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Abstract
The Lindblad equation is an evolution equation for the density matrix in
quantum theory. It is the general linear, Markovian, form which ensures that
the density matrix is Hermitian, trace 1, positive and completely positive.
Some elementary examples of the Lindblad equation are given. The derivation
of the Lindblad equation presented here is ‘simple’ in that all it uses is the
expression of a Hermitian matrix in terms of its orthonormal eigenvectors
and real eigenvalues. Thus, it is appropriate for students who have learned
the algebra of quantum theory. Where helpful, arguments are first given in a
two-dimensional Hilbert space.

1. Introduction

The density matrix ρ is a useful operator for quantum mechanical calculations. For a given
system, one may be unsure about what the state vector is. If the possible state vectors and their
associated probabilities are {|ψi〉, pi}, one creates the proper [1] density matrix

ρ ≡
∑

i

pi|ψi〉〈ψi|. (1)

It is Hermitian: ρ† = ρ. It is trace 1: 1 = Tr ρ ≡ ∑
j〈φ j|ρ|φ j〉, where {|φ j〉} are an

arbitrary complete orthonormal set of vectors. It is positive: 〈v|ρ|v〉 � 0 for an arbitrary
vector |v〉. All these properties can easily be verified from equation (1).

One can use the density matrix to conveniently calculate probabilities or mean values. If a
measurement is set up to result in one of the eigenstates |φi〉 of an operator O, that outcome’s
probability is 〈φi|ρ|φi〉 and the mean eigenvalue of O is Tr Oρ.

Because each individual state vector evolves unitarily under the system Hamiltonian H
(assumed for simplicity here to be time independent), |ψ, t〉 = exp −itH|ψ, 0〉, the density
matrix in equation (1) satisfies the evolution equation

d

dt
ρ(t) = −i[H, ρ(t)] ⇒ ρ(t) = e−iHtρ(0) eiHt . (2)
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The operator acting on ρ(0) is often called a superoperator1 since it describes a linear
transformation on an operator: it operates on both sides of ρ, so to speak.

The case sometime arises where the system S under consideration is a subsystem of a
larger system S + S′, and S′ is not measured. The pure (so-called because it is formed from a
single state vector) density matrix for the joint system is

R(t) =
∑

im

Cim(t)|φi〉|χm〉
∑

jn

Cjn(t)
∗〈φ j|〈χn|,

where {|φi〉} {|χm〉} are orthonormal bases for S, S′ respectively, and
∑

im |Cim(t)|2 = 1. By
taking the trace of R with respect to S′, one arrives at an improper [1] density matrix for S
from which predictions can be extracted:

ρ(t) =
∑
i jm

Cim(t)Cjm(t)∗|φi〉〈φ j|.

One can easily see that this is Hermitian, trace 1 and positive. However, while the density
matrix of S + S′ evolves unitarily, the density matrix of the subsystem S evolving under the
influence of S′ generally does not evolve unitarily. Nonetheless, sometimes dρ(t)/dt can be
written in terms of ρ for a range of times earlier than t. Sometimes that range is short compared
to the time scale of evolution of ρ so that one may make an approximation whereby dρ(t)/dt
depends linearly just on ρ(t). This is quite useful, and is what shall be considered in this paper.

In this case, the evolution equation is highly constrained by the requirements on ρ(t),
to be satisfied at all times: hermiticity, trace 1 and positivity. (The latter proves too general
to simply implement, so a stronger requirement is imposed, called complete positivity—see
section 4).) The result, for an N-dimensional Hilbert space, is the Lindblad [3] (or Lindblad–
Gorini–Kossakowsky–Sudarshan [4]) evolution equation for the density matrix:

d

dt
ρ(t) = −i[H, ρ(t)] − 1

2

N2−1∑
α=1

[Lα†Lαρ(t) + ρ(t)Lα†Lα − 2Lαρ(t)Lα†]. (3)

In equation (3), the Hamiltonian H is an arbitrary Hermitian operator, but the Lindblad
operators {Lα} are completely arbitrary operators.

Actually, as shall be shown, there need be no limitation on the number of terms in the
sum in equation (3), but this can always be reduced to a sum of N2 − 1 terms.

It is not a necessary condition, but if the equation is to be time-translation-invariant, the
operators are time-independent.

2. Lindblad examples

Before deriving equation (3), we give a few examples of the non-unitary evolutions it describes.
Since unitary evolution is well known, we shall let H = 0. It shall be seen that relaxation to
some equilibrium (constant) density matrix is readily described.

For simplicity, four of the five examples shall be in an N = 2 Hilbert space (a restriction
that is readily lifted).

2.1. Random phases

Consider a state vector written in a basis whose phase factors undergo random walk.
Given an initial state vector |ψ〉 = a|φ1〉 + b|φ2〉 (|a|2 + |b|2 = 1), suppose at time t, it

has evolved to

|ψ, t〉 = a eiθ1 |φ1〉 + b eiθ2 |φ2〉
1 The term ‘superoperator’ was first used by Prigogine and co-workers, e.g., [2].
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with probability

P(θ1, θ2) dθ1 dθ2 = dθ1√
2πλ1t

dθ1√
2πλ2t

e− 1
2λ1t θ

2
1 e− 1

2λ2t θ
2
2 .

The density matrix is

ρ(t) =
∫ ∞

−∞

∫ ∞

−∞
dθ1dθ2P(θ1, θ2)|ψ〉〈ψ |

= |a|2|φ1〉〈φ1| + |b|2|φ2〉〈φ2| + e− 1
2 t[λ1+λ2][ab∗|φ1〉〈φ2| + a∗b|φ2〉〈φ1|].

We see that the off-diagonal elements decay at a fixed rate while the diagonal elements remain
constant. It satisfies

d

dt
ρ(t) = −1

2
[λ1 + λ2]

[
ρ(t) −

2∑
i=1

Qiρ(t)Qi

]
,

where the projection operator Qi ≡ |φi〉〈φi|. To see that this is a Lindblad equation, note that
Q†

i = Qi and
∑2

i=1 Q†
i Qi = 1. There are two Lindblad operators: identify Li ≡ √

(λ1 + λ2)Qi

in equation (3).

2.2. Unitary jump

Suppose in time dt, a state vector |ψ, t〉 has probability λdt of changing to exp −iG|ψ, t〉
(probability 1 − λdt of being unchanged), where G is a Hermitian operator and exp −iG 
= 1.
The density matrix at time t + dt is therefore

ρ(t + dt) = (1 − λ dt)ρ(t) + λ dt e−iGρ(t) eiG,

so its evolution equation is
d

dt
ρ(t) = −λ[ρ(t) − e−iGρ(t) eiG].

This is of the Lindblad form, with one Lindblad operator L ≡ √
2λ exp −iG.

In the basis where G is diagonal with elements (g1, g2), we obtain dρii/dt = 0 and
d

dt
ρ12(t) = −λρ12(t)[1 − ei(g2−g1 )].

So, again, its diagonal elements remain constant. Its off-diagonal elements decay at the fixed
rate λ[1 − cos(g2 − g1)] and their phases change.

2.3. Random unitary transformation

Suppose in time dt a state vector |ψ, t〉 undergoes a unitary transformation to

e−iGθ |ψ, t〉 = 1 − iGθ − 1
2 (Gθ )2 + · · · |ψ, t〉

with probability

P(θ ) dθ = dθ√
4πλdt

e− 1
4λdt θ

2
.

The density matrix at t + dt (neglecting terms of order higher than dt) is given by

ρ(t + dt) =
∫ ∞

−∞
P(θ ) dθ e−iGθρ(t) e−iGθ

=
∫ ∞

−∞
P(θ ) dθ

[
ρ(t) − θ2

[
1

2
G2ρ(t) + ρ(t)

1

2
G2 − Gρ(t)G

]]

= ρ(t) − λ dt

2
[G2ρ(t) + ρ(t)G2 − 2Gρ(t)G]
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giving the Lindblad equation
d

dt
ρ(t) = −λ

2
[G2ρ(t) + ρ(t)G2 − 2Gρ(t)G] = −λ

2
[G[G, ρ(t)]

with one Lindblad operator L ≡ √
λG.

In the basis where G is diagonal with elements (g1, g2),
d

dt
ρi j(t) = −λ

2
(gi − g j)

2ρi j(t).

So, again, its diagonal elements remain constant but its off-diagonal elements decay at a rate
determined by the difference in eigenvalues.

2.4. State exchange

Suppose, in time dt, with probability λ dt, a state vector |ψ, t〉 exchanges its basis states
|φ1〉, |φ2〉, becoming σ |ψ, t〉, where 〈φi|σ |φ j〉 is the Pauli matrix with diagonal elements 0
and off-diagonal elements 1. It is easy to see that the density matrix evolution equation is

d

dt
ρ(t) = −λ[ρ(t) − σρ(t)σ ]

and is of the Lindblad form, with one Lindblad operator L ≡ √
2λσ .

The density matrix elements therefore satisfy
d

dt
ρ11(t) = − d

dt
ρ22(t) = −λ[ρ11(t) − ρ22(t)],

d

dt
ρ12(t) = − d

dt
ρ21(t) = −λ[ρ12(t) − ρ21(t)].

The diagonal density matrix elements change in this example, decaying to 1/2. The off-diagonal
matrix elements keep their real parts while the imaginary parts decay to 0.

2.5. State transitions

Here we consider arbitrary N. Suppose in time dt, a state vector |ψ, t〉 makes a transition to
state

|m〉 〈n|ψ, t〉
|〈n|ψ, t〉|

with probability

Pmn ≡ pmλ dt|〈ψ, t|n〉|2(
pm � 0,

∑N
m=1 pm = 1

)
. The probability of all such transitions is

∑
mn Pmn = λ dt, so

the state vector is unchanged with probability 1 − λ dt. Define Qmn ≡ |m〉〈n|. Note that∑N
m,n=1 pmQ†

mnQmn = 1.
The density matrix at time t + dt is

ρ(t + dt) = (1 − λ dt)ρ(t) + λ dt
N∑

m,n=1

pmQmnρ(t)Qnm,

so its evolution equation is

d

dt
ρ(t) = −λ

[
ρ(t) −

N∑
m,n=1

pmQmnρ(t)Qnm

]
.

This is of the Lindblad form, with N2 (one more than the necessary maximum!) Lindblad
operators Lmn ≡ √

2λpmQmn.
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The matrix elements of the density matrix obey

d

dt
ρrs(t) = − λ

[
ρrs(t) − prδrs

∑
n

ρnn(t)

]

= − λ[ρrs(t) − prδrs].

The off-diagonal elements decay at a uniform rate. The diagonal elements do not remain
constant. They decay to predetermined values pr:

ρrr(t) = ρrr(0) e−λt + pr[1 − e−λt].

This might be useful in modelling the approach to thermal equilibrium, where the states |m〉
are energy eigenstates and pr is the Boltzmann probability Z−1 exp −Er/kT .

3. Application of constraints

We now turn to deriving the Lindblad equation as the most general equation satisfying the
constraints.

While the Hilbert space discussed here shall be assumed of dimension N, N may be
allowed to go to to infinity and, also, the argument may readily be extended to a continuum
basis.

To make the argument easier to follow, examples of how its steps apply to a two-
dimensional Hilbert space shall occasionally be inserted.

The Markov constraint is that the density matrix ρ(t ′) ≡ ρ ′ at a later time t ′, depends only
upon the density matrix ρ(t) ≡ ρ at an earlier time t, not upon the density matrix over a range
of earlier times.

The linearity constraint, combined with the Markov constraint, is that the matrix elements
of ρ ′ can be written as the sum of constants multiplying the matrix elements of ρ rather than,
say, powers of the matrix elements of ρ or any other kind of function of these matrix elements:

ρ ′
i j =

N∑
r,s=1

Air, jsρrs. (4)

Here ρ ′
i j ≡ 〈φi|ρ ′|φ j〉 with |φ j〉 some convenient orthonormal basis and, similarly, ρ is

expressed in the same basis. The constants Air, js can be functions of t ′, t. There are N4

constants, and each can be complex, so there are 2N4 real constants involved in equation (4).
The hermiticity constraint ρ

′†
i j ≡ ρ ′∗

ji = ρ ′
i j, applied to equation (4), results in

N∑
r,s=1

[A∗
js,ir − Air, js]ρrs. (5)

3.1. Two-dimensional space: hermiticity

Suppose we have the equation

B11ρ11 + B12ρ12 + B21ρ21 + B22ρ22 = Tr Bρ = 0,

(the Bi j are constants) which holds for all possible density matrices. Then, one can see B = 0
as follows.

First choose the density matrix ρ11 = 1, with all other elements vanishing: thus, B11 = 0.
Similarly, one shows B22 = 0. Next, employ the density matrix ρi j = 1/2, which results in
B12 + B21 = 0. Finally, use the density matrix ρ11 = ρ22 = 1/2, ρ12 = −ρ21 = i/2, which
results in B12 − B21 = 0 and so B12 = B21 = 0. Therefore, B = 0.
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The four density matrices used here,
1
2 (1 + σ 3), 1

2 (1 − σ 3), 1
2 (1 + σ 1), 1

2 (1 + σ 2),

(written in terms of the Pauli matrices) we shall call the density matrix basis. Any 2×2 matrix
can be written as a linear sum with constant (complex) coefficients of these four matrices.
More than that, they form a matrix basis for Hermitian matrices, in that any Hermitian matrix
can be written as a linear sum with constant (real) coefficients of these four matrices. More
than that, and this is the reason for their deployment here, they form a matrix basis for density
matrices, in that any density matrix can be written as a linear sum with constant positive real
coefficients of these four matrices such that the sum of the coefficients add up to 1.

This basis is to be distinguished from another basis, the Pauli matrices plus the identity
matrix, which we shall call the Pauli+1 basis. This is also a matrix basis for Hermitian matrices
but it is not a density matrix basis.

3.2. N-dimensional space: hermiticity

Generalizing, if we have an equation
N∑

r,s=1

Bsrρrs ≡ Tr Bρ = 0 (6)

for a matrix B, which holds for all valid ρ, then B = 0.
This can be seen by using an N2-size density matrix basis, (generalizing the 22-size density

matrix basis of the previous section). First choose ρkk = 1 with all other elements vanishing,
which implies Bkk = 0. Then for particular values of k, l, choose ρkk = ρll = ρkl = ρlk = 1/2
with all other elements vanishing, from which one finds Bkl + Blk = 0. Finally, choose
ρkk = ρll = iρkl = −iρlk = 1/2, from which one finds Bkl − Blk = 0, so Bkl = Blk = 0.
Letting k, l range over all possible pairs of indices results in B = 0.

3.3. Two-dimensional space: evolution equation and trace constraint

It therefore follows from equation (5) that

A∗
js,ir = Air, js,

where each index can take on the values 1 or 2.
A matrix B for which B∗

m,n = Bn,m is a Hermitian matrix. Therefore, A is a Hermitian
matrix, where we regard the number pairs 11, 12, 21, 22 as four different indices. That is, A
is a (4 × 4)-dimensional matrix. The most general 4 × 4 Hermitian matrix is characterized by
16 real numbers (the four real diagonal matrix elements and the six complex matrix elements
above the diagonal). Since there are 32 real numbers which characterized the most general
superoperator in a two-dimensional space, the condition of hermiticity of the density matrix
has cut that number in half.

A Hermitian matrix can be written in terms of its orthonormal eigenvectors and
eigenvalues, and that decomposition shall prove very useful here. There are four real
eigenvalues, i.e. λα , where α = 1, 2, 3, 4. Corresponding to each eigenvalue is an eigenvector
Eα in the four-dimensional complex vector space.

The four complex components of Eα
ir make 32 real numbers, but they are constrained. Each

eigenvector is normalized to 1:
∑2

i,r=1 E∗α
ir Eα

ir = 1+ i0 provides eight constraints, lowering the
number of free components to 24. The orthogonality of E1 to the other three vectors provides
six constraints, the orthogonality of E2 to the remaining two vectors provides four constraints,
and the orthogonality of E3 to E4 provides two constraints. Thus, there are 12 constraints on
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the 24 free components, so the eigenvectors contain 12 free components. These, together with
the four eigenvalues, comprise the 16 real numbers characterizing A.

An example of such an orthonormal basis is given by 1/
√

2 multiplying the Pauli+1
basis. If we write the four components of Eα as a four-dimensional vector with components[
Eα

11, Eα
12, Eα

21, Eα
22

]
, then E1 ≡ 2−1/2σ 1 has components 2−1/2[0, 1, 1, 0], E2 ≡ 2−1/2σ 2 has

components 2−1/2[0,−i, i, 0], E3 ≡ 2−1/2σ 3 has components 2−1/2[1, 0, 0,−1], E4 ≡ 2−1/21
has components 2−1/2[1, 0, 0, 1], It is easy to verify that this is an orthonormal set of vectors.

Although each Eα is a vector in a four-dimensional space, with four components Eα
i j,

Eα can also be regarded as an operator in the two-dimensional Hilbert space with four
matrix elements Eα

i j. This leads to a neat way of writing the orthogonality relations for these
eigenvectors. Instead of

∑N
i=1

∑N
r=1 Eα

irEβ∗
ir = δαβ , we can write

Tr EαEβ† = δαβ,

where Eβ† is the Hermitian conjugate (complex conjugate transpose) of Eβ . It is easy to see
how this works for the example where Eα is 1/

√
2× the Pauli+1 basis.

The expression for the components of A written in terms of its eigenvectors and
eigenvalues is

Air, js =
4∑

α=1

λαEα
irE∗α

js .

Putting this into equation (4) results in the evolution equation

ρ ′
i j =

4∑
α=1

λα

2∑
r,s=1

Eα
irρrsE

∗α
js =

4∑
α=1

λαEαρEα†.

Now, lets impose the trace constraint, i.e.
∑2

i=1 ρ ′
ii = 1. In terms of components this says

1 =
4∑

α=1

λα

2∑
i=1

2∑
r,s=1

Eα
irρrsE

∗α
is .

Writing 1 = ∑2
i=1 ρii = ∑2

r,s=1 δsrρrs, the trace constraint can be written as

2∑
r,s=1

[
4∑

α=1

λα

2∑
i=1

Eα†
si Eα

ir − δsr

]
ρrs = 0

or in matrix notation as

Tr

[
4∑

α=1

λαEα†Eα − 1

]
ρ = 0,

where 1 is the unit matrix. This must hold for arbitrary ρ. We have seen how to handle such
an expression. By successively putting in the four density basis matrices, we obtain the trace
constraint

4∑
α=1

λαEα†Eα = 1.
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3.4. N-dimensional space: trace constraint

The N-dimensional case works just like the two-dimensional case. It follows from
equation (5) that A can be viewed as an N2 × N2 Hermitian matrix. It has N2 real eigenvalues.
Its N2 complex eigenvectors Eα

ir satisfy the orthonormality conditions

N∑
i=1

N∑
r=1

Eα
irEβ∗

ir = Tr EαEβ† = δαβ. (7)

With A written in terms of its eigenvalues and eigenvectors, equation (4) becomes the evolution
equation

ρ ′
i j =

N2∑
α=1

λα

N∑
r,s=1

Eα
irEα∗

js ρrs or

ρ ′ =
N2∑

α=1

λαEαρEα†.

(8)

λα and Eα depend upon t ′ − t, but we shall not write that dependence until it is needed.
Next, imposition of the trace constraint on equation (8), with Tr ρ ′ = 1 = Tr 1ρ, gives

Tr

[
N2∑

α=1

λαEα†Eα − 1

]
ρ = 0.

Using the density matrix basis as in equation (6) et sequens, we obtain the trace constraint:

N2∑
α=1

λαEα†Eα = 1. (9)

By taking the trace of equation (9) and using equation (7), we find the interesting relation

N2∑
α=1

λα = N.

4. Complete positivity

The final constraint is positivity. This says, given an arbitrary N-dimensional vector |v〉, that
the expectation value of the density matrix ρ ′ is non-negative. This constraint, applied to
equation (8), is

0 � 〈v|ρ ′|v〉 =
N2∑

α=1

λα〈v|EαρEα†|v〉 =
N2∑

α=1

λα〈vα|ρ|vα〉, (10)

where we have defined Eα†|v〉 ≡ |vα〉.
Positivity of ρ ensures 〈vα|ρ|vα〉 � 0. Thus, we see from equation (10), if all the λαs are

non-negative, then ρ ′ will be positive too.
However λα � 0, while just shown to be sufficient for ρ ′ to be positive, is not necessary. In

the next section, we shall give an example where an eigenvalue is negative, yet ρ ′ is positive!
Therefore, a stronger condition than positivity is necessary to ensure that λα � 0. This

condition, presented after the example, is complete positivity.
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4.1. Two-dimensional space: example of a positive density matrix with negative eigenvalue

This example uses the Pauli+1 eigenvectors Eα = 2−1/2σα and 2−1/21. (Note that the trace
constraint (9) is satisfied, provided

∑4
α=1 λα = 2, since the square of each of the Pauli+1

matrices is 2−1/21.) Choose λ1 = λ2 = −λ3 = λ4 = 1:

ρ ′ = 1

2
[σ 1ρσ 1 + σ 2ρσ 2 − σ 3ρσ 3 + 1ρ1] =

[
ρ22 ρ12

ρ21 ρ11

]
.

ρ ′ is just ρ with its diagonal elements exchanged. Thus, because ρ is positive, then ρ ′

is positive. This is a particularly simple example of a more general case discussed in
appendix A.

4.2. N-dimensional space: definition of complete positivity

It is not positivity but, rather, complete positivity that makes the non-negative eigenvalue
condition necessary. Here is what it means.

Add to our system a non-interacting and non-evolving additional system in its own N-
dimensional Hilbert space. The enlarged Hilbert space is of dimension N2. The simplest state
vector in the enlarged space is a direct product |φi〉|χ j〉: |φi〉 is a vector from the original
Hilbert space, |χ j〉 is a vector from the added system. The general state vector in the joint
space is the sum of such products with c-number coefficients.

Form an arbitrary density matrix R for the enlarged system. Suppose it evolves according
to equation (8), where Eα is replaced by Eα × 1 (i.e. the evolution has no effect on the vectors
of the added system.) Complete positivity says that the resulting density matrix R′ must be
positive.

4.3. Two-dimensional space: complete positivity

Complete positivity says, given the evolution equation (8), that 〈w|R′|w〉 � 0 for an arbitrary
N2-dimensional vector |w〉 and for any initial density matrix R in the enlarged Hilbert space.
We wish to prove that complete positivity implies the eigenvalues are non-negative. What we
shall do is judiciously choose a single vector |w〉 and four pure density matrices R so that the
expressions

〈w|R′|w〉 =
N2∑

α=1

λα〈w|EαREα†|w〉,

are ∼λβ , with a positive constant of proportionality. Therefore, for complete positivity to hold,
λβ must be non-zero. Here are choices that will do the job.

We shall choose the maximally entangled vector

|w〉 ≡
4∑

r=1

|φr〉|χr〉.

(〈w|w〉 = 4, but it need not be normalized to 1). We construct the state vectors

|ψ〉β ≡
4∑

i, j=1

E†β

i j |φi〉|χ j〉,

and use them to make four pure density matrices |ψ〉ββ〈ψ |. (Note that Tr |ψ〉ββ〈ψ | = 1
because of the orthogonality relation (7)). Then, for one β,

R =
4∑

i, j,i′, j′=1

E†β

i j Eβ

j′i′ |φi〉|χ j〉〈φi′ |〈χ j′ |.
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Putting this into equation (8), the complete positivity condition is

0 � 〈w|R′|w〉 =
4∑

α,r,r′,i, j,i′, j′=1

λαE†β

i j Eβ

j′i′ 〈φr|〈χr|Eα|φi〉|χ j〉〈φi′ |〈χ j′ |E†α|φr′ 〉|χr′ 〉

=
4∑

α,i, j,i′, j′=1

λαE†β

i j Eβ

j′i′E
α
jiE

†α
′i j′

=
4∑

α=1

λα Tr(E†βEα ) Tr(EβEα†)

=
4∑

α=1

λα(δαβ )2 = λβ

(using the orthogonality relation (7)).
Thus, complete positivity implies λβ � 0.

4.4. N-dimensional space: complete positivity

We follow the same procedure in the N-dimensional case. However, to be a bit more general,
we shall use an arbitrary vector |w〉, and an arbitrary pure density matrix R:

|w〉 ≡
N∑

m,n=1

Dmn|φm〉|χn〉, (11a)

R ≡
N∑

k,l,k′,l′=1

CklC
∗
k′l′ |φk〉|χl〉〈φk′ |〈χl′ |, (11b)

where Ckl , Dmn are yet to be specified complex constants. The unit trace of ρ in equation (11b)
requires Tr C†C = 1. Then, the complete positivity condition is

0 � 〈w|R′|w〉 =
N2∑

α=1

λα〈w|EαREα†|w〉

=
N2∑

α=1

λα

N∑
1

D∗
m′n′DmnCklC

∗
k′l′E

α
m′kEα∗

mk′δn′lδl′n

=
N2∑

α=1

λα Tr[CD†Eα] Tr[Eα†DC†]. (12)

Now, choose DC† = Eβ , for any particular β. This choice can be made in many ways. Two are
C† = Eβ , D = 1 (the choice made in the two-dimensional example just discussed) or D = Eβ ,
C = N−1/21 (note, both choices respect Tr C†C = 1). With this choice in equation (12),
and with use of the orthonormality conditions (7), we obtain as the consequence of complete
positivity:

0 �
N2∑

α=1

λα(δαβ )2 = λβ for 1 � β � N2. (13)
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5. Kraus representation

We have now applied all the constraints needed to obtain a valid density matrix ρ ′ at a later
time t ′ from an earlier density matrix ρ at time t. This relation is equation (8), supplemented
by the orthonormality conditions (7), the trace constraint (9) and the condition of non-negative
eigenvalues (13).

It is customary to define Mα ≡ √
λαEα , so that equations (8) and (9) can be written in

terms of Mα alone:

ρ ′ =
N2∑

α=1

MαρMα†, (14a)

N2∑
α=1

Mα†Mα = 1. (14b)

(However, the orthonormality conditions, written in terms of Mα , now depend upon λα).
Equation (14a) is called the Kraus representation and {Mα} are called Kraus operators [5].

We have proved the necessity of the Kraus representation, but it is also sufficient. That
is, for any {Mα} satisfying equations (14a) and (14b), even for more than N2 operators, also
with no orthonormality conditions imposed, all the constraints on ρ ′ are satisfied. It is easy to
see that hermiticity, trace 1 and positivity are satisfied. Complete positivity requires a bit more
work, and that is given in appendix B.

This general statement of the Kraus representation might seem to imply a larger class than
we have derived as necessary, but that is not so. Since the Kraus representation is Hermitian,
trace 1 and completely positive, it may be written in the form (8), as we have shown.

6. The Lindblad equation

Now that we have satisfied all the constraints on the density matrix ρ ′ ≡ ρ(t ′), we can let
t ′ = t + dt, and obtain the differential equation satisfied by ρ(t). For the rest of this paper
we shall only treat the N-dimensional case since the argument is precisely identical for the
two-dimensional case, except that N = 2.

6.1. Eigenvectors and eigenvalues when t ′ = t

First, lets see what we can say about the eigenvectors and eigenvalues when t ′ = t. Then,
equation (8) says

ρi j =
N2∑

α=1

λα

N∑
r,s=1

Eα
irEα†

s j ρrs or

0 =
N∑

r,s=1

[
N2∑

α=1

λαEα
irE

α†
s j − δriδ js

]
ρrs.

(15)

As we have done before, successive replacement of ρ by the N2 members of the density matrix
basis results in

δriδ js =
N2∑

α=1

λαEα
irEα†

s j . (16)
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Multiply equation (16) by Eβ

js and sum over j, s. Use of the orthonormality relation (7) gives

δri Tr Eβ = λβEβ

ir . (17)

If Tr Eβ 
= 0 and λβ 
= 0, equation (17) says that all the eigenvectors are ∼1. But only one of
a set of orthogonal eigenvectors can be proportional to the identity. Therefore, for the rest of
the eigenvectors, λβ = 0 and Tr Eβ = 0.

Call one eigenvector EN2 ≡ N−1/21. From equation (17), we find the associated eigenvalue
λN2 = N.

For β 
= N2, the eigenvalues vanish. Note that the condition Tr Eβ1 = 0 says that these
eigenvectors are orthogonal to EN2 ∼ 1.

And, indeed, in this case, equation (8) becomes the identity

ρ(t) = 1ρ(t)1 = N
1√
N

1ρ(t)
1√
N

1. (18)

6.2. Eigenvectors and eigenvalues when t ′ = t + dt

When t ′ = t + dt, the eigenvalues and eigenvectors change infinitesimally. Accordingly we
write

λN2
(dt) = N[1 − cN2

dt], λα(dt) = cα dt(α 
= N2),

EN2
(dt) = 1√

N
[1 + B dt], Eα(dt) = Kα(α 
= N2),

(19)

where cα are constants. We do not include a term ∼dt in the expression for Eα(dt) since,
because λα(dt) ∼ dt, it would contribute a negligible term ∼(dt)2 to equations (8) and (9).

Because the eigenvalues must be positive, and because the eigenvalues sum to N (equation
following equation (9)), we see that cα � 0 (all α). B and Kα are restricted by the
orthonormality conditions, which we shall look at later.

6.3. The evolution equation

Putting equations (19) into the evolution equation (8) gives

ρ(t + dt) = [1 − cN2
dt][1 + B dt]ρ(t)[1 + B† dt]

+ dt
N2−1∑
α=1

cαKαρ(t)Kα†, or in the limit dt → 0,

d

dt
ρ(t) = −cN2

ρ(t) + Bρ(t) + ρ(t)B† +
N2−1∑
α=1

cαKαρ(t)Kα†. (20)

Putting equations (19) into the trace constraint (9) gives

N[1 − cN2
dt][1 + B†dt][1 + B dt] + dt

N2−1∑
α=1

cαKα†Kα = 1, or,

cN2
1 = B + B† +

N2−1∑
α=1

cαKα†Kα.

(21)

Using (21) to replace cN2
in (20) (specifically, cN2

ρ = (1/2)[cN2
1ρ + ρcN2

1]) results in

d

dt
ρ(t) =

[
1

2
(B − B†), ρ(t)

]
− 1

2

3∑
α=1

cα[KαKα†ρ(t) + ρ(t)KαKα† − 2Kαρ(t)Kα†]. (22)
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6.4. The Lindblad equation

If we define −iH ≡ (1/2)(B† − B) and Lα = √
cαKα , the evolution equation (22) becomes

the Lindblad equation (3):

d

dt
ρ(t) = −i[H, ρ(t)] − 1

2

N2−1∑
α=1

[LαLα†ρ(t) + ρ(t)LαLα† − 2Lαρ(t)Lα†]. (23)

6.5. Orthonormality conditions

It is a consequence of this derivation that the Lindblad operators Lα in equation (23) are not
arbitrary operators, because they are restricted by the orthonormality conditions (7). Putting
equations (19) into equation (7) constrains B, Kα .

For what follows, we recall from the discussion in section 2 that {Kα} can be regarded
in two ways. In one way, they are regarded as N2 − 1 operators acting on vectors in
an N-dimensional space, with matrix elements Kα

i j (i, j = 1, . . . , N). In the other way,
they are regarded as N2 − 1 vectors in an N2-dimensional space, each with components(
Kα

11, Kα
12, . . . , Kα

NN

)
. In particular, the trace of two operators is the same as the scalar product

of two vectors, as in equation (7)
The orthonormality relation (7), applied successively to (α = β = N2), (α 
= N2, β =

N2), (α 
= N2, β 
= N2), with use of equations (19), yields

Tr[B + B†] = 0, (24a)

Tr Kα = 0, (α = 1, . . . , N2 − 1) (24b)

Tr KαKβ† = δαβ (α, β = 1, . . . , N2 − 1). (24c)

Equation (24a) says that the Hermitian part of B vanishes. This provides no restriction at
all on H, which is the anti-Hermitian part of B.

Equation (24c) says that the vectors Kα are orthonormal.
Equation (24b) says that Tr Kα1 = 0, which implies that N−1/21 completes the

orthonormal set.

6.6. The general Lindblad form

We shall now show that the Lindblad equation (23) with arbitrary Lindblad operators
(no constraints whatsoever) can be transformed to new, constrained, Lindblad operators of
equation (22) by adding a constant (achieving the vanishing trace constraint (24b)) followed
by a unitary transformation (achieving the orthogonality constraint (24c)).

First, we see that we can transform the arbitrary Lindblad operators Lα to Lindblad
operators L′α which are traceless. Define Lα ≡ L

′α + kα1, where kα are N2 − 1 constants, and
substitute that into the Lindblad equation, obtaining
d

dt
ρ(t) = −i[H + i(kαL′α† − kα∗L′α ), ρ(t)]

− 1

2

3∑
α=1

[L′αL′α†ρ(t) + ρ(t)L′αL′α† − 2L′αρ(t)L′α†].

With a redefinition of H, this is again the Lindblad equation, expressed in terms of L′α . By
choosing kα = N−1 Tr Lα , the new Lindblad operators satisfy Tr L′α = 0.
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Now write the N2 − 1 Lindblad operators Lα (hereafter assumed traceless) in terms of
N2 − 1 new operators L̃β (α, β = 1, . . . , N2 − 1) using the linear transformation

Lα =
N2−1∑
β=1

Uα,β L̃β. (25)

We ask what the matrix Uα,β must be in order that the Lindblad form be unchanged (L̃α

replacing Lα in equation (23)). With arbitrary operators A1, A2, A3,

N2−1∑
α=1

A1LαA2Lα†A3 =
N2−1∑

α,β,β ′=1

Uα,βU∗α,β ′
A1L̃βA2L̃β ′†A3.

(The three terms in the Lindblad equation have two of the A = 1 while the third A = ρ). This
equals

∑N2−1
β=1 A1L̃βA2L̃β†A3, leaving the Lindblad equation unchanged in form, if and only

if the matrix Uα,β is unitary,
∑N2−1

α=1 U†β ′,αUα,β = δβ,β ′
.

Inverting equation (25), we see that L̃β is traceless.
Now, consider the matrix Tr LαLα′†. It is Hermitian, so its eigenvalues are real and its

eigenvectors are orthogonal. It can be brought to diagonal form by properly choosing our
unitary transformation, so we obtain

Tr L̃βL̃β ′† =
N2−1∑
α=1

U†β,αUα′,β Tr LαLα′† = c̃βδββ ′
. (26)

This is almost the orthogonality constraint (24c). The eigenvalues c̃β are non-negative, since
it follows from equation (26) that

c̃β = Tr L̃βL̃β† =
N∑

i, j=1

Lβ

i jL
∗β

i j � 0.

Thus, according to equation (26), the L̃β are orthogonal vectors, with squared norm c̃β . We can
add one more vector ∼1 to complete the set, orthogonal to the rest since Tr L̃β1 = Tr L̃β = 0.

We can define new operators K̃β which are orthonormal and traceless, by L̃β ≡
√

c̃βK̃β .
In terms of these operators, the Lindblad equation (23) written in terms of L̃β becomes

d

dt
ρ(t) = −i[H, ρ(t)] − 1

2

N2−1∑
α=1

c̃α[K̃αK̃α†ρ(t) + ρ(t)K̃αK̃α† − 2K̃αρ(t)K̃α†]. (27)

This is precisely equation (22) with K̃α , c̃α , replacing Kα , cα . Moreover, the orthonormality
constraints (24b) and (24c) on Kα are satisfied by K̃α .

6.7. Concluding remarks

We have shown that the constraints on the density matrix ρ ′ mandate its evolution
equation (22), where cα � 0 and B, Kα satisfy the constraints (24). We then showed that
this is completely equivalent to the Lindblad equation (23), with no constraints at all on the
N2 − 1 Lindblad operators Lα .

However, there is no need to restrict the Lindblad equation to no more than N2 − 1
operators. We conclude our presentation by showing that the Lindblad equation with any
number of operators has all the required properties. (Of course, from what we have shown,
such an equation may be reduced to one with no more than N2 − 1 operators.)
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Looking at the Lindblad equation in that case,

d

dt
ρ(t) = −i[H, ρ(t)] − 1

2

∑
α

[LαLα†ρ(t) + ρ(t)LαLα† − 2Lαρ(t)Lα†], (28)

it is easy to see that hermiticity, and trace 1 (in the form d Tr ρ(t)/dt = 0, with Tr ρ(t0) = 1)
are satisfied. Complete positivity requires a bit more work.

We have shown in appendix B that complete positivity holds for the Kraus form
(14a) subject to the trace constraint (14b), with an arbitrary number of operators. So, if
equation (28) can be written in the Kraus form with the trace constraint, we have shown it is
completely positive.

Accordingly, we write equation (28) as

ρ(t + dt) =
[

1 − dt

(
iH + 1

2

∑
α

Lα†Lα

)]
ρ(t)

·
[

1 − dt

(
−iH + 1

2

∑
α

Lα†Lα

)]
+ dt

∑
α

Lαρ(t)Lα†. (29)

Identifying the Kraus operators as

M0 =
[

1 − dt

(
iH + 1

2

N2−1∑
α=1

Lα†Lα

)]
, Mα 
=0 =

√
dtLα, (30)

gives the Kraus form (14a),

ρ(t + dt) =
∑

α

Mαρ(t)Mα†. (31)

Now, take the trace of equation (31). Since equation (28) implies Tr ρ(t +dt) = 1 = Tr 1ρ(t),
the result is

1 = Tr
∑

α

Mα†Mαρ(t) or Tr

[ ∑
α

Mα†Mα − 1
]
ρ(t). (32)

As we have done before, by successively replacing ρ(t) by the members of the density matrix
basis, we obtain the Kraus trace constraint (14b):

Tr
∑

α

Mα†Mα = 1. (33)

Therefore, the Lindblad form with an arbitrary number of Lindblad operators, is completely
positive.

Appendix A. A class of positive density matrices with negative superoperator
eigenvalues

Consider the Pauli+1 matrices (multiplied by 1/
√

2) as the eigenvectors Eβ . As noted in
section 4, they satisfy the trace constraint (9) if

∑4
α=1 λα = 2. Equation (8) becomes

ρ ′ =
4∑

α=1

λαEαρEα†

= 1

2
[λ1σ 1ρσ 1 + λ2σ 2ρσ 2 + λ3σ 3ρσ 3 + λ41ρ1]

= 1

2

[
(λ1 + λ2)ρ22 + (λ3 + λ4)ρ11, (λ1 − λ2)ρ21 − (λ3 − λ4)ρ12

(λ1 − λ2)ρ12 − (λ3 − λ4)ρ21, (λ1 + λ2)ρ11 + (λ3 + λ4)ρ22

]
. (A.1)
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Now, we can successively replace ρ by the four density basis matrices, and demand that λα

be chosen so ρ ′ is positive for all. Since the sum of these four ρ’s with positive coefficients
(adding up to 1) is the most general two-dimensional density matrix, then the most general ρ ′

will be positive.
The first density basis matrix has ρ11 = 1 and the rest of the matrix elements vanishing.

Then,

ρ ′ = 1

2

[
(λ3 + λ4) 0

0 (λ1 + λ2)

]
. (A.2)

Since the eigenvalues of the density matrix must lie between 1 and 0, we obtain the following
two conditions:

2 � λ1 + λ2 � 0, (A.3a)

2 � λ3 + λ4 � 0. (A.3b)

The second density basis matrix, with ρ22 = 1 and the rest of the matrix elements vanishing,
gives the same results.

The third density basis matrix is ρ = (1/2)[1 + σ1]. Using
∑4

α=1 λα = 2 to simplify the
result, we obtain

ρ ′ = 1

2

[
1 (λ1 + λ4 − 1)

(λ1 + λ4 − 1) 1

]
. (A.4)

The eigenvalues of ρ ′ here are (λ1 + λ4)/2, 1 − (λ1 + λ4)/2, so the condition that they lie
between 0 and 1 is

2 � λ1 + λ4 � 0. (A.5)

The fourth density basis matrix is ρ = (1/2)[1 + σ2]. Using
∑4

α=1 λα = 2 to simplify the
result, we obtain

ρ ′ = 1

2

[
1 i(λ2 + λ4 − 1)

−i(λ2 + λ4 − 1) 1

]
. (A.6)

The eigenvalues of ρ ′ here are (λ2 + λ4)/2, 1 − (λ2 + λ4)/2, so the condition that they lie
between 0 and 1 is

2 � λ2 + λ4 � 0. (A.7)

So, we have obtained the result that ρ ′ will be positive if equations (A.3a), (A.3b), (A.5),
(A.7) and

4∑
α=1

λα = 2 (A.8)

are satisfied. The sum of equations (A.3b), (A.5), (A.7) minus (A.8) tells us that 2 � λ4 � −1.
Equation (A.8) and the constraint boundaries are three-dimensional hyperplanes in the

four-dimensional λ-space. Their intersections delineate the allowed areas for the eigenvalues.
We shall be content here to set λ2 = λ1 (in which case equations (A.3a) simplifies to

1 � λ1 � 0). Then, equation (A.8) describes a plane in {λ1, λ3, λ4} space, and its intersection
with the constraint boundary planes can be drawn. This is shown in figure A1. There are two
regions where one of the eigenvalues is negative and the other two are positive: the points in
the heavily outlined upper left triangle have λ3 � 0, and the points in the heavily outlined
lower right triangle have λ4 � 0.
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Figure A1. Allowed regions of eigenvalues for a positive density matrix ρ′. The two dark-outlined
triangular regions are where an eigenvalue is negative. They abut an isosceles triangle, the restricted
region of complete positivity, where all the eigenvalues are positive.

Appendix B. Complete positivity of the Kraus representation

The Kraus form (14a) and the Kraus constraint (14b), generalized to any number of arbitrary
operators Mα , are respectively

ρ ′ =
∑

α

MαρMα†, (B.1a)

∑
α

Mα†Mα = 1. (B.1b)

We want to show complete positivity. Call any one of the Mα ≡ M. If we can show complete
positivity for MρM† for an arbitrary M, then equation (B.1a), which involves a sum of such
terms, will be completely positive. And, it is only necessary to prove complete positivity for
R = ρ × ρ̃μ, where ρ̃μ is any possible basis density matrix (described in the paragraph
following equation (6)) in the added Hilbert space, since the most general density matrix in
the direct product Hilbert space is the linear sum of such terms.

We now calculate

〈v|R′|v〉 = 〈v|MρM† × ρ̃μ|v〉 (B.2)

for arbitrary |v〉 = ∑N
m,n=1 Dmn|φm〉|χn〉. There is no loss of generality if we pick the basis

vectors |χn〉 in the added Hilbert space any way we like. We shall pick them to be the eigenstates
of ρ̃μ. Now, we note that each ρ̃μ has one eigenvalue 1 and the remaining N − 1 eigenvalues
are 0. Call the eigenvector |χ1〉 which corresponds to the eigenvalue 1. Then,

〈v|MρM† × ρ̃μ|v〉 =
N∑

m,m′=1

D∗
m′1Dm1〈φm′ |MρM†|φm〉

=
[ N∑

m′=1

D∗
m′1〈φm′ |M

]
ρ

[ N∑
m′=1

Dm1M†|φm〉
]

� 0, (B.3)

Therefore, the Kraus form with arbitrary Mα’s is completely positive.



822 P Pearle

References

[1] d’Espagnat B 1971 Conceptual Foundations of Quantum Mechanics (Menlo Park, CA: Benjamin)
[2] Prigogine I, George C, Henin F, Mandel P and Turner J W 1970 Proc. Natl Acad. Sci. USA 66 709
[3] Lindblad G 1976 Commun. Math. Phys. 48 119
[4] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[5] Kraus K 1971 Ann. Phys. 64 311

Kraus K 1983 States, Effects and Operations (Berlin: Springer)

http://dx.doi.org/10.1073/pnas.66.3.709
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1016/0003-4916(71)90108-4

	1. Introduction
	2. Lindblad examples
	2.1. Random phases
	2.2. Unitary jump
	2.3. Random unitary transformation
	2.4. State exchange
	2.5. State transitions

	3. Application of constraints
	3.1. Two-dimensional space: hermiticity
	3.2. N-dimensional space: hermiticity
	3.3. Two-dimensional space: evolution equation and trace constraint
	3.4. N-dimensional space: trace constraint

	4. Complete positivity
	4.1. Two-dimensional space: example of a positive density matrix with negative eigenvalue
	4.2. N-dimensional space: definition of complete positivity
	4.3. Two-dimensional space: complete positivity
	4.4. N-dimensional space: complete positivity

	5. Kraus representation
	6. The Lindblad equation
	6.1. Eigenvectors and eigenvalues when
	6.2. Eigenvectors and eigenvalues when
	6.3. The evolution equation
	6.4. The Lindblad equation
	6.5. Orthonormality conditions
	6.6. The general Lindblad form
	6.7. Concluding remarks

	Appendix A. A class of positive density matrices with negative superoperator eigenvalues
	Appendix B. Complete positivity of the Kraus representation
	References

