
Molecular dynamics determination of defect energetics in beta -SiC using three representative

empirical potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 Modelling Simul. Mater. Sci. Eng. 3 615

(http://iopscience.iop.org/0965-0393/3/5/003)

Download details:

IP Address: 131.94.16.10

The article was downloaded on 10/09/2013 at 21:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0965-0393/3/5
http://iopscience.iop.org/0965-0393
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Modelling Simul. Marer. Sci. Eng. 3 (1995) 615427. Printed in the UK 

Molecular dynamics determination of defect energetics in 
B-Sic using three representative empirical potentials 

Hanchen Huangts, Nasr M Ghoniemt, Jimmy K Wongt and 
Michael I Baskest 
T Mechanical Aerospace and Nuclear Engineering Department, University of California, 
Los Angeles, CA 90M4, USA 
$ Sandia National Laboratories, Livermore, CA 94551. USA 

Received 12 January 1995. accepted for publication 25 April 1995 

Abstract. The determination of formation and migration energies of point and clustered defects 
in S ic  is of critical importance to a proper understanding of atomic phenomena in a wide range 
of applications. We present here calculations of formation and migration energies of a number of 
point and clustered defect configurations. A newly developed set of parameters for the modified 
embedded-atom method (MEAM) is presented. Detailed molecular dynamics calculations of 
defect energetics using three representative potentials. namely the Peanon potential. the Tersoff 
potential and the MEAM. have k e n  performed. Results of the calculations are compared to 
first-principles calculations and to available experimental data. The results are analysed in terms 
of developing a consistent empirical interatomic potential and are used to discuss various atomic 
migration processes. 

1. Introduction 

Silicon carbide (Sic) has been proposed as a candidate structural material for fusion reactor 
components [ I ,  21 which face intensive neutron irradiation damage [3]. Evolution of defects 
so produced determines many of the macroscopic properties of structural components. 
Determination of defect energetics which dominate defect evolution processes is therefore 
crucial to an understanding of the response of S i c  to radiation damage. It is also considered 
for application as a high-temperature superconducting material. Carrier behaviour in such 
applications will be strongly dependent on point and clustered defects. A number of 
methods are available for studying defect energetics: experimental measurements [4,5], first- 
principles calculations [6,7], and computer simulations with empirical potentials (see, e.g., 
[8]). Experimental results are affected by many uncertain factors, and their interpretation is 
usually not unique. First-principles calculations are quite accurate but require very intensive 
computational efforts. Molecular dynamics (MD) simulations using empirical potentials are 
commonly used to study defect energetics with reasonable computational demands. 

Empirical pair potentials have been successfully applied to calculations of some defect 
energetics in metals but have failed in describing covalent systems. There are quite a 
few empirical potentials proposed to describe many-body effects that are very important in 
covalent materials. This paper investigates defect energetics in S ic  using three representative 
potentials: the Pearsaon potential, the modified embedded-atom method (MEAM) and the 
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Tersoff potential. The formation energies and migration energies of point defects, and 
antisite defect formation energies are calculated. Possible defect migration mechanisms are 
also investigated. The three representative potentials will be described and compared in more 
detail in section 2. The calculated results, available experimental data and first-principles 
calculations are summarized in section 3. A summary of our results and conclusions is 
finally presented in section 4. 

2. Empirical potentials for @-Sic 

Several empirical interatomic potentials exist for various materials, which can be classified 
into three categories: 

( I )  potentials developed following the Born-Openheimer expansion; 
(2) potentials modelling local environment using electron distributions; 
(3) potentials introducing local environment effects into pair potentials. 
The three categories are represented by the Pearson potential, the MEAM and the Tersoff 

potential, respectively. 

2.1. The Pearson potential 

Pair potentials (Lennard-Jones [9], Morse [lo], etc) have been successfully used in studying 
defects in metals and are capable of explaining some properties of close-packed structures 
that are common for metals. More openstructures in semiconductors are a challenge for pair 
potentials. To account for many-body interactions, Born and Oppenheimer [I  11 proposed a 
general form for the interatomic potential, given by 

(1) 
1 

n !  
+- E.. .E.. .E V(E'(Tij.. . . , Tiq, . . . , Tmq). 

q# m# j #  

Environmental effects are included in the many-body interactions. To make this many- 
body potential practical in its applications, Pearson et al [12] truncated the expansion at the 
three-body level. For Sic, they combined the Lennard-Jones ( 6 1 2 )  two-body potential [9] 
and Axilrod-Teller [13] three-body potential in the form 

where the energy parameters E and Z and the two-body structure parameter Ro were adjusted 
to fit experimental data (sublimation energies and bond length) for bulk solid and atomic 
clusters for silicon element, carbon element and their compound. The three-body potential 
is a simple form which favours open structures. A modification was made by Huang and 
Ghoniem [SI to fit the sublimation energy exactly, and the modified potential is used in this 
paper. 

The Stillinger-Weber [ 141 potential, which is similar to the Pearson potential, is another 
example of this type of potential. The Pearson potential has proven to be successful in some 
applications [S,  15-17]. Unfortunately, it fails in other cases where the system is far from 
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equilibrium configurations [18]. The Pearson potential uses 12 parameters. Two of them (m 
and n )  are chosen by using the 6-12 Lennard-Jones pair potential. The other ten parameters 
are fitted to 16 experimental measurements of bond length and sublimation energies of 
several clusters and solids. 

2.2. The modified embedded-atom method 

The embedded atom method (EAM) was originally developed by Daw and Baskes [ 19,201. 
In this method, the potential energy of an atom in a crystal is divided into two parts: 

(1) two-body core-core interactions with lattice atoms; 
(2) energy needed to embed the atom into the background electron sea of the lattice. 

Improvements and applications are being pursued at Sandia National Laboratories [Zl- 
301, University of Virginia [31-341, and other institutions [35-371. The EAM was first 
developed on the basis of central pair potentials and spherically averaged electron densities. 
It was then modified to utilize angledependent electron densities in order to model covalent 
structures [22.25,29,30]. 

The total configuration energy of a crystal is written as the sum of direct contributions 
from all atoms and is given by 

In equation (4), the first term corresponds to an environment-dependent energy of 
embedding an atom, while the second term is the conventional pair potential. The embedding 
energy is assumed to be represented by 

(5) 

where pi is the background electron density at atom i, E: is the sublimation energy of 
atom i in the reference structure (diamond cubic) and Ai is a parameter. 

F L ( j ; ) = A ; E i p ; I n p ,  0 -  

The background electron density is given by 

where ,$) are the partial electron densities, t,'*' are the average weighting factors for the 
partial electron density and pp is the composition-dependent electron density scaling: 

where Zio is the first-neighbour coordination of the reference system, s(') are geometry 
factors and p ; ~  is a parameter. 

The average weighting factors are given by 

t?' = p : ; p y ' s , i / ~ p : " ' s J ;  
j#i i#i 

where Sij  is the screening function and t$ are parameters 
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The partial electron densities are given by 

3 2 

(p)* = [ cx;x;x;p;'sji] 
n.p.q=l M i  

where a, p, q = 1, 2,3 with the atomic electron densities 

p p )  = pi,, exp [ -,S? ($ - l)] with k = 0, 1, 2, 3 (13) 

(4 are parameters. where RY is the nearest-neighbour distance in the reference structure and ,Si 
The scaled coordinates x$ are given by 

with rij the distance between atoms i and j .  
The screening function is given by Sji = nk#i.jSjki and 

where 

C,, and C,, are parameters. 
In averaging the weighting factors t,'"', the effect of electrons from dissimilar atoms in a 

multicomponent system are considered. The screening function Sji is introduced to account 
for relative contributions from atoms at different locations and can be regarded as a force 
cut-off technique. 

The pair potential is derived from the universal equations of state [38.39] as follows: 

Ei(R)  = i { F i ( P j )  + F j ( i j j )  + Zijohj(R)}  (17) 
and with screening effects it is given as 

(18) 

It is worthwhile mentioning that the pair potential is defined using the embedding 
function at a reference structure and that the pi is calculated using equation (6) evaluated 

1 
z i j o  

4ijCR) 5 - W : ( R )  - Fi(3j)  - Fj(Pi)}Sji 
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Table 1. Parameters of the MEAM: N/A, not applicable. 

Parameters Si C S i 4  

A 1 1 N/A 
Po 1.0 2.25 N/A 
R0 (A) 2.3517 1.5446 1.8878 
Eo (eV) 4.63 7.37 6.433 
01 4.87 4.38 4.37 
p(0’ 4.8 4.1 N/A 
p“’ 4.8 4.2 NIA 

4.8 5.0 N/A 
4.8 3.0 N/A 

8’2’ 
p(3) 

1 .o 1.0 N/A m) 
‘0 
t p  3.3 5.0 N/A 
12) 5.105 9.34 N/A ‘0 

4 3 ’  -0.8 -1.00 N/A 
C“ 2.0 2.0 2.0 
cm, 2.8 2.8 4.0 

Table 2. Geomeay factors for a diamond cubic lattice 

$0) $1) $2) $3) zo 

1 0  0 3 2 / 9 4  

in the reference structure. For a more detailed explanation, readers are referred to [29,40]. 
For single elements, the parameters are determined by fitting to the sublimation energy, the 
lattice constant, the bulk modulus, two shear constants, structure energy differences and 
the vacancy formation energy. The MEAM uses 14 parameters (excluding the geometry 
factors) to fit the properties of each element (Si or C). An additional six parameters are used 
to represent Sic .  The relative magnitudes of psi and pc, are determined by fitting to the 
vacancy formation energy of an atom pair in the diatomic system. Two parameters are used 
to define screening functions. The other three parameters are determiend by lattice constant, 
sublimation energy and bulk modulus of Sic. The calibration process has been described in 
[40]. The parameters of the MEAM for S i c  are listed in table 1 and the geometry factors 
in table 2. 

2.3. The Tersoffpotential 

Tersoff extended the conventional pair potential to describe many-body effects by assuming 
that the pair potential coefficients depend on the local environment [41,42]. The 
computational time of MD simulation with pair-like potentials is thus dramatically reduced 
compared to that employing three-body potentials. The potential is composed of two 
parts for repulsive and attractive interactions. The local environment is described by a 
measure of bond order in the attractive interaction. The bond strength is explicitly related 
to the coordination number, which renders close-pcked or open structures a natural result of 
competition between bond strength and the coordination number. The potential, after being 
successfully used for pure elements [43,44], was extended to multicomponent systems by 
interpolation [4547]. Only one parameter was introduced to scale the relative bond order 
of the elements involved. The general potential function for multicomponent systems can 
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be written as 

E = 5 I fe(rij)lAijexp(-hlrij) - B,Ibijex~(-hzrij)l (19) 
i . j#i  

with bond order described by 

where the cut-off function fC(rij) is given by 

Table 3. Parameters of the Tersoff potential. 

Parameter Carbon Silicon 

A (ev) 1 . 5 ~  x 103 1.8308 x 103 
B (eV) 3.8963 x IOz 4.7118 x 10' 
,i (A-') 3.4653 2.4799 
p (A-') 2.3064 1.7322 
B 4.1612 x 1.1000 x 

C 1,9981 x lo4 1.0039 x IOs 
d 7.0340 1.6217 x IO' 
h -3.9953~10-' -5.9825~10-' 
R (A) 1.8 2.7 
s (A) 2.1 3.0 

" 9.9054 x IO-' 7.8734 x lo-' 

2C-E = 1.0121' 

The original value from Tersoff was 1.0086, which gives 12.735 eV sublimation energy. 
To m j e  a consistent comparison of the potentials. we calibrate the xc.si to be 1.0121 to fit 
12.865 eV for the experimental sublimation energy, which is used in the other two potentials. 
The difference in the results caused by this modification is small (mostly 3-5%). 

Parameters for multicomponent systems are related to those for single elements by 
arithmetic or geometric averages: 

(24) 
hi + 1, A .  - - 

pi + /lj 
Pij 2 

11 - 2 

(25) 

A..  U -  - (A.A,)'/z I I (26) 
Bij = (BjBj)"' (27) 
R.. r 1 -  - (R.R.)'I2 1 I (28) 
Sij = (SiSj)1'*. (29) 
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Parameters for single elements are determined by fitting to the sublimation energy, the 
lattice constant, the bulk modulus of the diamond structure, and the cohesive energies of 
other polytypes (dimer, SC and FCC) of the material. The single parameter x i j  for each pair 
of dissimilar atoms is determined by fitting to the correct heat of formation. The parameters 
determined by Tersoff [47.48] are listed in table 3. The Tersoff potential uses 11 parameters 
to fit the properties of each element (silicon or carbon). One additional parameter is used 
to fit the heat of formation for Sic. Two parameters are used to define the cut-off for each 
element, which are assumed to be unaffected in a compound. 

2.4. Features of empirical potentials 

Some common features are shared among the three potentials, while others diverge. Their 
main features are summarized in the fbllowing paragraphs. 

The elastic constants (bulk moudulus K and shear modulus y' = (Cll - Ct2)/2) of p- 
Sic are calculated using the three empirical potentials. In table 4, the results are compared 
to theoretical calculations for p-SiC 1521, which was confirmed by experiments on 6H-Sic 
[53]. Predictions from both the MEAM and the Tersoff potential are in good agreement 
with the experimental data, while those from the Pearson potential are not. 

Table 4. Elastic constants of 6-SIC. 

Value (GPa) 

Constanls Peanon MEAM Tersoff Experiments [52.531 

K 1183 211 189 211 
Y' 87 140 143 106 

Development of all the three potentials considers the effects of the local environment (i.e. 
many-body interactions). The MEAM was developed on the basis of quantumhechanical 
results, giving an angular dependence of spatial distribution of outer electrons. It is the 
electron distribution that determines the local environment. The Tersoff potential was 
developed on the physical basis that the bond order depends on the coordination number. 
A tradeoff of these two factors results in either a close-packed or open structure. Angular 
dependence was introduced to account for the fact that the bond order is affected by the 
relative angles of neighbouring bonds. The Peanon potential, on the other hand, was 
obtained by truncating the Bom-Oppenheimer expansion at the three-body level. All higher- 
order effecys (many-body interactions) are assumed to be either small or represented by the 
three-body interaction form. 

The three potentials have quite different approaches to account for the fact that atoms 
far from a site have smaller contributions to it. The MEAM employed a screening function 
such that two atoms interact at all distances except when a third atom intervenes in (screens) 
the interaction. The Tersoff potential used a smooth cut-off function such that, as an atom 
is farther away from the site, its influence to the site becomes smaller. There is no explicit 
form of cut-off in the Pearson potential that makes it short ranged. 

Screening by unlike atoms is taken into account in the MEAM by defining different 
unscreened configurations for a compound and elements. The Tersoff potential assumes that 
cut-off parameters (which correspond to unscreened and totally screened configurations) are 
the same for elements and a compound. The cut-off function determines the migration 
barrier by affecting the configurational energy at a saddle point. In this paper, the screening 
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(or cut-off) function in the h4EAM is adjusted to give reasonable migration energies, while 
that in the Tersoff potential is used as it was. 

In addition to prediction accuracy, one of the most important indices measuring the 
quality of an empirical potential is computational simplicity. In MD simulations, each step 
takes about 1.20 x s/atom with the Pearson potential, 4.7 x &om with the 
MEAM and 3.9 x slatom with the Tersoff potential (all are in CPU of CRAY-A at 
NERSC). The computational effort is therefore greatly reduced using the Tersoff potential 
or the MEAM, in comparison with the Pearson potential. 

3. Results 

In this section, we calculate various energies of defect formation and migration in @-Sic, 
using the three potentials presented in section 2. In a multicomponent system, the energy 
recovered when a single atom is placed on a crystal surface is ambiguous. Depending 
on the surface condition, the amount of the surface energy recovery could vary (see, e.g., 
[6,7]). To avoid any confusion in defining defect energetics, an infinite vacuum rather 
than a real crystal is taken as a reference system. That is, to form a vacancy, an atom 
will be taken from the solid to a vacuum at infinity. Similarly, an interstitial is formed 
by taking an atom from infinity and putting it at an interstitial site. It is worthwhile to 
mention that defect migration energies are independent of the refernce system, whereas 
defect formation energies are dependent. We adjust the calculated values by 6.43 eV (one 
half of the pair sublimation energy) when we compare them with experimental data. In the 
case of a vacancy, this amount is subtracted from the calculated value, while it is added to 
the calculated value in the case of an interstitial. 

A 2 x 2 x 2 computational cell with periodic boundary conditions is used in the MD 
calculations. Energy minimization is done by using the conjugatggradient method [54]. The 
cell volume is kept constant, while the total energy is not conserved. In the calculations 
of defect formation energies, the defected computational cell is set to relax fully. For the 
calculations of defect migration energies, on the other hand, the defect is fixed along one or 
two directions. Two corner atoms are also fixed to avoid movement of the computational 
cell as a whole. Other atoms are allowed to relax fully under these constraints. Size effects 
are investigated by employing a larger computational cell. It is found that the size effects 
do not give rise to errors of more than 0.01 eV. The migration paths are checked to be 
continuous in the three-dimensional space. Symmetry around a defect is slightly perturbed 
before relaxation to avoid possible configurations with zero forces and high configuration 
energies. 

The results of our calculations are presented in table 5. All the energies presented are 
for fully relaxed configurations. The formation energies of vacancies, antisite defects and 
interstitials at TC (tetrahedral site surrounded by four carbon atoms) and TSi (tetrahedral 
site surrounded by four silicon atoms), and migration energies of vacancies and interstitials 
are calculated. H and B interstitial configurations are asymmetrical (net force is not zero) 
in Sic  and are therefore unstable. Calculations of conventional vacancy migration using 
these empiIical potentials show that the carbon vacancy migration energy is so high that 
carbon vacancies are not mobile below 1200°C. Since appreciable vacancy clustering is 
observed in Sic above approximately 1000°C [49], a conventional migration mechanism 
alone cannot therefore be responsible for atomic diffusion. When a migrating vacancy is 
assisted by an opposite type of vacancy, the migration energy is found to be reasonable. The 
two migration mechanisms of a silicon vacancy considered are shown in figure 1; those for a 
carbon vacancy are similar. Through the direct migration mechanism, a carbon vacancy, or 
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equivalently its nearest-neighbour carbon atom, jumps to one of its equivalent sites directly. 
In this process, it has to come close to several silicon atoms which are large in size. The 
migration path for the carbon atom IS narrow, and the migration energy is high. Through the 
indirect migration mechanism, one silicon atom along the migration path is absent and more 
space is available for a carbon atom to migrate through. Due to the smaller size of carbon 
atoms, a silicon vacancy (or equivalently an atom) can migrate directly through a region 
surrounded by several carbon atoms. The indirect migration mechanism can be operative 
when vacancies are abundant, which is the case in irradiated samples. The antisite diffusion 
mechanism [51] could also be operative if sufficient antisite defects are introduced during 
sample processing. This mechanism is not fully investigated in this paper since antisite 
defects are unlikely to form under normal conditions (see the large formation energies in 
table 5).  

An interstitial can directly migrate from one lower-energy T position to another 
neighbouring equivalent T position. Migration of interstitials by exchanging with 
neighbouring lattice atoms (knock-off mechanism) is found to experience a higher potential 
barrier than direct migration does. Migration of an interstitial assisted by another 
neighbouring interstitial is also investigated and is found to give high migration energies. 
The direct migration mechanism is therefore operative for interstitials in Sic. The direct 
migration mechanism for a silicon interstitial is shown in figure 2, while that for a carbon 
interstitial is similar. An interstitial jumps from the lowest-energy T position to a nearest- 
neighbouring T position which is the opposite type and then jumps to the next-nearest- 
neighbour T position which is equivalent. 

Swelling experiments show that interstitial loops are formed even at room temperature, 
while vacancy clusters (cavities) are formed only above 1000°C [49]. These indicate that at 
least one type of interstitial is mobile at room temperature, while vacancies start to migrate at 
1OOO'C. In other words, one type of interstitial must have a migration energy of about 1 eV 
and one type of the vacancy must have a migration energy of about 3 eV. With the MEAM, 
we can predict a reasonable carbon interstitial migration energy and vacancy migration 
energy. The vacancy migration energy predicted by the Tersoff potential is also within 
reasonable range, but the Tersoff potential does not give a very low interstitial migration 
energy due to its cut-off function. 

Based on the MEAM, the activation energy of silicon self-diffusion (thermal diffusion 
through vacancy mechanism) is 10.73 eV, while that of carbon self-diffusion is 8.39 eV 
(the values are adjusted as mentioned at the beginning of this section). The results are 
in good agreement with experimental data, which are 9.50 eV and 8.70 eV for silicon 
and carbon, respectively [4-51. Those using the Tersoff potential are 11.86 eV and 
14.12 eV, respectively. The fact that migration and activation energies predicted by the 
Tersoff potential are not fully satisfactory can be accounted for by the screening function 
as discussed in section 2. 

The first-principles calculation and the MD calculations using the MEAM and the 
Tersoff potential predict a large energy increase for forming a pair of antisite defects, which 
means that the ,!-Sic structure is stable against the formation of carbon and silicon clusters. 
Prediction from the Pearson potential is too small and is believed to be unreasonable. 

All the calculations, including the first-principles calculations and the MD calculations 
using the three empirical potentials, show that the size effect is important. An interstitial 
is likely to take a TC site rather than a TSi site because TC is more spacious than TSi. 
Another example showing the size effect is the vacancy migration processes, during which 
the silicon vacancy can migrate easily through a group of carbon atoms while a carbon 
vacancy cannot migrate through a group of silicon atoms. 
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4. s " u r  
The MEAM is calibrated for S ic  and compand with the Tersoff potential and the Pearson 
potential. The formation energies predicted by using both the MEAM and the 
potential m in goal 
Tusoff ptential a little better. 
migration energies. In eswnce, 
potential does not e 
We recommend that 
configurations in bulk 
MEAMandthe 
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Table 5. Results of defect energetics of Sic: 1, interstitial.; V. vacancy; m. migration; dm, direct 
migration; id, indirect migration, N/A. not applicable. The first-principles calculations are from 
16,71. 

Value (eV) 

Energy Pearson et 01 MEAN Tersoff First principles [6.7] 

Ef WsJ 6.70 14.28 12.46 12.60 
E' Wc) 5.26 9.58 11.61 11.70 
Edm (Vsi) 7.39 2.88 5.83 NIA 
E*- (Vc) 6.10 5.24 8.94 NIA 
E" (Vsi) 4.30 2.72 6.08 NIA 
Eim Wc) 0.50 2.61 3.48 N/A 
Ef (ISiTc) 3.23 5.96 4.08 8.00 
Ef ( ~ T c )  3.37 3.07 2.29 4.40 
Ef (ISjTsi) 10.55 2.09 8.00 8.30 
Ef ( ~ T s ; )  3.80 3.04 0.23 1.90 
Em (]si) 6.04 4.12 3.95 NIA 
Em (IC) I .47 1.29 3.58 N/A 
E(Si antisite) 3.66 7.21 5.55 6.40 
E(C antisite) 3.33 2.17 0.61 0.20 

The formation energies of vacancies and antisite defects based on the MEAM and the 
Tersoff potential are also in good agreement with the first-principles calculations. Based on 
calculations using the MEAM, a silicon vacancy migrates directly from one lattice site to 
another, a carbon vacancy migrates by assistance of a silicon vacancy, and an interstitial 
migrates directly from one T position to another equivalent T position. The migration 
energies of carbon interstitial, carbon vacancy and silicon vacancy based on the MEAM are 
in good agreement with experimental evidence. 
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