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1.1: Introduction to Symmetry
You will already be familiar with the concept of symmetry in an everyday sense. If we say something is ‘symmetrical’, we usually
mean it has mirror symmetry, or ‘left-right’ symmetry, and would look the same if viewed in a mirror. Symmetry is also very
important in chemistry. Some molecules are clearly ‘more symmetrical’ than others, but what consequences does this have, if any?

The aim of this course is to provide a systematic treatment of symmetry in chemical systems within the mathematical framework
known as group theory (the reason for the name will become apparent later on). Once we have classified the symmetry of a
molecule, group theory provides a powerful set of tools that provide us with considerable insight into many of its chemical and
physical properties.

Some applications of group theory that will be covered in this course include:

1. Predicting whether a given molecule will be chiral, or polar.
2. Examining chemical bonding and visualising molecular orbitals.
3. Predicting whether a molecule may absorb light of a given polarisation, and which spectroscopic transitions may be excited if it

does.
4. Investigating the vibrational motions of the molecule.

You may well meet some of these topics again, possibly in more detail, in later courses. However, they will be introduced here to
give you a fairly broad introduction to the capabilities and applications of group theory once we have worked through the basic
principles and ‘machinery’ of the theory.

This page titled 1.1: Introduction to Symmetry is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire Vallance
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.2: Symmetry Operations and Symmetry Elements
A symmetry operation is an action that leaves an object looking the same after it has been carried out. For example, if we take a
molecule of water and rotate it by 180° about an axis passing through the central O atom (between the two H atoms) it will look the
same as before. It will also look the same if we reflect it through either of two mirror planes, as shown in the figure below.

Each symmetry operation has a corresponding symmetry element, which is the axis, plane, line or point with respect to which the
symmetry operation is carried out. The symmetry element consists of all the points that stay in the same place when the symmetry
operation is performed. In a rotation, the line of points that stay in the same place constitute a symmetry axis; in a reflection the
points that remain unchanged make up a plane of symmetry.

The symmetry elements that a molecule may possess are:

1.  - the identity. The identity operation consists of doing nothing, and the corresponding symmetry element is the entire
molecule. Every molecule has at least this element.

2.  - an -fold axis of rotation. Rotation by  leaves the molecule unchanged. The  molecule above has a  axis.
Some molecules have more than one  axis, in which case the one with the highest value of  is called the principal axis.
Note that by convention rotations are counterclockwise about the axis.

3.  - a plane of symmetry. Reflection in the plane leaves the molecule looking the same. In a molecule that also has an axis of
symmetry, a mirror plane that includes the axis is called a vertical mirror plane and is labeled , while one perpendicular to the
axis is called a horizontal mirror plane and is labeled . A vertical mirror plane that bisects the angle between two  axes is
called a dihedral mirror plane, .

4.  - a center of symmetry. Inversion through the center of symmetry leaves the molecule unchanged. Inversion consists of
passing each point through the center of inversion and out to the same distance on the other side of the molecule. An example of
a molecule with a center of inversion is shown below.

5.  - an n-fold improper rotation axis (also called a rotary-reflection axis). The rotary reflection operation consists of rotating
through an angle  about the axis, followed by reflecting in a plane perpendicular to the axis. Note that  is the same as
reflection and  is the same as inversion. The molecule shown above has two  axes.

The identity  and rotations  are symmetry operations that could actually be carried out on a molecule. For this reason they are
called proper symmetry operations. Reflections, inversions and improper rotations can only be imagined (it is not actually possible
to turn a molecule into its mirror image or to invert it without some fairly drastic rearrangement of chemical bonds) and as such, are
termed improper symmetry operations.

Conventionally, when imposing a set of Cartesian axes on a molecule (as we will need to do later on in the course), the  axis
lies along the principal axis of the molecule, the  axis lies in the plane of the molecule (or in a plane containing the largest
number of atoms if the molecule is non-planar), and the  axis makes up a right handed axis system.

This page titled 1.2: Symmetry Operations and Symmetry Elements is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
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1.3: Symmetry Classification of Molecules- Point Groups
It is only possible for certain combinations of symmetry elements to be present in a molecule (or any other object). As a result, we
may group together molecules that possess the same symmetry elements and classify molecules according to their symmetry. These
groups of symmetry elements are called point groups (due to the fact that there is at least one point in space that remains unchanged
no matter which symmetry operation from the group is applied). There are two systems of notation for labeling symmetry groups,
called the Schoenflies and Hermann-Mauguin (or International) systems. The symmetry of individual molecules is usually
described using the Schoenflies notation, and we shall be using this notation for the remainder of the course .

Some of the point groups share their names with symmetry operations, so be careful you
do not mix up the two. It is usually clear from the context which one is being referred to.

Molecular Point Groups 
1.  - contains only the identity (a  rotation is a rotation by 360° and is the same as the identity operation ) e.g. CHDFCl.

2.  - contains the identity  and a center of inversion .

3.  - contains the identity  and a plane of reflection .

4.  - contains the identity and an -fold axis of rotation.

5.  - contains the identity, an -fold axis of rotation, and  vertical mirror planes .

 

6.  - contains the identity, an -fold axis of rotation, and a horizontal reflection plane  (note that in  this combination of
symmetry elements automatically implies a center of inversion).

7.  - contains the identity, an -fold axis of rotation, and  2-fold rotations about axes perpendicular to the principal axis.

8.  - contains the same symmetry elements as  with the addition of a horizontal mirror plane.

9.  - contains the same symmetry elements as  with the addition of  dihedral mirror planes.

1
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10.  - contains the identity and one  axis. Note that molecules only belong to  if they have not already been classified in
terms of one of the preceding point groups (e.g.  is the same as , and a molecule with this symmetry would already have
been classified).

The following groups are the cubic groups, which contain more than one principal axis. They separate into the tetrahedral groups (
,  and ) and the octahedral groups (  and ). The icosahedral group also exists, but is not included below.

11.  - contains all the symmetry elements of a regular tetrahedron, including the identity, 4  axes, 3  axes, 6 dihedral mirror
planes, and 3  axes e.g. .

12.  - as for  but no planes of reflection.
13.  - as for  but contains a center of inversion.
14.  - the group of the regular octahedron e.g. .

15.  - as for , but with no planes of reflection.

The final group is the full rotation group , which consists of an infinite number of  axes with all possible values of  and
describes the symmetry of a sphere. Atoms (but no molecules) belong to , and the group has important applications in atomic
quantum mechanics. However, we won’t be treating it any further here.

Once you become more familiar with the symmetry elements and point groups described above, you will find it quite
straightforward to classify a molecule in terms of its point group. In the meantime, the flowchart shown below provides a step-by-
step approach to the problem.

Sn Sn Sn

S2 Ci

Td Th T O Oh

Td C3 C2

S4 CH4

T Td

Th T

Oh SF6

O Oh

R3 Cn n
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Though the Hermann-Mauguin system can be used to label point groups, it is usually used in the discussion of crystal symmetry.
In crystals, in addition to the symmetry elements described above, translational symmetry elements are very important.
Translational symmetry operations leave no point unchanged, with the consequence that crystal symmetry is described in terms of
space groups rather than point groups.

This page titled 1.3: Symmetry Classification of Molecules- Point Groups is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.4: Symmetry and Physical Properties
Carrying out a symmetry operation on a molecule must not change any of its physical properties. It turns out that this has some
interesting consequences, allowing us to predict whether or not a molecule may be chiral or polar on the basis of its point group.

Polarity 
For a molecule to have a permanent dipole moment, it must have an asymmetric charge distribution. The point group of the
molecule not only determines whether the molecule may have a dipole moment, but also in which direction(s) it may point.

If a molecule has a  axis with , it cannot have a dipole moment perpendicular to the axis of rotation (for example, a 
rotation would interchange the ends of such a dipole moment and reverse the polarity, which is not allowed – rotations with higher
values of  would also change the direction in which the dipole points). Any dipole must lie parallel to a  axis.

Also, if the point group of the molecule contains any symmetry operation that would interchange the two ends of the molecule,
such as a  mirror plane or a  rotation perpendicular to the principal axis, then there cannot be a dipole moment along the axis.

The only groups compatible with a dipole moment are ,  and . In molecules belonging to  or  the dipole must lie
along the axis of rotation.

Chirality 
One example of symmetry in chemistry that you will already have come across is found in the isomeric pairs of molecules called
enantiomers. Enantiomers are non-superimposable mirror images of each other, and one consequence of this symmetrical
relationship is that they rotate the plane of polarized light passing through them in opposite directions. Such molecules are said to
be chiral,  meaning that they cannot be superimposed on their mirror image. Formally, the symmetry element that precludes a
molecule from being chiral is a rotation-reflection axis . Such an axis is often implied by other symmetry elements present in a
group.

For example, a point group that has  and  as elements will also have . Similarly, a center of inversion is equivalent to .
As a rule of thumb, a molecule definitely cannot have be chiral if it has a center of inversion or a mirror plane of any type ( , 
or ), but if these symmetry elements are absent the molecule should be checked carefully for an  axis before it is assumed to
be chiral.

 The word chiral has its origins in the Greek word for hand ( , pronounced ‘cheri’ with a soft ch as in ‘loch’). A pair of hands
is also a pair of non-superimposable mirror images, and you will often hear chirality referred to as ‘handedness’ for this reason.

This page titled 1.4: Symmetry and Physical Properties is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire
Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.5: Combining Symmetry Operations - ‘Group Multiplication’
Now we will investigate what happens when we apply two symmetry operations in sequence. As an example, consider the 
molecule, which belongs to the  point group. Consider what happens if we apply a rotation followed by a  reflection. We
write this combined operation  (when written, symmetry operations operate on the thing directly to their right, just as
operators do in quantum mechanics – we therefore have to work backwards from right to left from the notation to get the correct
order in which the operators are applied). As we shall soon see, the order in which the operations are applied is important.

The combined operation  is equivalent to , which is also a symmetry operation of the  point group. Now let’s see what
happens if we apply the operators in the reverse order i.e.  (  followed by ).

Again, the combined operation  is equivalent to another operation of the point group, this time .

There are two important points that are illustrated by this example:

1. The order in which two operations are applied is important. For two symmetry operations  and ,  is not necessarily the
same as , i.e. symmetry operations do not in general commute. In some groups the symmetry elements do commute; such
groups are said to be Abelian.

2. If two operations from the same point group are applied in sequence, the result will be equivalent to another operation from the
point group. Symmetry operations that are related to each other by other symmetry operations of the group are said to belong to
the same class. In , the three mirror planes ,  and  belong to the same class (related to each other through a 
rotation), as do the rotations  and  (anticlockwise and clockwise rotations about the principal axis, related to each other by
a vertical mirror plane

The effects of applying two symmetry operations in sequence within a given point group are summarized in group multiplication
tables. As an example, the complete group multiplication table for  using the symmetry operations as defined in the figures
above is shown below. The operations written along the first row of the table are carried out first, followed by those written in the
first column (note that the table would change if we chose to name ,  and  in some different order).
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1.6: Constructing higher groups from simpler groups
A group that contains a large number of symmetry elements may often be constructed from simpler groups. This is probably best
illustrated using an example. Consider the point groups  and .  contains the elements  and , and has order 2, while 
contains  and σ and also has order . We can use these two groups to construct the group  by applying the symmetry
operations of  and  in sequence.

Notice that  has order , which is the product of the orders of the two lower-order groups.  may be described as a direct
product group of  and . The origin of this name should become obvious when we review the properties of matrices.
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1.7: Mathematical Definition of a Group
Now that we have explored some of the properties of symmetry operations and elements and their behavior within point groups, we
are ready to introduce the formal mathematical definition of a group.

A mathematical group is defined as a set of elements ( , , ...) together with a rule for forming combinations . The number
of elements  is called the order of the group. For our purposes, the elements are the symmetry operations of a molecule and the
rule for combining them is the sequential application of symmetry operations investigated in the previous section. The elements of
the group and the rule for combining them must satisfy the following criteria.

1. The group must include the identity , for which

for all the elements of the group.
2. The elements must satisfy the group property that the combination of any pair of elements is also an element of the group.
3. Each element  must have an inverse , which is also an element of the group, such that

(e.g. in  the inverse of  is , the inverse of  is ', the inverse  effectively 'undoes’ the effect of the symmetry
operation ).

4. The rule of combination must be associative i.e.

The above definition does not require the elements to commute, which would require

As we discovered in the  example above, in many groups the outcome of consecutive application of two symmetry operations
depends on the order in which the operations are applied. Groups for which the elements do not commute are called non-Abelian
groups; those for which they elements do commute are Abelian.

Group theory is an important area in mathematics, and luckily for chemists the mathematicians have already done most of the work
for us. Along with the formal definition of a group comes a comprehensive mathematical framework that allows us to carry out a
rigorous treatment of symmetry in molecular systems and learn about its consequences.

Many problems involving operators or operations (such as those found in quantum mechanics or group theory) may be
reformulated in terms of matrices. Any of you who have come across transformation matrices before will know that symmetry
operations such as rotations and reflections may be represented by matrices. It turns out that the set of matrices representing the
symmetry operations in a group obey all the conditions laid out above in the mathematical definition of a group, and using matrix
representations of symmetry operations simplifies carrying out calculations in group theory. Before we learn how to use matrices in
group theory, it will probably be helpful to review some basic definitions and properties of matrices.

This page titled 1.7: Mathematical Definition of a Group is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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1.8: Review of Matrices

Definitions 

An  matrix is a two dimensional array of numbers with  rows and  columns. The integers  and  are called the
dimensions of the matrix. If  then the matrix is square. The numbers in the matrix are known as matrix elements (or just
elements) and are usually given subscripts to signify their position in the matrix e.g. an element  would occupy the row and 

column of the matrix. For example:

is a  matrix with , , ,  etc

In a square matrix, diagonal elements are those for which =  (the numbers , , and  in the above example). Off-diagonal
elements are those for which  ( , , , , , and  in the above example). If all the off-diagonal elements are equal to zero
then we have a diagonal matrix. We will see later that diagonal matrices are of considerable importance in group theory.

A unit matrix or identity matrix (usually given the symbol ) is a diagonal matrix in which all the diagonal elements are equal to .
A unit matrix acting on another matrix has no effect – it is the same as the identity operation in group theory and is analogous to
multiplying a number by  in everyday arithmetic.

The transpose of a matrix  is the matrix that results from interchanging all the rows and columns. A symmetric matrix is the
same as its transpose (  i.e.  for all values of  and ). The transpose of matrix  above (which is not symmetric)
is

The sum of the diagonal elements in a square matrix is called the trace (or character) of the matrix (for the above matrix, the trace
is ). The traces of matrices representing symmetry operations will turn out to be of great importance in group
theory.

A vector is just a special case of a matrix in which one of the dimensions is equal to . An  matrix is a column vector; a 
 matrix is a row vector. The components of a vector are usually only labeled with one index. A unit vector has one element

equal to  and the others equal to zero (it is the same as one row or column of an identity matrix). We can extend the idea further to
say that a single number is a matrix (or vector) of dimension .

Matrix Algebra 
i. Two matrices with the same dimensions may be added or subtracted by adding or subtracting the elements occupying the same

position in each matrix. e.g.
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ii. A matrix may be multiplied by a constant by multiplying each element by the constant.

iii. Two matrices may be multiplied together provided that the number of columns of the first matrix is the same as the number of
rows of the second matrix i.e. an  matrix may be multiplied by an  matrix. The resulting matrix will have
dimensions . To find the element  in the product matrix, we take the dot product of row  of the first matrix and column 
 of the second matrix (i.e. we multiply consecutive elements together from row  of the first matrix and column  of the second

matrix and add them together i.e.  =   e.g. in the  matrices  and  used in the above examples, the first
element in the product matrix  is  =  +  + 

An example of a matrix multiplying a vector is

Matrix multiplication is not generally commutative, a property that mirrors the behavior
found earlier for symmetry operations within a point group.

Direct Products 

The direct product of two matrices (given the symbol ) is a special type of matrix product that generates a matrix of higher
dimensionality if both matrices have dimension greater than one. The easiest way to demonstrate how to construct a direct product
of two matrices  and  is by an example:

Though this may seem like a somewhat strange operation to carry out, direct products crop up a great deal in group theory.

Inverse Matrices and Determinants 
If two square matrices  and  multiply together to give the identity matrix I (i.e. ) then  is said to be the inverse of 
(written ). If  is the inverse of  then  is also the inverse of . Recall that one of the conditions imposed upon the
symmetry operations in a group is that each operation must have an inverse. It follows by analogy that any matrices we use to
represent symmetry elements must also have inverses. It turns out that a square matrix only has an inverse if its determinant is non-

A−B =
⎛

⎝
⎜

−1

1

2

0

2

3

4

0

0

⎞

⎠
⎟ (1.8.6)

4B =
⎛

⎝
⎜

8

4

4

0

0

−4

−8

4

0

⎞

⎠
⎟ (1.8.7)

3A =
⎛

⎝
⎜

3

6

9

0

6

6

6

3

0

⎞

⎠
⎟ (1.8.8)

n×m m× l

n× l aij i

j i j

cij Σk aikbjk 3 ×3 A B

C = AB c11 a11b11 a12b21 a13b31

AB = =
⎛

⎝
⎜

1

2

3

0

2

2

2

1

0

⎞

⎠
⎟
⎛

⎝
⎜

2

1

1

0

0

−1

−2

1

0

⎞

⎠
⎟

⎛

⎝
⎜

4

7

8

−2

−1

0

−2

−2

−4

⎞

⎠
⎟ (1.8.9)

Av = =
⎛

⎝
⎜

1

2

3

0

2

2

2

1

0

⎞

⎠
⎟
⎛

⎝
⎜

1

2

3

⎞

⎠
⎟

⎛

⎝
⎜

7

9

7

⎞

⎠
⎟ (1.8.10)

⊗

A B

A⊗B =( )⊗( )
a11

a21

a12

a22

b11

b21

b12

b22

=( )
Ba11

Ba21

Ba12

Ba22

=

⎛

⎝

⎜⎜
⎜

a11b11

a11b21

a21b11

a21b21

a11b12

a11b22

a21b12

a21b22

a12b11

a12b21

a22b11

a22b21

a12b12

a12b22

a22b21

a22b22

⎞

⎠

⎟⎟
⎟

(1.8.11)

(1.8.12)

(1.8.13)

A B AB = I B A

A−1 B A A B

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/9331?pdf


1.8.3 https://chem.libretexts.org/@go/page/9331

zero. For this reason (and others which will become apparent later on when we need to solve equations involving matrices) we need
to learn a little about matrix determinants and their properties.

For every square matrix, there is a unique function of all the elements that yields a single number called the determinant. Initially it
probably won’t be particularly obvious why this number should be useful, but matrix determinants are of great importance both in
pure mathematics and in a number of areas of science. Historically, determinants were actually around before matrices. They arose
originally as a property of a system of linear equations that ‘determined’ whether the system had a unique solution. As we shall see
later, when such a system of equations is recast as a matrix equation this property carries over into the matrix determinant.

There are two different definitions of a determinant, one geometric and one algebraic. In the geometric interpretation, we consider
the numbers across each row of an  matrix as coordinates in -dimensional space. In a one-dimensional matrix (i.e. a
number), there is only one coordinate, and the determinant can be interpreted as the (signed) length of a vector from the origin to
this point. For a  matrix we have two coordinates in a plane, and the determinant is the (signed) area of the parallelogram that
includes these two points and the origin. For a  matrix the determinant is the (signed) volume of the parallelepiped that
includes the three points (in three-dimensional space) defined by the matrix and the origin. This is illustrated below. The idea
extends up to higher dimensions in a similar way. In some sense then, the determinant is therefore related to the size of a matrix.

The algebraic definition of the determinant of an  matrix is a sum over all the possible products (permutations) of n elements
taken from different rows and columns. The number of terms in the sum is , the number of possible permutations of  values (i.e.

 for a  matrix,  for a  matrix etc). Each term in the sum is given a positive or a negative sign depending on whether
the number of permutation inversions in the product is even or odd. A permutation inversion is just a pair of elements that are out
of order when described by their indices. For example, for a set of four elements , the permutation  has
all the elements in their correct order (i.e. in order of increasing index). However, the permutation  contains the
permutation inversions , , .

For example, for a two-dimensional matrix

where the subscripts label the row and column positions of the elements, there are  possible products/permutations involving
elements from different rows and column,  and . In the second term, there is a permutation inversion involving the
column indices  and  (permutation inversions involving the row and column indices should be looked for separately) so this
term takes a negative sign, and the determinant is  - .

For a  matrix

the possible combinations of elements from different rows and columns, together with the sign from the number of permutations
required to put their indices in numerical order are:

and the determinant is simply the sum of these terms.

n×n n

2 ×2

3 ×3

nxn

n! n

2 2 ×2 6 3 ×3

( ), , ,a1 a2 a3 a4 a1a2a3a4

a2a4a1a3

a2a1 a4a1 a4a3

( )
a11

a21

a12

a22

(1.8.14)

2

a11a22 a12a21

2 1

a11a22 a12a21

3 ×3

⎛

⎝
⎜

a11

a21

a31

a12

a22

a32

a13

a23

a33

⎞

⎠
⎟ (1.8.15)

a11a22a33

−a11a23a32

−a12a21a33

a12a23a31

a13a21a32

−a13a22a31

(0 inversions)

(1 inversion - 3 > 2 in the column indices)

(1 inversion - 2 > 1 in the column indices)

(2 inversions - 2 > 1 and 3 > 1 in the column indices)

(2 inversions - 3 > 1 and 3 > 2 in the column indices)

(3 inversions - 3 > 2, 3 > 1, and 2 > 1 in the column indices)

(1.8.16)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/9331?pdf


1.8.4 https://chem.libretexts.org/@go/page/9331

This may all seem a little complicated, but in practice there is a fairly systematic procedure for calculating determinants. The
determinant of a matrix  is usually written det( ) or | |.

For a  matrix

For a  matrix

For a  matrix

and so on in higher dimensions. Note that the submatrices in the  example above are just the matrices formed from the
original matrix  that don’t include any elements from the same row or column as the premultiplying factors from the first row.

Matrix determinants have a number of important properties:

i. The determinant of the identity matrix is .

ii. The determinant of a matrix is the same as the determinant of its transpose i.e. det( ) = det( )

iii. The determinant changes sign when any two rows or any two columns are interchanged

iv. The determinant is zero if any row or column is entirely zero, or if any two rows or columns are equal or a multiple of one
another.

v. The determinant is unchanged by adding any linear combination of rows (or columns) to another row (or column).
vi. The determinant of the product of two matrices is the same as the product of the determinants of the two matrices i.e. det( )

= det( )det( ).

The requirement that in order for a matrix to have an inverse it must have a non-zero determinant follows from property vi). As
mentioned previously, the product of a matrix and its inverse yields the identity matrix I. We therefore have:

It follows that a matrix  can only have an inverse if its determinant is non-zero, otherwise the determinant of its inverse would be
undefined.
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3 ×3

B = ; det(B) = a −b +c
⎛
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⎜
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4x4

C = ; det(C) = a −b +c −d
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3 ×3

B
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e. g. = = 1
∣

∣
∣
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∣

∣
∣
a

c

b

d

∣

∣
∣

∣

∣
∣
a

b

c

d

∣

∣
∣ (1.8.21)

e. g. = − = − =
∣

∣
∣
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e. g. = 0, = 0
∣

∣
∣
1

0

2

0

∣

∣
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∣

∣
∣
1

2

2

4

∣

∣
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AB

A B

det( A) = det( )det(A)A−1 A−1

det( )A−1

=

=

det(I)

det(I)/det(A) = 1/det(A)
(1.8.24)
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1.9: Transformation matrices
Matrices can be used to map one set of coordinates or functions onto another set. Matrices used for this purpose are called
transformation matrices. In group theory, we can use transformation matrices to carry out the various symmetry operations
considered at the beginning of the course. As a simple example, we will investigate the matrices we would use to carry out some of
these symmetry operations on a vector .

The identity Operation 
The identity operation leaves the vector unchanged, and as you may already suspect, the appropriate matrix is the identity matrix.

Reflection in a plane 

The simplest example of a reflection matrix corresponds to reflecting the vector  in either the  or  axes. Reflection in the 
axis maps  to , while reflection in the  axis maps  to . The appropriate matrix is very like the identity matrix but with a
change in sign for the appropriate element. Reflection in the  axis transforms the vector  to , and the appropriate
matrix is

Figure : Reflection across the x-axis

Reflection in the y axis transforms the vector  to , and the appropriate matrix is

Figure : Reflection across the y-axis

More generally, matrices can be used to represent reflections in any plane (or line in 2D). For example, reflection in the 45° axis
shown below maps

 onto .

Figure : Reflection across the axis that is rotated 45° with with respect to x-axis.

Rotation about an Axis 
In two dimensions, the appropriate matrix to represent rotation by an angle  about the origin is

( )x, y

( )( ) = ( )x, y
1

0

0

1
x, y (1.9.1)

( )x, y x y x

y −y y x −x

x ( )x, y ( )x, −y

( )( ) = ( )x, y
1

0

0

−1
x, −y (1.9.2)

1.9.1

( )x, y ( )−x, y

( )( ) = ( )x, y
−1

0

0

1
−x, y (1.9.3)

1.9.2

( )x, y ( )−y, −x

( )( ) = ( )x, y
0

−1

−1

0
−y, −x (1.9.4)

1.9.3

θ

R(θ) =( )
cos θ

sinθ

−sinθ

cos θ
(1.9.5)
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In three dimensions, rotations about the ,  and  axes acting on a vector  are represented by the following matrices.

This page titled 1.9: Transformation matrices is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire Vallance
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

x y z ( )x, y, z

(θ) =Rx

⎛

⎝
⎜

1

0

0

0

cos θ

sinθ

0

−sinθ

cos θ

⎞

⎠
⎟ (1.9.6)

(θ) =Ry

⎛

⎝
⎜

cos θ

0

sinθ

0
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−sinθ
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cos θ

⎞

⎠
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(θ) =Rz
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⎝
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1
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1.10: Matrix Representations of Groups
We are now ready to integrate what we have just learned about matrices with group theory. The symmetry operations in a group
may be represented by a set of transformation matrices , one for each symmetry element . Each individual matrix is called a
representative of the corresponding symmetry operation, and the complete set of matrices is called a matrix representation of the
group. The matrix representatives act on some chosen basis set of functions, and the actual matrices making up a given
representation will depend on the basis that has been chosen. The representation is then said to span the chosen basis. In the
examples above we were looking at the effect of some simple transformation matrices on an arbitrary vector . The basis was
therefore a pair of unit vectors pointing in the  and  directions. In most of the examples we will be considering in this course, we
will use sets of atomic orbitals as basis functions for matrix representations. Don’t worry too much if these ideas seem a little
abstract at the moment – they should become clearer in the next section when we look at some examples.

Before proceeding any further, we must check that a matrix representation of a group obeys all of the rules set out in the formal
mathematical definition of a group.

1. The first rule is that the group must include the identity operation  (the ‘do nothing’ operation). We showed above that the
matrix representative of the identity operation is simply the identity matrix. As a consequence, every matrix representation
includes the appropriate identity matrix.

2. The second rule is that the combination of any pair of elements must also be an element of the group (the group property). If we
multiply together any two matrix representatives, we should get a new matrix which is a representative of another symmetry
operation of the group. In fact, matrix representatives multiply together to give new representatives in exactly the same way as
symmetry operations combine according to the group multiplication table. For example, in the  point group, we showed that
the combined symmetry operation  is equivalent to . In a matrix representation of the group, if the matrix
representatives of  and  are multiplied together, the result will be the representative of .

3. The third rule states that every operation must have an inverse, which is also a member of the group. The combined effect of
carrying out an operation and its inverse is the same as the identity operation. It is fairly easy to show that matrix
representatives satisfy this criterion. For example, the inverse of a reflection is another reflection, identical to the first. In matrix
terms we would therefore expect that a reflection matrix was its own inverse, and that two identical reflection matrices
multiplied together would give the identity matrix. This turns out to be true, and can be verified using any of the reflection
matrices in the examples above. The inverse of a rotation matrix is another rotation matrix corresponding to a rotation of the
opposite sense to the first.

4. The final rule states that the rule of combination of symmetry elements in a group must be associative. This is automatically
satisfied by the rules of matrix multiplication.

Example: a matrix representation of the  point group (the ammonia molecule) 
The first thing we need to do before we can construct a matrix representation is to choose a basis. For , we will select a basis 

 that consists of the valence s orbitals on the nitrogen and the three hydrogen atoms. We need to consider what
happens to this basis when it is acted on by each of the symmetry operations in the  point group, and determine the matrices
that would be required to produce the same effect. The basis set and the symmetry operations in the  point group are
summarized in the figure below.

The effects of the symmetry operations on our chosen basis are as follows:

Γ(g) g

( )x, y

x y

E

C3v

C3σv σ′′
v

C3 σv σ′′
v

C3v

NH3

( ), , ,sN s1 s2 s3

C3v

C3v

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/9361?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Symmetry_(Vallance)/01%3A_Chapters/1.10%3A_Matrix_Representations_of_Groups


1.10.2 https://chem.libretexts.org/@go/page/9361

By inspection, the matrices that carry out the same transformations are:

These six matrices therefore form a representation for the  point group in the  basis. They multiply together
according to the group multiplication table and satisfy all the requirements for a mathematical group.

We have written the vectors representing our basis as row vectors. This is important. If we
had written them as column vectors, the corresponding transformation matrices would be
the transposes of the matrices above, and would not reproduce the group multiplication
table (try it as an exercise if you need to convince yourself).

Example: a matrix representation of the  point group (the allyl radical) 

In this example, we’ll take as our basis a  orbital on each carbon atom .

E

C +
3

C −
3

σv

σ′
v

σ′′
v

( ) → ( ), , ,sN s1 s2 s3 , , ,sN s1 s2 s3

( ) → ( ), , ,sN s1 s2 s3 , , ,sN s2 s3 s1

( ) → ( ), , ,sN s1 s2 s3 , , ,sN s3 s1 s2

( ) → ( ), , ,sN s1 s2 s3 , , ,sN s1 s3 s2

( ) → ( ), , ,sN s1 s2 s3 , , ,sN s2 s1 s3

( ) → ( ), , ,sN s1 s2 s3 , , ,sN s3 s2 s1

(1.10.1)
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Note that the  orbitals are perpendicular to the plane of the carbon atoms (this may seem obvious, but if you’re visualizing the
basis incorrectly it will shortly cause you a not inconsiderable amount of confusion). The symmetry operations in the  point
group, and their effect on the three  orbitals, are as follows:

The matrices that carry out the transformation are

This page titled 1.10: Matrix Representations of Groups is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire
Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

p

C2v

p

E

C2

σv

σ′
v

( ) → ( ), ,p1 p2 p3 , ,p1 p2 p3

( ) → ( ), ,p1 p2 p3 − , − , −p3 p2 p1

( ) → ( ), ,p1 p2 p3 − , − , −p1 p2 p3

( ) → ( ), ,p1 p2 p3 , ,p3 p2 p1

(1.10.3)
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1.11: Properties of Matrix Representations
Now that we’ve learnt how to create a matrix representation of a point group within a given basis, we will move on to look at some
of the properties that make these representations so powerful in the treatment of molecular symmetry.

Similarity Transforms 
Suppose we have a basis set , and we have determined the matrix representatives for the basis in a given point
group. There is nothing particularly special about the basis set we have chosen, and we could equally well have used any set of
linear combinations of the original functions (provided the combinations were linearly independent). The matrix representatives for
the two basis sets will certainly be different, but we would expect them to be related to each other in some way. As we shall show
shortly, they are in fact related by a similarity transform. It will be far from obvious at this point why we would want to carry out
such a transformation, but similarity transforms will become important later on when we use group theory to choose an optimal
basis set with which to generate molecular orbitals.

Consider a basis set , in which each basis function  is a linear combination of our original basis 
.

The  appearing in the sum are coefficients;  is the coefficient multiplying the original basis function  in the new linear
combination basis function . We could also represent this transformation in terms of a matrix equation  = :

Now we look at what happens when we apply a symmetry operation g to our two basis sets. If  and  are matrix
representatives of the symmetry operation in the  and  bases, then we have:

We can therefore identify the similarity transform relating , the matrix representative in our original basis, to , the
representative in the transformed basis. The transform depends only on the matrix of coefficients used to transform the basis
functions.

Also,

Characters of Representations 
The trace of a matrix representative  is usually referred to as the character of the representation under the symmetry operation 

. We will soon come to see that the characters of a matrix representation are often more useful than the matrix representatives
themselves. Characters have several important properties.

1. The character of a symmetry operation is invariant under a similarity transform
2. Symmetry operations belonging to the same class have the same character in a given representation. Note that the character for

a given class may be different in different representations, and that more than one class may have the same character.

Proofs of the above two statements are given in the Appendix.
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since x' = xC

multiplying on the right by and using C = IC −1 C −1
(11.3)
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1.12: Reduction of Representations I
Let us now go back and look at the  representation we derived in  in more detail. If we look at the matrices carefully we see that they
all take the same block diagonal form (a square matrix is said to be block diagonal if all the elements are zero except for a set of
submatrices lying along the diagonal).

A block diagonal matrix can be written as the direct sum of the matrices that lie along the diagonal. In the case of the  matrix
representation, each of the matrix representatives may be written as the direct sum of a  matrix and a  matrix.

in which the bracketed superscripts denote the dimensionality of the matrices. Note that a direct sum is very different from ordinary matrix
addition since it produces a matrix of higher dimensionality. A direct sum of two matrices of orders  and  is performed by placing the
matrices to be summed along the diagonal of a matrix of order  and filling in the remaining elements with zeroes.

The reason why this result is useful in group theory is that the two sets of matrices  and  also satisfy all of the requirements for
a matrix representation. Each set contains the identity and an inverse for each member, and the members multiply together associatively
according to the group multiplication table . Recall that the basis for the original four-dimensional representation had the  orbitals 

 of ammonia as its basis. The first set of reduced matrices, , forms a one-dimensional representation with  as its
basis. The second set,  forms a three-dimensional representation with the basis . Separation of the original representation
into representations of lower dimensionality is called reduction of the representation. The two reduced representations are shown below.

The logical next step is to investigate whether or not the three dimensional representation  can be reduced any further. As it stands,
the matrices making up this representation are not in block diagonal form (some of you may have noted that the matrices representing  and

 are block diagonal, but in order for a representation to be reducible all of the matrix representatives must be in the same block diagonal
form) so the representation is not reducible. However, we can carry out a similarity transformation (see ) to a new representation
spanned by a new set of basis functions (made up of linear combinations of ), which is reducible. In this case, the appropriate
(normalized) linear combinations to use as our new basis functions are

or in matrix form
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The matrices in the new representation are found from  =  to be

We see that each matrix is now in block diagonal form, and the representation may be reduced into the direct sum of a 1 x 1 representation
spanned by  and a 2x2 representation spanned by . The complete set of reduced representations obtained from the original 4D
representation is:

This is as far as we can go in reducing this representation. None of the three representations above can be reduced any further, and they are
therefore called irreducible representations, of the point group. Formally, a representation is an irreducible representation if there is no
similarity transform that can simultaneously convert all of the representatives into block diagonal form. The linear combination of basis
functions that converts a matrix representation into block diagonal form, allowing reduction of the representation, is called a symmetry
adapted linear combination (SALC).

 The 1x1 representation in which all of the elements are equal to 1 is sometimes called the unfaithful representation, since it satisfies the
group properties in a fairly trivial way without telling us much about the symmetry properties of the group.

This page titled 1.12: Reduction of Representations I is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire Vallance via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.13: Irreducible representations and symmetry species
The two one-dimensional irreducible representations spanned by  and  are seen to be identical. This means that  and 
have the ‘same symmetry’, transforming in the same way under all of the symmetry operations of the point group and forming
bases for the same matrix representation. As such, they are said to belong to the same symmetry species. There are a limited
number of ways in which an arbitrary function can transform under the symmetry operations of a group, giving rise to a limited
number of symmetry species. Any function that forms a basis for a matrix representation of a group must transform as one of the
symmetry species of the group. The irreducible representations of a point group are labeled according to their symmetry species as
follows:

i. 1D representations are labeled  or , depending on whether they are symmetric (character ) or antisymmetric (character 
) under rotation about the principal axis.

ii. 2D representations are labeled , 3D representations are labeled .
iii. In groups containing a center of inversion,  and  labels (from the German gerade and ungerade, meaning symmetric and

antisymmetric) denote the character of the irreducible representation under inversion (  for ,  for )
iv. In groups with a horizontal mirror plane but no center of inversion, the irreducible representations are given prime and double

prime labels to denote whether they are symmetric (character  or antisymmetric (character ) under reflection in the plane.
v. If further distinction between irreducible representations is required, subscripts  and  are used to denote the character with

respect to a  rotation perpendicular to the principal axis, or with respect to a vertical reflection if there are no  rotations.

The 1D irreducible representation in the  point group is symmetric (has character ) under all the symmetry operations of the
group. It therefore belongs to the irreducible representation . The 2D irreducible representation has character  under the
identity operation,  under rotation, and  under reflection, and belongs to the irreducible representation .

Sometimes there is confusion over the relationship between a function  and its irreducible representation, but it is quite important
that you understand the connection. There are several different ways of stating the relationship. For example, the following
statements all mean the same thing:

"  has  symmetry"
"  transforms as "
"  has the same symmetry

This page titled 1.13: Irreducible representations and symmetry species is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.14: Character Tables
A character table summarizes the behavior of all of the possible irreducible representations of a group under each of the symmetry
operations of the group. The character table for  is shown below.

The various sections of the table are as follows:

i. The first element in the table gives the name of the point group, usually in both Schoenflies ( ) and Hermann-Mauguin ( )
notation.

ii. Along the first row are the symmetry operations of the group, ,  and , followed by the order of the group. Because
operations in the same class have the same character, symmetry operations are grouped into classes in the character table and
not listed separately.

iii. In the first column are the irreducible representations of the group. In  the irreducible representations are ,  and  (the
representation we considered above spans  + ).

iv. The characters of the irreducible representations under each symmetry operation are given in the bulk of the table.
v. The final column of the table lists a number of functions that transform as the various irreducible representations of the group.

These are the Cartesian axes , the Cartesian products , and the rotations .

The functions listed in the final column of the table are important in many chemical applications of group theory, particularly in
spectroscopy. For example, by looking at the transformation properties of ,  and  (sometimes given in character tables as , 

, ) we can discover the symmetry of translations along the , , and  axes. Similarly, ,  and  represent rotations
about the three Cartesian axes. As we shall see later, the transformation properties of , , and  can also be used to determine
whether or not a molecule can absorb a photon of -, -, or -polarized light and undergo a spectroscopic transition. The Cartesian
products play a similar role in determining selection rules for Raman transitions, which involve two photons.

Character tables for common point groups are given in Appendix B.

A simple way to determine the characters of a representation 
In many applications of group theory, we only need to know the characters of the representative matrices, rather than the matrices
themselves. Luckily, when each basis function transforms as a 1D irreducible representation (which is true in many cases of
interest) there is a simple shortcut to determining the characters without having to construct the entire matrix representation. All we
have to do is to look at the way the individual basis functions transform under each symmetry operation. For a given operation, step
through the basis functions as follows:

i. Add  to the character if the basis function is unchanged by the symmetry operation (i.e. the basis function is mapped onto
itself);

ii. Add  to the character if the basis function changes sign under the symmetry operation (i.e the basis function is mapped onto
minus itself);

iii. Add  to the character if the basis function moves when the symmetry operation is applied (i.e the basis function is mapped
onto something different from itself).

Try this for the  orbital basis we have been using for the  group. You should find you get the same characters as we obtained
from the traces of the matrix representatives.

We can also work out the characters fairly easily when two basis functions transform together as a 2D irreducible representation.
For example, in the  point group  and  axes transform together as . If we carry out a rotation about  by an angle , our 
and  axes are transformed onto new axes  and . However, the new axes can each be written as a linear combination of our
original  and  axes. Using the rotation matrices introduced in Section 9, we see that:
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For one-dimensional irreducible representations we asked if a basis function/axis was mapped onto itself, minus itself, or
something different. For two-dimensional irreducible representations we need to ask how much of the ‘old’ axis is contained in the
new one. From the above we see that the  axis contains a contribution  from the  axis, and the  axis contains a
contribution  from the  axis. The characters of the  and  axes under a rotation through  are therefore , and the overall
character of the  irreducible representation is therefore     . For a  rotation through 120 degrees, the
character of the  irreducible representation is therefore °  .

In general, when an axis is rotated by an angle  by a symmetry operation, its contribution to the character for that operation is 
.

Irreducible representations with complex characters 
In many cases (see Appendix B), the characters for rotations  and improper rotations  are complex numbers, usually
expressed in terms of the quantity  = exp(2 i/n). It is fairly straightforward to reconcile this with the fact that in chemistry we are
generally using group theory to investigate physical problems in which all quantities are real. It turns out that whenever our basis
spans an irreducible representation whose characters are complex, it will also span a second irreducible representation whose
characters are the complex conjugates of the first irreducible representation i.e. complex irreducible representations occur in pairs.
According to the strict mathematics of group theory, each irreducible representation in the pair should be considered as a separate
representation. However, when applying such irreducible representations in physical problems, we add the characters for the two
irreducible representations together to get a single irreducible representation whose characters are real.

As an example, the ‘correct’ character table for the group  takes the form:

Where  = exp(2 i/3). However, as chemists we would usually combine the two parts of the  irreducible representation to give:

This page titled 1.14: Character Tables is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire Vallance via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.15: Reduction of representations II
By making maximum use of molecular symmetry, we often greatly simplify problems involving molecular properties. For example, the
formation of chemical bonds is strongly dependent on the atomic orbitals involved having the correct symmetries. To make full use of group
theory in the applications we will be considering, we need to develop a little more ‘machinery’. Specifically, given a basis set (of atomic
orbitals, for example) we need to find out:

1. How to determine the irreducible representations spanned by the basis functions
2. How to construct linear combinations of the original basis functions that transform as a given irreducible representation/symmetry species.

It turns out that both of these problems can be solved using something called the ‘Great Orthogonality Theorem’ (GOT for short). The GOT
summarizes a number of orthogonality relationships implicit in matrix representations of symmetry groups, and may be derived in a somewhat
qualitative fashion by considering these relationships in turn.

Some of you might find the next section a little hard going. In it, we will derive two important expressions that we can use to achieve the
two goals we have set out above. It is not important that you understand every step in these derivations; they have mainly been included
just so you can see where the equations come from. However, you will need to understand how to use the results. Hopefully you will not
find this too difficult once we’ve worked through a few examples.

General concepts of Orthogonality 
You are probably already familiar with the geometric concept of orthogonality. Two vectors are orthogonal if their dot product (i.e. the
projection of one vector onto the other) is zero. An example of a pair of orthogonal vectors is provided by the  and  Cartesian unit vectors.

 A consequence of the orthogonality of  and  is that any general vector in the  plane may be written as a linear combination of these two
basis vectors.

Mathematical functions may also be orthogonal. Two functions,  and , are defined to be orthogonal if the integral over their
product is equal to zero i.e.

This simply means that there must be ‘no overlap’ between orthogonal functions, which is the same as the orthogonality requirement for
vectors, above. In the same way as for vectors, any general function may be written as a linear combination of a suitably chosen set of
orthogonal basis functions. For example, the Legendre polynomials  form an orthogonal basis set for functions of one variable .

Orthogonality relationships in Group Theory 
The irreducible representations of a point group satisfy a number of orthogonality relationships:

1. If corresponding matrix elements in all of the matrix representatives of an irreducible representation are squared and added together, the
result is equal to the order of the group divided by the dimensionality of the irreducible representation. i.e.

x y

x, y = 0 (1.15.1)
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where  labels the irreducible representation,  and  label the row and column position within the irreducible representation,  is the order of
the group, and  is the order of the irreducible representation. e.g. The order of the group  is 6. If we apply the above operation to the first

element in the 2x2 ( ) irreducible representation derived in Section 12, the result should be equal to  =  = 3. Carrying out this operation

gives:

2. If instead of summing the squares of matrix elements in an irreducible representation, we sum the product of two different elements from
within each matrix, the result is equal to zero. i.e.

where  and/or . E.g. if we perform this operation using the two elements in the first row of the 2D irreducible representation used
in 1, we get:

3. If we sum the product of two elements from the matrices of two different irreducible representations  and , the result is equal to zero. i.e.

where there is now no restriction on the values of the indices , , ,  (apart from the rather obvious restriction that they must be less than or
equal to the dimensions of the irreducible representation). e.g. Performing this operation on the first elements of the  and  irreducible
representations we derived for  gives:

We can combine these three results into one general equation, the Great Orthogonality Theorem .

For most applications we do not actually need the full Great Orthogonality Theorem. A little mathematical trickery transforms Equation 
 into the ‘Little Orthogonality Theorem’ (or LOT), which is expressed in terms of the characters of the irreducible representations

rather than the irreducible representations themselves.

Since the characters for two symmetry operations in the same class are the same, we can also rewrite the sum over symmetry operations as a
sum over classes.

where  is the number of symmetry operations in class .

In all of the examples we’ve considered so far, the characters have been real. However, this is not necessarily true for all point groups, so to
make the above equations completely general we need to include the possibility of imaginary characters. In this case we have:

where  is the complex conjugate of . Equation  is of course identical to Equation  when all the characters are real.

Using the LOT to Determine the Irreducible Representations Spanned by a Basis 
In Section  we discovered that we can often carry out a similarity transform on a general matrix representation so that all the representatives
end up in the same block diagonal form. When this is possible, each set of submatrices also forms a valid matrix representation of the group. If
none of the submatrices can be reduced further by carrying out another similarity transform, they are said to form an irreducible representation
of the point group. An important property of matrix representatives is that their character is invariant under a similarity transform. This means
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that the character of the original representatives must be equal to the sum of the characters of the irreducible representations into which the
representation is reduced. e.g. if we consider the representative for the  symmetry operation in our  example, we have:

It follows that we can write the characters for a general representation  in terms of the characters of the irreducible representations 
into which it can be reduced.

where the coefficients  in the sum are the number of times each irreducible representation appears in the representation. This means that in
order to determine the irreducible representations spanned by a given basis. all we have to do is determine the coefficients  in the above
equation. This is where the Little Orthogonality Theorem comes in handy. If we take the LOT in the form of Equation , and multiply
each side through by , we get

Summing both sides of the above equation over  gives

We can use Equation  to simplify the left hand side of this equation. Also, the sum on the right hand side reduces to  because 
is only non-zero (and equal to ) when  = 

Dividing both sides through by  (the order of the group), gives us an expression for the coefficients  in terms of the characters  of the
original representation and the characters  of the  irreducible representation.

We can of course write this as a sum over classes rather than a sum over symmetry operations.

As an example, in Section  we showed that the matrix representatives we derived for the  group could be reduced into two irreducible
representations of  symmetry and one of  symmetry. i.e.  = 2  + . We could have obtained the same result using Equation ).
The characters for our original representation and for the irreducible representations of the  point group ( ,  and ) are given in the
table below.

From Equation , the number of times each irreducible representation occurs for our chosen basis  is therefore

i.e. Our basis is spanned by  + , as we found before.
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The  appearing in Equation  are called Dirac delta functions. They are equal to  if  =  and  otherwise.

This page titled 1.15: Reduction of representations II is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire Vallance via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.16: Symmetry Adapted Linear Combinations (SALCs)
Once we know the irreducible representations spanned by an arbitrary basis set, we can work out the appropriate linear
combinations of basis functions that transform the matrix representatives of our original representation into block diagonal form
(i.e. the symmetry adapted linear combinations). Each of the SALCs transforms as one of the irreducible representations of the
reduced representation. We have already seen this in our  example. The two linear combinations of  symmetry were 
and , both of which are symmetric under all the symmetry operations of the point group. We also chose another pair of
functions,  and , which together transform as the symmetry species .

To find the appropriate SALCs to reduce a matrix representation, we use projection operators. You will be familiar with the idea of
operators from quantum mechanics. The operators we will be using here are not quantum mechanical operators, but the basic
principle is the same. The projection operator to generate a SALC that transforms as an irreducible representation  is .
Each term in the sum means ‘apply the symmetry operation  and then multiply by the character of  in irreducible representation 

. Applying this operator to each of our original basis functions in turn will generate a complete set of SALCs, i.e. to transform a
basis function  into a SALC , we use

The way in which this operation is carried out will become much more clear if we work through an example. We can break down
the above equation into a fairly straightforward ‘recipe’ for generating SALCs:

1. Make a table with columns labeled by the basis functions and rows labeled by the symmetry operations of the molecular point
group. In the columns, show the effect of the symmetry operations on the basis functions (this is the  part of Equation 16.1).

2. For each irreducible representation in turn, multiply each member of the table by the character of the appropriate symmetry
operation (we now have  for each operation). Summing over the columns (symmetry operations) generates all the
SALCs that transform as the chosen irreducible representation.

3. Normalize the SALCs.

Earlier (see Section ), we worked out the effect of all the symmetry operations in the  point group on the 
basis.

This is all we need to construct the table described in 1. above.

To determine the SALCs of  symmetry, we multiply the table through by the characters of the  irreducible representation (all
of which take the value ). Summing the columns gives
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Apart from a constant factor (which doesn’t affect the functional form and therefore doesn’t affect the symmetry properties), these
are the same as the combinations we determined earlier. Normalizing gives us two SALCs of  symmetry.

We now move on to determine the SALCs of  symmetry. Multiplying the table above by the appropriate characters for the 
irreducible representation gives

Summing the columns yields

We therefore get three SALCs from this procedure. This is a problem, since the number of SALCs must match the dimensionality
of the irreducible representation, in this case two. Put another way, we should end up with four SALCs in total to match our
original number of basis functions. Added to our two SALCs of  symmetry, three SALCs of  symmetry would give us five in
total.

The resolution to our problem lies in the fact that the three SALCs above are not linearly independent. Any one of them can be
written as a linear combination of the other two e.g. . To solve the
problem, we can either throw away one of the SALCs, or better, make two linear combinations of the three SALCs that are
orthogonal to each other.  e.g. if we take  as one of our SALCs and find an orthogonal combination of the other two
(which turns out to be their difference), we have (after normalization)

These are the same linear combinations used in Section .

We now have all the machinery we need to apply group theory to a range of chemical problems. In our first application, we will
learn how to use molecular symmetry and group theory to help us understand chemical bonding.

 If we write the coefficients of ,  and  for each SALC as a vector , then when two SALCs are orthogonal, the
dot product of their coefficient vectors  is equal to zero.

This page titled 1.16: Symmetry Adapted Linear Combinations (SALCs) is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
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1.17: Determining whether an Integral can be Non-zero
As we continue with this course, we will discover that there are many times when we would like to know whether a particular
integral is necessarily zero, or whether there is a chance that it may be non-zero. We can often use group theory to differentiate
these two cases.

You will have already used symmetry properties of functions to determine whether or not a one-dimensional integral is zero. For
example, sin(x) is an ‘odd’ function (antisymmetric with respect to reflection through the origin), and it follows from this that

In general, an integral between these limits for any other odd function will also be zero.

In the general case we may have an integral of more than one dimension. The key to determining whether a general integral is
necessarily zero lies in the fact that because an integral is just a number, it must be invariant to any symmetry operation. For
example, bonding in a diatomic (see next section) depends on the presence of a non-zero overlap between atomic orbitals on
adjacent atoms, which may be quantified by an overlap integral. You would not expect the bonding in a molecule to change if you
rotated the molecule through some angle , so the integral must be invariant to rotation, and indeed to any other symmetry
operation.

In group theoretical terms, for an integral to be non-zero, the integrand must transform as the totally symmetric irreducible
representation in the appropriate point group. In practice, the integrand may not transform as a single irreducible representation,
but it must include the totally symmetric irreducible representation. These ideas should become more clear in the next section.

It should be noted that even when the irreducible representations spanned by the integrand do include the totally symmetric
irreducible representation, it is still possible for the integral to be zero. All group theory allows us to do is identify integrals that
are necessarily zero based on the symmetry (or lack thereof) of the integrand.

This page titled 1.17: Determining whether an Integral can be Non-zero is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.18: Bonding in Diatomics
You will already be familiar with the idea of constructing molecular orbitals from linear
combinations of atomic orbitals from previous courses covering bonding in diatomic
molecules. By considering the symmetries of  and  orbitals on two atoms, we can form
bonding and antibonding combinations labeled as having either  or  symmetry
depending on whether they resemble  or  orbitals when viewed along the bond axis (see
diagram below). In all of the cases shown, only atomic orbitals that have the same
symmetry when viewed along the bond axis  can form a chemical bond e.g. two 
orbitals, two  orbitals , or an  and a  can form a bond, but a  and a  or an  and a 

 or a  cannot. It turns out that the rule that determines whether or not two atomic
orbitals can bond is that they must belong to the same symmetry species within the point
group of the molecule.

We can prove this mathematically for two atomic orbitals and  by looking at the
overlap integral between the two orbitals.

In order for bonding to be possible, this integral must be non-zero. The product of the two
functions  and  transforms as the direct product of their symmetry species i.e.  = 

. As explained above, for the overlap integral to be non-zero,  must contain the
totally symmetric irreducible representation (  for a homonuclear diatomic, which belongs to the point group ). As it
happens, this is only possible if  and  belong to the same irreducible representation. These ideas are summarized for a diatomic
in the table below.

This page titled 1.18: Bonding in Diatomics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire Vallance
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

s p

σ π

s p

z s

pz s pz pz px s

px py

ϕi  ϕj

= ⟨ | ⟩ = ∫ dτ (18.1)Sij ϕi ϕj ϕ∗
i ϕj (1.18.1)

ϕ1 ϕ2 Γ12

⊗Γ1 Γ2 Γ12

A1g D∞h

ϕ1 ϕ2

First Atomic Orbital

s ( )A1g

s ( )A1g

s ( )A1g

( )px E1u

( )pX E1u

( )pz A1u

Second Atomic Orbital

s ( )A1g

( )px E1u

( )pz A1u

( )px E1u

( )pz A1u

( )pz A1u

⊗Γ1 Γ2

A1g

E1u

A1u

+ +A1g A2g E2g

E1g

A1g

Overlap Integral

Non-zero

Zero

Zero

Non-zero

Zero

Non-zero

Bonding?

Yes

No

No

Yes

No

Yes

(18.2)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/9341?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Symmetry_(Vallance)/01%3A_Chapters/1.18%3A_Bonding_in_Diatomics
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Symmetry_(Vallance)/01%3A_Chapters/1.18%3A_Bonding_in_Diatomics
https://creativecommons.org/licenses/by/4.0
http://vallance.chem.ox.ac.uk/
http://vallance.chem.ox.ac.uk/pdfs/SymmetryLectureNotes.pdf


1.19.1 https://chem.libretexts.org/@go/page/9342

1.19: Bonding in Polyatomics- Constructing Molecular Orbitals from SALCs
In the previous section we showed how to use symmetry to determine whether two atomic orbitals can form a chemical bond. How
do we carry out the same procedure for a polyatomic molecule, in which many atomic orbitals may combine to form a bond? Any
SALCs of the same symmetry could potentially form a bond, so all we need to do to construct a molecular orbital is take a linear
combination of all the SALCs of the same symmetry species. The general procedure is:

1. Use a basis set consisting of valence atomic orbitals on each atom in the system.
2. Determine which irreducible representations are spanned by the basis set and construct the SALCs that transform as each

irreducible representation.
3. Take linear combinations of irreducible representations of the same symmetry species to form the molecular orbitals. E.g. in our

 example we could form a molecular orbital of  symmetry from the two SALCs that transform as ,

Unfortunately, this is as far as group theory can take us. It can give us the functional form of the molecular orbitals but it cannot
determine the coefficients  and . To go further and obtain the expansion coefficients and orbital energies, we must turn to
quantum mechanics. The material we are about to cover will be repeated in greater detail in later courses on quantum mechanics
and valence, but they are included here to provide you with a complete reference on how to construct molecular orbitals and
determine their energies.

This page titled 1.19: Bonding in Polyatomics- Constructing Molecular Orbitals from SALCs is shared under a CC BY 4.0 license and was
authored, remixed, and/or curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a
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1.20: Calculating Orbital Energies and Expansion Coefficients
Calculation of the orbital energies and expansion coefficients is based on the variation principle, which states that any approximate
wavefunction must have a higher energy than the true wavefunction. This follows directly from the fairly common-sense idea that
in general any system tries to minimize its energy. If an ‘approximate’ wavefunction had a lower energy than the ‘true’
wavefunction, we would expect the system to try and adopt this ‘approximate’ lower energy state, rather than the ‘true’ state. That
all approximations to the true wavefunction must have a higher energy than the true wavefunction is the only scenario that makes
physical sense. A mathematical proof of the variation principle is given in the Appendix.

We apply the variation principle as follows:

Molecular energy levels, or orbital energies, are eigenvalues of the molecular Hamiltonian . Using a standard result from
quantum mechanics, it follows that the energy  of a molecular orbital  is

If the true wavefunction has the lowest energy, then to find the closest approximation we can to the true wavefunction, all we have
to do is find the coefficients in our expansion of SALCs that minimize the energy in the above expressions. In practice, we
substitute our wavefunction and minimize the resulting expression with respect to the coefficients. To show how this is done, we’ll
use our  wavefunction of  symmetry from the previous section. Substituting into Equation  gives:

If we now define a Hamiltonian matrix element  =  and an overlap integral  =  and note that  =  and 
 = , this simplifies to

To get this into a simpler form for carrying out the energy minimization, we multiply both sides through by the denominator to give

Now we need to minimize the energy with respect to  and , i.e., we require

and

If we differentiate the above equation through separately by  and  and apply this condition, we will end up with two equations
in the two unknowns  and , which we can solve to determine the coefficients and the energy.

Differentiating Equation  with respect to  (via the product rule of differentiation) gives

Differentiating Equation  with respect to  gives

Ĥ

E Ψ

or

E =
⟨Ψ| |Ψ⟩Ĥ

⟨Ψ|Ψ⟩

E = ⟨Ψ| |Ψ⟩Ĥ

(unnormalized Ψ)

(normalized Ψ, for which⟨Ψ|Ψ⟩ = 1)

(1.20.1)

NH3 A1 1.20.1

E =

=

=

⟨ + | | + ⟩c1ϕ1 c2ϕ2 Ĥ c1ϕ1 c2ϕ2

⟨ + | + ⟩c1ϕ1 c2ϕ2 c1ϕ1 c2ϕ2

⟨ | | ⟩+ ⟨ | | ⟩+ ⟨ | | ⟩+ ⟨ | | ⟩c1ϕ1 Ĥ c1ϕ1 c1ϕ1 Ĥ c2ϕ2 c2ϕ2 Ĥ c1ϕ1 c2ϕ2 Ĥ c2ϕ2

⟨ | ⟩+ ⟨ | ⟩+ ⟨ | ⟩+ ⟨ | ⟩c1ϕ1 c1ϕ1 c1ϕ1 c2ϕ2 c2ϕ2 c1ϕ1 c2ϕ2 c2ϕ2

⟨ | | ⟩+ ⟨ | | ⟩+ ⟨ | | ⟩+ ⟨ | | ⟩c2
1 ϕ1 Ĥ ϕ1 c1c2 ϕ1 Ĥ ϕ2 c2c1 ϕ2 Ĥ ϕ1 c2

2 ϕ2 Ĥ ϕ2

⟨ | ⟩+ ⟨ | ⟩+ ⟨ | ⟩+ , | ⟩c2
1 ϕ1 ϕ1 c1c2 ϕ1 ϕ2 c2c1 ϕ2 ϕ1 c2

2 ϕ2 ϕ2

(1.20.2)

Hij ⟨ | | ⟩ϕi Ĥ ϕj Sij ⟨ | ⟩ϕi ϕj Hij Hji

Sij Sji

E =
+2 +c2

1H11 c1c2H12 c2
2H22

+2 +c2
1S11 c1c2S12 c2

2S22

(1.20.3)

E( +2 + ) = +2 +c2
1S11 c1c2S12 c2

2S22 c2
1H11 c1c2H12 c2

2H22 (1.20.4)

c1 c2

= 0
∂E

∂c1
(1.20.5)

= 0
∂E

∂c2
(1.20.6)

c1 c2

c1 c2

1.20.4 c1

( +2 + ) +E(2 +2 ) = 2 +2
∂E

∂c1
c2

1S11 c1c2S12 c2
2S22 c1S11 c2S12 c1H11 c2H12 (1.20.7)

1.20.4 c2
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Because

the first term on the left hand side of both equations is zero, leaving us with

These are normally rewritten slightly, in the form

Equations  are known as the secular equations and are the set of equations we need to solve to determine , , and . In
the general case (derived in the Appendix), when our wavefunction is a linear combination of  SALCs (i.e. ) we
get  equations in  unknowns, with the  equation given by

Note that we can use any basis functions we like together with the linear variation method described here to construct approximate
molecular orbitals and determine their energies, but choosing to use SALCs simplifies things considerably when the number of
basis functions is large. An arbitrary set of  basis functions leads to a set of  equations in  unknowns, which must be solved
simultaneously. Converting the basis into a set of SALCs separates the equations into several smaller sets of secular equations, one
for each irreducible representation, which can be solved independently. It is usually easier to solve several sets of secular equations
of lower dimensionality than one set of higher dimensionality.

This page titled 1.20: Calculating Orbital Energies and Expansion Coefficients is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

( +2 + ) +E(2 +2 ) = 2 +2
∂E

∂c2
c2

1S11 c1c2S12 c2
2S22 c1S12 c2S22 c1H12 c2H22 (1.20.8)

= = 0
∂E

∂c1

∂E

∂c2
(1.20.9)

E(2 +2 )c1S11 c2S12

E(2 +2 )c1S12 c2S22

=

=

2 +2c1H11 c2H12

2 +2c1H12 c2H22

(1.20.10)

( −E ) + ( −E )c1 H11 S11 c2 H12 S12

( −E ) + ( −E )c1 H12 S12 c2 H22 S22

=

=

0

0
(1.20.11)

1.20.11 c1 c2 E

N Ψ = ΣN
i=1 ciϕi

N N kth

( −E ) = 0∑
i=1

N

ci Hki Ski (1.20.12)

N N N
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1.21: Solving the Secular Equations

Matrix formulation of a set of linear equations 

As we have seen already, any set of linear equations may be rewritten as a matrix equation  = . Linear equations are classified
as simultaneous linear equations or homogeneous linear equations, depending on whether the vector  on the RHS of the equation
is non-zero or zero.

For a set of simultaneous linear equations (non-zero ) it is fairly apparent that if a unique solution exists, it can be found by
multiplying both sides by the inverse matrix  (since  on the left hand side is equal to the identity matrix, which has no
effect on the vector )

In practice, there are easier matrix methods for solving simultaneous equations than finding the inverse matrix, but these need not
concern us here. In Section 8.4, we discovered that in order for a matrix to have an inverse, it must have a non-zero determinant.
Since  must exist in order for a set of simultaneous linear equations to have a solution, this means that the determinant of the
matrix  must be non-zero for the equations to be solvable.

The reverse is true for homogeneous linear equations. In this case the set of equations only has a solution if the determinant of  is
equal to zero. The secular equations we want to solve are homogeneous equations, and we will use this property of the determinant
to determine the molecular orbital energies. An important property of homogeneous equations is that if a vector  is a solution, so
is any multiple of , meaning that the solutions (the molecular orbitals) can be normalized without causing any problems.

Solving for the orbital energies and expansion coefficients 
Recall the secular equations for the  orbitals of  derived in the previous section

where  and  are the coefficients in the linear combination of the SALCs  =  and  =  used to

construct the molecular orbital. Writing this set of homogeneous linear equations in matrix form gives

For the equations to have a solution, the determinant of the matrix must be equal to zero. Writing out the determinant will give us a
polynomial equation in  that we can solve to obtain the orbital energies in terms of the Hamiltonian matrix elements  and
overlap integrals . The number of energies obtained by ‘solving the secular determinant’ in this way is equal to the order of the
matrix, in this case two.

The secular determinant for Equation  is (noting that  =  since the SALCs are normalized)

Expanding and collecting terms in  gives

which can be solved using the quadratic formula to give the energies of the two molecular orbitals.

To obtain numerical values for the energies, we need to evaluate the integrals , , , and . This would be quite a
challenge to do analytically, but luckily there are a number of computer programs that can be used to calculate the integrals. One

Ax b

b

b

A−1 AA−1

x

Ax

AxA−1

x

=

=

=

b

bA−1

bA−1

(1.21.1)

A−1

A

A

x

x

A1 NH3

( −E ) + ( −E )c1 H11 S11 c2 H12 S12

( −E ) + ( −E )c1 H12 S12 c2 H22 S22

=

=

0

0
(1.21.2)

c1 c2 ϕ1 sN ϕ2 ( + + )
1

3
–

√
s1 s2 s3

( )( ) =( )
−EH11 S11

−EH12 S12

−EH12 S12

−EH22 S22

c1

c2

0

0
(1.21.3)

E Hij

Sij

1.21.3 S11 = 1S22

( −E)( −E) −( −E = 0H11 H22 H12 S12)2 (1.21.4)

E

(1 − ) +E(2 − − ) +( − ) = 0E2 S2
12 H12S12 H11 H22 H11H22 H 2

12 (1.21.5)

=E±

−(2 − − ) ±H12S12 H11 H22 (2 − − −4(1 − )( − )H12S12 H11 H22)2 S2
12 H11H22 H 2

12

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

2(1 − )S2
12

(1.21.6)

H11 H22 H12 S12
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such program gives the following values.

When we substitute these into our equation for the energy levels, we get:

We now have the orbital energies and the next step is to find the orbital coefficients. The coefficients for an orbital of energy  are
found by substituting the energy into the secular equations and solving for the coefficients . Since the two secular equations are
not linearly independent (i.e. they are effectively only one equation), when we solve them to find the coefficients what we will end
up with is the relative values of the coefficients. This is true in general: in a system with  coefficients, solving the secular
equations will allow all  of the coefficients  to be obtained in terms of, say, . The absolute values of the coefficients are found
by normalizing the wavefunction.

Since the secular equations for the orbitals of energy  and  are not linearly independent, we can choose to solve either one of
them to find the orbital coefficients. We will choose the first.

For the orbital with energy  = -31.0063 eV, substituting numerical values into this equation gives

The molecular orbital is therefore

Normalizing to find the constant  (by requiring  = 1) gives

For the second orbital, with energy  = 29.8336 eV, the secular equation is

giving

These two  molecular orbitals  and , one bonding and one antibonding, are shown below.

The remaining two SALCs arising from the  orbitals of :

and

H11

H22

H12

S12

=

=

=

=

−26.0000 eV

−22.2216 eV

−29.7670 eV

0.8167 eV

(1.21.7)

E+

E−

=

=

29.8336 eV

−31.0063 eV
(1.21.8)

E

ci

N

N ci c1

E+ E−

( − ) +( − ) = 0H11 E± c1 H12 E±S12 c2 (1.21.9)

E−

5.0063 −4.4442c1 c2

c2

=

=

0

1.1265c1
(1.21.10)

Ψ = ( +1.1265 )c1 ϕ1 ϕ2 (1.21.11)

c1 |Ψ⟩

Ψ1 =

=

0.4933 +0.5557ϕ1 ϕ2

0.4933 +0.3208( + + )sN s1 s2 s3 (substituting the SALCs for and )ϕ1 ϕ2
(1.21.12)

E+

−55.8336 −54.1321c1 c2

c2

=

=

0

−1.0314c1
(1.21.13)

Ψ2 =

=

=

( −1.0314 )c1 ϕ1 ϕ2

1.6242 −1.6752ϕ1 ϕ2

1.6242 −0.9672( + + )sN s1 s2 s3

(after normalization) (1.21.14)

A1 Ψ1 Ψ2

s NH3

= ( )ϕ3
1

6
–

√
2 − −s1 s2 s3 (1.21.15)

= ( )ϕ4
1

2
–

√
−s2 s3 (1.21.16)
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form an orthogonal pair of molecular orbitals of  symmetry. We can show this by solving the secular determinant to find the
orbital energies. The secular equations in this case are:

Solving the secular determinant gives

The integrals required are

Using the fact that  = , the expression for the energies reduces to

giving  =  = -9.2892 eV and  =  = -9.2892 eV. Each SALC therefore forms a molecular orbital by itself, and the two
orbitals have the same energy; the two SALCs form an orthogonal pair of degenerate orbitals. These two molecular orbitals of 
symmetry are shown below.

This page titled 1.21: Solving the Secular Equations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire
Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

E

( −E ) + ( −E )c1 H33 S33 c2 H34 S34

( −E ) + ( −E )c1 H34 S34 c2 H44 S44

=

=

0

0
(1.21.17)

=E±

−(2 − − ) ±H34S34 H33 H44 (2 − − −4(1 − )( − )H34S34 H33 H44)2 S2
34 H33H44 H 2

34

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

2(1 − )S2
34

(1.21.18)

H33

H44

H34

S34

=

=

=

=

−9.2892 eV

−9.2892 eV

0

0

(1.21.19)

H34 = 0S34

=E±
( + ) ±( − )H33 H44 H33 H44

2
(1.21.20)

E+ H33 E− H44

E

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/9344?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Symmetry_(Vallance)/01%3A_Chapters/1.21%3A_Solving_the_Secular_Equations
https://creativecommons.org/licenses/by/4.0
http://vallance.chem.ox.ac.uk/
http://vallance.chem.ox.ac.uk/pdfs/SymmetryLectureNotes.pdf


1.22.1 https://chem.libretexts.org/@go/page/9345

1.22: Summary of the Steps Involved in Constructing Molecular Orbitals
1. Choose a basis set of functions  consisting of the valence atomic orbitals on each atom in the system, or some chosen subset

of these orbitals.
2. With the help of the appropriate character table, determine which irreducible representations are spanned by the basis set using

Equation (15.20) to determine the number of times  that the  irreducible representation appears in the representation.

3. Construct the SALCs  that transform as each irreducible representation using Equation 16.1

4. Write down expressions for the molecular orbitals by taking linear combinations of all the irreducible representations of the
same symmetry species.

5. Write down the secular equations for the system.
6. Solve the secular determinant to obtain the energies of the molecular orbitals.
7. Substitute each energy in turn back into the secular equations and solve to obtain the coefficients appearing in your molecular

orbital expressions in step 4.
8. Normalize the orbitals.

This page titled 1.22: Summary of the Steps Involved in Constructing Molecular Orbitals is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

fi

ak kth

= χ(g) (g)ak

1

h
∑

C

nC χk (1.22.1)

ϕi

= (g)gϕi ∑
g

χk fi (1.22.2)
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1.23: A more complicated bonding example
As another example, we will use group theory to construct the molecular orbitals of  (point group ) using a basis set
consisting of all the valence orbitals. The valence orbitals are a  orbital on each hydrogen, which we will label  and , and a 

 and three  orbitals on the oxygen, which we will label , , ,  giving a complete basis .

The first thing to do is to determine how each orbital transforms under the symmetry operations of the  point group ( , , 
and ), construct a matrix representation and determine the characters of each operation. The symmetry operations and axis
system we will be using are shown below.

The orbitals transform in the following way

A short aside on constructing matrix representatives 

After a little practice, you will probably be able to write matrix representatives straight away just by looking at the effect of the
symmetry operations on the basis. However, if you are struggling a little the following procedure might help.

Remember that the matrix representatives are just the matrices we would have to multiply the left hand side of the above equations
by to give the right hand side. In most cases they are very easy to work out. Probably the most straightforward way to think about it
is that each column of the matrix shows where one of the original basis functions ends up. For example, the first column transforms
the basis function  to its new position. The first column of the matrix can be found by taking the result on the right hand side of
the above expressions, replacing every function that isn’t  with a zero, putting the coefficient of  (  or  in this example) in
the position at which it occurs, and taking the transpose to give a column vector.

Consider the representative for the  operation. The original basis  transforms into 
. The first column of the matrix therefore transforms into . Taking the result and replacing

all the other functions with zeroes gives . The coefficient of  is , so the first column of the  matrix
representative is

Matrix representation, characters and SALCs 
The matrix representatives and their characters are

OH2 C2v

1s sH s′
H

2s 2p sO px py pz ( ), , , , ,sH s′
H

sO px py pz

C2v E C2 σv

σ′
v

E

C2

(xz)σv

(yz)σ′
v

( ), , , , ,sH s′
H sO px py pz

( ), , , , ,sH s′
H sO px py pz

( ), , , , ,sH s′
H sO px py pz

( ), , , , ,sH s′
H sO px py pz

→

→

→

→

( ), , , , ,sH s′
H sO px py pz

( ), , , − , − ,s′
H sH sO px py pz

( ), , , , − ,sH s′
H sO px py pz

( ), , , − , ,s′
H sH sO px py pz

(1.23.1)

sH

sH sH 1 −1

 Rotation

C2 ( ), , , , ,sH s′
H sO px py pz

( ), , , − , − ,s′
H sH sO px py pz sH  s′

H

( )0, , 0, 0, 0, 0sH sH 1 C2

⎛

⎝

⎜⎜
⎜⎜⎜
⎜⎜
⎜

0

1

0

0

0

0

⎞

⎠
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⎟
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Now we are ready to work out which irreducible representations are spanned by the basis we have chosen. The character table for 
is:

As before, we use Equation (15.20) to find out the number of times each irreducible representation appears.

We have

so the basis spans . Now we use the projection operators applied to each basis function  in turn to determine the
SALCs 

The SALCs of  symmetry are:

The SALCs of  symmetry are:

The SALCs of  symmetry are:
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After normalization, our SALCs are therefore:

A  symmetry

B  symmetry

B  symmetry

Note that we only take one of the first two SALCs generated by the  projection operator since one is a simple multiple of the
other (i.e. they are not linearly independent). We can therefore construct three molecular orbitals of  symmetry, with the general
form

two molecular orbitals of  symmetry, of the form

and one molecular orbital of  symmetry

To work out the coefficients  -  and determine the orbital energies, we
would have to solve the secular equations for each set of orbitals in turn. We
are not dealing with a conjugated  system, so in this case Hückel theory
cannot be used and the various  and  integrals would have to be
calculated numerically and substituted into the secular equations. This involves
a lot of tedious algebra, which we will leave out for the moment. The LCAO
orbitals determined above are an approximation of the true molecular orbitals
of water, which are shown on the right. As we have shown using group theory,
the  molecular orbitals involve the oxygen  and  atomic orbitals and
the sum  of the hydrogen  orbitals. The  molecular orbitals
involve the oxygen  orbital and the difference  of the two
hydrogen  orbitals, and the  molecular orbital is essentially an oxygen 
atomic orbital.
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1.24: Molecular Vibrations
Vibrational motion in diatomic molecules is often discussed within the context of the simple harmonic oscillator in quantum
mechanics. A diatomic molecule has only a single bond that can vibrate; we say it has a single vibrational mode. As you may
expect, the vibrational motions of polyatomic molecules are much more complicated than those in a diatomic. Firstly, there are
more bonds that can vibrate; and secondly, in addition to stretching vibrations, the only type of vibration possible in a diatomic, we
can also have bending and torsional vibrational modes. Since changing one bond length in a polyatomic will often affect the length
of nearby bonds, we cannot consider the vibrational motion of each bond in isolation; instead we talk of normal modes involving
the concerted motion of groups of bonds. As a simple example, the normal modes of a linear triatomic molecule are shown below.

Once we know the symmetry of a molecule at its equilibrium structure, group theory allows us to predict the vibrational motions it
will undergo using exactly the same tools we used above to investigate molecular orbitals. Each vibrational mode transforms as one
of the irreducible representations of the molecule’s point group. Before moving on to an example, we will quickly review how to
determine the number of vibrational modes in a molecule.

Molecular degrees of freedom – determining the number of normal vibrational modes 
An atom can undergo only translational motion, and therefore has three degrees of freedom corresponding to motion along the , ,
and  Cartesian axes. Translational motion in any arbitrary direction can always be expressed in terms of components along these
three axes. When atoms combine to form molecules, each atom still has three degrees of freedom, so the molecule as a whole has 

 degrees of freedom, where  is the number of atoms in the molecule. However, the fact that each atom in a molecule is
bonded to one or more neighboring atoms severely hinders its translational motion, and also ties its motion to that of the atoms to
which it is attached. For these reasons, while it is entirely possible to describe molecular motions in terms of the translational
motions of individual atoms (we will come back to this in the next section), we are often more interested in the motions of the
molecule as a whole. These may be divided into three types: translational; rotational and vibrational.

Just as for an individual atom, the molecule as a whole has three degrees of translational freedom, leaving  degrees of
freedom in rotation and vibration.

The number of rotational degrees of freedom depends on the structure of the molecule. In general, there are three possible
rotational degrees of freedom, corresponding to rotation about the , , and  Cartesian axes. A non-linear polyatomic molecule
does indeed have three rotational degrees of freedom, leaving  degrees of freedom in vibration (i.e  vibrational
modes). In a linear molecule, the situation is a little different. It is generally accepted that to be classified as a true rotation, a
motion must change the position of one or more of the atoms. If we define the  axis as the molecular axis, we see that spinning the
molecule about the axis does not move any of the atoms from their original position, so this motion is not truly a rotation.
Consequently, a linear molecule has only two degrees of rotational freedom, corresponding to rotations about the  and  axis. This
type of molecule has  degrees of freedom left for vibration, or  vibrational modes.

In summary:

A linear molecule has  vibrational modes
A non-linear molecule has  vibrational modes.

Determining the Symmetries of Molecular Motions 
We mentioned above that the procedure for determining the normal vibrational modes of a polyatomic molecule is very similar to
that used in previous sections to construct molecular orbitals. In fact, virtually the only difference between these two applications
of group theory is the choice of basis set.

As we have already established, the motions of a molecule may be described in terms of the motions of each atom along the , 
and  axis. Consequently, it probably won’t come as too much of a surprise to discover that a very useful basis for describing
molecular motions comprises a set of  axes centered on each atom. This basis is usually known as the  Cartesian basis
(since there are  Cartesian axes,  axes for each of the  atoms in the molecule). Note that each molecule will have a different 

 Cartesian basis, just as every molecule has a different atomic orbital basis.
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Our first task in investigating motions of a particular molecule is to determine the characters of the matrix representatives for the 
 Cartesian basis under each of the symmetry operations in the molecular point group. We will use the  molecule, which has
 symmetry, as an example.

 has three atoms, so the  Cartesian basis will have  elements. The basis vectors are shown in the diagram below.

One way of determining the characters would be to construct all of the matrix representatives and take their traces. While you are
more than welcome to try this approach if you want some practice at constructing matrix representatives, there is an easier way.
Recall that we can also determine the character of a matrix representative under a particular symmetry operation by stepping
through the basis functions and applying the following rules:

i. Add  to the character if the basis function is unchanged by the symmetry operation;
ii. Add  to the character if the basis function changes sign under the symmetry operation;

iii. Add  to the character if the basis function moves when the symmetry operation is applied.

For , this gives us the following characters for the  Cartesian basis (check that you can obtain this result using the rules
above and the basis vectors as drawn in the figure):

There is an even quicker way to work out the characters of the  Cartesian basis if you have a character table in front of you. The
character for the Cartesian basis is simply the sum of the characters for the , , and  (or , , and ) functions listed in the
character table. To get the character for the  Cartesian basis, simply multiply this by the number of atoms in the molecule that
are unshifted by the symmetry operation.

The  character table is shown below.

 transforms as ,  as , and  as , so the characters for the Cartesian basis are

We multiply each of these by the number of unshifted atoms (  for the identity operation,  for ,  for  and  for ) to obtain
the characters for the  Cartesian basis.

Reassuringly, we obtain the same characters as we did previously. Which of the three methods you use to get to this point is up to
you.

We now have the characters for the molecular motions (described by the  Cartesian basis) under each symmetry operation. At
this point, we want to separate these characters into contributions from translation, rotation, and vibration. This turns out to be a
very straightforward task. We can read the characters for the translational and rotational modes directly from the character table,
and we obtain the characters for the vibrations simply by subtracting these from the  Cartesian characters we’ve just
determined. The characters for the translations are the same as those for . We find the characters for the rotations by adding
together the characters for , , and  from the character table (or just  and  if the molecule is linear). For , we
have:

3N OH2
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The characters in the final row are the sums of the characters for all of the molecular vibrations. We can find out the symmetries of
the individual vibrations by using the reduction equation (Equation (15.20)) to determine the contribution from each irreducible
representation.

In many cases you won’t even need to use the equation, and can work out which irreducible representations are contributing just by
inspection of the character table. In the present case, the only combination of irreducible representations that can give the required
values for  is . As an exercise, you should make sure you are also able to obtain this result using the reduction
equation.

So far this may all seem a little abstract, and you probably want to know is what the vibrations of  actually look like. For a
molecule with only three atoms, it is fairly easy to identify the possible vibrational modes and to assign them to the appropriate
irreducible representation.

For a larger molecule, the problem may become much more complex, and in that case we can generate the SALCs of the 
Cartesian basis, which will tell us the atomic displacements associated with each vibrational mode. We will do this now for .

Atomic displacements using the 3N Cartesian basis 
As before, we generate the SALCs of each symmetry by applying the appropriate projection operator to each of the basis functions
(or in this case, basis vectors)  in turn.

In this case we have  basis vectors, which we will label , , , , , , , , , describing the displacements of
the two  atoms and the  atom along Cartesian axes. For the SALCs of  symmetry, applying the projection operator to each
basis vector in turn gives (check that you can obtain this result):

We see that the motion characteristic of an  vibration (which we have identified as the symmetric stretch and the bending
vibration) may be summarized as follows:

i.  - the two hydrogen atoms move in opposite directions along the  axis.
ii.  - the two hydrogen atoms move in the same direction along the  axis.

iii.  - the oxygen atom moves along the  axis.
iv. There is no motion of any of the atoms in the  direction.

The asymmetric stretch has  symmetry, and applying the projection operator in this case gives:

Operation:
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In this vibrational mode, the two  atoms move in the same direction along the  axis and in opposite directions along the  axis.

We have now shown how group theory may be used together with the  Cartesian basis to identify the symmetries of the
translational, rotational and vibrational modes of motion of a molecule, and also to determine the atomic displacements associated
with each vibrational mode.

Molecular vibrations using internal coordinates 
While it was fairly straightforward to investigate the atomic displacements associated with each vibrational mode of  using the

 Cartesian basis, this procedure becomes more complicated for larger molecules. Also, we are often more interested in how
bond lengths and angles change in a vibration, rather than in the Cartesian displacements of the individual atoms. If we are only
interested in looking at molecular vibrations, we can use a different procedure from that described above, and start from a basis of
internal coordinates. Internal coordinates are simply a set of bond lengths and bond angles, which we can use as a basis for
generating representations and, eventually, SALCs. Since bond lengths and angles do not change during translational or rotational
motion, no information will be obtained on these types of motion.

For , the three internal coordinates of interest are the two  bond lengths, which we will label  and , and the  bond
angle, which we will label . If we wanted to, we could separate our basis into two different bases, one consisting only of bond
lengths, to describe stretching vibrations, and one consisting of only bond angles, to describe bending vibrations. However, the
current example is simple enough to treat all the basis functions together.

As usual, our first step is to work out the characters of the matrix representatives for this basis under each symmetry operation. The
effects of the various transformations on our chosen basis, and the characters of the corresponding representatives, are:

These are the same characters as we found before using the  Cartesian basis, and as before, we can see by inspection of the
character table that the representation may be reduced down to the sum of irreducible representations . We can now work
out the symmetry adapted linear combinations of our new basis set to see how the bond lengths and angle change as  vibrates
in each of the three vibrational modes.

Again, we will use the projection operator  applied to each basis function in turn.

Firstly, the  vibrations:

From these SALCs, we can identify  (and , which is identical) with the symmetric stretch, in which both bond lengths change
in phase with each other, and  with the bend.

Now for the  vibration:
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 and  are not linearly independent, and either one may be chosen to describe the asymmetric stretch, in which one bond
lengthens as the other shortens.

Note: When using internal coordinates, it is important that all of the coordinates in the basis are linearly independent. If this is the
case then the number of internal coordinates in the basis will be the same as the number of vibrational modes (  or ,
depending on whether the molecule is linear or non-linear). This requirement is satisfied in the  example above. For a less
straightforward example, consider the methane molecule, . It might appear that we could choose a basis made up of the four 

-  bond lengths and the six - -  bond angles. However, this would give us  basis functions, and  has only 
vibrational modes. This is due to the fact that the bond angles are not all independent of each other. It can be tricky to come up with
the appropriate internal coordinate basis to describe all of the molecular motions, but all is not lost. Even if you can’t work out the
appropriate bond angles to choose, you can always take a basis of bond lengths to investigate the stretching vibrations of a
molecule. If you want to know the symmetries of the bending vibrations, you can use the  Cartesian basis method to determine
the symmetries of all of the vibrational modes and compare these with the stretching mode symmetries to identify the bending
modes.
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1.25: Summary of applying group theory to molecular motions
1. Atomic or molecular translations transform in the same way as the , ,  (or , , ) functions listed in the character tables.
2. Molecular rotations transform in the same way as the , ,  functions listed in the character tables.
3. The irreducible representations spanned by the motions of a polyatomic molecule may be determined using the  Cartesian basis,

made up of , ,  axes on each atom. The characters of the matrix representatives are best determined using a table as follows:

4. The irreducible representations spanned by the molecular vibrations are determined by first subtracting the characters for rotations
and translations from the characters for  to give the characters for  and then using the reduction formula or inspection of the
character table to identify the irreducible representations contributing to .

5. The molecular displacements for the vibrations of each symmetry may be determined by using projection operators on the 
Cartesian basis vectors to generate SALCs.

6. Alternatively, a basis of internal coordinates (bond lengths and angles) may be used to investigate stretching and bending vibrations.
Determine the characters, identify the irreducible representations, and construct SALCs.
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1.26: Group theory and Molecular Electronic States
Firstly, it is important that you understand the difference between a molecular orbital and an electronic state.

A strict definition of a molecular orbital is that it is a ‘one electron wavefunction’, i.e. a solution to the Schrödinger equation for the
molecule. A complete one electron wavefunction (orbital) is a product of a spatial function, describing the orbital angular
momentum and ‘shape’ of the orbital, and a spin function, describing the spin angular momentum.

In common usage, the word ‘orbital’ is often used to refer only to the spatial part of the ‘true’ orbital. For example, in atoms we
generally talk about ‘  orbitals’ or ‘  orbitals’ rather than ‘  spatial wavefunctions’ and ‘  spatial wavefunctions’. In this context,
two electrons with opposite spins may occupy one spatial orbital. A more rigorous way of saying this would be to state that a given
spatial wavefunction may be paired with two different spin wavefunctions (one corresponding to a ‘spin up’ electron and one to a
‘spin down’ electron).

An electronic state is defined by the electron configuration of the system, and by the quantum numbers of each electron
contributing to that configuration. Each electronic state corresponds to one of the energy levels of the molecule. These energy
levels will obviously depend on the molecular orbitals that are occupied, and their energies, but they also depend on the way in
which the electrons within the various molecular orbitals interact with each other. Interactions between the electrons are essentially
determined by the relative orientations of the magnetic moments associated with their orbital and spin angular momenta, which is
where the dependence on quantum numbers comes in. A given electron configuration will often give rise to a number of different
electronic states if the electrons may be arranged in different ways (with different quantum numbers) within the occupied orbitals.

Last year you were introduced to the idea of atomic states, and learnt how to label the states arising from a given electron
configuration using term symbols of the form . Term symbols of this form define the spin, orbital and total angular
momenta of the state, which in turn determine its energy. Molecular states, containing contributions from a number of molecular
orbitals, are more complicated. For example, a given molecular orbital will generally contain contributions from several different
atomic orbitals, and as a result, electrons cannot easily be assigned an l quantum number. Instead of using term symbols, molecular
states are usually labeled according to their symmetry (the exception to this is linear molecules, for which conventional term
symbols may still be used, albeit with a few modifications from the atomic case).

We can determine the symmetry of an electronic state by taking the direct product of the irreducible representations for all of the
electrons involved in that state (the irreducible representation for each electron is simply the irreducible representation for the
molecular orbital that it occupies). Usually we need only consider unpaired electrons. Closed shell species, in which all electrons
are paired, almost always belong to the totally symmetric irreducible representation in the point group of the molecule.

An example is the molecular orbitals of butadiene, which belongs to the  point group. Since all electrons are paired, the overall
symmetry of the state is , and the label for the state once the spin multiplicity is included is . We could have arrived at the
same result by taking the direct product of the irreducible representations for each electron. There are two electrons in orbitals with 

 symmetry, and two in orbitals with  symmetry, so overall we have:

This page titled 1.26: Group theory and Molecular Electronic States is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Claire Vallance via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

Ψ = ΨspatialΨspin (26.1)
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1.27: Spectroscopy - Interaction of Atoms and Molecules with Light
In our final application of group theory, we will investigate the way in which symmetry considerations influence the interaction of
light with matter. We have already used group theory to learn about the molecular orbitals in a molecule. In this section we will
show that it may also be used to predict which electronic states may be accessed by absorption of a photon. We may also use group
theory to investigate how light may be used to excite the various vibrational modes of a polyatomic molecule.

Last year, you were introduced to spectroscopy in the context of electronic transitions in atoms. You learned that a photon of the
appropriate energy is able to excite an electronic transition in an atom, subject to the following selection rules:

What you may not have learned is where these selection rules come from. In general, different types of spectroscopic transition
obey different selection rules. The transitions you have come across so far involve changing the electronic state of an atom, and
involve absorption of a photon in the UV or visible part of the electromagnetic spectrum. There are analogous electronic transitions
in molecules, which we will consider in more detail shortly. Absorption of a photon in the infrared (IR) region of the spectrum
leads to vibrational excitation in molecules, while photons in the microwave (MW) region produce rotational excitation. Each type
of excitation obeys its own selection rules, but the general procedure for determining the selection rules is the same in all cases. It
is simply to determine the conditions under which the probability of a transition is not identically zero.

The first step in understanding the origins of selection rules must therefore be to learn how transition probabilities are calculated.
This requires some quantum mechanics.

Last year, you learned about operators, eigenvalues and eigenfunctions in quantum mechanics. You know that if a function is an
eigenfunction of a particular operator, then operating on the eigenfunction with the operator will return the observable associated
with that state, known as the eigenvalue (i.e. ). What you may not know is that operating on a function that is NOT an
eigenfunction of the operator leads to a change in state of the system. In the transitions we will be considering, the molecule
interacts with the electric field of the light (as opposed to NMR spectroscopy, in which the nuclei interact with the magnetic field
of the electromagnetic radiation). These transitions are called electric dipole transitions, and the operator we are interested in is the
electric dipole operator, usually given the symbol , which describes the electric field of the light.

If we start in some initial state , operating on this state with  gives a new state, . If we want to know the probability of
ending up in some particular final state , the probability amplitude is simply given by the overlap integral between  and .
This probability amplitude is called the transition dipole moment, and is given the symbol .

Physically, the transition dipole moment may be thought of as describing the ‘kick’ the electron receives or imparts to the electric
field of the light as it undergoes a transition. The transition probability is given by the square of the probability amplitude.

Hopefully it is clear that in order to determine the selection rules for an electric dipole transition between states  and , we
need to find the conditions under which  can be non-zero. One way of doing this would be to write out the equations for the two
wavefunctions (which are functions of the quantum numbers that define the two states) and the electric dipole moment operator,
and just churn through the integrals. By examining the result, it would then be possible to decide what restrictions must be imposed
on the quantum numbers of the initial and final states in order for a transition to be allowed, leading to selection rules of the type
listed above for atoms. However, many selection rules may be derived with a lot less work, based simply on symmetry
considerations.

In section , we showed how to use group theory to determine whether or not an integral may be non-zero. This forms the basis of
our consideration of selection rules.
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Electronic transitions in molecules 

Assume that we have a molecule in some initial state . We want to determine which final states  can be accessed by
absorption of a photon. Recall that for an integral to be non-zero, the representation for the integrand must contain the totally
symmetric irreducible representation. The integral we want to evaluate is

so we need to determine the symmetry of the function . As we learned in Section , the product of two functions
transforms as the direct product of their symmetry species, so all we need to do to see if a transition between two chosen states is
allowed is work out the symmetry species of ,  and  , take their direct product, and see if it contains the totally symmetric
irreducible representation for the point group of interest. Equivalently (as explained in Section ), we can take the direct product
of the irreducible representations for  and  and see if it contains the irreducible representation for . This is best illustrated
using a couple of examples.

Earlier in the course, we learned how to determine the symmetry molecular orbitals. The symmetry of an electronic state is found
by identifying any unpaired electrons and taking the direct product of the irreducible representations of the molecular orbitals in
which they are located. The ground state of a closed-shell molecule, in which all electrons are paired, always belongs to the totally
symmetric irreducible representation . As an example, the electronic ground state of , which belongs to the  point group,
has  symmetry. To find out which electronic states may be accessed by absorption of a photon, we need to determine the
irreducible representations for the electric dipole operator . Light that is linearly polarized along the , , and  axes transforms
in the same way as the functions , , and  in the character table . From the  character table, we see that - and -polarized
light transforms as , while -polarized light transforms as . Therefore:

i. For - or -polarized light,  transforms as . This means that absorption of - or -polarized light by
ground-state  (see figure below left) will excite the molecule to a state of  symmetry.

ii. For -polarized light,  transforms as . Absorption of -polarized light by ground state  (see
figure below right) will excite the molecule to a state of  symmetry.

Of course, the photons must also have the appropriate energy, in addition to having the correct polarization to induce a transition.

We can carry out the same analysis for , which belongs to the  point group. We showed previously that  has three
molecular orbitals of symmetry, two of  symmetry, and one of  symmetry, with the ground state having  symmetry. In
the  point group, -polarized light has  symmetry, and can therefore be used to excite electronic states of this symmetry; -
polarized light has  symmetry, and may be used to access the  excited state; and -polarized light has  symmetry, and may
be used to access higher lying  states. Consider our previous molecular orbital diagram for .

The electronic ground state has two electrons in a  orbital, giving a state of  symmetry ( ). The first excited
electronic state has the configuration  and its symmetry is . It may be accessed from the ground state
by a -polarized photon. The second excited state is accessed from the ground state by exciting an electron to the  orbital. It
has the configuration , its symmetry is . Since neither -, - or -polarized light transforms as ,
this state may not be excited from the ground state by absorption of a single photon.

Ψi Ψf

= ∫ dτμ̂fi Ψ∗
f
μ̂Ψi (27.4)
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Vibrational transitions in molecules 

Similar considerations apply for vibrational transitions. Light polarized along the , , and  axes of the molecule may be used to
excite vibrations with the same symmetry as the ,  and  functions listed in the character table.

For example, in the  point group, -polarized light may be used to excite vibrations of  symmetry, -polarized light to excite
vibrations of  symmetry, and -polarized light to excite vibrations of  symmetry. In , we would use -polarized light to
excite the symmetric stretch and bending modes, and -polarized light to excite the asymmetric stretch. Shining -polarized light
onto a molecule of  would not excite any vibrational motion.

Raman Scattering 

If there are vibrational modes in the molecule that may not be accessed using a single photon, it may still be possible to excite them
using a two-photon process known as Raman scattering . An energy level diagram for Raman scattering is shown below.

The first photon excites the molecule to some high-lying intermediate state, known as a virtual state. Virtual states are not true
stationary states of the molecule (i.e. they are not eigenfunctions of the molecular Hamiltonian), but they can be thought of as
stationary states of the ‘photon + molecule’ system. These types of states are extremely short lived, and will quickly emit a photon
to return the system to a stable molecular state, which may be different from the original state. Since there are two photons (one
absorbed and one emitted) involved in Raman scattering, which may have different polarizations, the transition dipole for a Raman
transition transforms as one of the Cartesian products , , , , ,  listed in the character tables.

Vibrational modes that transform as one of the Cartesian products may be excited by a Raman transition, in much the same way as
modes that transform as , , or  may be excited by a one-photon vibrational transition.

In , all of the vibrational modes are accessible by ordinary one-photon vibrational transitions. However, they may also be
accessed by Raman transitions. The Cartesian products transform as follows in the  point group.

The symmetric stretch and the bending vibration of water, both of  symmetry, may therefore be excited by any Raman scattering
process involving two photons of the same polarization ( -, - or -polarized). The asymmetric stretch, which has  symmetry,
may be excited in a Raman process in which one photon is -polarized and the other -polarized.

It is important not to confuse molecular orbitals (the energy levels that individual electrons may occupy within the molecule) with
electronic states (arising from the different possible arrangements of all the molecular electrons amongst the molecular orbitals,
e.g. the electronic states of  are NOT the same thing as the molecular orbitals we derived earlier in the course. These orbitals
were an incomplete set, based only on the valence  electrons in the molecule. Inclusion of the  electrons is required for a full
treatment of the electronic states. The  example above should hopefully clarify this point.

‘ -polarized’ means that the electric vector of the light (an electromagnetic wave) oscillates along the direction of the  axis.

You will cover Raman scattering (also known as Raman spectroscopy) in more detail in later courses. The aim here is really just
to alert you to its existence and to show how it may be used to access otherwise inaccessible vibrational modes.
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1.28: Summary
Hopefully this course has given you a reasonable introduction to the qualitative description of molecular symmetry, and also to the
way in which it can be used quantitatively within the context of group theory to predict important molecular properties. These main
things you should have learnt in this text are:

1. How to identify the symmetry elements possessed by a molecule and assign it to a point group.
2. The consequences of symmetry for chirality and polarity of molecules.
3. The effect of applying two or more symmetry operations consecutively (group multiplication)
4. How to construct a matrix representation of a group, starting from a suitable set of basis functions.
5. How to determine the irreducible representations spanned by a basis set, and construct symmetry adapted linear combinations

(SALCs) of the original basis functions that transform as the irreducible representations of the group.
6. How to construct molecular orbitals by taking linear combinations of SALCs of the same symmetry species.
7. How to set up and solve the secular equations for the molecule in order to find the molecular energy levels and orbital

coefficients – “Extra for experts”, though you will cover this in later courses
8. How to determine the symmetries of the various modes of motion (translational, rotational and vibrational) of a polyatomic

molecule, and the symmetries of individual vibrational modes.
9. How to determine the atomic displacements in a given vibrational mode by constructing SALCs in the Cartesian basis.

10. How to determine atomic displacements in stretching and bending vibrations using internal coordinates.
11. The consequences of symmetry for the selection rules governing excitation to different electronic and vibrational states.

Contributors and Attributions 

Claire Vallance (University of Oxford)
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1.29: Appendix A

Proof that the character of a matrix representative is invariant under a similarity transform 

A property of traces of matrix products is that they are invariant under cyclic permutation of the matrices.

i.e. . For the character of a matrix representative of a symmetry operation , we therefore
have:

The trace of the similarity transformed representative is therefore the same as the trace of the original representative.

Proof that the characters of two symmetry operations in the same class are identical 

The formal requirement for two symmetry operations  and  to be in the same class is that there must be some symmetry
operation  of the group such that  (the elements  and  are then said to be conjugate). If we consider the characters
of  and  we find:

The characters of  and  are identical.

Proof of the Variation Theorem 
The variation theorem states that given a system with a Hamiltonian , then if  is any normalized, well-behaved function that
satisfies the boundary conditions of the Hamiltonian, then

where  is the true value of the lowest energy eigenvalue of . This principle allows us to calculate an upper bound for the
ground state energy by finding the trial wavefunction  for which the integral is minimized (hence the name; trial wavefunctions
are varied until the optimum solution is found). Let us first verify that the variational principle is indeed correct.

We first define an integral

If we can prove that  then we have proved the variation theorem.

Let  and  be the true eigenfunctions and eigenvalues of , so . Since the eigenfunctions  form a complete
basis set for the space spanned by , we can expand any wavefunction  in terms of the  (so long as  satisfies the same
boundary conditions as ).

Substituting this function into our integral  gives

If we now use , we obtain

tr [ ] = tr [ ] = tr [ ]ABC BCA CAB g

χ(g) = tr [ ] = tr [ ] = tr [ ] = tr [ ] = (g)Γ(g) C (g)Γ′ C −1 (g) CΓ′ C −1 (g)Γ′ χ′ (29.1)

g g′

f = gfg′ f −1 g g′

g g′

χ( ) = tr [ ] = tr [ ] = tr [ ] = tr [ ] = χ(g)g′ Γ( )g′ (f)Γ(g)Γ(f)Γ−1 Γ(g)Γ(f) (f)Γ−1 Γ(g) (29.2)
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We now perform the sum over , losing all terms except the  term, to give

Since  is the lowest eigenvalue,  must be positive, as must . This means that all terms in the sum are non-negative
and  as required.

For wavefunctions that are not normalized, the variational integral becomes:

Derivation of the secular equations – the general case of the linear variation method 
In the study of molecules, the variation principle is often used to determine the coefficients in a linear variation function, a linear
combination of  linearly independent functions  (often atomic orbitals) that satisfy the boundary conditions of
the problem. i.e. . The coefficients  are parameters to be determined by minimizing the variational integral. In this
case, we have:

where  is the Hamiltonian matrix element.

where  is the overlap matrix element.

The variational energy is therefore

which rearranges to give

We want to minimize the energy with respect to the linear coefficients , requiring that for all . Differentiating both sides of

the above expression gives,

Since  and , , we have

When  , this gives
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1.30: Appendix B- Point Groups
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 and  
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Direct product tables 
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