diation: Collecting at f/1, the sample spot size of 5—~10m can be imaged
efficiently into the entrance slit (100—200 pum) of the monochromator (f /6.8).

An Omega Optical Inc. 290 DCLPO2, UV dichroic beam splitter was
used to reflect > 90% of the scattered UV light between 230 and 265nm
towards the collecting optics of the monochromator and to transmit light
between 300 and 2000 nm to the microscope trinocular eyepiece. The dichroic
beam splitter is mounted in a fluorescence cube module, housed in the epi-
illuminator turret that was modified to enable the efficient coupling of the
scattered UV radiation into the spectrograph.

A 0.75 m single monochromator (f /6.8) was used to disperse the scattered
light. We utilized two dielectric longpass filters, custom constructed by Omega
Optical Inc. with a transmittance of 0.01% at 244nm and 65—80% between
252nm and 262 nm to reject the Rayleigh scattered light.

We earlier demonstrated that diamond Raman spectra excited within or
close to the diamond bandgap have dramatically improved S/N ratios, due to
the lack of interfering fluorescence signals [34-36]. This allowed us to monitor
the spectral differences between different non-diamond carbon species. We
were also able to observe for the first time the carbon-hydrogen (C — H)
stretching vibrations of the non-diamond components of CVD diamond films
and to examine the intensity and frequency of the third-order phonon bands
of diamond. Furthermore, we were able to detect and quantify different non-
diamond carbon species in the CVD diamond films.

Figure 2.2 shows the surface of the (100) face of a diamond crystallite
which occurs on the surface of a CVD diamond film, while Fig. 2.3 shows the
UV Raman spectra of this CVD diamond film excited at 244nm (~ 1.5 mW).
The diamond UV Raman spectra were recorded with the laser spot centered
on the (100) face of this single diamond crystallite (Fig. 2.3a), or at the grain
boundaries between diamond crystallites (Fig. 2.3b).

The absolute intensity of the diamond first order phonon band at 1332 cm 1
was approximately the same at the (100) face (Fig 2.3a)and at the grain boun-
daries (Fig 2.3b). However, the UV Raman spectrum taken from the grain boun-
daries showed a broad band at ~ 1600 cm ™}, assignable to non-diamond carbon
impurities. This band was not present in the spectrum from the (100) crystallite
face. These results demonstrate the ability to determine the spatial distribution
of non-diamond impurities in CVD diamond films.
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Fig. 2.2. CVD diamond film surface viewed with visible light epi-illumination
through the microscope attachment of the UV Raman microspectrometer, showing
the (100) faces of single crystallites

Our previous study of the oxidative degradation of CVD diamond films
showed that upon oxidation the intensity of the broad non-diamond carbon

Fig.2.3. (a) Raman spectra from CVD diamond film of the (100) face of
a single crystallite, and (b) at the interstices between diamond crystallites (244 nm:
~ 1.5 mW average power: 10s total accumulation time: 100 pm entrance slit)
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band at ~ 1550cm™! and the C — H stretching band of the non-diamond
components at 2930cm™! decreased with respect to the diamond first order
phonon band, but that the initial rate of decrease was significantly greater
for the 1550 cm™! band than for the 2930 cm™" band [34-36]. These results
indicate that non-diamond carbon species are oxidized in preference to dia-
mond. They also suggest that more than one non-diamond carbon impurity
is present in CVD diamond films.

Figure 2.3b illustrates that by using UV Raman microspectrometry we
can resolve underlying components of the non-diamond carbon band. In this
instance, a sharp low energy feature, fitted to the ~ 1553 cm~! amorphous
carbon band, is resolved from the broad ~ 1603cm™! non-diamond carbon
band. In other instances, the sharp ~ 1580cm~! graphite band dominates
the non-diamond carbon band. The limited spatial area probed enables us to
speciate the different non-diamond carbon species that make up the normally
broad non-diamond carbon band.

2.5.2 UV Raman Instrument for in situ Studies.
of CVD Diamond Growth

A UV Raman spectrometer [38] was constructed to examine in situ the
growth of diamond in a microwave plasma CVD diamond reactor (Fig. 2.4).
We utilized a 1.5kW ASTeX microwave plasma reactor that was modified
with silica viewports for spectroscopic access to the growing films during de-
position. The in situ UV Raman spectra were excited with CW 244 nm light
from a Coherent Innova 300 intracavity frequency doubled argon ion laser.
The 244 nm output was expanded and focused through a silica viewport and
onto the growth substrate/sample inside the reactor.

The scattered light was collimated by using a 90° off-axis parabolic mirror.
Two 244 nm dielectric stack filters were used to reject Rayleigh scattering. The
filtered Raman scattered light was reimaged onto the slit of a modified Spex
1701, 0.75m single monochromator (f/6.8) equipped with a 2400 groove/mm
holographic grating, and an EG&G PARC 1456 blue intensified photodiode
array optical multichannel analyzer. A spatial filter (600 um aperture) was
incorporated into the collection optical train directly behind the spectrograph
entrance slit to limit the measured sample volume by approximating confocal
imaging. Approximate confocal imaging was used to help minimize interfe-
rence from the plasma emission in the reactor. Although the plasma emission
intensity in the visible is sufficiently high to prevent visible wavelength Ra-
man measurements, it decreases dramatically in the UV spectral region below
~ 260 nm.

Figure 2.5 shows the in situ temperature dependence of the first order
Raman band of the growing diamond films (~ 1332cm™! at room tempera-
ture). We see very high S/N spectra for relatively short ~ 10min spectral
accumulation times. The independently measured plasma emission (measured
in the absence of the excitation beam) is easily subtracted off. We calculate
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Fig. 2.4. Schematic diagram showing the UV Raman spectrometer coupled to the
ASTex plasma CVD diamond growth chamber

an ~ 8 A thickness in situ detection limit for the growing CVD diamond films
within the plasma reactor.

The spectra display the well known frequency decrease of the first order
phonon band with temperature. This band frequency can be independently
used for determining temperature. We were surprised not to observe the ex-
pected nondiamond carbon impurity bands in these spectra, since they were
clearly observed in spectra of these same CVD films when they were cooled
down to room temperature. To our surprise we discovered that these non-
diamond carbon bands are enhanced by a narrow electronic resonance at
~ 244nm whose frequency is temperature dependent. This electronic reso-
nance shifts away from this 244 nm excitation wavelength at elevated tem-
peratures such that the Raman intensity is significantly decreased. Future
experiments will use adjacent UV excitations such as 229 or 238 nm to exa-
mine these nondiamond carbon bands at the elevated temperatures required
for CVD diamond growth.
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2.6 Conclusions

These are only two examples of the development of Raman instrumentation
for material science applications. These examples, show that Raman spectro-
scopy is a uniquely powerful probe of the underlying properties of materials
and molecular structure of the constituents. The technique measures both
vibrational frequencies and intensities. The frequencies report on chemical
bonding, molecular structure and environment. The intensities monitor the
strength of coupling between vibrational and electronic motion in the mate-
rial. The spectra obviously have an extraordinarily high information content.
Future instrument improvements will further enable the growth and adap-
tations of Raman spectroscopy to a variety of new applications. The new
generations of Raman spectrometers are compact, highly efficient and highly
adaptable instruments. This is a very exciting time to be working in the field
of Raman spectroscopy.
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3 Characterization of Bulk Semiconductors
Using Raman Spectroscopy

J. Menéndez

Abstract. This chapter provides a brief overview of Raman scattering in
semiconductors. The large amount of experimental information on these
materials is reviewed from the perspective of the latest theoretical advances,
and detailed expressions are given that should allow the reader to compute
Raman spectra and to compare theoretical cross sections with experimen-
tal photon counts. Applications of Raman spectroscopy to measurements of
crystal orientation, temperature, stress, impurities and alloying are succinctly
reviewed, with emphasis on the principles underlying these applications and
on the scope and limitations of the information that can be obtained with
Raman spectroscopy.

The fabrication of the first transistor in 1948 represents one of the greatest
triumphs of the quantum theory of materials. This historic event paved the
way for the spectacular technological developments of the second half of the
twentieth century. The semiconductor materials that enabled the new tech-
nologies became the target of intense research, and as a result of this effort
their electronic and vibrational properties are known today with unparalleled
detail, both from the experimental and theoretical points of view [1,2].

The large amount of experimental information available on semiconduct-
ors, combined with our theoretical understanding of these data, bode well for
the spectroscopic characterization of these materials, since the effect of exter-
nal perturbations on their electronic and vibrational spectra can be reliably
predicted. In this chapter, we review some of the applications of Raman spec-
troscopy to the characterization of semiconductors. Inelastic light scattering
— and laser spectroscopy in general — is very attractive as a characterization
tool due to its contactless and non-destructive nature. Typical applications to
be discussed in this chapter are the use of Raman spectroscopy for the deter-
mination of crystalline orientations, the measurement of temperature and
stress, the characterization of doping levels, and the study of alloy semicon-
ductors. Most of these applications emphasize vibrational (phonon) Raman
spectroscopy, but it is important to keep in mind that one of the most sig-
nificant strengths of Raman spectroscopy is its ability to probe the electronic
structure of semiconductors as well. This is accomplished by detecting ine-
lastic light scattering by electronic excitations [3,4] (instead of phonons) and
also by measuring the intensity of Raman scattering by phonons as a function
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of the incident laser wavelength. This intensity undergoes resonant enhance-
ments when the density of allowed interband optical transitions has a singula-
rity at the laser photon energy. Thus the measurement of “excitation” profiles
(Raman intensity versus laser wavelength), usually referred to as Resonance
Raman Spectroscopy (RRS), is a powerful tool for the determination of direct
band gaps and other above-gap direct transitions. RRS has been extensively
reviewed in the literature [5-8|, since in addition to providing information
on interband transition energies it is the main experimental technique for
the determination of the deformation potential parameters that characterize
the electron-phonon interaction. A combination of electronic Raman scat-
tering and RRS has been shown to be a very convenient technique for the
measurement of band offsets in semiconductor heterostructures [9].

Our selection of topics for this chapter is by no means comprehensive,
and even within this selection we will make no attempt at enumerating all
published studies. As opposed to a standard review article, this chapter is
written with those industrial and academic researchers in mind who would
like to gain an initial understanding of the capabilities of Raman scattering
as a characterization tool for semiconductors. Turnkey Raman systems tar-
geted to general users (rather than expert practitioners) are becoming in-
creasingly popular, and this chapter also provides some key formulas and
experimental data to help these users make the best of their new equipment.
Readers in search of comprehensive accounts are referred to the monumental
Landolt-Borstein tables [10,11] for raw experimental data, to several excellent
textbooks [1,2,12,13] for a reasoned and detailed exposure of semiconductor
theory, and to a number of very instructive books and reviews on related
topics [7,14-17]. Powerful search engines are now available on the Internet
and they should facilitate the identification of the vast majority of the very
valuable work not mentioned in our sampling of results.

QOur chapter starts with an introductory section, mainly theoretical, which
defines the basic concepts and explains the latest advances in our under-
standing of lattice dynamics and Raman spectra in semiconductors. This is
followed by sections describing each of the selected applications areas. The
box by Marcos Grimsditch on Brillouin scattering illustrates the applications
of this “sister technique”, and the box by Ingrid de Wolf describes how stress
characterization is carried out in practice.

3.1 Inelastic Light Scattering by Phonons
in Semiconductors

A general introduction to lattice dynamics and light scattering has been given
in Chap. 1. Here we concentrate on those aspects of the theory that are par-
ticularly relevant to semiconductors. We focus on group IV elemental semi-
conductors and III-V or II-VI compounds which crystallize in the diamond
or zincblende structures. In the remainder of this chapter, the word “semi-
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conductors” will be meant to refer to these cubic tetrahedral semiconductors
and not necessarily to other semiconducting systems. Table 3.1 shows some
characteristic data for these materials. It should be mentioned that some
tetrahedral semiconductors — including the nitride family, which has recently
attracted much attention for their remarkable optoelectronic properties —
crystallize in the wurtzite structure. This structure will not be discussed any
further here, but nitride semiconductors are reviewed in Chap. 7.

Table 3.1. Selected structural, electronic, and vibrational properties of cubic semi-
conductors at room temperature. The last two columns show the frequencies of the
longitudinal and transverse optic phonons at ¢ = 0. These are the only allowed
Raman phonons in diamond and zincblende semiconductors

Material Lattice Indirect gap Direct gap wro(ecm™) wro(em™!)
parameter a (eV) (eV)
(in A)

Diamond 3.56683 5.4 6.5 1332
Si 5.43086 1.12 4.25 521
Ge 5.65748 0.66 0.81 303

a-Sn 6.489 0 196
AlP 5.4635 2.41 3.62 499 440
AlAs 5.660 2.14 3.03 403 362
AlSb 6.136 1.63 2.30 340 319
GaP 5.4505 2.26 2.78 403 367
GaAs  5.6534 1.429 292 269
GaSb 6.0958 0.75 237 227
InP 5.8687 1.34 345 304
InAs 6.0584 0.356 243 218
InSb 6.47877 0.18 193 180
ZnS 5.4102 3.69 352 271
ZnSe 5.6676 2.69 250 205
ZnTe 6.1037 2.25 205 177
CdTe  6.482 1.49 168 139

HgTe 6.453 0 137 118
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3.1.1 Phonons in Semiconductors

Within the harmonic approximation, vibrations are solutions to the eigen-
value problem [18]

(B - wiM)e(f) =0. (3.1)

Here & is a force-constants matrix whose elements are given by &@;; (I, l'x") =
02V (u)/(0ui(lk)Ou;(l'x’)), where V(u) is the crystalline potential and the
atomic displacements are indicated collectively by wu, which is a 3nN-
dimensional vector formed by combining the 3-dimensional displacement vec-
tors for each of the n atoms in the N unit cells of the system. The dis-
placement in the i-direction of the ' atom in the I-th unit cell is de-
noted by wu;(lk). Therefore, ®;;(Ix,l'x’) is equal to minus the force in the
j-direction on atom (I’«’) for a unit displacement of atom (k) in the i-
direction. The dimensionality of @ is 3Nn x 3Nn. For diamond and zinc-
blende semiconductors £ = 1 or 2, so that n = 2). The matrix M is given
by M;;(lk,I's’) = M(k)diinj, Where M (k) is the mass of the s*! atom in
the unit cell. Equation (3.1) can be diagonalized numerically using standard
packages for generalized eigenvalue problems. It is quite common to rewrite
this equation as a more conventional eigenvalue problem of the form HY =
EW by defining a dynamical matrix D;; (I, I's") = & (I6, U'K") | (McM)~1/2,
but this approach tends to obscure the physics of some common phenomena
by combining in the dynamical matrix possible mass and force constant
changes. This will become apparent below, as we discuss the effect of per-
turbations on the lattice dynamics of semiconductors.

The eigenvectors of (3.1) satisfy the completeness and orthonormality
conditions

3nN

> MeE(fe(f) =1
f

ENf)Me(f') =655 - (3.2)

so that any arbitrary collective displacement w can be written as a linear
combination of these eigenvectors as

u=> &()Qr (3:3)
f

The coefficients Q5 are known as the normal coordinates of the system. For
a periodic solid Bloch’s theorem requires that the eigenvectors be plane waves,
which can be written as

ei(r | gm)

el | gm) = NV

exp [ig - R(Ix)]. (3.4)
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Here the e’s are the so-called phonon polarization vectors. Substituting (3.4)
into the orthonormality condition in (3.2), one finds that the phonon polari-
zation vectors are normalized according to ). | e;(x | gm) |*= 1.

The ansatz represented by (3.4) decouples the eigenvalue problem in (3.1)
into N sets of 3n x 3n problems, one for each wave vector q. The index f,
which labels the 3Nn independent solutions to (3.1), is split into N wave ve-
ctors g and a branch index m that runs from 1 through 3n. The 3n functions
wm(q) represent the phonon dispersion curves. These curves can be measured
using inelastic neutron scattering (INS), as shown in Fig. 3.1 for GaAs [19]
and therefore represent the contact point between theory and experiment.
Since Raman spectroscopy is kinematically restricted to g = 0 phonons, its
value as a probe of the lattice dynamics of semiconductors is much more limi-
ted. However, second order Raman scattering involves pairs of phonons with
wave vectors g and g2 such that g1 + g2 = 0, and therefore it can be used to
explore phonon frequencies away from g = 0, as explained in the introductory
chapter. In tetrahedral semiconductors the polarized (parallel incident and
scattered light polarizations) second order Raman spectrum is essentially pro-
portional to the phonon density of states,whose critical pointslead to sharp
features in the Raman spectra [20]. The spectroscopy of these features can
provide important lattice dynamical information in those cases for which it is
not possible to obtain INS data. A good example is AlAs, which is only avai-
lable as thin epitaxial layers due to the tendency of this material to oxidize
rapidly in the presence of air. Since INS requires large crystalline samples,
no INS spectra are available for AlAs. However, second order Raman scatter-
ing has provided strong evidence in support of the AlAs phonon dispersion
curves calculated from density functional theory [21]. Second order Raman
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Fig. 3.1. Diamonds: experimental low temperature phonon dispersion relations
for GaAs [19]. Solid lines: Calculated dispersion relations from density functional
perturbation theory [30]
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scattering has also played an important role in the study of the overbending
of optical phonons in materials such as diamond [22] and AISb [23].

The basic lattice dynamical problem is the determination of the force
constants matrix @. If one considers the fact that in most crystalline solids —
including tetrahedral semiconductors — the ionic displacements are extremely
slow relative to typical times for electronic transitions, it can be assumed
that the system remains in its ground electronic state as the ions move.
Within this adiabatic approximation the instantaneous crystalline potential
V is the total ground state energy of the crystal for a “frozen” displacement
of the atoms from their equilibrium positions. Modern ab initio calculations
of phonons — to be discussed below — are based on this idea. The traditional
approach, however, has been to fit an empirical potential to the experimental
phonon dispersion curves. The simplest such approach (sometimes called the
Born-von-Karman model) takes the elements of the force constant matrix &
as adjustable parameters. The number of different parameters is expected to
be manageable due to symmetry considerations and to the fact that distant
atoms are not expected to interact strongly. However, the pioneering work of
Frank Herman showed as early as 1959 that in the case of tetrahedral semi-
conductors interactions up to fifth neighbors had to be taken into account
for a reasonable fit of the measured phonon dispersion relations [24]. These
medium — range interactions are responsible-among other details of the pho-
non dispersion curves — for the dramatic flattening of the transverse acoustic
branches as the wave vector approaches the Brillouin zone edge along same
low-index directions [25]. This is clearly seen in Fig. 3.1 for GaAs, and it is
observed in all tetrahedral semiconductors except diamond.

The physical interpretation of a Born-von-Karman fit to the phonon
dispersion relations in tetrahedral semiconductors is complicated not only
because of the large number of parameters needed but, more fundamentally,
because the charge density in covalent materials is localized not only around
the nuclei but also along the interatomic bonds. If interactions involving the
bond charges play an important role in the lattice dynamics, they will impact
the Born—von-Karman parameters in an indirect and in general very compli-
cated way. Therefore, it appears that one can arrive at a much better under-
standing of phonons in tetrahedral semiconductors by explicitly constructing
an interatomic potential that takes into account the important interactions.
Once this potential is proposed, the Born—von-Karman parameters follow
from simple differentiation and the phonon dispersion curves can be computed
in terms of the adjustable parameters of the proposed interatomic potential.
The most successful application of such an approach is Weber’s Adiabatic
Bond Charge model, which produces an excellent fit of the phonon disper-
sion relations in diamond, Si, and Ge with only 4 adjustable parameters [26].
The model can be extended to III-V and II-VI zincblende semiconductors
by increasing the number of parameters to six [27,28]. The adiabatic bond
charge model provides a straightforward interpretation for many of the pecu-
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liarities of the phonon dispersion relations in semiconductors. In particular,
the flattening of the transverse acoustic branches can be traced back to the
stiffness of the interaction between neighboring bond charges [25,26].

A completely new approach to the lattice dynamics of tetrahedral semi-
conductors became possible in the 1970’s, as electronic total energy calcula-
tions based on density functional theory reached a high level of accuracy [29].
As mentioned above, for any crystalline distortion u the interatomic poten-
tial V(u) can be equated (within the adiabatic approximation) to the sys-
tem’s energy eigenvalue E(u) corresponding to the ground electronic state
for frozen displacements u. This makes it possible to obtain force constants
from “first principles” without any fit to experiment. The first applications
were restricted to phonons propagating along high symmetry directions, but
the introduction of “Density Functional Perturbation Theory” (DFPT) made
it possible to calculate phonon frequencies and eigenvectors for arbitrary
wavevectors within the Brillouin zone [30]. The agreement with experiment
is truly remarkable, as shown in Fig. 3.1. In addition to the excellent numeri-
cal agreement with experiment, the ab initio method offers new insights into
the lattice dynamics of semiconductors. Figure 3.2 shows the phonon dis-
persion relations for GaAs calculated with GaAs and AlAs force constants.
It is apparent that the resulting curves are virtually identical. A systematic
study [31] finds that the force constants are a smooth function of the lattice
parameter a, and that they change by no more than 20% from a =5.6 A
through a = 6.4 A. This transferability of force constants — which, as we will
see below, is extremely useful for the modeling of semiconductor alloys — is
not fully apparent when comparing empirical potentials fit to the experimen-
tal phonon dispersion relations. With hindsight, the reasons become quite
obvious. The phonon dispersion relations represent the eigenvalues of the lat-
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tice dynamical problem, but the interatomic potential is not fully determined
by these eigenvalues: the vibrational eigenvectors are also needed. Unfortu-
nately, phonon eigenvectors are difficult to measure (see for example [32] for
Si), so that virtually all empirical determinations of interatomic potentials
ignore the eigenvectors and fit the potential to the phonon frequencies. It is
not surprising that this procedure leads to systematic errors and obscures
the similarity of force constants for systems with similar lattice constants.
Recently, the very successful adiabatic bond charge model has been refit
using experimental phonon frequencies and the theoretical eigenvectors from
ab initio calculations [33]. This procedure is justified because the excellent
agreement between experiment and first-principles frequencies suggests that
the first principles eigenvectors should be similarly accurate. This has in fact
been verified in the few cases where experimental eigenvector determinations
are available [32]. The newly fit adiabatic bond charge model has a slightly
worse agreement with the experimental phonon dispersion relations but pro-
vides a much better account of the transferability of force constants among
tetrahedral semiconductors.

Perturbations. The detailed knowledge of the lattice dynamics of semi-
conductors provides the appropriate starting point for the treatment of com-
mon perturbations, such as the addition of foreign atoms, the application of
stress, etc. In general, these perturbations will change the force constant and
mass matrices, so that (3.1) becomes

[(® + A®) — w3 (M + AM)] (f) = 0. (3.5)

For small perturbations, as is often the case in practical applications, it
is convenient to rewrite (3.5) in terms of the complete set of orthonormal
unperturbed mode eigenvectors. We obtain

Z [(wgf —w?) (Sff/ +A§ff/ —w]%AMff«] Cfs :0, (36)
fl
where we have introduced the matrix elements
AM 5 = E\(f)AMeo(f')
Ay = &)(f)Adeo(f) (3.7)

and the subscript “0” refers to unperturbed quantities. The coefficients csys
are the expansion coefficients of the perturbed eigenvectors in terms of the
unperturbed ones:

3Nn

(x| f) = erpenilln] ). (3.8)
fl=1

Equations (3.5) and (3.6) are very convenient as the starting point for a per-
turbation theory treatment. For cases in which non-degenerate perturbation
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theory can be used, expansions up to third order in the mass perturbation
have been given [34]. It is important to stress that no additional approxima-
tions were made in going from (3.5) to (3.6). In other words, regardless of the
size of the perturbation both equations can be solved exactly by numerical
diagonalization — using the same generalized eigenvalue routines — and the
solutions obtained are identical. Equations (3.5) and (3.6) can be used to
treat isotopic disorder (in which case A® = 0), stress (for which AM = 0),
and alloying, for which in principle both the force constant and mass matrices
change.

3.1.2 Anharmonic Effects

The theoretical description of vibrations based on (3.1) relies on the harmonic
approximation, which neglects third- and higher-order derivatives of the crys-
talline potential. While this is a very good approximation for semiconductors,
the neglected anharmonic terms are responsible for a number of important
effects, some of them very useful for characterization purposes. This includes
the temperature- and stress dependence of phonon frequencies. In the pre-
sence of small anharmonic perturbations the phonon picture remains ap-
proximately valid, but the phonon lifetime becomes finite (the lifetime is
obviously infinite within the harmonic approximation, since phonons are the
exact solution to the harmonic Hamiltonian). This lifetime manifests itself
as a non-vanishing width of the phonon peaks measured with spectroscopic
techniques such as Raman scattering. Particularly important for applications
is the lifetime of long-wavelength longitudinal optical LO phonons in polar
semiconductors, which is typically of the order of a few ps. These phonons
couple very strongly to electrons, and the corresponding scattering rates de-
pend directly on the steady-state non-equilibrium phonon population, which
is largest (smallest) for the longest (shortest) anharmonic lifetimes [35].

A quantitative theory of anharmonic effects in semiconductors has not
been available until very recently. Attempts to develop empirical potential
models — in analogy with the empirical potential fits for the harmonic part
of the potential — have not been very successful, in part because of the enor-
mous proliferation of adjustable parameters as third and higher derivatives of
the potential are included. Satisfactory agreement with experiment has only
been obtained from ab initio calculations within density functional theory.
The first successes of this theory were the calculation of third-order elastic
constants [36], and the correct reproduction of the pressure and stress depen-
dence of the frequency of high-symmetry phonons [37]. More recently, first
principles calculations of the linewidth of Raman-active optical phonons in
semiconductors have been published [38-40]. The agreement with experiment
is truly remarkable if one considers that the accuracy of the results depends
not only on a detailed knowledge of the anharmonic potential but also on
a very accurate harmonic model for the same material. These conditions are
so stringent that before the publication of the first principles results there
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was no other acceptable quantitative theory of Raman linewidths in semicon-
ductors.

3.1.3 Raman Scattering by Phonons

The general theory of Raman scattering by phonons has been discussed in
the introductory chapter; here we concentrate on aspects that are intrinsic
to semiconductors.

The best way to visualize the ingredients needed to construct a theory of
the Raman intensities is to start with the simpler case of elastically reflected
light. When an incident field given by E(t) = E, coswrt is present in a ma-
terial, the system develops a polarization (dipole moment per unit volume)
whose Cartesian components are given by

1

P(t) = D (xige e + x5;e™H) By (3.9)
J

Here the tensor x;; is the system’s electronic susceptibility, which is
a function of the frequency wy. This time-dependent polarization produces
electromagnetic radiation, and if we define the scattering cross section as the
power radiated into a solid angle df2 divided by the incident intensity, we
obtain the familiar expression [18]

2

do  wiV?
aﬁ = Lc‘4 Zegixije[,j s (3.10)
j

where V is the volume of the scattering medium and ey, eg are unit polari-
zation vectors for the incident and scattered light, respectively. The suscep-
tibility x depends on the electronic structure of the system, which changes
as the atoms vibrate. The light scattering due to the phonon-induced change
in susceptibility is what we know as Raman scattering. Since vibrational fre-
quencies in semiconductors are typically much lower than the frequencies
associated with electronic transitions, we can as a first approximation con-
sider the electronic susceptibility for a frozen atomic configuration u. For
small displacements from equilibrium, as is usually the case for vibrations in
crystals, one can expand the susceptibility as

xij (u) = xi5(0) + ZXij,foa (3.11)
f
where
i 0x;
x5 = 2] =3 et Dastu) ) g). (312

Jug (ln
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Substituting (3.11) into (3.10), one obtains a term that does not contain
Qy (which gives Rayleigh scattering) plus terms linear and quadratic in the
normal coordinates. The linear terms vanish upon a thermal average, so that
Raman scattering is produced by the quadratic terms only. Using standard
results from the quantum theory of the harmonic oscillator for the ther-
mal average of the quadratic terms, and introducing energy-conserving delta
functions in an ad-hoc manner, one finally obtains a Raman differential cross
section given by

2 wr —we)?
= A S ) (o 16 - ) + b+ )

dRdw — 2¢t

2

x ZCSz'Xij,feLj . (3.13)
ij

Here w; is the Raman shift, and n = [exp(fws/ksT) — 1] is the Bose—
Einstein phonon occupation number for mode f. The first term in the curly
bracket gives Stokes scattering (phonon creation) and the second term gives
anti-Stokes scattering (phonon annihilation). A rigorous quantum mechanical
derivation of the cross section reduces to (3.13) if the incident frequency
satisfies wy << wr << Eg4(dir)/h [41]. For visible light excitation the first
condition is satisfied in semiconductors but the incident photon energy is not
much smaller than the direct band gap E4(dir). This has little effect on the
selection rules to be discussed below but can affect the comparison between
predicted and observed intensities. Notice that a factor w$ — corresponding
to the scattering frequency ws = wr, — wy — appears in (3.13) instead of w},
as might be expected in view of (3.10). We have introduced this factor in an
ad-hoc manner so that is consistent with the quantum theory of the Raman
effect. The difference between the two factors is not important within the
range of validity (3.13).

For the case of the three-fold degenerate zone-center optical phonons in
diamond and zincblende semiconductors one can use (3.12) to find a simple
expression for the susceptibility derivative tensor x;; r. From the orthonor-
mality properties of the eigenvectors and the requirement that the center of
mass of the unit cell should not move, one can write

Ei(lﬁ I Ok) = %}—%\/—%’6%, (3.14)

where p is the reduced mass of the unit cell, and we have used the compo-
site symbol f = 0k with k£ = z,y, 2z to label the three degenerate modes.
Furthermore, the crystal periodicity requires that the spatial derivatives of
the susceptibility be independent of the index [/, and translational invariance
requires that the sum of the susceptibility derivatives for all atoms within
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a unit cell be zero. Combining all these results we obtain

BX” (u) Bx” . r
Xigk \/ Our(02) o Bug(01) 01 _vc ;LNR”’k’ (3.15)

where the sign depends on our choice of eigenvectors in (3.14). We define
here a “Raman tensor” R;; ¢, which, as will become more apparent later, is
a volume-independent quantity. Here v, is the volume of the unit cell (for
diamond and zincblende semiconductors v, = a®/4, where a is the lattice
constant listed in Table 3.1). It is customary in the literature to express the
strength of Raman scattering in tetrahedral semiconductors in terms of R .
Furthermore, since the cross section is proportional to the volume of the solid,
it is useful to define a Raman cross section per unit volume dS/(df2dw),
called “scattering efliciency”, so that we obtain the following expression for
optic phonons in diamond and zincblende semiconductors:

ds h Z ((J.)L —wk)4 {(

df2dw - 2uv.ct W g+ 1)6(w — wi) + nEd(w + wk)}

k=z,y,z
2

X ZeSiRij1keLj . (316)
if

Symmetry considerations. Several selection rules follow from (3.13) or
(3.16). The delta functions for the frequency insure energy conservation. The
electronic susceptibility is a function x;;(w,k) of the frequency and wave
vector. The wave vector dependence was not indicated explicitly in (3.9)
because we assumed the incident field to have an infinite wavelength, so that
only the k = 0 component plays a role in the subsequent derivations. The
resulting susceptibility derivative x;;, 5 is symmetric in the indices 4, j and will
vanish if the phonon wave vector in f = (gm) is nonzero. The latter represents
the crystal momentum conservation rule. A more rigorous treatment would
lead to the possibility of anti-symmetric terms and to expressions involving
delta-functions of the form §(ks+q— k). However,the allowed phonon wave
vectors resulting from these expressions are usually small compared to the size
of the Brillouin zone of the crystal, so that the simple g = 0 Raman selection
rule is normally an excellent approximation (see the Chap. 1). Contributions
beyond this “dipole approximation” can be expected to be proportional to ga
(where a is the lattice constant) and therefore small. These considerations,
however, may break down near resonances, as discussed in the introductory
chapter. For example, the macroscopic electric field set up by longitudinal
optic (LO) phonons in polar semiconductors makes a contribution to the
Raman cross section of these modes that is proportional to (ga)? but so
resonant that its strength can become comparable to the allowed q = 0 cross
section. Several authors have reviewed this process [6-8].
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A key feature of Raman scattering is its dependence on the polarization
vectors of the incident and scattered light, and this dependence arises from
the symmetry properties of the susceptibility derivative x;j 5 or, equivalently,
of the Raman tensor R;j ¢. These are second-rank tensors whose forms can
be determined from group theory considerations. But the steep “learning
curve” of group theory and its subtleties in the area of crystalline symmetries
represent a serious barrier to the occasional user. Fortunately, tables with
the form of the R;; s tensor for crystals with different symmetries can be
found in the literature, and this simplifies considerably the analysis of the
experimental results. Less known is the fact that the form of the R;; ; tensor
can be easily generated from the tables of characters for the corresponding
point groups following an approach explained in detail by Callen [42].

The basic idea for any group theory analysis of the symmetry proper-
ties of the R;; s tensor is the realization that the scattering cross section
is a scalar that is invariant under any of the symmetry operations of the
molecule or crystal. From (3.13), this cgoss—section could be written sym-
bolically as dS/df2 o |>_.. Rij sei€;Q f’ . Since the right-hand side of this
expression must also be an invariant, we must find polynomials of the form
eie;Qs which are invariant under the symmetry properties of the crystal.
The number of such polynomials gives the number of independent compo-
nents of the tensor R;; ¢. In the jargon of group theory, this means that one
must find polynomials of the form e;e; Q¢ which belong to the identical re-
presentation. Unsold’s theorem provides a systematic way of generating such
polynomials. The theorem states that if the basis functions {¢1, ¢2,... ,¢n}
and {¢1,%2,...,%n} generate exactly the same irreducible representation,
the sum Y7 | ¢m ¥, belongs to the identical representation. Since basis
functions are listed in tables of characters, generating the Raman tensor can
be as simple as inspecting the character table for the relevant group.

Let us apply the above ideas to the case of Raman scattering by optical
phonons in zincblende and diamond structure semiconductors. For scattering
by q = 0 phonons, the point groups of each crystal structure are needed, and
these are Ty and Oy, for zincblende and diamond, respectively. Table 3.2 lists
the irreducible representations and some of the corresponding basis functions
for each of these groups. Once symmetrized, the products e;e; transform like
quadratic polynomials in z,y, 2. Hence from Unsold’s theorem we can im-
mediately see that all Raman-active phonons must belong to the irreducible
representations for which these quadratic polynomials appear as basis func-
tions. From Table 3.2, these are A;, E, and F; in Ty and Aig, Eg, and Fyg in
Oy,. Using the procedure outlined in Sect. 2.5 of the introductory chapter, we
find that the g = 0 optic phonons in zincblende and diamond structures be-
long to the three-dimensional F> and Fj, representations, respectively, and
the corresponding eigenvectors are given in (3.14). Since {Q., Qy, Q.} are
basis functions for F»(Ty) and F54(Op), and the polynomials {yz,zz,xy}
are basis functions for the same representation, Unstld’s theorem implies
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Table 3.2. Basis functions for the irreducible representations of the Ty (zincblende)
and Oy, (diamond) point groups. The functions are ordered and normalized accor-
ding to Callen’s prescription

T4 (zincblende) Oy, (diamond)
(A1) 2°+y*+2° ‘ N(A) 22+y*+2°
I(A2)  zyz I/ (Av)
2 (E)  [V3(z® -9, I5(Azg)
222 — 2 — 7
I's(F2) (z,y, 2); (yz,zz, Ty); Iy (Agn) zY2

(@, %, 2% [e(y? + 22),
y(z* +2?), 2(2” + 9%
Is(F1)  [z(y® — 2%),y(z* —2®), T2(BEg) [V3(2® —v7),22° —2° — o]
2(z® - y?)]
Iy (Ew)
I's (Fiu)
Ns(Fa)  (=,9,2); (2%, 4%, 2%); [2(2* + %),
y(z* +2%), 2(2® + )]
Doy (F2g)  (y2,72,29), (y22?, 2292, 292°)
Dos(Fau)  [2(y? — 2%),9(2% — 2°), 2(a® — ¢?)]

Qzeye; + Qye.e; + Q. ezey = invariant. There is only one such combination
that can be formed. This means that R;;x has the form

000 00a 0a0
Rij,m = 00a Ri]‘,y = 000 Rij,z = a00]. (317)
0a0 a00 000

Notice that these Raman tensors correspond to phonon eigenvectors along the
z,y, and z axis, respectively. Since the three optical phonons are degenerate,
any linear combination of these eigenvectors can also be chosen as eigen-
vectors. The corresponding Raman tensor can be easily obtained from (3.17)
by expressing the new eigenvectors in terms of the old ones. For a phonon
polarized along an arbitrary h-direction, one obtains

Ryn= Y exaBin, (3.18)

A=z,y,2

where e j, is the Ath component of a unit vector in the h-direction.
For scattering by optic phonons in cubic diamond-structure systems, there
is never a need to “rotate” the Raman tensor according to (3.18), since after
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the sum over the three degenerate optic modes in (3.16) one obtains exactly
the same result for any set of three orthonormal polarization vectors. How-
ever, there are two important cases for which the rotation of the Raman tensor
is convenient and even necessary. The first such case arises in the presence
of external perturbations that lift the cubic degeneracy. The perturbation
determines the form of the mode eigenvectors, which can no longer be chosen
as arbitrary linear combinations. The Raman tensor corresponding to each
of the perturbed modes can be approximately obtained from (3.18) once the
perturbed mode eigenvectors are expressed in terms of the old ones. The
application of these ideas to the case of stress perturbations is discussed
below in Sect. 3.2.3.

The second important application of (3.18) is the case of polar semi-
conductors, for which the three zone center modes are split into two trans-
verse optic modes (TO) and a LO mode. This splitting appears to contradict
the group theory predictions of three-fold degeneracy for the optic modes
of zincblende materials, but a closer examination reveals that the behavior
of phonons in these materials is consistent with group theory. At exactly
q = 0 the optic modes are indeed degenerate for an infinite crystal, and
both transverse and longitudinal modes have the LO frequency. As ¢ is in-
creased, the photon frequency w = cg approaches the frequency of optic
vibrational modes. This leads to coupled photon-TO phonon modes, called
polaritons [43]. The upper branch acquires an increasing photon character as
q is increased further, whereas the lower branch becomes purely vibrational
and approaches the frequency of the TO phonon. The phonon wave vector
for Raman scattering is of the order of the wave vector of the incident pho-
ton, which for visible excitation is two orders of magnitude larger than the
wave vector for which photon and phonon frequencies overlap and produce
strong mixing. Hence the measured Raman frequencies correspond to the LO
and TO frequencies. But since this “large” Raman wave vector is much smal-
ler than the size of the Brillouin zone, the Raman tensors in (3.17) are still
relevant for Raman scattering by LO and TO phonons. The tensor corres-
ponding to the LO phonon is obtained from (3.18) by noting that this mode
has an eigenvector parallel to the wave vector transfer (LO phonons). The
component a is not necessarily the same for LO and TO phonons, since in the
former case the polarizability is also a function of the macroscopic electric
field. The relative magnitude of the two components aj,0 and aro depends
on the so-called Faust-Henry coefficient [44].

Our symmetry analysis based on Callen’s approach can be easily gene-
ralized to treat more complicated cases. For example, we mentioned above
that the macroscopic electric field associated with LO phonons contributes
a term to the electron-phonon interaction — the so-called Frohlich inter-
action — that makes strongly resonant g-dependent contributions to the Ra-
man tensor. In this case the quantity that must remain invariant is of the

2
form dS/df2 oc |3,y Rijk,sei€jqrQy| - From inspection of Table 3.2 we can
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now form three invariants using Unso6ld’s theorem: eye,q,Qz + eyey,q,Qy +
yCydyldy

€:€:4:Qz, (612/ + eg) q:Qz + (eg + ea2c) @@y + (ei + 912;) 4.Q. and eye.q, Q. +
€:€29; Qs + ezeyqzQy. Thus the corresponding Raman tensors become

b00 c00 c00
R,;jz’z =10c0 Rijy’y_—' 0560 Rijz,z =10b0]. (319)
00c 00c 00b

This means that the so-called “forbidden” Raman scattering by LO-phonons
arises from a diagonal Raman tensor. Notice that the third invariant poly-
nomial contributes off-diagonal components to Raman tensors of the form
R;jz.y, but these vanish in the specific case of the Frohlich interaction, which
is proportional to q - €.

Anastassakis and Burstein [45,46] have used Callen’s approach for the
determination of the form of the Raman tensor in a variety of situations,
including the application of external stress and electric fields. The reader is
referred to these very instructive papers for further illustrations of the power
of this approach.

Table 3.2 cannot be used directly to predict what phonons will partici-
pate in second-order Raman scattering. This is because such phonons can
have large wave vectors, for which the relevant symmetry group is not the
point group of the crystal but the group of the wave vector q. However, it still
remains true that for any form of light scattering the allowed configurations
correspond to the irreducible representations for which quadratic polynomials
in x,y, z are basis functions. Thus the direct product of the irreducible repre-
sentations to which the two phonons belong must contain A;, F, and F3 in
Tq and Ayg, E,, and Fyg in Op. A remarkable feature of both zincblende and
diamond semiconductors is that second-order Raman scattering is dominated
by overtones belonging to the A; and A,y irreducible representations, respe-
ctively. Thus second order Raman spectra resemble quite closely the phonon
density of states (with a scale expanded by a factor of 2). This can be used
to study the validity of lattice dynamical models, as indicated in Sect. 3.1.1.

Raman intensities. It is instructive to contrast our knowledge of the two
sets of a priori unknowns in (3.13) and (3.16): the vibrational frequencies on
the one hand and the components of the susceptibility derivative (or Raman)
tensor on the other hand. While frequencies can be measured with extra-
ordinary accuracy and calculated with very small errors, the measurement
and the calculation of the Raman tensor components represent formidable
problems. We now discuss the main experimental and theoretical issues sur-
rounding the determination of absolute Raman cross sections.

The quantity measured directly by the experimentalist is the number of
photons counted by a detector. Relating this experimental datum with the
cross sections defined above is not trivial. Strictly speaking, (3.13) applies
only to isolated molecules and is not valid for condensed matter, where the
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incident field “seen” by the scattering medium is not the laser field in air
but the effective field in the medium. This requires complicated local-field
corrections. In the quantum theory of Raman scattering in solids one can
approximately correct for this effect by equating the (infinite) volume of
the sample with the quantization volume for the electromagnetic field and
replacing the vacuum permittivity by the medium’s permittivity. This adds
a factor of (nns)~2 to the Raman cross section. Here 1z, (7s) is the material’s
refractive index at the laser (scattered) photon frequency. In semiconductors
this is a large correction of the order of 100, but it is almost entirely com-
pensated by two other contributions. Since the cross section is defined inside
the medium, we must use the speed of light in the medium. This gives addi-
tional dependencies on the index of refraction in such a way that the overall
correcting factor becomes 7s/nr, which is of the order of unity. However,
large corrections do arise when we try to relate the cross section inside the
sample with measurements that take place outside the sample. From a simple
application of Snell’s law it can be seen that the solid angle of scattering out-
side the sample df2’ is not equal to the solid angle inside the sample df2.
For small numerical apertures, the two are related by df2’ = nZdf2. In add-
ition, a fraction of the incident power is reflected at the air/sample interface
and a fraction of the scattered power is reflected at the sample/air interface.
A third complication arises from the fact that semiconductors are usually
strongly absorbing materials at visible wavelengths. For complete absorption
in a backscattering geometry one can define an effective scattering volume
given by Vog = L2/(ar +as), where L? is the illuminated area and oy (as) is
the absorption coeflicient at the incident (scattered) frequencies. More com-
plicated situations are discussed in [7] and [8]. Zeyher et al. have developed
a rigorous quantum mechanical theory of Raman scattering in the absorption
frequency range [47]. Combining all these corrections and defining dRY/df2’
as the number of photons per unit time counted by the detector for unit
solid angle of collection outside the sample (photon count rate), we obtain
for backscattering experiments on a strongly absorbing material

deg . C(wS)TLTS P' dS
d?dw  [(ag + as)n? | \Aws ) dR2dw’

where P’ is the laser power incident on the sample, Tp(Ts) is the power
transmission coefficient of the sample at the incident (scattered) photon fre-
quency; and C(wg) is a characteristic function of the experimental setup,
which gives the ratio of photons counted by the detector divided by the
number of photons scattered into df2’. Since C(wg) is difficult to measure,
a popular approach for determining scattering efficiencies is the sample sub-
stitution method, whereby a sample with a known scattering efficiency is
measured with the same setup in such a way that C(wg) can be eliminated
after rationing the measured count rates. A detailed discussion of this and
other methods for obtaining absolute Raman scattering efficiencies in semi-
conductors is given in [7] and [8]. Particularly noteworthy is the fact that

(3.20)
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these scattering efficiencies can be obtained from combined Raman and Bril-
louin measurements on the same sample (see box by M. Grimsditch). A truly
absolute measurement of a Raman cross section (for the case of liquid ben-
zene) is described in detail in a very instructive paper by Schomacker et
al. [48].

A common source of confusion (although rarely a source of large errors)
is the fact that many workers prefer to define the scattering cross section as
the number of photons radiated into a solid angle df? divided by the number
of incident photons per unit area. This “photon cross section” is equal to the
“power cross section” used in (3.13) or (3.16) multiplied by wy /ws.

Given the experimental complications described above it is not surprising
to find that absolute Raman efficiency measurements are rare. Moreover, large
discrepancies between different groups are not uncommon. Table 3.3 shows
selected experimental values for the single independent component of the
first-order Raman tensor in diamond and zincblende semiconductors (called
“Raman polarizability” in [7]). These values can be combined with (3.16)
and (3.20) to estimate the strength of the measured Raman peaks. Notice
that the scattering theory was developed by neglecting anharmonicity, so
that the Raman peaks are predicted to be delta functions. Experimentally,
the peaks are broadened by anharmonicity. The quantity to be compared with
the theoretical count rate prediction is therefore the area under the peak (not
the peak height).

Table 3.3. Selected values of the Raman polarizability a (in .&2) for diamond and
zincblende semiconductors

Material wr(eV) Experiment Theory
Diamond 2.41 4.3 £0.6* 4.5°
Silicon 0.94/1.1 23 4 4° 22°
Germanium  0.826 68 + 14¢ 64°
GaAs (TO) 1 63 + 10°

GaAs (TO) 1.2 50°

GaP (TO) 1 35+ 6°

GaP (TO) 1.92 23 4+ 5°

% M. Cardona: in Light Scattering in Solids II, ed. by M. Cardona, G. Giintherodt
(Springer-Verlag, Berlin 1982) Vol. 50, p.19-178

® W. Windl: Ab-initio-Berechnung von Raman-Spektren in Halbleitern (CH-Verlag,
Regensburg 1995)

¢ J. Wagner, M. Cardona: Solid State Commun. 48, 301 (1983)

4 J. Wagner, M. Cardona: Solid State Commun. 53, 845 (1985)

¢ Compiled by M. Cardona in (a)
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Theoretical considerations. Since the intensity of Raman scattering is
proportional to the change in the system’s electronic susceptibility induced
by the atomic displacements, the main ingredient of any theory of Raman
intensities is a model for the system’s electronic susceptibility. A simple ap-
proach that has been developed for molecular systems but is useful for in-
sulators and semiconductors is the bond polarizability model [49,50]. This
model assigns to each bond an axially symmetric polarizability given by

o () = B2y (B) + (30— T2 ) au () (3.21)
and builds the system’s polarizability as the sum of all bond polarizabilities.
The coefficients )] and o are assumed to be functions of the bond length
only. Since a general atomic displacement changes the bond orientation and
length, the derivative of the polarizability relative to atomic displacements
is not zero, and this explains the Raman activity of the system. Starting
from (3.21), one finds that the susceptibility derivative defined in (3.12) is
given by [34]

Rnb 20/, [R(nb .
s ——Z{[{ oL

H‘% [R(nb)] — o, [R(nb)] — 221 [R("b})g(;b? [R(nb)l)}

{R (nb)R;(nb) — ‘53 }R(nb)-s(nlf)}
[ { | [R(nb)] —al [R(nb)]}

nb)
x {Ri(nb)%'(nlf)+Rj(nb)€i(nf)—;R(nb)-e‘(nlf)%H } (322

where the primed quantities are derivatives relative to the bond length and
R(nb) is a unit vector along the direction R(nb) of a bond b connecting atom
n with one of its neighbors in the equilibrium configuration. The sum over n
runs over all atomic sites. We use this index instead of the (Ix) combination to
emphasize that (3.22) is valid for any system, including molecules (in which
case the expression is more conveniently written in terms of the polarizabi-
lity derivative) and disordered semiconductors. When applied to crystalline
solids, the right-hand side of (3.22) vanishes for modes with q # 0, as ex-
pected. For the specific case of diamond and zincblende semiconductors, the
sum of the unit vectors along the directions of the four bonds at each atom
is zero. This immediately leads to the cancellation of the first and third bra-
cket in (3.22) so that Raman scattering by the zone center phonons in these
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materials depends on a single parameter, as expected from group theory. In-
serting (3.14) in (3.22) we find that the only independent component of the
Raman tensor in (3.17) is given by

2 (a“ (R) - OL_L(R))
R

(3.23)

a= % (o (R) ~ ' () -

The parameters of the bond polarizability model must be obtained from
fits to Raman spectra and other dielectric properties. In the case of tetra-
hedral semiconductors, first-order Raman scattering depends on a single para-
meter, shown in (3.23), and the fits must also include second-order Raman
scattering. This has been done by Go and coworkers [51]. It appears that
the model is capable of providing a reasonably consistent explanation of Ra-
man intensities, elasto-optic coefficients, and the dielectric function. Once the
bond polarizability parameters are known for a few materials, one might be
able to deduce their values in other materials by identifying chemical trends
or using the so called “transferability” hypothesis [52], according to which
similar bonds will have similar polarizabilities, even if they are placed in dif-
ferent environments. These expected chemical regularities represent the most
appealing aspect of the bond polarizability model. For example, one could
attempt to compute the Raman spectrum of semiconductor alloys using bond
polarizability parameters for the parent compounds.

The susceptibility and its derivatives can also be calculated from the
known electronic structure of the material, and this has been attempted using
either empirical pseudopotentials [53] or tight-binding methods [54]. An even
better approach to the susceptibility problem is to develop ab initio methods
that do not rely on experimental input. If these are shown to reproduce the
Raman intensities in known materials, there is no a priori reason why the
predictions should be worse in new materials. An analogous situation arises
in the context of the phonon structure. While good empirical models can
reproduce the phonon structure of known materials with an accuracy compa-
rable to that of ab initio methods, the extrapolation of the model parameters
to new materials adds a significant level of uncertainty. By contrast, ab initio
predictions for known and unknown materials should be of comparable qua-
lity.

The first important question that arises in the context of predicting Ra-
man cross sections from first principles is whether once can use the local
density approximation (LDA) to density functional theory, i.e., the same
theoretical formalism that is known to yield extremely accurate phonon fre-
quencies and eigenvectors. The reader familiar with the quantum mechanical
expressions for the electronic susceptibility — which involve integrations over
valence and conduction band states — will immediately recognize a serious
problem that must be faced by the theorist: since the LDA underestimates
the separation between conduction and valence bands, the predicted suscep-
tibility (and its derivatives, which determine the Raman cross section) are
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likely to be in error. On the other hand, the static susceptibility for the equi-
librium structure as well as for a frozen displacement pattern u, x;;(u), must
be a ground state property, and therefore, aside from possible numerical com-
plications, it should be possible to compute it with the typical accuracy of
other ground state properties calculated within the local density and adia-
batic approximations. In other words, LDA ab initio calculations should be
reliable within the range of validity of (3.13).

For the zone-center optic phonons in diamond and zincblende
semiconductors the key quantity that must be calculated is the derivative
of the susceptibility relative to the displacement of one atom in the crystal,
as shown in (3.15). Since for computational purposes it is highly desirable to
deal with a periodic system, one can displace all atoms within a sublattice
by the same amount. If we refer to this collective displacement as ug(x), it is
apparent that

v Oxay(u) _ v Oxay(W) _ o Oxay(u)
€ Orel,z ¢ 0u,(2) Ou,(02)

=Ryy.=a (3.24)

where urerx = ug(2) — ug(l), and the first identity follows from expressing
the collective sublattice displacements in terms of their sum and differences
and noting that the derivative of the susceptibility relative to the sum of the
displacements must vanish because it corresponds to a uniform translation
of the crystal. This expression is identical to the definition of the Raman
polarizability in [7].

The basic procedure for the computation of the Raman polarizability from
first principles is to calculate the crystal’s susceptibility for different frozen
displacements uye; k, from which a can be obtained by numerical differentia-
tion. This method was pioneered by Baroni and Resta [55]. The results in
Table 3.3, which are in impressive agreement with off-resonance Raman mea-
surements in diamond, Si and Ge, are due to Windl, who has also extended
the method to second-order Raman scattering, also with very satisfactory
agreement with experiment [56]. It might be useful and instructive to fit
a bond polarizability model to the more reliable first principles results. This
should provide a deeper insight into the physical meaning of the bond pola-
rizability parameters, in much the same way that fits of the adiabatic bond
charge model to first-principles phonon calculations have contributed to the
understanding of this model of the vibrational properties of semiconductors.

Unfortunately, neither the bond polarizability model predictions nor the
first principles calculations can be expected to be very reliable for measu-
rements on semiconductors under typical experimental conditions. Visible
light photon energies are comparable to or higher than the band gaps of
these materials, well beyond the limit of validity of (3.13) and (3.16). Reso-
nance effects — not accounted for in the bond polarizability model or in the ab
initio approach described above — make a significant contribution to Raman
scattering by semiconductors under visible excitation. As shown by many
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authors [6-8,57], these resonance effects are a very useful spectroscopic tool
by themselves, and therefore have received considerable theoretical and ex-
perimental attention. However, it is unlikely that a practical ab initio theory
of Raman intensities will be developed in the near future for measurements
in this regime. An accurate description of the electronic structure (inclu-
ding the conduction bands) becomes critically important, and this requires
computer-intensive methods beyond the LDA. Even if such calculations can
be performed, excitonic effects can play a significant role in determining the
Raman cross section [7]. Only under extreme resonant conditions near a cri-
tical point in the joint valence-conduction density of states is it possible to
limit the integrations to a few states near the critical points, which sometimes
leads to simple analytical expressions for the Raman intensities [7,8].

3.2 Semiconductor Characterization

Our ability to predict the polarization properties, frequencies, and intensities
of semiconductor Raman spectra provides a powerful tool for the unambi-
guous identification of the materials and their crystalline structure. Moreover,
since many interesting phenomena can be described as perturbations to the
well-understood vibrational properties of semiconductors, it is also possible
to monitor these perturbations using Raman spectroscopy. In the remainder
of this chapter we describe some of these applications: the use of Raman
spectroscopy for the determination of crystalline orientations, the measure-
ment of temperature and stress, the characterization of doping levels, and
the study of alloy semiconductors.

3.2.1 Crystal Orientation

Although the traditional techniques for establishing the orientation of single
crystals are X-ray diffraction, transmission electron microscopy, electron or
ion channeling, and etch-pit measurements, Raman spectroscopy is an effec-
tive and sometimes superior alternative. The application of Raman spectro-
scopy to crystalline orientation is based on the fact that the three tensors
in (3.17) refer to the crystalline cubic axes, whereas the light polarization
vectors can be controlled in the laboratory system. Hence one can obtain
crystalline orientations by studying the intensity of Raman scattering as the
sample or the light polarization are rotated. A systematic methodology has
been developed by Mizoguchi and Nakashima [58], who show that a preci-
sion of about 2° and a spatial resolution of the order of 1um can be ea-
sily achieved. The method is also non-destructive and can be applied under
ambient conditions, which represents an additional advantage over the tra-
ditional approaches. A good example of the use of Raman spectroscopy in
crystal orientation measurements is the characterization of Si grown on insu-
lators (SOI) [59,60]. Figure 3.3 compares the polarization-dependent Raman
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Fig. 3.3. Angular dependence of the Raman intensity for a silicon-on-insulator film
grown on a Si substrate [60]

intensity between SOI and the (001)-oriented Si substrate. The relative dis-
placement of the two curves reflects a backward-tilt in crystal orientation in
the SOI of about 4° [60].

3.2.2 Temperature Monitoring

First-order Raman spectra change with temperature because the anharmoni-
city in the interatomic potential renders the phonon frequencies and lifetimes
temperature-dependent [15]. In addition, the Stokes/anti-Stokes intensity ra-
tios also depend on temperature, as is apparent from (3.15) and (3.16). Yet
another temperature-induced effect can be observed under quasi-resonant ex-
citation: the Raman intensities can change dramatically due to temperature-
dependent changes in the band structure. In fact, temperature tuning of the
band gaps was a way of measuring resonance excitation profiles before tunable
lasers became available.

The Stokes/anti-Stokes method is very appealing because it does not rely
on the details of the anharmonic interactions, which, as explained in the in-
troductory chapter, can vary from material to material. It has been used, for
example, to improve the design of semiconductor lasers [61]. It is important
to emphasize, however, that temperature readings from Stokes/anti-Stokes
ratios are very prone to systematic errors, since several corrections must be
applied, and the ratios themselves are not very strong functions of the tem-
perature. The corrections needed to extract temperatures from Stokes/anti-
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Stokes in silicon have been considered in detail by Compaan and Trodahl [62].
This paper is an excellent illustration of the difficulties of such measurements.
The first important consideration is that for experiments in semiconduc-
tors under visible excitation resonance effects can be important, and the re-
sonance enhancement is not the same for the Stokes and anti-Stokes signals.
This is because the exact symmetry property of the Raman tensor is [63]

Rijk(wr,ws) = Rijr(ws,wr), (3.25)

so that in order to obtain the same Raman tensor for Stokes and anti-Stokes
scattering one needs two laser lines separated by the phonon frequency. Even
if these lines were available, the experimental errors introduced by the change
of excitation source would reduce the reliability of the measurements. The
alternative to using two laser lines is to explicitly correct for the different
Raman cross-sections for Stokes and anti-Stokes scattering. For the case of
Si, this has been done by Compaan and Trodahl [62], taking advantage of
the fact that in this material the Raman tensor is proportional to the square
of the frequency derivative of the dielectric function, which can be easily
determined from ellipsometry measurements.

In addition to the Raman tensor corrections, all factors in the square
bracket in (3.20) depend on the light’s frequency, so that their values can be
different for Stokes and anti-Stokes scattering. Correcting for this dependence
requires a detailed knowledge of the optical properties of the material, which
is not always available.

Figures 3.4 and 3.5 show the temperature dependence of the Raman pho-
non frequency and linewidth for the elemental semiconductors Si, Ge, and
a-Sn. It is quite apparent that the frequency is a sensitive function of tem-
perature. A parameterization of this dependence can therefore be used to
monitor temperature. This method has been used by Ostermeir et al. to
study the temperature distribution in Si-MOSFETSs [64]. Care must be exer-
cised however, to verify that the temperature dependence of the Raman shift
under local heating agrees with the shift measured on bulk samples without
temperature gradients. For films grown on substrates, for example, the lat-
tice mismatch is usually temperature-dependent, and this adds a stress con-
tribution to the Raman shift. Even in a homogeneous sample, gradients of
temperature produce different degrees of thermal expansion, which can also
make stress contributions to the Raman phonon frequencies.

The Raman linewidth is also a strong function of temperature (particu-
larly at high temperatures) and can be used for monitoring temperature. In
principle, this approach has two distinct advantages over Raman shift measu-
rements: stress effects represent a second-order perturbation (provided that
there are no stress gradients leading to inhomogeneous broadening), and - un-
like the case of the Raman shift — there are simple and physically meaningful
expressions for the temperature dependence of the linewidth. For example,
the full-width at half maximum (FWHM) of the Raman peak corresponding
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to LO phonons in tetrahedral semiconductors is given by [65]

20(T) = 2T + ) 2™ [1 + n(wa) + 1 (wpo — wa)], (3.26)
A

where n(w) is the Bose-Einstein occupation number for a phonon of fre-
quency w (for a standard Lorentzian with broadening parameter I', the
FWHM is 2I'). The sum runs in principle over all pairs of phonons into which
the optic phonon can decay into, but in practice these frequencies tend to
cluster around certain values, to the extent that for some semiconductors the
temperature dependence can be fit with a single term. Good examples are
Si, Ge, and @-Sn, for which the experimental temperature dependence of the
Raman linewidth can be satisfactorily reproduced by assuming that the op-
tic phonon with frequency wp decays into pairs of phonons with frequencies
w1 = 0.65wp and w2 = 0.35wg [65]. The first term in (3.26) is a tempera-
ture independent broadening that arises from defects, inhomogeneities, etc.
The natural isotopic distribution in the material also makes a contribution,
which is small in the case of the LO phonons but significant for TO pho-
nons in polar semiconductors [66]. The recent availability of isotopically pure
samples has made it possible to study the effect of isotopes on the Raman line-
width [67,68]. Table 3.4 shows low temperature Raman linewidths for some
selected semiconductors. It is important to point out that (3.26) neglects
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fourth order anharmonicity (decay into three phonons) and therefore is not
accurate at very high temperatures.

The possible presence of a temperature independent contribution to the
Raman linewidth that varies from sample to sample limits the use of line-
widths for temperature monitoring. By and large, however, the main limi-
tation is the requirement that the instrumental broadening be significantly
smaller than the natural width of the line. In view of the linewidth values in
Table 3.4, this is a very stringent requirement, particularly for new genera-
tions of single-stage Raman spectrometers that are optimized for throughput.

3.2.3 Stress Measurements

The application of stress alters the phonon structure due to the anharmonic
components of the interatomic potential. The resulting changes in Raman
frequencies represent a powerful tool to monitor stress: micro-Raman spec-
troscopy is one of the techniques of choice for studying stress gradients in
semiconductor devices.

The strain associated with the applied stress changes the equilibrium po-
sition of the atoms in the crystal. The phonon frequencies corresponding to
the deformed crystal can be calculated within the quasi-harmonic approxi-
mation, whereby the force constants are evaluated at the new equilibrium
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Table 3.4. Low temperature full width at half maximum (FWHM) of the first order
Raman peak of selected semiconductors, in cm™!. When known, the contributions
25" due to isotopic disorder and the FWHM (pure) for an isotopically pure sample
are given

Material Temperature 2I° FWHM FWHM Theory
(pure)

Diamond 1.42 1.01°

Si 10K 0.024° 1.22 £0.02° 1244007 1.24°
(2BSi)

Ge 10K 0.03+0.03° 0.62+0.02° 0.66+0.02° 0.67°
(73Ge)

a-Sn 10K 0.81 £+ 0.15°

GaAs (LO) 12K 0.124+0.09° 0.55+0.05° 0.67 +0.10° 0.66
(5°GaAs)

GaAs (TO) 4K 0.83¢ 0.44f

AlAs (LO) 10K 0 0.65" 0.65" 0.42f

GaP (LO) 5K 0.20 £ 0.020  0.18f

GaP (TO) 3.06!

InP (LO) 6K 0.026% 0.038f

InP (TO) 80K 0.508 0.49f

2 M.A. Washington, H.Z. Cummins: Phys. Rev. B 15, 5840 (1977); with instrument
correction by the present author

® A. Debernardi, S. Baroni, E. Molinari: Phys. Rev. Lett. 75, 1819 (1995)

¢ F. Widulle, T. Ruf, A. Gébel, 1. Silier, E. Schonherr, M. Cardona, J. Camacho,
A. Cantarero, W. Kriegseis, V.I. Ozhogin: Physica B 263-264, 381 (1999)

4 J. Menéndez, M. Cardona: Phys. Rev. B 28, 2051 (1984)

¢ J.M. Zhang, M. Giehler, A. Gobel, T. Ruf, M. Cardona, E.E. Haller, K. Itoh:
Phys. Rev. B 57, 1348 (1998)

f A. Debernardi: Phys. Rev. B 57, 12847 (1998)

& G. Irmer, M. Wenzel, J. Monecke: Phys. Stat. Sol. (b) 195, 85 (1996)

% M. Canonico, J. Menéndez (unpublished)

! J. Kuhl, W.E. Bron: Solid State Commun. 49, 935 (1984)

i B.K. Bairamov, Y.E. Kitaev, V.K. Negoduiko, Z.M. Khashkhozhev: Fiz. Tverd.
Tela (Leningrad) 16, 2036 (1974)

k F. Vallée: Phys. Rev. B 49, 2460 (1994)
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positions and are different from the force constants of the undeformed crys-
tal due to the anharmonicity in the interatomic potential. For small values
of the strain, it can be assumed that the difference AP between the two sets
of force constants is linear in the strain, and a Taylor expansion makes it
possible to evaluate A® in terms of the higher derivatives of the interatomic
potential. The details of such derivation are given by Ganesan et al [69] and
will be omitted here, since they require rather subtle arguments involving the
different periodicities of the deformed and undeformed crystal and the fact
that the macroscopic strain parameters do not fully determine the position of
the atoms within a unit cell. However, it is easy to use Callen’s method [42] to
find the symmetry-allowed form of A®, and this has been done by Anastas-
sakis and Burstein [46]. For typical values of the stress, the induced frequency
shifts are of the order of 0.1% of the mode frequency. This suggests that stress
effects be treated perturbatively using (3.6) as the starting point. Since the
zone-center optic phonons in cubic elemental semiconductors are triply de-
generate, we must use degenerate perturbation theory, i.e. diagonalize the
problem in the three-dimensional subspace of the zone center optic modes.
If we use the index k = z,y, z to label these modes, insert the symmetry-
allowed form of A% from [46] and recall that in this case AM = 0, (3.6)
becomes

pei1 + q (e22 + eaz) — Awg rei re1s
reis pezz + q (eas + en1) — sz Té23
rei1s rezs pess + g (e + e22) — Awg

Cgr
Coy § — 0, (327)
Cgz

2

where Aw? = w? — w§ is the difference between the squares of the perturbed
and unperturbed frequencies, e;; the components of the strain tensor (defined
by Kittel [70]), and p,q,r are the only symmetry-allowed coefficients of the
perturbation. We use the index g to label the three solutions, which can be
obtained analytically by setting the determinant of the coeflicients in (3.27)
equal to zero. The strain components are either known from the boundary
conditions of the problem (for example, the in-plane strain components in
epitaxial films) or can be derived from the applied or known stress using
standard elasticity theory. The eigenvector components {cyz,Cgy,Cg2} can
be inserted in (3.8) to obtain the phonon eigenvector corresponding to the
perturbed mode g and also in (3.18) to obtain the corresponding Raman
tensor. Note that a general stress will remove the three-fold degeneracy of
the optic modes, so that arbitrary linear combinations of the displacement
eigenvectors in (3.14) no longer yield acceptable phonon eigenvectors. It is
therefore critical to properly rotate the Raman tensor to obtain the right
selection rules for each individual Raman peak.
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A common application of (3.27) is the case of a film epitaxially matched
to a (001)-oriented cubic substrate. In this case the off-diagonal components
of the strain are zero. The zz and yy diagonal components are given by
€zz = €yy = (Gsubstrate — Gfilm)/GsIlm, and it is easy to conclude from the con-
dition of vanishing stress at the growth surface that e,, = —(2C12/C11)ess
(here the C’s are the elastic constants). This perturbation splits the three-fold
degenerate modes into a singlet and a doublet whose eigenvalues are given

by
Aw?

singlet =

3p+29) (1-82) s +3(g—p) (1 +52) €aa
Afoupier = 3(P+29) (1~ &2 ) €oz — 5(a—0) (1+ 5522 ) eza-  (3.28)

It is easy to show that the so-called Griineisen parameter, defined as
v = —9lnw/0InV, can be expressed in terms of the parameters of this
theory as v = —(p + 2q)/6w?. Hence, the first terms in (3.28) represent the
hydrostatic contribution (which does not split the phonon frequencies) and
the second term gives the frequency splitting caused by the biaxial component
of the perturbation. Table 3.5 shows selected values of the p and g parameters
that can be used to evaluate (3.28). A more complete list of these parameters
was recently compiled in a review article by Anastassakis and Cardona [71].
This very instructive article also gives details on their measurement.

The phonon eigenvectors and Raman tensors for the singlet and doublet
in (3.28) can be obtained using the general procedure outlined above, but it
is intuitively clear in this case that the mode with eigenvector polarized along
the (001) direction becomes the singlet and the modes polarized in the other
two Cartesian directions become the doublet, so that the Raman tensor for
the singlet is the third tensor in (3.17). This is the only mode that can be
observed in the backscattering geometry for a (001)-oriented sample.

The foregoing discussion shows that it is relatively straightforward to
evaluate the stress induced shifts and splittings in the Raman spectra for
a known stress. On the other hand, the inverse problem (i.e., finding the
stress tensor from measurements of the Raman spectra) is much more com-
plicated, particularly in the presence of spatially inhomogeneous stresses with
no obvious symmetry [72-76]. This is precisely the case in many important
technological applications. An arbitrary stress has six independent compo-
nents, so that at least six different measurements are needed to characterize
the stress completely. In principle, this information is available: in silicon, for
example, one can determine the shift of each the three split modes relative to
the unperturbed optic phonon frequency, and one can measure the intensity
of their corresponding Raman peaks relative to the intensity of the Raman
line in unstressed Si. In practice, however, this is very difficult to do. Due to
the high index of refraction of the semiconductor materials, the light propa-
gates nearly parallel to the surface normal even for wide angles of incidence,
and in this quasi-backscattering configuration some of the modes may not be
observable. For example, for backscattering at the (001) surface of Si only
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Table 3.5. Experimental anharmonicity parameters p and g
for selected semiconductors. The parameters are normalized to
the frequency w? of the Raman mode in the unstressed mate-
rial. When two sets of values are given, the first set is for the
TO, the second for the LO phonon®

Material p/w? q/w?
Diamond -2.81 -1.77
Si -1.83 -2.33
Ge -1.47 -1.93
GaAs -2.40 -2.70
-1.70 -2.40
InP -2.5 -3.2
-1.6 -2.8
AlSb -2.1 -2.6
-1.6 -2.6
GaSb -1.9 -2.35
InAs -0.95 -2.10
ZnSe -2.75 -4.00
-0.94 -2.28
InSb -2.45 -3.04
-1.72 -2.65
GaP -1.35 -1.95
-1.45 -2.5

#Adapted from Anastassakis and M. Cardona, in High
Pressure in Semiconductor Physics II, Semniconductors
and Semimetals, Vol. 55, ed. by T. Suski, W. Paul
(Academic Press, 1998)

the mode polarized along the (001) direction is Raman-active, as indicated
above. In spite of these difficulties it has been shown recently that even for
(001)-oriented samples the other split phonons can be observed under wide
angles of incidence if the measurements are performed very carefully. Using
this “off-axis” technique the stress tensor can be determined directly from
experiment [77,78], but the method is not directly applicable in the context
of Raman microscopy, where there is a distribution of incident angles due to
the high numerical aperture of the objectives.

The approach commonly followed to study stresses with Raman spectro-
scopy is to model the stress field using a numerical technique such as the finite
element method, and to compare the spatially dependent Raman spectrum in
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the backscattering configuration with the Raman spectrum calculated from
the assumed stress distribution. A case study is briefly described in the box
by de Wolf.

3.2.4 Impurities

The key feature that explains the preeminent role of semiconductor materials
in modern technology is the ease with which their electronic properties can
be manipulated through doping. Quantifying doping levels in semiconductors
is therefore a primary requirement in the analytical laboratory. The contact-
less nature of Raman spectroscopy and its high spatial resolution makes this
technique an intriguing alternative for the determination of impurity concen-
trations. Impurities affect the Raman spectrum of semiconductors in different
ways. On the one hand, the vibrational modes associated with motions of the
impurity atoms can produce new Raman peaks. On the other hand, the pre-
sence of the impurities changes the Raman spectrum of the host material.
This occurs through the change in mass and bond length (atomic effects) and,
in the case of donors and acceptors, through the interaction of the carriers
with the lattice (electronic effects). The latter are often much stronger.

Impurity vibrational modes. The vibrational modes of impurities in crys-
tals and their light scattering properties have been discussed in Sect. 6 of the
introductory chapter. A comprehensive review of this subject has been writ-
ten by Barker and Sievers [79]. For concentrations of technological interest
it is not easy to detect impurity modes using Raman scattering, since the
signals are weak and often obscured by the second-order Raman spectrum of
the host. Figure 3.6 [80] shows the local modes of boron in Si observed by
Raman spectroscopy in a sample with a B concentration of 1.5 x 102° cm 3.
Considering the acceptable signal to noise ratios of the spectra and the pro-
gress in Raman instrumentation over the last 30 years, one can conclude that
in spite of the technical difficulties even modest concentrations of impuri-
ties can be detected using Raman spectroscopy of their local modes. In the
case of carbon in Si, for example, carbon impurities at concentration levels
of 107 /em?® can be observed [81].

The intensity of the impurity Raman peaks can be used to determine the
impurity concentration. This has to be done on the basis of a previous ca-
libration. Reliable calculations of Raman intensities for impurity modes are
in principle possible (using the above described ab initio methods), but they
are not available. Raman spectroscopy is particularly useful when the impu-
rity concentration can be determined from ratios of intensities between the
impurity and host Raman modes, thereby eliminating the need for absolute
intensity measurements. A good example is C in Si [82]. The local mode of
C is both Raman and infrared active, whereas Si itself is not infrared-active
to first order. Thus the sample preparation requirements for measurements
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Fig. 3.6. Raman spectrum of B-doped Si at room temperature, showing the loca-
lized vibrational modes corresponding to the B impurities [80]

of C in Si are much less stringent for Raman than for infrared absorption
spectroscopy.

Atomic effects. An order-of-magnitude estimate of atomic effects can be
obtained by assuming that the mass defect is uniformly distributed over all
atoms of the crystal. Substituting in (3.7) we obtain AMp = £ (AM /M) §5¢-.
Here z is the fractional impurity concentration and AM = (Mimp— M), where
M is the mass of the Si atom and Min,;, the mass of the impurity. Likewise, we
can assume that the different atomic radii of the impurity and host atoms lead
to a change in volume that is uniformly distributed over the crystal, so that
we obtain a strain tensor whose components are given by e;; = £(AR/R)d;;.
Substituting in (3.27) , we find A®sp = —6ywd (AR/R) zds¢/, where 7 is
the Griineisen parameter and wy is the unperturbed Raman frequency. Since
both the mass and strain perturbation are diagonal at this level of approxima-
tion, the mode eigenvectors remain unchanged and the only predicted effect
is a frequency shift that is given by the diagonal elements of the perturbation:

Aw? (AM AR>
o Z.
Wo

(3.29)
Figure 3.7 shows Raman spectra of p-type silicon for different B concentra-
tions [83). The main Si Raman peak is seen to broaden and shift to lower

frequencies. But B is lighter and smaller than Si, so that, contrary to the
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Fig. 3.7. Raman spectra of B-doped Si samples at room temperature, showing the
effect of the impurities on the main Si Raman line [83]

experimental finding, (3.29) predicts an increase in the peak frequency. For
our specific example of B in Si, this shift was estimated to be +1cm™! for
a concentration of 1.4 x10%° [83]. Moreover, the observed shifts are stron-
gly dependent on temperature, which can hardly be understood in terms
of (3.29), and suggest that the main contribution to the boron effect on the
Si Raman peak is electronic in character. Even for substitutional isovalent im-
purities, the agreement between (3.29) and experiment is poor. For example,
for C in Si (3.29) predicts Aw/w = 1.3z, whereas the experimental value is
Aw/w = 0.4z [84].

One reason for the failure of (3.29) is that the assumption of a uniformly
distributed mass excess or defect, used in the derivation, is not really justified.
The real mass distribution leads to off-diagonal elements of the mass matrix
AM; which are not negligible relative to the diagonal terms. These off-
diagonal elements AMy s (together with the off-diagonal elements A®¢s of
the force constant matrix) mix the modes of the unperturbed crystal. One
effect of this mixing is that all modes in the crystal acquire some Raman
activity, so that one might expect to see peaks at the frequency of critical
points in the phonon density of states of the unperturbed crystal [79].
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The correlation between the local impurity mode and the atomic effects
on the Raman spectrum of the host provides very useful information. This
information has been used, for example to analyze the relative concentration
of substitutional and interstitial C in Si;_,C, [82]. The total C concentration
in solid solutions with 1% or higher carbon content can be easily measured
with techniques such as Rutherford Back-Scattering (RBS), but the fraction
of these C atoms that occupy substitutional sites is very difficult to measure.
In the Raman spectrum, a sharp local mode appears at 605cm™—!. This peak
is related to substitutional C only. But substitutional as well as interstitial
C can activate density of states features in the Raman spectrum of the host,
so that the intensity of these features relative to the local mode provide
semiquantitative information on the C distribution in the sample.

The theoretical treatment of the impurity problem is severely complica-
ted by the lack of translational symmetry. Very sophisticated and ingenious
methods have been developed to handle the atomic perturbation in a more
rigorous way than in (3.29) [79], but given the computing power of today’s
personal computers, the simplest (and in principle exact) way to treat the
problem is to diagonalize (3.5) or (3.6) for a large supercell containing as
many atoms as possible. The size of these supercells used to be severely limi-
ted by the N3 dependence of the time needed to diagonalize an N x N matrix,
but today’s home multimedia PCs have the memory and the processing po-
wer necessary to solve a 1000-atom problem in a few minutes. The results
of such calculations, which will be discussed in more detail in the section on
alloying, show that the “mass contribution” usually lowers the frequency of
the main Raman line, contrary to the naive prediction in (3.29) for lighter
impurity atoms.

The activation of otherwise silent modes by the impurity perturbation
might be expected to be significant for the LO phonon branches in polar semi-
conductors. Since dw/dg = 0 near the Brillouin zone center, (see Fig. 3.1) no
major distortion of the allowed Raman peak should be expected. However,
the intraband matrix elements of the Frohlich electron-phonon interaction
are responsible for the so-called “forbidden” resonance Raman scattering by
LO phonons {7,8]. As discussed above, the Raman tensor for this process is
proportional to the magnitude of the phonon wave vector. Since the Frohlich
interaction is strongest for wave vectors much longer than q = k1 — ks [35],
violations of wave-vector conservation can lead to large Raman cross sec-
tions for the modes activated by the presence of impurities. This argument
also applies to any other perturbation that breaks the translational symme-
try. The effect of wave vector non-conservation manifests itself as a reduced
interference between “forbidden” and allowed scattering as well as in an in-
crease in the Raman cross section for the “forbidden” configuration [85-87].
In semiconductor superlattices the effect is even more dramatic. Since the op-
tic mode frequencies in these non-cubic systems are angular dependent, wave
vector non-conservation affects the Raman lineshape very strongly. In fact,
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the observation of the so-called “interface modes” has been ascribed almost
entirely to this effect [88,89].

Electronic effects. The electronic effects that dominate the shift and broad-
ening of the Raman spectrum in Fig. 3.7 are very complex and will not
be discussed here in detail. The reader is referred to several excellent re-
views [3,4,15]. The observed effects depend sensitively on the band structure
of the host materials and are associated with the fact that the optic pho-
non can induce electronic transitions. The coupling with these transitions
changes the phonon self-energy and affects its Raman lineshape. One of the
most spectacular examples is the so-called Fano lineshape, the asymmetry
in the Raman line that is caused by the interference between the Raman
phonon and a continuum of intervalence electronic excitations in degenerate
p-type semiconductors. A rigorous but readable account of this phenomenon
is given by Wallis and Balkanski [15].

One particular situation that is worth discussing in more detail, due to
its simplicity and its characterization potential, is the coupling of the optic
modes in polar semiconductors with the carriers’ collective modes of oscilla-
tions, called plasmons. For carriers in a single, parabolic, isotropic band, the
plasmon frequency is given by

2
o Admme

W

R (3.30)
where n is the carrier concentration, €., the high-frequency dielectric func-
tion, and m* the effective mass of the carriers. The macroscopic electric field
associated with the plasmons interacts with the optic modes in polar semicon-
ductors. This interaction leads to coupled modes of mixed phonon-plasmon
character whenever the plasmon frequency approaches the optic phonon fre-
quencies. Substituting typical values for semiconductors, one finds that this
occurs for concentrations of technological interest in the 107 — 10'%cm—3
range. The mathematical description of coupled modes is similar to the des-
cription of the phonon-polaritons discussed above in regards to the LO-TO
splitting at vanishing wave vector. The coupled system’s eigenmodes are gi-
ven by the zeros of the dielectric function, which can be written as the sum
of a phonon and a plasmon part [3]:

2
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where we have introduced, for completeness, broadening parameters for pho-
nons and plasmons. The resulting modes are shown in Fig. 3.8 for the case
of GaAs [90]. In the case of homopolar semiconductors there is no plasmon-
phonon coupling, but the pure plasmon mode has been observed [4]. Yet
another type of purely electronic Raman scattering is the observation of tran-
sitions between donor or acceptor energy levels [3].
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Fig. 3.8. Raman frequencies of the coupled plasmon-phonon modes in GaAs. labe-
led Lt and L™. The solid lines are calculated from the zeros of (3.31) [90]

The measurement of coupled or plasmon modes can be used to deter-
mine the carrier concentration, as is quite apparent from Fig. 3.8. It should
be pointed out, however, that (3.30) may not be accurate enough if very
precise measurements of concentrations are needed. Fortunately, empirical
calibrations of plasmon frequencies are available for the most commonly used
semiconductors [91].

3.2.5 Alloying

Most semiconductors compounds can be easily alloyed, and the spatial dis-
tribution of the intermixing atomic species can be made nearly random. This
randomness removes the translational symmetry of the crystal, so that Ra-
man spectra from semiconductor alloys might be expected to be similar to
the Raman spectra from amorphous semiconductors [92], which, as explai-
ned in the introductory chapter, are roughly proportional to the density of
phonon states. However, alloying is in general a much “gentler” perturbation
than amorphization, as can be seen from diffraction studies, which clearly
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indicate the existence of a remaining order and a well-defined average lat-
tice constant. The almost-crystalline structural properties of semiconductor
alloys are reflected in their Raman spectra, which turn out to be dominated
by relatively narrow peaks. Figure 3.9 illustrates the Si;Ge;_, case, where
one can see three strong peaks associated with Ge-Ge, Si-Ge, and Si-Si vi-
brations [93]. The compositional dependence of the frequency of the alloy
Raman peaks, shown in Fig. 3.10 for the case of Si;Ge;_; [94], is of great
interest as a straightforward way to determine the alloy composition.

Two qualitatively different types of Raman spectra are observed from al-
loy semiconductors. In the first type one sees peaks that can be associated
with the vibrations of an average crystal, whereas in the second type (see
Fig. 3.9 as an example) the peaks observed are related to the vibrations of
the individual materials that are being alloyed. In binary alloys with common
anions or cations this is referred to as “one-mode” versus “two-mode” beha-
vior. For individual alloy systems the compositional behavior can be quite
complicated, and changes from one-mode to two-mode behavior as a function
of the composition have been observed [79]. In Table 3.6 we summarize the
experimental compositional dependence of Raman modes for selected semi-
conductor alloys. It is important to point out that an accurate determination
of compositions presupposes an accurate measurement of phonon frequencies.
Unfortunately, experimental errors of up to 2cm™! are frequent — particu-
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larly when array detectors are used — , and this can lead to non-negligible
compositional errors. In addition, sample heating effects can also shift the
peak frequencies. A solution to these problems, proposed and implemented
by Saint-Cricq et al. for the case of Al,Ga;_,As alloys [95], is to measure the
difference in frequency between two Raman modes in the system. This eli-
minates most of the calibration problems, and in most cases it has the added
benefit that the difference in Raman peak frequencies is a steeper function of
composition. A more fundamental problem is that the degree of randomness
in semiconductor alloys is seldom quantified, although it can be expected to
affect the phonon frequencies. The seriousness of this effect can be inferred
from the observation that many semiconductor alloy systems have a tendency
to spontaneously form partially ordered structures [96]. Examples of the ef-
fect of ordering on the Raman spectrum of alloy semiconductors are the work
of Tsang et al. [97] for the case of Si;_Ge, alloys and of Hassine et al. for
In;Gaj_,P [98].

Given today’s availability of powerful personal computers, as indicated
above, the best theoretical approach to the study of phonons in semiconduc-
tor alloys is to perform supercell calculations. However, an accuracy compa-
rable to Fig. 3.1 can only be expected if one can obtain interatomic force
constants from first principles. This is still prohibitively expensive for large
supercells, but one can take advantage of the transferability of force cons-
tants among tetrahedral semiconductors to perform calculations of phonons
in alloy semiconductors with an accuracy comparable to full first-principles
calculations. This approach has been used by Baroni et al. [99], who find excel-
lent agreement with experiment for Al,Ga;_;As. If one makes the additional



3 Characterization of Bulk Semiconductors Using Raman Spectroscopy

Table 3.6. Polynomial fits to the compositional dependence of the Raman fre-
quencies in semiconductor alloys (in cm™!). Data correspond to room temperature
unless otherwise indicated. The functional dependencies are quoted from the ori-
ginal references, when given, or obtained from our own fits to published figures or
tables. In the latter case we include the absolute value (in cm™!) of the largest de-
viation between the fit and the data (number in parenthesis). Note that in several
cases the authors quoted have themselves collected data from different sources, so

that the original reference may not appear in our list

Si-Si
521.2 — 67.91x

AlAs-like (LO)
361.7 + 55.62z
—15.45z2

AlSb-like (LO)
312.2 + 8.3z
-2.1x2

AlAs-like (LO)
332.7T + 64.3zx
+7.10z2

InAs-like (LO)
242.19 — 30.67x
+28.1822(1.8)

InSb-like (LO)
(z > 0.3)
197.46 — 43.01z
+38.56z2(1.4)

LO (z < 0.17)
387.8 — 64.37z + 116.2z2(0.5)

Si;_.Ge,*®
Si-Ge (z < 0.5)
400.0 + 22.07z — 36.14x2
+83.73z3 — 88.54x*

Al.Ga;_;As®
AlAs-like (TO)  GaAs-like (LO)
361.07 — 9.78z 292.1 — 39.96x
+9.8122(0.8)

Al,Ga;_,Sb?
AlSb-like (TO)  GaSb-like (LO)
312.4 4 32.0z 234.9 — 22.2z
—5.1z22 —6.922

Al In; ,As®
AlAs-like (TO) InAs-like (LO)
334.24+41.37x  238.6 +20.38z
—14.6222 —46.0222

In,Ga;_.As’
InAs-like (TO)  GaAs-like (LO)
240.98 — 34.01z  291.6 — 28.51x
+11.73z2%(1.0) —19.5322%(1.0)

In.Ga;_.Sb®
InSb-like (TO)  GaSb-like (LO)
(z >0.3)

Ge-Ge
280.8 + 19.37x

GaAs-like (TO)
267.7 + 1.29z
—17.64x2(0.9)

GaSb-like (TO)
225.1 — 11.5z
—8.622

InAs-like (TO)
217.3 + 27.85z
—28.27x?

GaAs-like (TO)
268.6 — 25.68x
—2.8222%(1.5)

GaSb-like (TO)

195.81 — 39.75x 237 — 22.122 227 — 20.68x
+23.9427%(1.3) —14.272%(1.1) —9.08z%(1.9)
In.Ga; ,P" (85K)
TO (z < 0.17)

367.3 — 63.02x — 49.832%(0.7)
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Table 3.6. (Continued)

LO

342.97 + 58.70z + 2.83z2(3.0)

276.40 — 12.50z + 4.10x2(0.2)

GaAs-like (LO)

234.1 + 84.05z
—26.5522(3.8)

InP-like (LO)
344 — 14.49z
—25.1322(6.0)

HgTe-like (LO)
127.38 4 15.68x
—5.662%(0.8)

CdTe-like
(LO, z < 0.5)
167 — 39.41x
+41.69z2(1.4)

AlAs;Sh; !

TO
321.91 4+ 46.19z — 6.00x2(3.4)

GaAs, P, ™
GaAs-like (TO) (z > 0.5)

GaP-like (LO)  GaP-like (TO)
(x <0.17,85K) (z <0.17,85K)
405.2 + 9.99z 367 + 27.87z
—224.5z%(0.3)  —306.32%(0.3)
GaP-like (TO)

367 — 43.74z + 16.71z%(3.6)

GaAs,Sb;_.*

GaAs-like (TO) GaSb-like (LO)

(z < 0.25)
238.6 + 33.53z  236.1 — 42.98x
—3.962%(2.4) +46.712%(0.4)

GaSb-like (TO)
(x < 0.25)
226.0 + 18.10z
—29.86x2(1.0)

GaSb-like (LO and TO, z > 0.25)
227.1 — 1.00z + 18.41z%(3.5)

InAs.P;_.'( 77K)
InP-like (TO) InAs-like (LO)
305.5 + 5.82x  218.32 4 59.93x
~0.44z°(5.2) —37.242%(4.2)

Hg.Cd;_,Te™

HgTe-like (TO) CdTe-like (LO)

129.75 — 13.74x  166.9 — 11.10z
+1.6922(0.3) —4.13z%(1.1)

Zn,Cd;_.Te" (20-80K)

CdTe-like ZnTe-like
(TO, = < 0.5) (LO)
147.3 + 1811z 173.10 + 56.90z
—5.012%(1.1) —20.00z2(0.8)

InAs-like (TO)
228.70 — 17.65z
+8.852%(1.0)

CdTe-like (TO)
138.8 + 10.42z
+3.20z2(0.8)

ZnTe-like
(TO)
172.95 + 16.28z
—7.232%(0.9)
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Table 3.6. (Continued)

ZnS;Se;_.°(12K)

ZnS-like ZnS-like ZnSe-like ZnSe-like
(LO) (TO) (LO, z < 0.5) (TO, z <0.5)
301.0 + 73.90z 289.02 + 40.11z  255.3 — 31.51z  210.6 + 2.71x
~23.46x2(2.9) —52.132%(0.9)  +6.89z%(0.9)  +8.63x%(2.4)
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assumption that the effective charges of the Al and Ga cations are the same
(which is a very good approximation), then the potential term A& in (3.5)
or (3.6) becomes zero and the Al,Ga;_,As alloy vibrational problem reduces
to a mass perturbation problem, formally identical to the problem of trea-
ting different isotopes in an otherwise perfect crystal. The advantages of
using (3.6) become now apparent: not only does this formulation of the pro-
blem conveniently single out the only significant component of the alloy per-
turbation, which is the mass disorder, but it is also numerically advantageous,
since the long-range Coulomb interaction (which is difficult to treat in a disor-
dered system) is fully included in the “unperturbed” problem. For a Raman
calculation the relevant “unperturbed” phonons are the g = 0 phonons in the
Brillouin zone of al large supercell of pure GaAs (or pure AlAs). Of course,
these phonons are easily obtained by folding the dispersion relations for pure
GaAs (or pure AlAs) calculated for the true unit cell of these compounds.
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A fast algorithm to perform this folding for arbitrary geometries has been
developed by Kanellis [100].

The transferability of force constants works best for lattice-matched sys-
tems such as GaAs-AlAs. When two semiconductors with significantly differ-
ent lattice constant form an alloy, a phonon calculation based on the transfer-
ability concept will not be as accurate as similar calculations for Al;Gai_;As
alloys. On the other hand, since most of these systems follow Vegard’s law (li-
near interpolation of lattice constants) quite closely, one could use the lattice
constant dependence of the force constants [31] to determine by interpolation
the appropriate values for a fictitious material with the lattice constant of
the alloy. This approach, however, would miss an important aspect of the
physics of semiconductor alloys. Even though the average lattice constant of
the alloy usually follows Vegard’s Law, the individual bond lengths (which
are much more important from the point of view of determining phonon fre-
quencies) have a tendency to remain closer to their lengths in the parent
compounds. The treatment of these local distortions from an ab initio pers-
pective is difficult, but it has been carried out with considerable success by
de Gironcoli and coworkers [101]. More recently, Riicker et al. have used an
extended Keating valence force field model fit to first-principles calculations,
and they are able to reproduce, with remarkable accuracy, the Raman spec-
trum of Si;_,—,Ge,C, alloys [102].

The relative simplicity of the Raman spectrum of semiconductor alloys has
stimulated the quest for simple models that might account for the compositio-
nal dependence of the main peaks [14,16,79]. Even though these dependencies
can be accurately reproduced using some of the computational approaches
discussed above, there is always a need for simple, semi-quantitative argu-
ments that capture the main physics of the problem. We believe that such
a model can be easily built if we write the shift as the sum of a “mass per-
turbation” and “bond perturbation” term:

AP (@) = Awfaes (@) + Awonas(z)- (3.32)

This is a generalization of (3.29) . The “mass perturbation” term has been
referred to in the literature as “mass disorder” term [84,102,103], and also,
borrowing concepts from superlattice physics [104], as the “confinement” con-
tribution [105]. Indeed, both phonon confinement in superlattices and the
mass perturbation in alloys tend to lower the vibrational frequency, and the
physics behind this frequency lowering is the same in both cases. Let us consi-
der, for example the case of Al,Gaj_.As alloys. For GaAs-like LO vibrations,
the Al-atoms remain essentially at rest, so that the corresponding phonon ei-
genvector has zero amplitude at the sites occupied by Al-atoms. If one inserts
such eigenvector in (3.5) (with AP = 0) and uses its expansion in terms of
pure GaAs eigenvectors (3.8), one finds that the frequencies of the GaAs-like
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optic modes are approximately given by

3nN

Zf7=1 lcff'|2w3f'

3nN :
Ef7:1 legsr|?

In other words, the GaAs-like mode frequencies are weighted averages of the
pure GaAs mode frequencies. Since the Raman-active LO mode in GaAs (and
in all other semiconductors with the possible exception of AlSb and diamond)
is the highest-frequency phonon in the material, the GaAs-like modes in the
alloys will necessarily have a lower frequency. If the coefficients cs¢ are not
too different from mode to mode, the alloy modes should approach the fre-
quency of critical points in the phonon density of states of the unperturbed
material. In the case of a superlattice, the mass perturbation is periodic, and
the coeflicients in (3.33) vanish except for the bulk GaAs modes that have
the same wave vector when expressed in terms of the superlattice Brillouin
zone. If one also takes advantage of the result that the frequency of phonons
confined in a layer is insensitive to the thickness of the other material’s layers,
it is possible to find an equivalent problem in which the coefficient csy: is dif-
ferent from zero only for a single bulk frequency wgs/. Thus the superlattice
frequency equals wgy. This property has been used to map phonon dispersion
relations from measurements in superlattices [106].

We have used in the past the expression “microscopic strain” to refer to
the second term in (3.32), but here we prefer to call it “bond perturbation”
to avoid any confusion with the strain shifts given by (3.28), which would
further modify the alloy mode frequencies if the system is grown epitaxially
on a mismatched substrate. The bond perturbation term becomes important
when two semiconductors with very different lattice constants are alloyed.
This term can be represented by an expression similar to the second term
in (3.29) [84,107], if one accounts correctly for the change in length of the
relevant bond. This is done by writing AR/R = (1—a**)(Aa/a), where a** is
the so-called topological rigidity parameter [108,109]. The topological rigidity
parameter measures the bond’s tendency to conserve its length as a function
of composition. For a** = 1, the bond is perfectly rigid. For a** = 0, the
bonds follow the change in average lattice constant.

As explained in [105], the combination of the mass and bond perturba-
tions explain all qualitative details of the compositional dependence of Raman
modes in SiGe alloys, shown in Fig. 3.10. The mass perturbation lowers the
frequency of the Ge-Ge mode as a function of the Si-concentration and also
the frequency of the Si-Si mode as a function of the Ge-concentration. But the
bond perturbation is equivalent to a compressive strain for the Ge-Ge bond
and a tensile strain for the Si-Si bond. Thus the bond perturbation raises the
frequency of the Ge-Ge mode and lowers the frequency of the Si-Si mode. In
other words, the mass and bond contributions are additive for the Si-Si modes
but tend to cancel each other for the Ge-Ge modes. This explains the much

wh = (3.33)
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weaker compositional dependence of the Ge-Ge modes relative to the Si-Si
modes. The remaining peak corresponds to Si-Ge vibrations. It has maxi-
mum frequency for a composition of 50%, for which the mass perturbation
is smallest because the system is closest to a hypothetical SiGe zincblende
compound, The noticeable asymmetry of the Si-Ge curve in Fig. 3.10 can be
easily explained in terms of a reversal of the sign of the bond perturbation
at z = 0.5 [105].

The model just described has been extended to polar alloy semiconductors
by Groenen et al. [103]. Equation (3.32) is assumed to be valid for TO-like
vibrations, and the LO mode frequencies can be obtained from the zeros of
an average dielectric function. Groenen et al. have also calculated Raman
intensities and explained a number of mysteries in the Raman spectra of
In,Ga;_zAs alloys. Hence it appears that it is indeed possible to develop
a simple theory of alloy semiconductors that correctly accounts for the main
features of the compositional dependence of the Raman peaks and even their
experimental intensities.

Superlattices as a special case of alloying. The formalism described
above to treat semiconductor alloys can be applied to the study of the vi-
brational properties of semiconductor superlattices, and in particular to the
investigation of disorder at heterostructure interfaces, a topic that is also
discussed in the chapter by D. Gammon. Fig. 3.11 shows calculated and
experimental Raman spectra from a (GaAs)s(AlAs)g superlattice in the fre-
quency range of the AlAs-like optical modes. The superlattice phonons where
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Fig. 3.11. Experimental Raman spectrum for AlAs-like modes in a (GaAs)s(AlAs)s
superlattice grown by molecular beam epitaxy at 450 °C (bottom panel). For a per-
fect superlattice one should see at narrow peak at 403 cm™!. The top panel shows
the prediction from a model that assumes alloying limited to the layers closest to
the GaAs-AlAs interfaces. The middle panel shows the predicted Raman spectrum
assuming that the main source of disorder is the tendency of Al to segregate to the
surface during the growth of the superlattice [110]
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obtained from (3.6) (with A¢ = 0) and the Raman spectra were calculated
using (3.22). In the top spectrum in Fig. 3.11, the atoms close to the in-
terfaces were randomly intermixed, whereas the atomic distribution for the
middle spectrum was obtained from a model that assumes a tendency for Al
to segregate to the growth surface [110]. Clearly, the Raman analysis provides
strong support for the surface segregation hypothesis.

3.3 Conclusion

In this chapter we have sketched the applications of Raman scattering to
the characterization of semiconductors. The emphasis has been on providing
the most useful formulas and data for the analysis of Raman spectra, and
on explaining the ideas underlying the applications of the technique and the
possible pitfalls that the experimentalist must be aware off. Our coverage of
the many applications of this technique has been necessarily short and quite
arbitrary in our selection of examples, and the reader is encouraged to consult
the recommended references for a more in-depth coverage.

Semiconductor physics is a mature field, and one could even claim that
some of the problems that have intrigued physicists for decades, such as the
vibrational properties, are on the verge of being definitively “solved”. This,
however, does not mean that Raman spectroscopy will fade in importance.
Quite the contrary, the ability to predict Raman frequencies and intensities
with excellent reliability eliminates the model-related ambiguities that have
limited the applicability of the technique as a structural characterization
tool. We hope that by providing a bird’s eye view of these new capabilities,
this article will stimulate the use of Raman spectroscopy for semiconductor
characterization.

I would like to acknowledge the patience of the editors and the invaluable
insight provided by Manuel Cardona and John B. Page.
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II Finding the Stress from the Raman Shifts:
A Case Study

Ingrid de Wolf

Mechanical stress cannot be avoided during the processing of semiconductor
devices. The growth of isolation oxides, the implantation of dopants, the depo-
sition and growth of different films, and the fabrication and filling of trenches
generate local mechanical stresses. The magnitude of these stresses depends
on the geometry of the films, on their chemical properties and thermal ex-
pansion coefficient, on the deposition temperature, etc. Because stress may
generate defects or indirectly affect device performance, considerable effort is
spent in the microelectronics industry to find its magnitude and distribution
in the device, to determine which processing steps are mainly responsible
for its generation, and under what conditions the stress becomes critical.
Most of these studies use finite element simulations of the stress generation
during processing. Unfortunately, simulations may give a distorted image of
the real situation if they are not properly validated. Raman spectroscopy
is one of the few techniques that can be used for this validation. However,
as explained in Sect 3.3 of Chap. 3, the complete spectroscopic information
needed to compute an arbitrary stress is almost never available. A typical spe-
cimen to be analyzed is a Si-based device fabricated on a (001)-oriented Si
crystal. In the backscattering configuration used for Raman microscopy one
observes a single Si Raman peak, which is not sufficient to characterize the
stress tensor. Broadening of the peak is sometimes observed, but this broad-
ening is hard to interpret because it can be due to stress-induced splitting
of peaks, as well as to large stress variations within the illuminated volume.
This means that it is in general impossible to obtain quantitative or even
qualitative information on the different strain tensor components from Ra-
man data without assumptions or simulations. Therefore, since Raman data
are needed to validate the stress simulations and the stress simulations are
needed to interpret the Raman spectra, the goal of the industrial physicist is
to achieve self-consistency between simulations and measurements.

The simplest assumption usually made is uniaxial (o) or biaxial stress
(0 = 0z + 0yy). In this case there is a linear relation between the stress and
Raman frequency shift Aw and one obtains from (28) of Chap. 2 and the
known elastic constants in Si o(MPa) = —434Aw (cm™?), for backscattering
from a [001] surface with o the in-plane stress [1]. Tensile stress (¢ > 0) will
result in a negative frequency shift, compressive stress (o < 0) in a positive
shift. However, the experimental situations are typically far more complica-
ted. As a first case study, we look at mechanical stress induced by silicide
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lines in a Si substrate [2]. The stress induced by such a line in the substrate
is not uniaxial or biaxial. At the edges of the line, shear stresses will also be
present.

Figure I1.1 shows the stress-induced Raman frequency shift measured on
a Si wafer with 16 nm thick CoSis lines. The lines are thin enough so that
a Raman signal from underneath them can be obtained. The data clearly
indicate tensile stress in the Si next to the lines (Aw < 0), and compressive
stress underneath (Aw > 0). This is expected, because the silicide itself is
under tensile stress. Notice also that when the lines are located closer to each
other, the tensile stress between them increases.

The magnitude of the stress that produces the Raman shifts in Fig. II.1
can be determined from modeling. One can use finite element modeling to
calculate the stress or strain induced by such lines in the substrate at each
(z, z) position in the sampled volume. Next one solves (27) of Chap. 3 for all
(z,z) to obtain the stress induced frequency shift and the Raman intensity
of the three Si phonons. The last step is to integrate this locally produced
signal over the probing volume of the focused laser beam. These calculations
result in a 'model predicted Raman peak’ as a function of the position, which
can be compared with the experiment [3,4].

The full lines in Fig. II.1 result from fitting a simple analytical stress
model to the Raman data, following the above procedure. The model was
first fit to the two lines on the left side of the figure, with large spacing.
A good fit was obtained, with some deviation from the data underneath the
lines. Next, the same model parameters were used to see whether the stress
model was still valid for lines with smaller spacing (right side). It turns out
that this simple model does fit the Raman data rather well. The deviation
under the lines is due to the fact that the analytical model assumed uniform
stress in the lines, which is not entirely correct.

Fig. I1.1. Raman spectroscopy experiment on 16-nm thick, 3-pm wide silicide lines
(CoSi2) with large spacing (left) and spacing equal to width (right) on Si. Laser
light: 457.9 nm, 100x objective. The full lines show the result of a fit of an analytical
stress model to the data
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Fig. I1.2. Raman shift Aw measured during a 2D point-by-point scan across the
edge of a shallow trench isolated Si line (width=5um)

Unfortunately, because it involves many calculations, modeling is very
time consuming. Valuable information on stress can already be obtained by
simple inspection of the Raman frequency shift. Figure I1.2 illustrates the
unique capability of Raman spectroscopy for the study of local stresses in Si
devices [5]. It shows the result of a 2D measurement of stress in a 5 pm wide
Si stripe surrounded by oxide. The distance between two measurement points
was 0.2pum along the width direction of the line and 1 um along the length.
A compressive stress (Aw > 0) is measured in the stripe, which is larger at
the sides and decreases towards the center. At the corners it is clearly larger.
This result is explained by the fact that the oxide, which surrounds the stripe,
produces compressive stress on the Si as indicated by the arrows.
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IIT Brillouin Scattering from Semiconductors

M. Grimsditch

Brillouin scattering, like Raman scattering, is the inelastic scattering of light
by phonons. The difference between them is that Raman typically refers to
optic phonons while Brillouin is reserved for interaction with acoustic modes.
Because the frequency shifts produced by acoustic phonons are considera-
bly smaller than for optic phonons, Brillouin scattering relies on the high
resolution of a Fabry-Perot interferometer instead of a grating spectrom-
eter typically used in Raman experiments. Until the early seventies Brillouin
scattering was essentially a curiosity in solid-state physics, since it could
only be performed on the highest quality, transparent materials. Two innov-
ations, multipassing and tandem operation, introduced by Sandercock [1] in
the early seventies transformed Fabry-Perot interferometry into its current
state as a powerful tool in condensed matter physics.

Brillouin experiments typically give information on sound velocities, which
can be analyzed to yield the elastic constants of the material; in this sense
the technique provides the same information as that obtained from ultra-
sonic methods. The most significant advantages of Brillouin scattering over
ultrasonic techniques are that it requires only very small samples and that
it is non-contacting; its major disadvantage is the difficulty of dealing with
opaque samples.

Brillouin scattering has contributed greatly to our understanding of wide-
gap semiconducting materials, which are transparent to visible radiation. The
elastic constants of materials that can only be grown as small crystals, not-
ably the nitrides (BN, AIN, GaN, SiC and $-SizN4, diamond, isotopically con-
trolled diamond) have been determined using this technique. More recently,
infrared Brillouin measurements have also become feasible [3], thereby mak-
ing it possible to investigate many of the more conventional semiconductors;
i.e., AlGaAs, GalnP,, etc.

The interferometric technique, often identified as the Brillouin technique,
has also recently been used to investigate, with very high resolution, low-lying
Raman lines [4]. Figure IIL.1 shows the Raman active transition between
the two lowest electronic ground states of boron impurities in diamond at
0 and 4 Tesla. The field dependence of the Raman lines has allowed both
the degeneracy and the g-factors of the two lowest levels to be determined.
Also observed in Fig. III.1b, as indicated with an asterisk, are two transitions
between the Zeeman split levels of one of the ground states. These two Raman
lines have frequencies below the Brillouin longitudinal acoustic (LA) and
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Fig. II1.1. Spectra of electronic states of boron impurities in diamond at 6 K.
LA and TA correspond to longitudinal and transverse sound waves, respectively
(Brillouin peaks). The peaks near 16cm™' are transitions between two distinct
electronic levels. Those identified with an asterisk are intra-level transitions between
Zeeman sublevels

transverse acoustic (TA) peaks. These peaks correspond to the absorption
conventionally observed in EPR experiments.
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4 Raman Scattering
in Semiconductor Heterostructures

Daniel Gammon

Abstract. Applications of Raman scattering in the characterization and
study of semiconductor heterostructures are reviewed with the focus on GaAs/
AlAs quantum well structures. Vibrational and electronic Raman scattering
are included. The use of resonant Raman scattering to gain sensitivity and
selectivity is emphasized.

Semiconductor heterostructures such as GaAs/AlAs quantum wells, wires,
and dots have attracted enormous interest starting in the early 1970s with the
development of molecular beam epitaxy (MBE) [1-5]. Because these struc-
tures are made with one or more dimensions reduced to the size of microme-
ters or even nanometers they are often called semiconductor microstructures
or nanostructures. The remarkable quality and control of structure in MBE-
grown semiconductor heterostructures is made possible by the growth of one
monolayer at a time and the capability to change from one semiconductor to
another by simply closing and opening shutters in front of the source ovens [6].
This technology has created a vast array of new, artificial materials with en-
gineerable properties and the opportunity to systematically explore physics
in lower dimensions. Research in this material system has been driven in
large part by the potential for producing useful devices such as light emitting
diodes, lasers and high frequency transistors. However, the new and control-
lable properties obtained in these artificial semiconducting materials have led
to a great deal of basic physics research in reduced dimensionality that has
accompanied focused efforts to improve device capabilities.

Raman scattering spectroscopy is exceptionally useful in the study of the
electronic and vibrational properties of heterostructures. Raman scattering is
used to measure a large variety of low energy excitations of the semiconductor
nanostructures, including confined and interface phonons, various elementary
excitations of confined electron gases and liquids, and transitions of shallow
impurities. Not surprisingly, Raman scattering has played leading roles in
understanding the vibrational properties of quantum wells and the collective
excitations of electron gases. Conversely, sufficient understanding of the ele-
mentary excitations has provided the opportunity to gain new information
about the structure itself. For example, phonon scattering provides a probe
of interface roughness while plasmon energies can characterize the density
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of charge carriers. These measurements can be made with high spatial and
spectral resolution and selectivity.

Raman scattering is just one of many techniques used to study the elec-
tronic properties of nanostructures. Photoluminescence (PL), absorption and
reflection techniques are often used to study electronic properties while far
infrared absorption and various transport techniques often are also used to
measure doped structures. The vast majority of phonon studies have used
Raman scattering.

Although relatively weak when compared to photoluminescence, the Ra-
man signal is enhanced greatly by resonance techniques. Many semiconductor
nanostructures have strong optical resonances that can be used to increase
the Raman signal enormously. By measuring the Raman intensity as a func-
tion of the laser frequency, excitonic properties and their interactions with
vibrational or electronic elementary excitations are probed. Moreover, by res-
onating with specific confined electronic resonances of the nanostructure of
interest, the Raman spectrum of a very small part of the sample is strongly
enhanced over the background, thereby obtaining great selectivity. The high
sensitivity and selectivity of resonant Raman scattering makes possible the
measurement of the spectrum of electronic excitations or phonons in a single
10 nm layer or even in a single quantum dot. The scattering intensity, line-
shape, and polarization dependence of the spectral lines often strongly de-
pend on the resonance conditions. The excitons themselves are considerably
modified by the nanostructure. Much of the recent progress has gone hand
in hand with better understanding of the intermediate excitonic states in-
volved in the resonance process. Raman spectroscopy is both complicated
and enriched under strong resonance conditions.

The purpose of this chapter is to provide a short guide to Raman scat-
tering in semiconductor heterostructures. A number of extensive reviews have
been written in the last twenty years on specific aspects of Raman scat-
tering in semiconductor heterostructures [7-12]. In this chapter there is no
attempt to cover the literature comprehensively. In fact, only a handful of
representative studies are considered. The goal is to introduce the capabi-
lities of the technique to those new to the field. The discussion focuses on
GaAs/Al,Ga;_,As quantum wells, thin flat layers of GaAs sandwiched bet-
ween two layers of Al,Gai_zAs. Because Al;Ga;_As has a larger band gap
than GaAs, the electrons and holes are confined in only one dimension and
free in the other two, so that the electrons and holes behave in many ways
as if they are two dimensional (2D). The discussion is extended at times to
superlattices and 0D quantum dots.

In Sect. 4.1 a simple introduction to the physics of confined electrons and
holes in semiconductor heterostructures is presented. This discussion is ne-
cessary in order to understand the resonance behavior of Raman scattering
and also electronic scattering. Resonant Raman scattering and scattering
geometry will be the focus of Sect. 4.2 and Sect. 4.3. In Sect. 4.4, phonon
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scattering is introduced and illustrated. Here, the effects of interface rough-
ness will be emphasized. Electronic Raman scattering by impurities and the
quasi-2D electron gas is discussed in Sect. 4.5.

4.1 Electrons in Semiconductor Heterostructures

With molecular beam epitaxy (MBE) or alternatively, organo-metallic chem-
ical vapor epitaxy (OMCVD), a semiconductor crystal is grown one atomic
layer at a time with low defect and impurity concentrations [6]. The chemical
composition can be abruptly switched from one layer to the next to form
heterojunctions. Layered crystals can be grown with layers ranging from less
than a single monolayer to micrometers in thickness.

The most widely studied heterostructure is the GaAs/Al,Ga;_,As quan-
tum well system (Fig. 4.1). When GaAs is sandwiched between Al,Ga;_,As
layers the electrons and holes are both confined to the GaAs. Within the en-
velope approximation the electron wavefunctions are described as the product
of a Bloch function, u(r), and an envelope function, &, (r) [1-5]:

Tn(r) = Bn(r)u(r) = gn(2)e™ % u(r). (4.1)

The quasi-2D envelope function consists of a localized quantum well func-
tion in the z-direction and a plane wave in the lateral direction (denoted as
the g-direction). For an infinitely-deep quantum well the envelope function
must go to zero at the interfaces and ¢, (z)is a cosine or sine function. In the
lateral directions the crystal remains periodic, wavevector remains a good
quantum number, and the electron has energy dispersion described by an ef-
fective mass (Fig. 4.2). The bulk conduction band thus breaks up into a series
of subbands. The conduction subband energies in an infinitely-deep quantum
well are given by

2 n ™ 2
Eonlle) = - (25T ) 42)

where d is the well width, n = 0,1..., denoting the subband, and &, is the
wavevector in the plane of the quantum well.

For holes in the valence band the band structure is more complicated. In
bulk GaAs the valence bands consist of heavy and light-hole bands that are
degenerate at k = 0, and a split-off band that is shifted to higher energies by
approximately 0.38 meV. The band gap between the lowest energy valence and
conduction bands is called the Ey gap while that associated with the split-off
valence band is called the Ey+ Ag gap. In a quantum well, confinement leads
to subband structure just as for the conduction bands (Fig. 4.2). However,
the degeneracy at k, = 0 is lifted because of the different masses of the
bands. In addition, there is considerable band mixing between the heavy
and light subbands, and strong nonparabolicity. Optical transitions between
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Fig. 4.1. Schematic diagrams of a GaAs/Al.Gai_.As quantum well structure and
its corresponding quantum well potential diagram. Confinement along the z-axis
leads to splitting of the bands into subbands with minima at E.n and Ey»

valence and conduction subbands are often called interband transitions. In
GaAs/AlGaAs quantum wells and many other systems the subband structure
has been extensively studied by optical techniques such as photoluminescence
(PL) and absorption techniques [1,2].

A multiple quantum well structure is grown by repeating the quantum
well period. If the barrier layers are sufficiently thin, the electrons will coher-
ently tunnel between quantum wells. In this case the electronic states form
minibands in the growth direction (along the k, axis) and the electronic
properties are described in terms of a superlattice model. In any case, the
confinement energies and other properties are often described well in terms
of a quantum well potential using the envelope function approach. It is worth
noting that even if the quantum well structure does not form a superlattice
structure as far as electronic states are concerned, it may still respond as a su-
perlattice for acoustic phonons or for any collective excitations that involve
the long-range electric field. The terms, multiple quantum well and super-
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Fig. 4.2. Schematic diagram of the energy dispersion curves of the electron and
valence subbands in a quantum well. The wavevector (k;) is in the plane of the
quantum well

lattice, are sometimes used interchangeably. Many other heterostructures are
possible and have been studied in detail [1,2].

Additional confinement in the lateral dimensions in a quantum well leads
to quantum wires and dots. For example, a 2D quantum well structure can
be patterned and etched into 1D quantum wires or 0D quantum dots. In
addition, it is possible to go the other way and build semiconductor quantum
dots directly using colloidal chemistry [13]. This type of quantum dot is often
called a nanocrystal. A great deal of research on nanocrystals has gone on
in parallel with the study of MBE-based quantum wells, wires and dots.
Although quantum wires again have subbands in their electronic structure,
quantum dots have discrete electronic energy states as do atoms.

Quantum well samples can be doped during growth with shallow donors
and/or acceptors with great control in position and density. One especially
important type of structure is the modulation-doped quantum well in which
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Fig. 4.3. Schematic diagram of the quantum well potential energy diagram with
shallow donors modulation-doped into one of the barriers and the corresponding
energies as a function of the wavevector in the plane of the quantum well. Electrons
transfer from the donors into the quantum well up to the Fermi energy (Er)

the impurities are put in the barriers only so that the electrons or holes leave
the impurity and “fall” into the quantum well (Fig. 4.3). In this way a 2D
electron or hole gas is formed separately from the ionized impurities (even at
low temperatures and low concentration) resulting in very high electron mo-
bility. Excitations of the 2D-electron gas have been extensively probed with
many techniques, including Raman scattering. Transitions within or between
conduction subbands are called intrasubband and intersubband transitions,
respectively.

4.2 Resonant Raman Scattering

Semiconductor nanostructures often have very small volumes and are on top
of much thicker buffer layers and substrates. Nevertheless, researchers have
been able to study single quantum wells only a few monolayers thick. In many
cases the sensitivity and multichannel capability of the charge-coupled device
detector helps considerably [14]. But much of the Raman research on nano-
structures has relied on resonant enhancements. By tuning the laser into near
resonance with an optical band gap associated with the structure of interest,
it is possible to enhance the Raman signal by many orders of magnitude. This
is often necessary when working with single layers to obtain sufficient signal
on top of a broad PL background, or to induce the Raman signal from one
structure to dominate the Raman or PL signals from other layers. The selec-
tivity obtained under resonance conditions allows the researcher to measure
the response from a small subset of the entire collection of nanostructures
that coexist in a sample. For example, in quantum dot samples, which in all
cases have large random fluctuations in size and correspondingly large in-
homogeneous broadening of their spectral lines, one can selectively measure
only those dots that are within the bandwidth of the laser. Using excitonic
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resonances it is possible to measure the Raman spectrum of a single quantum
well [15,16] or even a single quantum dot [17].

Raman scattering by phonons occurs through a three-step process involv-
ing the creation of an electron-hole pair (or exciton) via the electron-photon
interaction, the scattering of the exciton through the creation or destruction
of a phonon, and the reemission of the photon [18]. Higher order processes
can also be important if elastic scattering is allowed in the intermediate state
because of disorder [19,20]. The three-step resonant Raman scattering pro-
bability involves resonant denominators:

(0| Heg—1|8) (Bl Hex—ph|a) (0| Hee—1]0) |
Pe 'Zaﬂ (B, —Eg + irﬁ)(sz "B tiln) |

(4.3)

where E, and Eg are the energies of the intermediate excitons and I, and I3
are their homogeneous linewidths. He;_; and He,_pn are interaction Hamil-
tonian terms between exciton and light, and exciton and phonon, respectively.
E;, and Es = Ey, + E;,;, correspond to the frequencies of the exciting and
scattered light, respectively. The intermediate excitons (a and ) are asso-
ciated with either the same subband or different subbands. Energy does not
have to be conserved in the intermediate transitions, but wavevector does.
Even wavevector conservation will break down if the intermediate exciton
states are localized.

The resonant denominators in (4.3) lead to strong enhancements when
either the frequency of the exciting or scattered light resonates with that of
an exciton (see Fig. 4.4). These resonances are known as incoming and out-
going resonances, respectively. Experimentally, outgoing resonances are often
much stronger. This result can be understood from breakdown in wavevector
conservation induced by interface disorder [19,20]. However, the contribution
of other exciton states associated with higher subbands can also contribute
to the asymmetry, and can also lead to the opposite case where the ingoing
resonance is stronger [21]. In samples with subband splittings equal to an
optical phonon energy, (4.3) leads to double resonance [22,23].

The resonant Raman profile (Fig. 4.4) is obtained by measuring the in-
tensity of a specific phonon as a function of the photon energy (either the
exciting or scattered photon). In this way the excitonic states and their inter-
actions with the phonons, or alternately, the excitations of the electron gas
are probed. In semiconductor nanostructures the excitons, like the phonons
and plasmons, are strongly dependent on the size, shape and other charac-
teristics of the nanostructure. Conclusions obtained from the optical spectra
complement those obtained from the Raman spectrum. In these cases Raman
studies are greatly enriched [20,24].

In the case of optical phonons in a polar semiconductor, the interaction
between exciton and phonon in the resonant scattering process arises through
both the deformation potential and the depolarization field of the phonon
(Frohlich interaction) [25]. The deformation potential scattering is local in
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Fig. 4.4. Resonant Raman intensity of the LO;z phonon from a 4.6 nm GaAs/ 4.1 nm
AlAs multiple quantum well sample at 9K as a function of scattered photon energy.
Ingoing and outgoing resonances are denoted. Photoluminescence (PL) and PL
excitation spectra (PLE) are also shown. From [20]

real space, and correspondingly k-independent. On the other hand, the Froh-
lich interaction involves the interaction of the exciton with the long-range
dipolar field of the LO phonon and is wavevector dependent and goes as
k2. Because wavevector conservation leads to scattering only at k ~ 0, the
Frohlich interaction, though not normally important, is strongly dependent
on breakdown of wavevector selection rules and is strongly enhanced, for
example, by impurities [26] or interface roughness [19,20].

Resonant Raman scattering from excitations of the electron gas also can
arise from the three-step process discussed above [27]. For example, scat-
tering of intersubband plasmons occurs through the scattering of the virtual
photoexcited electron or hole that is accompanied by the creation or destruc-
tion of a plasmon. Likewise, a collective spin density excitation also can be
scattered in this way (Fig. 4.5). These scattering process are mediated by
the direct and exchange Coulomb interactions [27], although they have been
studied much less than in the case of phonons.

Scattering of electrons can occur also in a two-step process [28]. This
process, which has been discussed in detail for the case of 3D semiconductor
plasmas, can lead to both charge and spin density excitations. In this case,
scattering of light occurs directly from fluctuations of the electron gas -
analogous to Rayleigh scattering from density fluctuations in a classical gas.
In this case, light can couple to the spin density fluctuations of the electron
gas because the spin and orbital degrees of freedom in the wavefunction of
the hole in the intermediate state of the scattering process are mixed by the
spin-orbit interaction.
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Fig. 4.5a—c. Profile of resonant Raman enhancement of the spin-density inter-
subband excitation as a function of the incident photon energy. Schematic of the
quantum well potential. Schematic of a 3-step resonant Raman process. From [27]

4.3 Kinematics

The majority of Raman experiments on semiconductor heterojunctions have
been performed in the backscattering geometry along the normal to the quan-
tum well plane (z-direction). To probe the dependence of the scattering on
the wavevector in the plane of a quantum well the sample can be rotated
with respect to the wavevector of the incident and scattered light (Fig. 4.6).
The components of the scattering wavevector within the crystal are
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where Ay, is the laser wavelength and n(\L) is the refractive index. Because
the index of refraction is large (ngaas =~ 3.6), the angle of the laser beam
within the crystal remains relatively small even for large sample rotations.
The maximum k, is 5.5 x 10° cm™' while the maximum k, < 1.510% cm™*
for GaAs at the Eg band gap (A, =~ 820nm). A transmission geometry can
be used to increase further the angle of the scattering wavevector, although
the substrate must be removed if it is opaque [29]. Alternatively the laser
can be focused on the side of a superlattice with a microscope to measure
excitations with wavevector completely in the z-direction [30,31].

4.4 Vibrational Raman Scattering
in Semiconductor Heterostructures

Vibrational excitations of semiconductors are modified in heterostructures,
and new modes associated with the interfaces arise. In this section the na-
ture of phonons in a quantum well is discussed. Raman scattering is the
most powerful way to study phonons in nanostructures and there has been
extensive work, especially in layered semiconductors. Because of the small
wavevector of light, only phonons near k = 0 can be studied. Nevertheless,
this limited view has led to a good understanding of phonons in superlattices
as probed by Raman spectroscopy. There are several extensive reviews focu-
sed on phonon scattering {7,12,25], and an introductory textbook discussion
has recently been published [5].

4.4.1 Phonons in Semiconductor Quantum Wells

In zincblende semiconductors, with two atoms per unit cell, (for example,
GaAs and AlAs) there are both acoustic and optic phonons. If a super-
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lattice crystal is formed out of these two materials with a new unit cell,
GaAs,,/AlAs,, (where n and m are the number of monolayers in each layer),
both the acoustic and optical phonons are modified. The acoustic phonons
become folded acoustic phonons and the optical phonons become confined
and interface phonons. Most Raman experiments in this system have been
performed in the backscattering geometry on samples grown along the [001]
direction. In this case folded longitudinal acoustic (LA) modes and confined
longitudinal-optical (LO) modes are allowed. Disorder-induced scattering due
to interface phonons, and to a lesser extent, TA and TO phonons is also ob-
served, however. Interface phonons and also transverse modes are allowed in
other scattering geometries (for example, focusing on the edge of a super-
lattice with a microscope [30,31]), or on quantum well samples grown along
different crystal directions [12].

There are simple models to describe each of these modes, as summarized
below. The simplest models are often very useful, although, in the case of
optical phonons, the identities of the confined and interface phonons become
mixed as the wavevector is rotated to lie in the plane of the quantum wells.

Folded Acoustic Phonons. In the case of acoustic phonons, because the
bulk dispersion curves of the two semiconductors are similar, there is not
much reflection at the interfaces, and the resulting superlattice acoustic pho-
nons are propagating modes with a sound velocity that is approximately the
weighted average of the constituents. However, because of the new periodi-
city, the bulk Brillouin zone is folded into a new superlattice Brillouin zonee
with zone edge atk, = 7/d (where d = d; +d is the superlattice period) [32].
The folding of the phonon dispersion curves is shown in Fig. 4.7. In addition,
a small band gap opens up at the zone center and edge due to the normally
small acoustic mismatch at the interfaces. Scattering is strong when incident
and scattered light is parallel polarized. For wavevectors much less than the
bulk reciprocal lattice vectors the acoustic dispersion curves for the superlat-
tice can be obtained from a continuum model using a linear approximation.
The dispersion is given by

2 d
cosk,d = cos [w (fii + 12—)] ~Z sin <wﬂ) sin (w—2> ; (4.6)
n Vo 2 m 1]
with
o= 22— an (4.7)

N2

where g; and v; are the bulk densities and sound velocities, respectively. The
parameter o describes the amplitude of the acoustic modulation through the
acoustic impedances, g;v;. These equations are valid for both LA and TA
modes provided the appropriate constants are used.
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Fig. 4.7. Folded acoustic phonon spectrum of a (GaAs)1s/ (Alo.3Gao.7As)3 super-
lattice. A series of doublets are observed with energies determined by the folded
dispersion curves and the wavevector of the light. The inset shows the calcula-
ted dispersion curve of the LA modes, which are folded over by the superlattice
periodicity. From [32]

The acoustic phonon dispersion curves are folded into a number of optic-
like phonon branches that can be measured with Raman scattering near the
zone center (see Fig. 4.7). Doublets are observed in the parallel polarization
geometries with frequencies determined by the wavevector of light and the
scattering geometry. In backscattering geometry

w,:,tq B U + ile()‘L_). vsL , (4.8)
d AL

in which the velocity, vsr,, is an average over the two superlattice components

dy  dy\ !
vgr =d (—1 + —2> . (4.9)

141 L9

This is an approximation that is found to work in normal backscattering
geometries. The measurement of the frequencies of the folded acoustic pho-
nons provides a characterization of the period.

The relative intensities provide a measure of the relative thickness of the
layers much like in x-ray diffraction experiments. In a similar way the intensi-
ties of the folded acoustic phonons can also provide a measure of the thickness
of the interfaces. However, the accuracy of these parameters obtained in a Ra-
man experiment is much less than that obtained by x-ray diffraction. In single
quantum wells, wires and dots there is no periodicity and folding does not
occur.
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Confined Optical Phonons. The optical phonons are strongly modified
by structuring of the semiconductor. We consider first the case for phonons
with k, = 0. These are the phonons probed in a backscattering experiment
if wavevector conservation does not break down. If the dispersion curves of
the optical phonons of the two constituent semiconductors do not overlap,
the vibrations of one layer cannot propagate into the other and the phonons
will form standing waves (confined modes). The quantum frequencies of the
confined optical phonons can be understood in the same way as a vibrating
string with clamped ends, or as an electron confined to a infinitely deep
quantum well. The phonon amplitude involves an envelope function that
goes to zero near the interface of the quantum well (see Fig. 4.8). Therefore,
an integer number of half wavelengths of the phonon must fit in the well
{(n monolayers), and the allowed wavevectors are found from

mm

m = (n + 8ag

,m=1,2,..,n, (4.10)

where ag is the monolayer thickness (2.83 A in [001] GaAs) and § accounts
for the penetration of the vibration into the neighboring layer. In the case of
GaAs/AlAs: § = 1 monolayer (only the common As layer at each interface
contributes). From these wavevectors the energies of the confined modes can
be found from the dispersion relations of the bulk phonons of the constituent
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Fig. 4.8. Atomic displacements of the GaAs optic phonons for a (GaAs)20/(AlAs)z20
superlattice with wavevector, q. The dashed vertical lines mark the As interface
planes. Diamonds, stars and asterisks indicate the positions of Ga, Al and As
planes, respectively. From [89]
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semiconductors, E,, = E(gn). This is exactly the way that one finds the
energy of a quantum particle in an infinitely deep, square quantum well at
ko, = 0. The energy shifts from the value of the energy in the bulk semi-
conductor at k =~ 0 are confinement energies. The confinement energies are
negative in the case of GaAs and AlAs because the dispersion for optical
phonons in these materials is negative.

An example of the optical phonon spectra from a multiple quantum well
sample is shown in Fig. 4.9 for several polarization configurations. The pho-
nons in the region around E = 280cm™! arise from the GaAs layers and
those near E = 400cm™! arise from the AlAs layers. The TO modes are not
allowed in backscattering from a (001) surface. Moreover, when out of reso-
nance the odd confined modes are measured in the (z,y) or (y,x) geometries
while the even modes are observed in the (z,z) or (y,y) geometries, where z
and y correspond to polarization of the incident and scattered light polari-
zation along the [110] crystal axes. In resonance the even modes and strong
interface modes are observed to dominate in all scattering geometries [25].

This simple approach for calculating the energies breaks down if there is
sufficient interface roughness [12,33]. The interfaces become blurred and the
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Eig. 4.9. Confined optical phonon spectrum of a (GaAs)10/(AlAs)1o superlattice for
different polarization configurations for resonant (KL = 1.916 V) and nonresonant
(EL = 2.182€V) excitation. From [90]
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quantum well is no longer square. To test the model for a particular sample or
class of samples, the energies of the confined modes can be plotted as a func-
tion of g,,, as determined by (4.10), and compared to the bulk dispersion
curves. In the case of most narrow layers there is relatively poor agreement.
Moreover, it is possible that disorder due to interface roughness may lead
to partial breakdown in wavevector conservation and allow scattering from
excitations with k, # 0. These issues will be discussed in more detail in later
sections.

The phonons can also be calculated within a linear chain model. This is
relatively simple in one dimension and can be extended to 2 or 3 dimensions
if desired. It is also possible to model the interface to some extent by includ-
ing an extra alloy layer at the interface with appropriate masses and spring
constants.

For phonons with &, # 0 it is necessary to consider dispersion. Close to
the k, = 0 confined optical modes have little mechanical dispersion, however,
the long range electric field is sensitive to the interfaces and new modes arise
that are known as interface modes.

Interface Optical Phonons. In compound semiconductors like GaAs and
AlAs the LO phonon has an electric field associated with it. In the presence
of interfaces, the electric field gives rise to interface modes in addition to
the confined optical phonons (Fig. 4.10). These vibrations, which arise when
ko, # 0, have maximal values at the interfaces and slowly decay perpendicular
to the interface. The energies of these modes can be found from Maxwell’s
equations, using for each material an appropriate dielectric function,

w? —wi,

g(w) = &(o0) (4.11)

2 _ 2
w Wro

For an infinite superlattice the energies of the interface modes are found as
a function of (k,, k;) from

cos (k.d) = cosh (k,d; ) cosh (kod2)

+l (5_1 + 52—) sinh (kod1) sinh (kod2). (4.12)
2 £9 €1

In the limit as k, — 0, (4.12) reduces to equations for two bands,

4.13
22) (4.13)

E](UJ) _ tanh (kgd1/2) coth (kgd2/2)
B tanh (k,dz/2) coth (kydy/2)

For dy = d2, (4.13) reduces

e1{w) = —ea(w), (4.14)
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Fig. 4.10. Interface phonon frequencies for GaAs/AlAs superlattices as a function
of wavevector in the plane of the layers (k, = k) for different values of wavevector
normal to the layers (k. = ¢) and superlattice period (d). From [49]

which is the equation for an interface mode localized at the interface between
two semi-infinite dielectric media.

The energies of the interface phonons change strongly as the angle of
the phonon wavevector rotates to lie along k,. This behavior was measured
directly in a microscopic Raman scattering study of multiple GaAs/AlAs
quantum wells. In this study the dispersion of the interface modes was meas-
ured by focusing a microscopic laser spot onto the edge of a superlattice
that was polished at various angles with respect to the superlattice direction
(Fig. 4.11) [30,31]. Because the dispersion of the confined modes is relatively
flat, the interface and confined modes cross. Mixing occurs between the in-
terface modes and the odd confined modes and leads to anti-crossing of the
frequencies, as described in more complete models [34]. The even confined
modes have the wrong symmetry and do not mix with the interface modes.

4.4.2 Phonons as a Probe of Interface Roughness
in a Quantum Well

One of the most critical issues in semiconductor nanostructures is the na-
ture of the interfaces. Raman scattering has the potential to characterize the



4 Raman Scattering in Semiconductor Heterostructures 125

(GaAs),,/(AlAs),, SL

i M i v T 1 T
LO,
295 ... E
:“- .‘"“'n.., - [ ] * [ ] ‘. - .’~_._.
R T B g0 22 |
3 — -
®. F Y ‘-.."- e .
290 7, L P LA RS
5 P
e o T,
- e e o
£ 285} 6 R
O, o e e ‘?';
> [ ] ; ',.’ |
5 7 o
(] * o s.2.2 --"".’; L4
5 2801 ot
e
e o ®¢
3 - o
8 ‘ e,
275 | ,.o',,a """"" hd -
| — o 2 o.S0000, |
TO,
270 1L i 1 n L i A " 1
0 20 40 60 80
Angle o [

Fig. 4.11. Microscopic Raman results (circles) obtained in backscattering geometry
from the edge of a (GaAs)i12/ (AlAs)i2 superlattice polished at different angles with
respect to the superlattice direction are compared to calculations (lines). Dispersion
due to the interface modes and also mixing between the interface modes and the
even confined modes is observed. From [31]

interfaces, and a number of experimental studies have been reported on quan-
tum well structures [12,25,35]. In particular, the nature of the interfaces in
GaAs/AlAs quantum wells has been studied in great detail by Raman scat-
tering and many other techniques. In this system, with a common anion and
little mismatch in lattice parameters, the interface is characterized by the
position of the Ga and Al cations. In a perfect structure, the interface would
abruptly change from a complete Al monolayer to a complete Ga monolayer.
Real structures have mixing of the two cations over several monolayers. In
the simplest picture this blurred interface layer is modeled as a thin alloy
layer.

One very simple measure of the thickness of the interface layer is the
magnitude of the energy splittings in the spectrum of the confined optical
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phonons. If the interfaces are perfect, the energies of the confined optical
modes are obtained from an infinite square potential well model and the
confinement shifts of the modes goes as m? where m is mode index. If there
is extreme mixing of the Ga and Al, the quantum well becomes more parabolic
than square and the mode spacing becomes constant. A figure of merit was
suggested to quantify this measure in order to characterize the quality of
quantum well samples grown under different conditions [36]:

_ (w5 —ws)
el (4.15)

A square well will lead to ¢ = 2 whereas a parabolic well leads to ¢ = 1.
A very clear example of this effect was demonstrated by measuring the pho-
non spectrum of a quantum well sample after heating the sample to high
temperatures for varying periods of time [37]. At high annealing tempera-
tures the Al and Ga anions can exchange positions and the interface becomes
thicker. The Raman spectrum gave ¢ = 2.0 for the unannealed sample and
o = 1.35 after annealing for 3 hours at 850°C.

The spectrum of acoustic phonons in a multiple quantum well is also
sensitive to the nature of the interface. The energies of the folded acoustic
modes depend only on the quantum well period. However, the shape of the
anion modulation, in other words, how blurred are the interfaces, leads to
a significant change in intensities that can be quantitatively modeled using
the photoelastic model. This effect is very similar to x-ray diffraction and
the analysis is similar. The spectral intensities of the folded acoustic modes
are related to the Fourier transform of the real-space cation composition
modulation.

When x-ray diffraction characterization is possible it generally provides
much higher precision. However, x-ray diffraction becomes more difficult
when working with small structures, such as a single quantum well, or non-
periodic complex structures, such as a quantum well sample with many dif-
ferent single quantum wells with different widths. With Raman scattering it
is possible to resonate with a particular layer by tuning the laser frequency
to the layer’s energy band gap, thereby increasing strongly the scattering
efficiency to the point where it is measurable and also dominates the Raman
spectrum. In this way the necessary sensitivity and selectivity can be achie-
ved to probe small individual volumes within large or complicated crystals.
As an example, a Raman study of the lateral nature of the interface using
Raman scattering will be discussed next.

Lateral Interface Structure. In quantum well samples of the highest qua-
lity, the thickness of the interface is on the order of a single monolayer [38].
In such samples the lateral structure of the interface within the monolayer
varies dramatically, leading to significant changes in the optical properties of
the quantum well. For example, if the growth of the sample is interrupted
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for approximately a minute before the interface is formed, the surface forms
monolayer-high islands as the atoms migrate on the growing surface to lower
energy positions at the edges of islands (Fig. 4.12). These “monolayer-high
islands”, which can reach diameters of 100’s of nanometers, can be measured
directly with STM if the growth is terminated [39).

Although buried interfaces are difficult to image directly with nanometer
resolution, the interface can be probed through optical spectroscopies such
as photoluminescence (PL) [38]. In quantum wells the PL is dominated by
recombination of excitons (bound electron-hole pairs). The lineshape of the
spectral lines varies dramatically depending on the length scale of these large
monolayer high islands relative to the exciton’s Bohr diameter (=~ 20nm in
GaAs). When the islands are less than the Bohr diameter of the exciton the
interface is averaged over and the spectral lines consist of a single broad peak.
However, if the island structure becomes larger than the Bohr diameter in
a narrow quantum well, the PL lines break up into doublets or triplets with
splittings corresponding to differences in well width of one monolayer. This
splitting arises from regions of the quantum well that differ by one monolayer
due to the monolayer-high islands at the interfaces.

From PL and other optical spectroscopies it is obvious when a sample
has lateral interface structure large compared to the exciton’s Bohr diame-

Fig. 4.12. Optical spectra of lowest energy exciton from a (GaAs)n/(AlAs);s single
quantum well as a function of well width (n monolayers). Large monolayer-high
islands at the interfaces lead to a splitting of the exciton line into a doublet with
an energy difference corresponding approximately to the difference in well width of
one monolayer. Also shown (sharp spectral structure) are the LO phonon spectra
obtained when the laser is tuned in frequency one phonon above the exciton. Lower
inset: The resulting resonant Raman spectra with n = 17 and 8 monolayers for well
widths. Upper inset: Highly simplified schematic of the quantum well illustrating
excitons existing within regions differing in width by one monolayer
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ter. However, because the exciton averages over smaller structure, it is not
clear whether the interfaces also contain a significant amount of small-scale
structure within these large islands [40,41]. One way to address this question
is to compare the energies of the optical phonons in a Raman spectrum with
those expected with and without alloy layers at the interfaces. To avoid com-
plicating the spectrum with contributions from regions of the quantum well
that have different well widths (arising from large monolayer islands at the
interfaces) resonance Raman scattering can be used. By tuning the laser into
resonance with a specific exciton energy, phonons associated with a particular
well width can be measured (to within a monolayer) [15,16].

In one experiment (Fig. 4.12) the optical phonon spectrum was measured
monolayer by monolayer from a single quantum well in the range from 8
to 19 monolayers (2.3 to 5.4nm) [16]. This was done on a sample that was
grown like a wedge so that the average well width varied from one side of
the sample to the other, in addition to fluctuating by one or two monolayers
at each position. Thus, by scanning the laser across the sample the exciton
spectrum could be measured monolayer by monolayer. The energy of the
exciton provided a characterization of the well width. Moreover, by tuning
the laser frequency into resonance with specific monolayer resonances as the
well width changed, the phonon spectrum could be recorded monolayer by
monolayer. In Fig. 4.12 both the exciton spectra and the resonant Raman
spectra are shown as a function of well width in monolayer steps. In the
lower inset to Fig. 4.12 are shown the resonant Raman spectra from regions
with n = 17 and 8 monolayers.

The resulting energies for the LO phonon modes are plotted as a function
of well width in Fig. 4.13. The data was compared with calculations based
on a one dimensional linear chain model with thin alloy layers at the in-
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Fig. 4.13. The measured (symbols) and calculated (lines) energies of several con-

fined LO modes as a function of well width. The calculations were performed with

interfaces modeled as uniform alloy layers with concentrations = = 0.5, and widths
0, 1 or 2 monolayers. From [24]
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terfaces. The experimental results were in good agreement with calculations
for a structure with an alloy-like layer about one monolayer thick at the
two interfaces. From this resonant Raman study it is clear that the interface
structure in the highest quality GaAs/AlAs quantum wells consists of both
large-scale island structure and small-scale alloy-like structure, both about
a monolayer thick. The large-scale structure arises from the migration of the
anions on the growing surface to the edges of large monolayer-high islands
that grow to diameters on the order of 10—100 nm. The small-scale structure
is most likely atomic-scale roughness that develops due to the exchange of Al
and Ga on the growing surface as the interface is being formed [42]. As one
might expect, this atomic scale roughness depends on growth temperature
among other factors [16,43,44].

Phonon Spectrum Within a Single Interface Island. By resonating
with the exciton, large increases in Raman intensities are achieved. In this
way a small fraction of a single quantum well can be studied. It is interesting
to estimate how small this fraction is in the example given in the last section.
The total number of islands within the laser spot is determined roughly by
the ratio of the area of the laser spot (1000 um?) to the area of a typical island
within this single quantum well (1073 um?); about 107 islands. However, the
fraction of these islands whose excitons are in resonance is determined by
the ratio of the exciton’s homogeneous (30 1eV) to inhomogeneous linewidth
(3meV), or about 0.01. This leads to an estimate of about 10° islands that
are excited in a macroscopic resonant Raman experiment on this type of
quantum well structure.

Remarkably, this measurement can be pushed to the limit of a single is-
land [17]. If the laser spot is reduced to a sufficiently small area it is possible
to resolve the PL and absorption lines arising from individual excitons local-
ized laterally within single islands (Fig. 4.14) [45-47]. The PL spectra shown
in this figure were obtained through small apertures in a metal shadow mask.
These masks were patterned directly on the sample using evaporation and
electron beam lithography and range in diameter from 25 ym down to 200 nm.
PL was excited and detected through the same aperture in a backscattering
geometry. As the laser spot was reduced from a macroscopic 25 um aperture
into the optical near field regime of 200 nm, the inhomogeneous spectrum
broke up into a decreasing number of extraordinarily sharp PL spikes. These
PL lines arose from single exciton states localized laterally within individual
islands.

In many ways the properties of these spatially localized excitons can be
described in terms of quantum dot potentials [47,48]. The lateral confinement
leads to additional confinement energy. It is fluctuations in these lateral con-
finement energies that lead, in part, to the inhomogeneous linewidth observed
in the optical spectra of narrow quantum wells. By reducing the focused la-
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Fig. 4.14. PL spectra of several single (GaAs).(AlAs)1s quantum wells as a func-
tion of aperture size on the sample. The broad inhomogeneous exciton spectrum
breaks up into a single exciton lines when a sufficiently small area is probed. Both
exciting and detected light passed through the same small hole in a metal shadow
mask processed directly on the sample. From [91]

ser’s spot size to the microscopic or to the submicroscopic regime individual
excitons can be excited and detected.

By tuning the laser into strong resonance with an individual exciton lo-
calized within a single island, the associated phonon spectrum was measured
(Fig. 4.15) [17]. This was accomplished in the outgoing resonance. A spec-
trometer was tuned to the exciton resonance while the laser was scanned
through the optical phonon regime at higher energy. The intensity of the
emitted light as a function of the difference between the laser and the spec-
trometer energies was measured, providing the phonon spectrum associated
with this single localized exciton. In Fig. 4.15 the macroscopic Raman spec-
trum measured through a 25 um aperture is also plotted. This spectrum was
obtained in the conventional way; fixing the laser and scanning the spectrom-
eter. The energies and linewidths of the optical modes are in good agreement
between the two results. This implies that the energies of the phonons, un-
like those of the excitons, are insensitive to the islands at the interfaces. This
is not surprising because a change in well width of one monolayer leads to
a change in phonon confinement energy that is less than the homogeneous
linewidth. Nevertheless, because the scattering is directly mediated by the
localized exciton, the spatial envelope of phonons excited in the scattering
process with the localized exciton must also be localized, and the measure-
ment serves as a local probe of phonons.
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Fig. 4.15. Resonant Raman spectra of LO phonons obtained from the 19 monolayer
quantum well shown in Fig. 4.14. The bottom trace shows the macroscopic spectrum
obtained in a conventional resonant Raman scattering experiment (as in Fig. 4.12).
The bottom trace shows the phonon spectrum obtained through a 500 nm aperture.
In this case the spectrometer was tuned to the frequency of a single localized exciton
while the laser was scanned in frequency. From [17]

Although there was no measurable change in the energies of the phonons,
there were fluctuations in the relative intensities from dot to dot. This was
particularly noticeable in the intensity of the TO modes. This result was not
well understood, however, because the TO phonon is normally forbidden in
this geometry, the origin of this observation may lie in the breakdown of the
selection rules arising from lateral localization.

This experiment serves to illustrate one potential direction of interest in
the Raman characterization of semiconductor nanostructures. With resonant
Raman spectroscopy, the phonon spectra of individual nanostructures with
dimensions down to a few tens nm’s can be selectively measured. In some
cases it should be possible to obtain not only the spectra but also the spatial
images of the phonon intensity with resolution in the optical near field regime.

Raman Scattering Induced by Interface Roughness. The roughness of
the interfaces leads to partial breakdown of selection rules. Interface rough-
ness provides a mechanism by which wavevector conservation can be violated.
An especially clear example of this is the common observation of interface
(IF) phonons observed in backscattering geometry from multiple quantum
well samples [29,49-51]. Interface phonon scattering requires a component of
the scattered wavevector in the plane of the quantum well. Transfer of wave-
vector into the plane of the quantum wells through localized excitons in the
intermediate state of the Raman scattering process can explain the observa-
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tion of IF phonon scattering in the backscattering geometry. The scattering
arises from coupling of the light into a distribution in phonon wavevectors.
Roughly, the spectrum will reflect the density of states in the phonon’s disper-
sion curve out to a wavevector given by the inverse of the exciton’s localization
size.

Early on, the strong interface phonon scattering in pure backscattering
geometry was recognized as arising from a breakdown in wavevector conser-
vation, probably due to interface roughness [25,29,49]. This effect was espe-
cially dramatic under outgoing resonance conditions. The Raman spectrum
was interpreted as a combination of peaks due to confined phonons along
with a peak due to forbidden interface scattering in many cases. Recently,
however, Shields et al. [50,51] pointed out that the scattering intensities could
not be understood under close examination with this simple interpretation,
and that interface roughness plays an even stronger role than previously ap-
preciated. They were able to show that under resonant conditions the entire
spectrum, except for the m = 2 confined mode, could be understood as scat-
tering from forbidden interface phonons. They demonstrated that the optical
phonon spectrum should be viewed as a broad feature due to forbidden in-
terface phonon scattering, originating from the entire dispersion curve of the
interface phonon (Fig. 4.16). Dips in the spectral structure could be asso-
ciated with anti-crossing between the interface modes and the odd confined
modes. At these energies there is a lower density of states. In complete con-
trast to previous studies, peaks in the structure were reinterpreted as regions
between the odd confined modes. It is coincidental that these peaks in the
spectra occur roughly at the energies of the even confined modes. It is be-
cause of this coincidence that the simple models previously used provided
satisfactory agreement with the measured energies. According to their cal-
culations, the contribution to the resonant spectra due to the even confined
modes, with the exception of the m = 2 mode, is much smaller than that due
to the forbidden interface modes. This reinterpretation was supported with
a detailed calculation of the spectrum.

Recently, Ruf et al. [12,52,53] studied the structure in the folded acous-
tic phonons under resonance conditions. Disorder-induced scattering led to
a broad continuum in the spectra in addition to the sharp allowed modes.
Just as in the case of the optical phonons [19-21], considerable information
can be obtained on the intermediate excitonic states involved in the resonant
Raman process from the intensity. The phonons provide a probe of disorder.

4.5 Electronic Raman Scattering
in Semiconductor Heterostructures

If a quantum well is doped with shallow donors or acceptors, a variety of
low energy excitations can be excited and studied in detail with Raman scat-
tering [10,54]. If impurities are doped directly into the middle of the quantum
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Fig.4.16a,b. lQalcrglated dispersion of optical phonons with in-plane wavevector
(gz,y) in a 46 A/46A GaAs/AlAs MQW. Raman spectra taken under conditions
with (i) nonresonant and z(x,y)z (ii) outgoing resonance and z(x, z)z, or (iii) ingoing
resonance with z(z,z)z. The horizontal bars indicate gaps opened in the IF phonon
dispersion by anticrossing with odd-order confined modes, which produce minima
in the resonant Raman spectra. From [50]

wells the electrons or holes remain bound but the impurity spectra are modi-
fied due to the additional confinement of the quantum well. Alternatively, if
the shallow impurities are doped into the barriers a few tens of nanometers
away from the quantum well interface (modulation doping), the electrons or
holes fall into the lower energy quantum well and form a very high quality
quasi-2D electron or hole gas. Excitations of these 2D electron and hole gases
have been studied in great detail [10,55].

4.5.1 Shallow Impurities

Dopants such as Si and Be can be selectively doped into the structure using
MBE with remarkable precision. Transitions of both neutral donors and ac-
ceptors in quantum wells have been measured spectroscopically with pho-
toluminescence [56,57], far infrared absorption [58], and Raman scattering

spectroscopy [69-61].
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Shallow Donors. Silicon behaves primarily as a shallow donor in bulk GaAs
and can be treated as a hydrogen-like atom with one electron orbiting the ion
with a binding energy of approximately 6 meV and a Bohr radius of 10 nm.
If the Si donor is doped into a GaAs/AlGaAs quantum well the electron
wavefunction is forced to overlap the positive ion even more. As a result, the
binding energy increases with decreasing well width as the width becomes less
than the Bohr radius. In the 2D limit the binding energy goes to 4 times the
3D binding energy [62]. Transitions between 1s- and 2s-like bound states have
been measured with Raman scattering [63,64], while transitions between 1s—
and 2p- like states have been measured with far-infrared absorption [65]. An
example of measured transition energies for GaAs/AlGaAs quantum wells
doped in the center portion with Silicon donors is shown in [54]. Measured
values are in good agreement with effective mass calculations [66,67].

The binding energy and symmetry of its wave function depend on the
position of the donor ion within the quantum well [54,62]. If the donor ion
is at the interface of a quantum well, the electronic wavefunction must go to
zero at the donor ion, assuming infinite barrier height. If the well width is
much larger than the Bohr radius, the envelope function of the lowest energy
state is identical with the 2p,-like state of the bulk, and the binding energy is
reduced to 1/4 of the value it would have at the center. The transition energy
of the impurity thus provides a measure of its position relative to an interface,
which could be used to measure impurity segregation during growth.

Shallow Acceptors. Shallow acceptors in GaAs quantum wells have also
been measured with Raman scattering [61,68,69,73,74]. Because acceptor wa-
vefunctions are derived from the valence bands, the energy spectrum is more
complex than donors (Fig. 4.17) [70,71}. Just as the heavy and light hole
bands are split in the quantum well, the bulk four-fold degenerate 1s and
2s levels [72] each split into doublets in a quantum well. However, because
of the relatively strong acceptor binding energy, light and heavy hole mixing
within the acceptor 1s states is very high and the splitting is much less than
that of the heavy and light-hole bands. Transitions between the split 1s states
and the 1s — 2s states have been measured (Fig. 4.18). Each of these states
maintains a two-fold degeneracy that can be split with a magnetic field. In
this way spin flip Raman scattering can than be measured (Fig. 4.19) [68,69].

Most electronic Raman spectroscopy studies of quantum wells have re-
lied on resonant enhancement to obtain sufficient signal. With the laser at or
close to the band edge, photoluminescence can confuse or obscure the Raman
peak. In the case of donors, photoluminescence occurs when a photo-excited
hole recombines with the donor electron (Fig. 4.20). The energy of this PL
transition is independent of the laser frequency. In contrast, a Raman tran-
sition should track the laser frequency (as long as there is a distribution of
resonant energies). This sort of behavior, seen in Fig. 4.21, allowed the au-
thors to differentiate between PL and Raman, and obtain a measure of the
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Fig. 4.17. The calculated well-width dependence of the energies of the 1s and 2s-
like states of an acceptor at the center of a GaAs/Alp.3Gao.7As quantum well. The
dashed region denotes the continuum of free-hole energies. From [61]

1s — 2s transition energy of the silicon donor as a function of well width [63].
Similar approaches were used in the case of acceptor studies [73,74].

Fig. 4.18. Raman Spectra from two center-doped GaAs/Alo.3Gao.7As quantum
well samples with well widths L showing acceptor transitions A, B and C from
Fig. 4.17. The features labeled X were not understood. From [92]
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Fig. 4.19. Raman transition energies as a function of magnetic field along the z-
axis. Transitions labeled Ac correspond to the C transition of Figs. 4.18 and 4.19
and are between the I7(m = £3/2) and I's(m = £1/2) acceptor states. Results
from two center-doped GaAs/Alg.3Gag.7As quantum well samples with well widths
of 10.2nm and 7.2 nm are shown. The inset shows the acceptor energy levels going
from bulk to quantum well with and without a magnetic field. From [69]
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Fig. 4.20. Schematic single particle diagram of conduction and valence subbands
and donors levels, showing transitions that lead to Raman scattering (left) and
photoluminescence (right). From [59]



4 Raman Scattering in Semiconductor Heterostructures 137

_ 300'» o L= 88k
® o Lo 153K (neig®W®) 1/
E 250+ L= 1538 0o ! }/ / 4
L s t=2388 /
= 200 4K ,/l 4 {
3 £ ¥ P’
7 5o} /! » J/
(%] <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>