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We present an analytical bond-order potential for silicon, carbon, and silicon carbide that has been optimized
by a systematic fitting scheme. The functional form is adopted from a preceding workfPhys. Rev. B65,
195124s2002dg and is built on three independently fitted potentials for SiuSi, CuC, and SiuC interaction.
For elemental silicon and carbon, the potential perfectly reproduces elastic properties and agrees very well with
first-principles results for high-pressure phases. The formation enthalpies of point defects are reasonably
reproduced. In the case of silicon stuctural features of the melt agree nicely with data taken from literature. For
silicon carbide the dimer as well as the solid phases B1, B2, and B3 were considered. Again, elastic properties
are very well reproduced including internal relaxations under shear. Comparison with first-principles data on
point defect formation enthalpies shows fair agreement. The successful validation of the potentials for con-
figurations ranging from the molecular to the bulk regime indicates the transferability of the potential model
and makes it a good choice for atomistic simulations that sample a large configuration space.
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I. INTRODUCTION

Silicon carbide is a compound semiconductor, which is of
fundamental and technological interest, because of its elec-
tronic as well as mechanical properties.1,2 It features extreme
hardness, chemical resistivity, excellent mechanical proper-
ties at high-temperature, large thermal conductivity, and
high-temperature semiconductivity.3–6

Over the last decades, atomistic computer simulations
based on molecular dynamicssMDd, molecular statics, or
Monte CarlosMCd methods have evolved as invaluable tools
in condensed-matter physics, chemistry, and materials sci-
ence. Typical problems in these fields often require computer
simulations that involve a large number of atoms on ex-
tended time scales. Subjects of interest can, for example, be
dislocations, grain boundaries and interfaces, disordered
phases, liquids, or amorphous materials. Moreover, modeling
of materials processes can include condensation processes,
grain growth, bulk and surface diffusion, thin-film growth,
cluster deposition, sintering, and crack growth, to name only
a few. In order to treat such problems in a computationally
efficient manner, while maintaining atomic resolution, ana-
lytical potential models that deliver realistic energies and in-
teratomic forces are an indispensable tool for bridging the
gap between quantum-mechanical methods and mesoscopic
continuum models. However, modeling covalently bonded
materials by means of analytical potentials is a very chal-
lenging task. In the past, numerous potential models7–12 for
semiconductors have been proposed including cluster poten-
tials or cluster functionals of Keating- or bond-order type.
However, none of them has emerged as being clearly supe-
rior to the others.

By far the most widely employed potential for silicon
carbide is the bond-order potentialsBOPd by Tersoff13 sT89d.
The pair parameters are obtained by averaging the param-
eters for the elements, while the three-body parameters de-
pend only on the type of the pivot atom. Tersoff’s parameter
sets have been supplemented by Beardmore and Smith14 to
enable atomistic modeling in the SiuCuH system. Dyson

and Smith15,16 sDSd employed the Brenner potential scheme
to derive parameter sets fitted to reproduce the properties of
small molecules and surfaces. Modified versions of Tersoff’s
potential that were optimized for specific applications have
been published, e.g., by Gao and Weber17 and by Devanathan
et al.18 Although these potentials are well suited for certain
applications, like modeling of surfaces, molecules,14,15 or
structural transformations,19 they are of limited use if the
respective application requires a more extended sampling of
configuration space. This holds equally true for a Keating-
type potential proposed by Chatterjeeet al.20 and Shimojoet
al.19 that was complemented by electrostatic contributions
for studying the sintering of nanocrystalline silicon carbide
and structural transformations under pressure.

In this study, we are mainly interested in developing a
potential for atomic scale simulations of processes which in-
volve transitions between widely different atomic configura-
tions, such as those encountered, for instance, during the
inert gas condensation of silicon-carbon nanoparticles.21 In
in the course of this work we have derived parameters for the
SiuC interaction, but also revisited established parametri-
zations for silicon and carbon and finally refined the param-
eter sets for the SiuSi and CuC interaction, too. Using a
systematic fitting approach our model follows the same
scheme that was previoulsy applied to GaAs and GaN.22,23

II. METHODOLOGY

Bond-order potentials24 are approximations of the mo-
ment expansion within the tight-binding scheme25 and there-
fore close relatives to the embedded-atom method.22,26 The
functional form used in the present work has been success-
fully applied for modeling of semiconductors18,22,23 and
proven to be suitable for the description of metals and metal
carbides, too.12 Therefore only the basic formulas are given
here. The cohesive energy is written as a sum over individual
bond energies,
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s1d

with the pairwise attractive and repulsive contributions given
by

VRsrd =
D0

S− 1
expf− bÎ2Ssr − r0dg s2d

and

VAsrd =
SD0

S− 1
expf− bÎ2/Ssr − r0dg, s3d

whereD0 and r0 are the dimer energy and bond length. The
parameterb can be determined from the ground-state oscil-
lation frequency of the dimer,12 while S is adjusted to the
slope of the Pauling plot. The cutoff function

fCsrd =5
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restricts the interactions to the first neighbor shell. The pa-
rametersR and D specify the position and the width of the
cutoff region. The bond-order is given by

bij = s1 + xi jd−1/2 s5d

with

xi j = o
ksÞi,jd

fCsr ikdexpf2msr ij − r ikdggsui jkd s6d

and the angular function

gsud = gS1 +
c2

d2 −
c2

d2 + fh + cosug2D . s7d

The three-body interactions are determined by the param-
eters 2m, g, c, d, andh, which leads in total to up to nine
adjustable parameters, all of them depending on the type of
atomsi and j . The parameter set for every interaction type is
fitted independently using our fitting codePONTIFIX.27

The parameter optimization proceeds as follows: First, the
pair parameters are adjusted to the dimer propertiessD0, r0,
bd and the slope of the Pauling plotsSd. Thereafter, the three-
body parameters are fitted to the cohesive energies and bond
lengths of several high-symmetry structures as well as to the
elastic constants of the ground structures. The transferability
of the potential is enforced by including a variety of differ-
ently coordinated structures in the fitting database. Further
details regarding the fitting procedure can be found in Refs.
12 and 22.

The parameter sets used in this study are compiled in
Table I. For simulations in the context of silicon carbide, it is
recommended to use the parameter set Si-I which has been
extensively tested for this purpose. The alternative parameter
set Si-II provides an improved description of the elastic and
thermal properties of elemental silicon.

III. SILICON

For silicon there are various well tested potentials avail-
able in literaturese.g., Refs. 7, 9, and 28d and therefore yet
another potential seems to be redundant. Bond-order poten-
tials for silicon, however, that are compatible with our for-
malism have only been proposed by Tersoff28 as well as
Dyson and Smith.15 While the parameter set given by
Tersoff28 suffers from an underestimation of the dimer bind-
ing energy and therefore is not satisfactory for the descrip-
tion of small molecules, the silicon parameter set derived by
Dyson and Smith15 is not optimized for bulk properties.
Therefore we decided to newly adjust parameters for the
SiuSi interaction.

TABLE I. Parameter sets for silicon, carbon, and silicon carbide as derived in this work. The parameter
set Si-I is recommended for simulations with SiC while Si-II yields an improved description of elastic and
thermal properties of elemental silicon.

Si-I C SiuC Si-II

D0 seVd 3.24 6.00 4.36 3.24

r0 sÅd 2.232 1.4276 1.79 2.222

S 1.842 2.167 1.847 1.57

b sÅ−1d 1.4761 2.0099 1.6991 1.4760

g 0.114354 0.11233 0.011877 0.09253

c 2.00494 181.910 273987 1.13681

d 0.81472 6.28433 180.314 0.63397

h 0.259 0.5556 0.68 0.335

2m sÅ−1d 0.0 0.0 0.0 0.0

R sÅd 2.82 2.00 2.40 2.90

D sÅd 0.14 0.15 0.20 0.15
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A. Dimer properties

For the silicon dimer the binding energyD0, the equilib-
rium bonding distancer0 and the wave numberk of the
ground-state oscillation, which can be directly related to the
potential parameterb, are experimentally known29 and could
be directly taken as potential parameters. However, sinceb
andr0 also affect the energy-volume curves of the bulk struc-
tures, minor adjustments ofb andr0 were necessary in order
to improve the agreement with experimental data.

A compilation of dimer properties for the parameter sets
presented in this worksSi-I, Si-IId with experimental data
and the potentials by Dyson-SmithsDSd, Tersoff sT3d, and
Stillinger-WebersSWd is given in Table II. The correct dimer

binding enters directly into the new parameter sets for Si,
while r0 and b are chosen to closely reproduce the experi-
mental data.

B. Bulk properties

Silicon like several other covalently bonded materials
sGaAs, SiCd exhibits a negative Cauchy discrepancy
sc12−c44,0d. When the diamond lattice is sheared, internal
relaxation occurs by displacement of the two fcc sublattices
with respect to each other along thek111l direction. The
Kleinman parameterz measures the displacement in units of
the nearest-neighbor distance.31–33The shear modulusc44

0 of
the unrelaxed structure can only be obtained from first-
principles calculations. The difference between the relaxed
sc44d and unrelaxedsc44

0 d shear moduli is related to the trans-
verse optical phonon frequency at theG point.33

Bazantet al.34 introduced figures of merit for the descrip-
tion of the elastic constants by analytical potentials. They are
defined as

aH = s7c11 + 2c12dc44/3sc11 + 2c12dsc11 − c12d s8d

and

aB = s4c11 + 5c12d/9c44
0 . s9d

For the experimental data,aH and aB are close to 1. The
corresponding values are included in Table III, which sum-
marizes the properties of silicon in its equilibrium structure.

The parameter set Si-I provides an excellent description
of the properties of the diamond lattice with the single ex-
ception of a somewhat larger deviation inc44 leading to a

TABLE II. Silicon dimer properties: Experiment data in com-
parison with the new bond-order potential and the potentials by
Dyson-SmithsDSd, Tersoff sT3d, and Stillinger-WebersSWd. D0 is
the binding energy,r0 the equilibrium bonding distance, andk the
wave number of the ground state.S is the slope parameter.

Expt. This work Other potentials

DS T3 SW

Ref. 29 Si-I Si-II Ref. 15 Ref. 28 Ref. 30

r0 sÅd 2.246 2.232 2.222 2.197 2.295 2.352

D0 seVd 3.24 3.24 3.24 3.39 2.67 2.32

k scm−1d 511 522 556 532 471 462

S 1.91a 1.84 1.57 1.41 1.43

aFitted to bond length and energy of the dimer and silicon in the
diamond structure, cf. Ref. 24.

TABLE III. Properties of silicon in its equilibrium structure from experiment, quantum-mechanicalsQMd methods such as density-
functional theorysDFTd, as well as tight bindingsTBd calculations and for various analytical potentialsfDS: Dyson and SmithsRef. 15d,
LSA: Lenoskyet al. sRef. 35d, EDIP: Bazantet al. sRef. 9d, SW: Stillinger and WebersRef. 7d, T3: TersoffsRef. 28dg. a0: lattice constant;
Ec: cohesive energy;B and B8: bulk modulus and its pressure derivative, respectively;cij : elastic constants;c44

0 : static sunrelaxedd shear
modulus;aH andaB: figures of meritssee text for definition and discussiond, z: Kleinman parameter.

Expt. QM methods This work Other analytical potentials

DFT TB DS LSA EDIP SW T3

Ref. 36 Ref. 37 Ref. 38 Si-I Si-II Ref. 15 Ref. 35 Ref. 9 Ref. 30 Refs. 28 and 30

a0 sÅd 5.429 5.400 5.429 5.429 5.429 5.432 5.430 5.430 5.431 5.432

Ec seV/atomd −4.63 −4.62 −4.63 −4.63 −4.63 −4.61 −4.65 −4.63 −4.63

B sGPad 99 93 100 99 99 98 110 99 108 98

B8 4.20 3.8 4.43 4.36 2.93 4.30

c11 sGPad 168 159 167 167 167 109 165 175 162 143

c12 sGPad 65 61 67 65 65 93 82 62 82 75

c44 sGPad 80 85 75 60a 72a 38b 72 71 60 69

c44
0 sGPad 111 105 111 114b 112 117 119

c12−c44 sGPad −15 −24 −8 5 −7 55 10 −9 22 6

aH 1.14 1.27 1.08 1.02 1.03 2.55 1.15 0.94 1.00 1.34

aB 0.98 0.94 1.06 0.99 0.88 1.00 1.00 0.89

z 0.54 0.53 0.54a 0.52a 0.91 0.63 0.67

ac44 andz calculated at an elastic strain ofg=0.001.
bCalculated in the present work.
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positive Cauchy difference,c12−c44. The negative Cauchy
discrepancy is correctly reproduced by the Si-II parametriza-
tion while maintaining the excellent agreement with the
other elastic properties.

We have also evaluated the strain dependence of the
Kleinman parameter as shown in Fig. 1. With both parameter

sets for silicon an increase of the internal strain parameter is
found with increasing uniaxial strain, which is in line with
theoretical results obtained by density-functional theory
calculations,37 although slight deviations of the slope have to
be acknowledged.

C. Coordination

Silicon exhibits a plethora of high-pressure phases with
very small energy differences, and the corresponding region
of the phase diagram is still not fully understood.39–41 Many
different crystalline phases in the pressure range up to
248 Gpa have been predicted, which are partly metasable at
atmospheric pressures. If transition paths are considered, the
situation becomes even more intricate. In fact, some phases
are only accessible after a certain squence of temperature and
pressure treatments. With increasing pressure the respective
equilibrium phases exhibit larger coordinations and behave
increasingly metallic. The description of these structurs im-
poses a stringent test on the transferability of the potential
model presented in this work.

Table IV presents a compilation of structural data from
density-functional theorysDFTd calculations in comparison
with several analytical potentials. The energetic ordering of

FIG. 1. Strain dependence of the Kleinman parameter in com-
parison to DFT resultssRef. 36d.

TABLE IV. Properties of several experimentally observed and hypothetical structures of silicon. DIA: diamond, SH: simple hexagonal,
SC: simple cubic, BCC: body-centered cubic, FCC: face-centered cubic.Ec: cohesive energy;DE: energy difference with respect to diamond
structure;a: lattice constant;c/a: axial ratio for noncubic structures;x: internal parameter of thebc8 structure. Energies are given in
eV/atom, lattice constants in Å. Structures marked with an asteriskspd were included in the fitting database.

QM methods This work Other analytical potentials

DFT
Refs. 9, 30, 42, and 43 Si-I Si-II

DS
Ref. 15

LSA
Ref. 35

EDIP
Ref. 9

SW
Ref. 30

T3
Ref. 30

DIA* sA4d Ec −4.670/−4.650 −4.630 −4.630 −4.634 −4.612 −4.650 −4.630 −4.630

a 5.451/5.43 5.429 5.429 5.431 5.429 5.430 5.431 5.432

BC8 DE 0.130/0.085 0.230 0.250 0.080 0.201 0.245

a 6.67/6.577 6.625 6.655 6.591 6.644

x 0.100 0.101 0.099 0.103 0.102 0.101

b-TIN sA5d DE 0.266/0.210 0.412 0.444 0.760 0.310 0.67 0.213 0.327

a 4.822/4.730 4.856 4.896 4.810 4.597 4.760 4.969 4.905

c/a 0.552 0.527 0.525 0.543 0.555 0.550 0.561 0.524

SH sA fd DE 0.293 0.476 0.515 0.64 0.230 0.403 0.469

a 2.639 2.659 2.670 2.69 2.544 2.833 2.699

c/a 0.940 0.965 0.986 0.99 0.925 0.918 0.967

SC* sAhd DE 0.348 0.397 0.537 0.339 0.290 0.532 0.293 0.318

a 2.528 2.525 2.553 2.546 2.404 2.503 2.612 2.544

BCC* sA2d DE 0.525 0.503 0.431 0.629 0.720 1.594 0.300 0.432

a 3.088 3.043 3.063 3.107 3.135 3.243 3.245 3.084

FCC* sA1d DE 0.566 0.587a 0.575 1.08 0.700 1.840 0.423 0.761

a 3.885 3.940 3.989 3.91 4.008 4.081 4.147 3.897

aThese values for the cohesive energy and the lattice constant have been obtained withR=2.90 Å andD=0.15 Å. If the values from Table
I are used the bond length intersects the cutoff region whence the cohesive energy is reduced and the structure becomes unstable.
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the structures is very difficult to reproduce due to the ex-
tremely small energy differences between the competing
structures. Our first parametrizationsSi-Id for the silicon po-
tential, however, provides a good overall description of the
structural properties of the higher-coordinated structures as
illustrated by the Pauling plot and the energy-volume curves
shown in Fig. 2. With respect to the high-pressure phases it is
therefore comparable to or even better than alternative po-
tentials from literature.

D. Thermal properties

The experimental melting point of silicon is 1687 K.44

The liquid phase is denser than the crystalline phase at the
melting point and the solid-liquid phase transition is accom-
panied by an increase in average coordination. There are
several methods to determine the melting point from
molecular-dynamics simulationsscf. Refs. 45 and 46, and
references thereind. In this work we have set up a system
comprising a liquid and a crystalline phase separated by a
sharps100d interface. The system was equilibrated at various
temperatures using a Berendsen-type thermostat, while the
pressure was kept at 0 kbar by employing a Berendsen-type
barostat.47 Steady-state conditions were assumed when the
potential energy fluctuated about a constant value. The melt-
ing point is the temperature at which the interface is stable
with the liquid and crystalline phases in equilibrium. This
method avoids hysteresis effects which occur when the melt-
ing and solidification of a single phase system is simulated.

The melting temperature has been determined as
2450±50 K for the Si-I parameter set and 2150±25 K for
the Si-II parameter set. These values are considerably higher
than the experimental melting point of 1687 K, but better
than 2550±50 K obtained by us and 2547±22 K reported by
Cook and Clancy46 for Tersoff’s bond-order potential. The
overestimation of the melting point, however, appears to be a
general problem inherent to bond-order potentials for semi-
conductorsssee, e.g., Ref. 22d, while in case of elemental
metals, like PtsRef. 12d and Zn,48 perfect agreement with
experimental results was achieved using the same bond-order
formalism.

TABLE V. Thermal properties of several analytical silicon potentials in comparison with experiment.Tm:
melting point;DHm: transition enthalpy of melting;DHl−c: enthalpy difference between the material in the
crystalline state at 0 K and the molten material at the melting point;rl, rs: density of the liquid and solid
phase at the melting point;Dr̃: relative change of density upon melting defined asDr̃=srl −rsd /rs.

Expt.a Si-I Si-II T3 SW

Tm sKd 1687 2450±50 2150±25 2547±22b 1688±26b

DHm skJ/moled 50.2 49.5±0.2 48.4±0.2 40.8±0.2 31.3

DHl−c skJ/moled ,93.4c 82.4 78.9 73.7 88.7

rl sg/cm3d 2.51 2.30 2.40 2.28 2.47

rs sg/cm3d 2.30 2.25 2.26 2.25 2.29

Dr̃ s%d 9.1 2.2 6.2 1.3 8.1

aReference 35.
bReference 46.
cReference 49.

FIG. 2. Pauling plotstopd and energy-volume curvessbottomd
for the parameter set Si- I in comparison with experimentalsRefs.
29 and 35d and data from density-functional theorysDFTd calcula-
tions sRef. 42d.
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The melting and other thermal properties are summarized
in Table V together with experimental data. Most promi-
nently, the transition enthalpy and the relative change of the
density are in very good agreement with experimental data
for the parametrization Si-II. Here it should be noted that
none of these properties have been part of the reference da-
tabase which gives evidence for the transferability of the
potential.

Next, the structure of the molten phase was characterized
by calculating the radial and angular distribution functions as
shown in Fig. 3. The radial distribution functions for all ana-
lytical potentials considered here are in good agreement with
experiment. The most notable difference is the dip between
the first and second coordination shell observed for the new
parameter sets as well as for the Tersoff potential. This fea-

ture is a result of the steep cutoff function between the first
and second nearest-neighbor shellfEq. s6dg which leads to
strong forces on atoms within the cutoff region. However, it
can hardly be avoided without compromising other potential
properties.

In contrast to the radial distribution functions, a more di-
verse behavior is displayed by the angular distributions.
First-principles calculations49 predict two distinct maxima at
,60° and,90°. In agreement with previous studies50 the
bond-order potentials for silicon reproduce this feature while
the SW potential exhibits only a shoulder at about 60° but no
maximum. Although the melting point is overestimated, the
Tersoff-type as well as our silicon potentials realistically de-
scribe the structure of the molten phase.

Finally, we estimated the linear thermal-expansion coeffi-
cient close to the melting point to beaL=5±2 mK−1 which
compares well with the value ofaL=4.66mK−1 obtained by
extrapolation of experimental data to the melting point.36

Again, the good agreement with experimental and first-
principles dataswith the exception of the melting pointd
gives further hindsight for the transferability of the bond-
order potential scheme, since none of these properties were
considered during the fitting process.

E. Point defects

Point defects in silicon have been extensively studied,
both experimentally and theoretically, over the last
decades.51,52 Since energetic and structural properties of
point defects are experimentally difficult to assess, quantum-
mechanical total-energy calculations have been an invaluable
tool in resolving the situation. Strain fields around point de-
fects, various charge states, and intricate electronic interac-
tions render such calculations a nontrivial taskssee, e.g.,
Refs. 51 and 53d. By now, there is consensus that the dumb-
bell k110l interstitial has the lowest formation energy fol-
lowed by the hexagonal and tetrahedral configurationssRef.
51 and references thereind. For these investigations quantum-
mechanical calculations have been performed at zero tem-
perature and pressure. The situation at nonzero temperatures
is even more difficult to resolve, because the ordering can
change completely due to different vibrational properties of
the various point defect configurations and the related con-
tributions to entropy.

It has turned out to be very difficult to capture the results
of quantum-mechanical calculations in analytical potential
models. Recently, a potential model has been proposed that
is optimized for point defects and amorphous structures
sEDIPd,9 but exhibits deficiencies as it comes to the descrip-
tion of higher coordinated structuressTable IVd. An over-
view of the formation energies of the point defects in silicon
is given in Table VI. Among the established analytical po-
tentials only the EDIP and the SW potentials reproduce the
dumbbell, while the silicon potentials presented in this work
favor the tetrahedral position. By varying the cutoff distances
within the parameter set Si-I, however, the picture is slightly
changed and the hexagonal position becomes the lowest en-
ergy configuration.

The structural stability of the dumbbell configuration was
tested in molecular dynamics runs over 0.5 ns at various

FIG. 3. Radialsleftd and angularsrightd distribution functions
from experimentsRef. 36d and first-principles calculationssRef. 49d
in comparison with analytical potentials.
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temperatures. We observed the dumbbell interstitial configu-
ration to be metastable up to,400 K. At temperatures above
this threshold it dissembled into the hexagonal interstitial
configuration.

Keeping in mind that the present potential has not been
optimized for point defects, reasonable agreement with the
results of quantum-mechanical calculations is obtained, al-
though the dumbbell interstitial is not the most stable inter-
stitial defect. The cutoff parameters are found to have an
immediate effect on the formation energies. A systematic in-
vestigation of this interplay is recommended if the optimiza-
tion of this potential for simulations of points defects is in-
tended.

F. Conclusive remarks on the Si parametrization

The newly parametrized bond-order potentials for silicon
sSi-I and Si-IId provide excellent models for the elastic prop-
erties of the diamond phase and reproduce structure and en-
ergetics of the dimer as well as high pressure phases very
well. For the liquid-solid transition, both enthalpy and den-
sity changes are properly reproduced and even the angular
distribution function of the molten phase is in agreement
with predictions from first-principle calculations. There is
obvious disagreement, however, if formation enthalpies of
point defects are compared with results based on first-
principles calculations. Other properties, like one- and two-
dimensional defects, were not tested in this work, but might
be an interesting subject for further studies.

IV. CARBON

The carbonsCuCd parameter sets proposed by Brenner11

allow for a good description of the properties of hydrocarbon
molecules, however, they yield only a mediocre model for
the bulk phases of carbon. In particular, the elastic constants
of diamond are poorly reproduced. Thus we decided to de-
rive CuC parameters that properly predicts the elastic prop-
erties, while maintaining most of the features of the original
parametrization. The new parameter set almost retains the

dimer parameters of the Brenner potential while at the same
time delivers a description of the bulk phases which is com-
parable to the Tersoff potential.55

A. Dimer properties

The dimer properties are summarized in Table VII. The
dimer energyD0 and wave numberk for the new carbon
potential are very similar to the second parametrization of
the original Brenner potential.11 The bond length is some-
what longer, which turned out to be necessary in order to
obtain a better model for the bulk phases. The Tersoff poten-
tial underestimates the dimer energy by about 14%, similar
to the case of silicon. All potentials yield a somewhat too
low wave numberk, as compared to the experimental value.
For the potentials considered this deficiency cannot be over-
come without accepting a considerable deviation in the elas-
tic moduli of the bulk phases.

B. Bulk properties

Carbon naturally occurs in the graphite as well as dia-
mond structures, in which the atoms aresp2 andsp3 hybrid-
ized, respectively. At ambient conditions graphite is slightly
more stable than diamond with the difference in the cohesive
energies of the two structures being on the order of meV.

TABLE VI. Formation energiesa in units of eV for relaxed point defects fromab initio and tight-binding calculations in composition with
analytical potentials.V: vacancy;IH: hexagonal interstitial;IT: tetragonal interstitial;ID: k110l dumbbell interstitial.

QM methods This work Other analytical potentials

DFT TB EDIP SW T3 LSA

Ref. 51 Ref. 54 Ref. 38 Si-I Si-Ib Si-II Ref. 9 Ref. 30,34,82 Ref. 30,82 Ref. 35

V 2.8–4.1 3.17 3.68 3.2 3.2 3.2 3.22 2.82 3.70 3.30

IT 4.0 3.75 3.5 4.4 3.2 4.05 5.25 3.45 3.00c

IH 3.8 3.31 4.03 4.0 4.1 3.3 4.16 6.95 4.61 3.21

ID 3.7 3.31 3.46 4.4 4.7 3.9 3.35 4.68,;3.9d 4.4 3.13

aThe defect formation enthalpies for the new potential have been calculated by allowing full, i.e., internal and volume relaxations, while in
the DFT calculations typically only internal relaxations are taken into account.
bWith modified cutoff,R=2.90 Å andD=0.15 Å.
cRelaxed configuration with interstitial atom displaced from the tetragonal towards the hexagonal interstitial site. The formation enthalpy is
3.11 eV if the symmetry is fixed.
dExtended split-interstitial configuration.

TABLE VII. Carbon dimer properties: Experimental data in
comparison with the new bond-order potentialsthis workd and the
potentials by Brennersparameter set II in Ref. 11d and Tersoff.D0 is
the binding energy,r0 the equilibrium bonding distance, andk the
wave number of the ground state.S is the slope parameter.

Expt.
Ref. 29

This work Brenner-II
Ref. 11

Tersoff
Ref. 55

D0 seVd 6.21 6.00 6.00 5.17

r0 sÅd 1.243 1.428 1.390 1.447

k scm−1d 1855 1482 1548 1343
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Graphite consists ofsp2 bonded sheets which are held
together by van der Waals forces. Within the short-ranged
bond-order potential model these long-ranged interactions
are not properly accounted for, a deficit which can be fixed
by adding a weak long-range pair potential. These interac-
tions are crucial for reproducing the layer separation and the
elastic response of the material perpendicular to the layers,
but they have a negligible effect on the energetics and the
atomic separations within the graphite sheets. As shown in
Table VIII the carbon potential exactly reproduces the ex-
perimental cohesive energy of the graphite structure. The lat-
tice constant is also in good agreement with experimental
observations. Since the energy difference between the graph-
ite and diamond structures is not exactly known, we have
decided to employ an approximate value of 1 meV in the
fitting database, which is on the order of magnitude expected
from experimental and theoretical experience. This energy
difference as well as the lattice constants is properly de-
scribed using the new carbon parametrization. Most impor-
tantly, elastic constants are in very good agreement with
experiment fixing a problem of Brenner’s original parametri-
zation. In principle, the CuC parameters should also work
together with the CuH parameters of Brenner’s original
hydrocarbon potential. Here, however, we only tested the
overbinding corrections in the context of point defects as
discussed in Sec. IV D.

C. Coordination

Furthmüller et al. have presented an extensive work on
the energetics and structure of various solid modifications of
carbon. Some of these structures entered our fitting database,
while some served as tests for the transferability of the po-
tential. The cohesive energies and structural parameters are
compiled in Table IX.

The carbon potential provides a good overall description
of the low as well as high coordinated structures. Naturally,
particular attention has been paid to obtain exact agreement
for the graphite and diamond phases. The good agreement
with experiment and DFT calculations is further demon-
strated in the Pauling plot shown in Fig. 4 which illustrates
the variation of the bond energy with bond length.

D. Point defects

Experimentally, the formation enthalpy of the carbon va-
cancy in diamond has not been determined yet, but there are
a few theoretical studiesssee Ref. 58 and references thereind.
A theoretical treatment of this defect is not trivial since
many-electron correlation, coupling between the defect and
the surrounding bulk material as well as Jahn-Teller distor-
tions have to be accounted for. Only recently a diffusion
Monte CarlosDMCd study has been performed by Hood and
co-workers58 who reported a vacancy formation energy of

TABLE VIII. Properties of diamond and graphite calculated with the new carbon parametrization in
comparison with experiment, density-functional theory calculationssDFTd and the potentials by Brenner
sparameter set II in Ref. 11d and Tersoff.DE: energy difference with respect to graphite modification;a:
lattice constantsin plane lattice constant in the case of graphited; A: Zener anisotropy ratio;A=2c44/ sc11

−c12d. For the interpretation of the remaining symbols see Table III.

Expt.
Ref. 44

DFT
Refs. 56 and 57

This work Brenner-II
Ref. 11

Tersoff
Ref. 55

GraphitesA9d
a sÅd 2.46 2.440–2.47 2.555 2.513 2.530

Ec seV/atomd −7.374 −9.027–−9.001 −7.374 −7.376 −7.396

B sGPad 286–319 236–319 232a 258a 225a

B8 3.57, 3.58 4.00 3.97 3.83

Cubic diamondsA4d
a sÅd 3.567 2.528–3.55 3.566 3.558 3.566

DE seV/atomd −0.0028– +0.0004 0.0009 0.0524 0.0250

B sGPad 444 444–494 445 484 425

B8 ,4 2.60–3.67 4.15 4.06 3.92

c11 sGPad 1081 1100 1082 621 1067

c12 sGPad 125 143 127 415 104

c44 sGPad 579 587 635 383 636

c44
0 sGPad 673 642 671

z 0.107 0.21 0.76 0.22

aH 1.19 1.18 1.30 2.21 1.33

aB 0.82 0.79 0.79

A 1.21 1.23 1.33 3.72 1.32

aEvaluated using the experimentalc/a ratio to determine the atomic volume.
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5.96±0.34 eV. The vacancy formation enthalpy calculated
with the new carbon potential is 3.09 eV, which is consider-
ably lower than theab initio value. However, this deficiency
is clearly related to the missing overbinding corrections
which are needed in order to balance the coordination change
in the first neighbor shell of the vacancy. In fact, a similarly
low value is found for the Tersoff potential as well. If the
overbinding corrections as originally parametrized by Bren-
ner are included, we obtain a vacancy formation enthalpy of
5.24 eV in very good agreement with theory.

The formation energies/enthalpies for interstitial defects
in diamond are very largessee Table Xd. DFT calculations
suggest values of,16 eV and larger from which it has been
concluded that these defects are not relevant for the process
of diffusion in diamond.59 The new bond-order potential
yields reasonable values for the formation enthalpies of these
defects regardless whether overbinding corrections are in-
cluded or not.

V. SILICON CARBIDE

Silicon carbide occurs in more than 200 different poly-
types, which differ in the stacking sequence of the SiuC
bilayers60 and are classified as either cubicsCd, hexagonal
sHd, or rhombohedralsRd. The most abundant polytypes are
3C szinc blended, 6H, 4H, and 2H swurtzited. The energy
differences between the different polytypes are extremely
small. Parket al.61 determined the energetic ordering of the
four most abundant types as 4H, 6H, 3C, and 2H and calcu-
lated a maximum energy difference of only 4.3 meV/atom.
Since our model is restricted to first neighbor interactions,
the various polytypes energetically cannot be distinguished.
However, this does not seem a severe restriction, because
entropic contributions to the free enthalpy will dominate at
nonzero temperatures.

A. Dimer properties

The dimer properties are experimentally not well known.
Huber and Herzberg29 report an upper limit for the dimer

TABLE IX. Properties of several experimentally observed and hypothetical structures of carbon. Results
obtained with the new carbon potential are compared with experiment, density-functional theory calculations
sDFT, Ref. 56d, and the potentials by Brennerssecond parameterization, Ref. 11d and TersoffsRef. 55d; DE:
energy difference with respect to graphite modification, GRA: graphite, see Table IV for the interpretation of
the remaining symbols.

Expt.
Ref. 44

DFT
Ref. 56

This work Brenner-II
Ref. 11

Tersoff
Ref. 55

GRA* sA9d
a sÅd 2.46 2.440–2.47 2.555 2.513 2.530

Ec seV/atomd −7.374 −9.027–−9.001 −7.374 −7.376 −7.396

DIA* sA4d
a sÅd 3.567 2.528–3.55 3.566 3.558 3.566

DE seV/atomd −0.0028– +0.0004 0.0009 0.0524 0.0250

BC8

a sÅd 4.419–4.51 4.429 4.351 4.437

x 0.0943–,0.1003 0.0963 0.1019 0.0965

DE seV/atomd 0.689–0.691 0.772 0.446 0.775

b-TIN sA5d
a sÅd 3.310 3.425 3.660 3.555

c/a 0.390 0.435 0.380 0.436

DE seV/atomd 2.727–2.82 3.452 1.379 3.779

SC* sAhd
a sÅd 1.744–1.770 1.783 1.744 1.802

DE seV/atomd 2.60–2.66 3.297 2.133 2.974

BCC* sA2d
a sÅd 2.326–2.375 2.160 2.093 2.152

DE seV/atomd 4.24–4.351 3.964 3.037 3.771

FCC* sA1d
a sÅd 3.021–3.078 2.859 1.863 2.728

DE seV/atomd 4.50–4.648 4.483 3.713 4.411
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binding energy of 4.64 eV and and a bond length of approxi-
mately 1.82 Å. Ground-state frequencies of the dimer are
given in a number ofab initio studies.62–64 The reported
values, however, vary appreciably, which in connection with
the experimental data induces some degree of freedom in
adjusting the dimer parameters.

Table XI summarizes the data from literature, our SiC
parametrization, and the dimer properties of Tersoff’s SiC
potential sT89d. The latter yields a ground-state frequency
which is more than 25% lower than the values of quantum-
mechanical calculations, while the new SiC potential deliv-
ers a values that is very close to the reference data.

B. Bulk properties

Despite the large technological interest in the mechanical
properties of silicon carbide, the elastic constants of cubic

silicon carbide have not been consistently determined yet.65

Apparently, the best data at hand are the elastic constants
given by Lambrechtet al.,66 which have been obtained by
transformation of experimental data for hexagonal polytypes.
These values have been employed in fitting the potential. In
a recent theoretical study,67 which appears to be the most
accurate to date, elastic constants in excellent agreement
with the values determined by Lambrechtet al. have been
reported.

A compilation of published data is given in Table XII
including results obtained with our SiC potential and with
three different versions of the Tersoff potentialsT89, T90,
T94d for SiC and the potentials by Dyson and SmithsDSd,15

and by Gao and WebersGWd.17 Obviously, the SiC param-
etrization of our bond-order potential reproduces all elastic
constants very well, especially in comparison to alternative
SiC potentials.

C. Coordination

The high-pressure phase diagram of silicon carbide is nei-
ther as complex nor as extensively explored as for silicon. It
is well established that the zinc-blendesB3d modification
transforms to the rocksalt sB1d structure under
compression,19,74 and there is evidence for a similar transi-
tion in the case of 6H-SiC.75 The transition pressures and
paths are, however, still a matter of discussionscf. Ref. 76
with comments and repliesd.

Only few theoretical investigations of higher-coordinated
structures have been published. Chang and Cohen77 and
Karch et al.60 conducted density-functional theorysDFTd
calculations on the zinc-blendesB3d, rocksaltsB1d, and ce-
sium chloridesB2d structures, which were taken as reference
data for the potential fitting in the present work. It has been
found impossible, however, to find a reasonable fit for all
solid structures while leaving the description of the elastic
properties unaffected. As a compromise, a significant devia-
tion of the cohesive energy of the rocksaltsB1d structure
from the theoretical value was accepted. Figure 5 shows the
Pauling plot including first-principles and experimental data,
while Table XIII summarizes the structural properties calcu-
lated with the new SiC potential.

D. Point defects

The number of point defect configurations for silicon car-
bide which have been explored in the literature is quite large.
There are two types of vacancies, namely the C and the Si

TABLE X. Formation energiessDMC, DFTd/enthalpiessanalyti-
cal potentialsd of point defects in carbon in units of eV taken from
diffusion Monte Carlo sDMC, Ref. 58d and density-functional
theory sDFT, Refs. 58 and 59d calculations in comparison with the
new potential and the established potentials by Brennerssecond
parameterization, Ref. 11d and TersoffsRef. 55d. Values in brackets
denote formation enthalpies obtained without overbinding correc-
tions. VC: single vacancy;IT: tetrahedral interstitial;IS: k100l split
interstitial; IB: bond-centered interstitialssee Ref. 59 for interstitial
defect geometriesd.

DMC
Ref. 58

DFT
Ref. 59

This work Brenner-II
Ref. 11a

Tersoff
Ref. 55a

VC 5.96±0.34 6.98, 7.2 5.24s2.59d 8.84 s1.84d 3.42

IT 23.6 23.90s23.69d 9.08 s9.05d 19.42

IS 16.7 10.21s9.58d 5.36 s3.98d 9.93

IB 15.8 16.06s14.90d 9.15 s9.47d 14.46

aThe formation enthalpies given here have been calculated in the
context of the present work.

FIG. 4. Pauling plot for the new carbon parameter set. The
straight line indicates the Pauling relation.

TABLE XI. Comparison of dimer properties of SiC.D0: bond
energy;r0: bond length;k ground-state oscillation frequency.

Expt. Ab initio This work T89

Ref. 29 Ref. 62 Ref. 63 Ref. 13

D0 seVd ø4.64 4.36 4.36 4.20

r0 sÅd ,1.82 1.726 1.726 1.79 1.77

k scm−1d 959 927 902 691
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vacanciessVSi, VCd, and also two types of antisite defects
sSiC, CSid. Furthermore, various different self-interstitial de-
fect structures have been considered.78,79A tetrahedrally co-
ordinated carbon interstitial can be surrounded either by four
carbonsCTCd or four silicon atomssSiTSd and equivalently
for silicon. Four possible configurations can be studied for

the k100l dumbbell interstitial: CuC, SiuSi, or CuSi
pairs can share either a carbon or a silicon site
sC+

uSik100l, C+
uCk100l, Si+uCk100l, Si+uSik100l;

the plus sign indicates the extra atomd. There are, further-
more, two different k110l dumbbell configurations
sC+

uCk110l, C+
uSik110ld which have been investigated.

In connection with the aggregation of carbon interstitials
Gali et al.80 have explored a configuration in which two car-
bon atoms share a silicon site,sC2dSi.

The formation enthalpy for a defect in a neutral charge
state can be written as23,81

s10d

whereED is the total energy of the system in the presence of
the defect,ni is the number of atoms of atom typei, andmi

bulk

is the chemical potential of thepure constituenti. The mag-
nitude ofDm is restricted to be lower or equal than the for-
mation enthalpyDHf. At zero temperature the chemical po-

TABLE XII. Comparison of bulk properties of 3C-SiC obtained from experiment, theory, and analytical potentials. The symbols have the
same meaning as in Table III.A: anisotropy;A=2c44/ sc11−c12d.

Expt. QM methods This work Other analytical potentials

DFT TB

NFPb LAPWb PWPPb T89a T90a T94a DS GW

Ref. 66 Ref. 65 Ref. 67 Ref. 68 Ref. 69 Ref. 70 Ref. 71 Ref. 71 Ref. 71 Ref. 15c Ref. 17c

a0 sÅd 4.3596 4.3367 4.360 4.344 4.36 4.359 4.321 4.307 4.280 4.349 4.360

Ec seV/atomd −6.340 −7.415 −6.340 −6.165 −6.210 −6.434 −6.340 −6.412

B sGPad 225 211 218 210/216d 222/219d 229 224 224 231 241 224 235

B8 3.71 3.88 4.16

c11 sGPad 390 352 385 384 390 372 382 437 426 447 243 254

c12 sGPad 142 140 135 132 134 157 145 118 134 134 215 225

c44 sGPad 256 233 257 241 253 240e 311 280 293 62 66

c44
0 sGPad 284 273 256 305

z 0.41 0.38f 0.49e

aH 1.54 1.59 1.55 1.45 1.50 1.46 1.59 1.50 1.48 2.34 2.40

aB 0.87 0.91 0.99 0.83

A 2.06 2.20 2.06 1.91 1.98 1.98 1.68 1.92 1.87 4.43 4.55

aT89, T90, T94 refer to the three parameterizations of the CuC interactions given by TersoffsRefs. 13, 72, and 73d, following the
nomenclature of Ref. 71.
bNFP: new full potential; LAPW: linear augmented plane waves; PWPP: plane-wave pseudopotential.
cCalculated in the present work.
dThe first values have been obtained from a fit to the MurnaghansRef. 68d and the VinetsRef. 69d equation of state, respectively, while the
second values have been calculated using the relationB=sc11+2c12d /3.
ec44 andz calculated at an elastic strain ofg=0.001.
fGeometric average of three independently calculated values.

FIG. 5. Pauling plot for silicon carbide. Experimental and first-
principles data from Refs. 62, 69, and 77.
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tentials of the bulk phases are given by the cohesive energies
mSi

bulk=−4.63 eV/atom, mC
bulk=−7.374 eV/atom, andmSiC

bulk

=−12.68 eV/ f.u. with the corresponding formation enthalpy
of DHf =0.68 eV/ f.u.

In Table XIV point defect formation energiessED8 d calcu-
lated with the new potentialssilicon parameter set Si-Id are
compared to first-principles calculations78 and the original
version of the Tersoff potentialsT89d.13 The point defect
combinations included in the table preserve the stoichiom-
etry, therefore the defect formation energies are independent
of Dm. Note that the formation enthalpies given in Refs. 17,
78, and 79 have been calculated neglecting the effect of the
variation of the chemical potential in the vicinity of the de-
fect expressed by term in the second line of Eq.s10d. We

have applied this correction to obtain the values in the first
and second columns of Table XIV.

The formation enthalpies for vacancies and antisite de-
fects predicted by the new potential are somewhat too low
but still in fair agreement with first-principles calculations.
The situation regarding the interstitial defects is unclear. The
formation enthalpies calculated by Wanget al.79 are consis-
tently higher than those given in Ref. 78. We find good
agreement with the former data but quite large deviations
from the latter.

In general, the agreement is at least fair as it comes to the
energetic ordering. In comparison, the bond-order potential
by Gao and Weber17 which is based on the potential by
Dyson and Smith15 provides a better description of point

TABLE XIII. Energies and lattice constants for the B1 and B2 structures of silicon carbide.DE: energy
difference with respect to the B3 structureseV/atomd; a0: lattice constantsÅd.

DFT This work T89

DE a0 DE a0 DE a0

B1 0.70–0.72 4.046 1.92 4.244 1.49 4.239

B2 2.66 2.631 3.04 2.668 2.49 2.640

2.57a 2.608a

aThis value is obtained if the SiuSi cutoff is reduced such thatR+Dø2.63 Å.

TABLE XIV. Formation energies of point defects silicon carbidefED8 in Eq. s10dg in units of eV. For the
new bond-order potential the first and second column show the values obtained with and without overbinding
corrections for the CuC interaction, respectively.

DFT This work T89 GW

Ref. 78 Ref. 79 Ref. 80 w w/o Ref. 13 Ref. 17

VC 5.11 4.5 4.2 1.90 1.93 1.39

VSi 8.01 8.2 8.1 4.55 4.55 4.67

VC+VSi 12.12 12.7 6.99 7.02 7.4 6.48

CSi 4.06 3.8 3.4 2.42 2.19 4.43

SiC 4.46 4.6 2.48 2.36 5.05

CSi+SiC 8.52 8.4 4.90 4.55 7.2 9.48

CTC 7.78 12.4 12.63 12.68 6.02

CTSi 7.21 10.0 9.38 9.38 5.69

SiTC 4.80 13.3 17.55 17.35 2.60

SiTSi 7.34 13.6 17.30 18.15 5.40

SiTC+CTSi 12.01 23.3 26.93 26.78 22.6 8.29

SiTSi+CTC 15.12 26.0 29.93 30.83 23.2 11.42

CTC+CTSi 0.57 2.4 3.25 3.30 3.0 0.33

C+
uSik100l 4.96 8.31 8.24 4.80

C+
uCk100l 4.53 6.9 4.78 5.12 4.41

Si+uCk100l 8.68 14.14 13.37 6.17

Si+uSik100l 7.95 20.90 17.72 4.16

C+
uCk100l 4.69 9.89 10.64 4.67

C+
uSik100l 4.65 4.81 5.12 5.32

sC2dSi 6.4 4.70 5.03

P. ERHART AND K. ALBE PHYSICAL REVIEW B71, 035211s2005d

035211-12



defect properties in 3CuSiC, but since the pure silicon and
carbon structures parameters were modified, it is lacking the
transferability our work is aiming for. In particular, it cannot
be applied to model the pure phases and it yields an inappro-
priate description of the elastic properties as shown in Table
XII.

VI. CONCLUSIONS AND OUTLOOK

New bond-order potentials for silicon and silicon carbide
have been derived, which allow atomic scale computer simu-
lations of processes involving a wide range of different
atomic configurations. Elastic, thermal, and point defect
properties are well reproduced. The description of higher co-
ordinated structures by the silicon and carbon parameter sets
is comparable to the well established Tersoff potential, while
elastic, defect, and thermal properties are superior. The de-

scription of elastic properties of silicon carbide by the new
potential is improved with respect to the potentials available
in literature. Defect properties are only fairly reproduced but
the description is comparable to previously published poten-
tials. The new potential enables modeling of processes which
involve widely different configurations and transitions
among these. In this spirit, it has been recently applied to the
modeling of the inert gas condensation of silicon-carbon
nanoparticles, representative for a transition from the mo-
lecular to the bulk regime.

ACKNOWLEDGMENTS

We would like to thank Professor M. Winterer, currently
at University Duisburg-Essen, and Dr. M. Posselt for helpful
discussions. Financial support by the German foreign ex-
change serversDAAD d through a bilateral travel program is
gratefully acknowledged.

*Electronic address: erhart@mm.tu-darmstadt.de
1Silicon Carbide Ceramics 1, Fundamental and Solid Reaction,

edited by S. Sōmiya and Y. InomatasElsevier, Amsterdam,
1991d.

2K. Liethschmidt, inUllmann’s Encyclopedia of Industrial Chem-
istry sVCH, Weinheim, 1993d, Vol. A23, p. 749.

3M. A. Capano and R. J. Trew, MRS Bull.22, 19 s1997d.
4G. Pensl and R. Helbig, Festkoerperprobleme30, 133 s1990d.
5R. Vaßen, A. Kaiser, and D. Stöver, J. Nucl. Mater.233–237, 708

s1996d.
6S. Sharafat, C. P. C. Wong, and E. E. Reis, Fusion Technol.19,

901 s1991d.
7F. H. Stillinger and T. A. Weber, Phys. Rev. B31, 5262s1985d.
8J. Tersoff, Phys. Rev. B37, 6991s1988d.
9J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, and S. Yip,

Phys. Rev. B58, 2539s1998d.
10M. I. Baskes, Mater. Chem. Phys.50, 152 s1997d.
11D. W. Brenner, Phys. Rev. B42, 9458s1990d.
12K. Albe, K. Nordlund, and R. S. Averback, Phys. Rev. B65,

195124s2002d.
13J. Tersoff, Phys. Rev. B39, 5566s1989d.
14K. Beardmore and R. Smith, Philos. Mag. A74, 1439s1996d.
15A. J. Dyson and P. V. Smith, Surf. Sci.355, 140 s1996d.
16A. Dyson and P. Smith, Mol. Phys.96, 1491s1999d.
17F. Gao and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B

191, 504 s2002d.
18R. Devanathan, T. Diaz de la Rubia, and W. J. Weber, J. Nucl.

Mater. 253, 47 s1998d.
19F. Shimojo, I. Ebbsjö, R. K. Kalia, A. Nakano, J. P. Rino, and P.

Vashishta, Phys. Rev. Lett.84, 3338s2000d.
20A. Chatterjee, R. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta,

P. Vashishta, C.-K. Loong, M. Winterer, and S. Klein, Appl.
Phys. Lett.77, 1132s2000d.

21P. Erhart and K. Albe, Appl. Surf. Sci.226, 12 s2004d.
22K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B66,

035205s2002d.
23J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens.

Matter 15, 5649s2003d.
24G. C. Abell, Phys. Rev. B31, 6184s1985d.
25A. P. Horsfield, A. M. Bratkovsky, M. Fearn, D. G. Pettifor, and

M. Aoki, Phys. Rev. B53, 12 694s1996d.
26D. W. Brenner, Phys. Rev. Lett.63, 1022s1989d.
27P. Erhart and K. Albesunpublishedd.
28J. Tersoff, Phys. Rev. B38, 9902s1988d.
29K. P. Huber and G. Herzberg,Constants of Diatomic Molecules

sVan Nostrand, New York, 1979d.
30H. Balamane, T. Halicioglu, and W. A. Tiller, Phys. Rev. B46,

2250 s1992d.
31L. Kleinman, Phys. Rev.128, 2614s1962d.
32C. S. G. Cousins, J. Phys. C11, 4867s1978d.
33O. H. Nielsen and R. M. Martin, Phys. Rev. B32, 3780s1985d.
34M. Z. Bazant, E. Kaxiras, and J. F. Justo, Phys. Rev. B56, 8542

s1997d.
35T. J. Lenosky, B. Sadigh, E. Alonso, V. V. Bulatov, T. Diaz de la

Rubia, J. Kim, A. F. Voter, and J. D. Kress, Modell. Simul.
Mater. Sci. Eng.8, 825 s2000d.

36Properties of Silicon, Emis Datareviews Series No. 4, edited by
G. L. Harris sINSPEC, London, 1988d.

37O. H. Nielsen and R. M. Martin, Phys. Rev. B32, 3792s1985d.
38T. J. Lenosky, J. D. Kress, I. Kwon, A. F. Voter, B. Edwards, D.

F. Yang, S. Yang, and J. B. Adams, Phys. Rev. B55, 1528
s1997d.

39J. Crain, S. J. Clark, G. J. Ackland, M. C. Payne, V. Milman, P. D.
Hatton, and B. J. Reid, Phys. Rev. B49, 5329s1994d.

40J. Crain, G. J. Ackland, and S. J. Clark, Rep. Prog. Phys.58, 705
s1995d.

41R. J. Needs and A. Mujica, Phys. Rev. B51, 9652s1995d.
42M. T. Yin and M. L. Cohen, Phys. Rev. B26, 3259s1982d.
43M. T. Yin and M. L. Cohen, Phys. Rev. B29, 6996s1984d.
44Numerical Data and Functional Relationships in Science and

Technology, edited by H. Ullmeier, Landolt-Börnstein New Se-
ries, Group III, Vol. 29, Pt. AsSpringer, Heidelberg, 1991d.

45F. Ercolessi, O. Tomagnini, S. Iarlori, and E. Tosatti, inNano-
sources and Manipulation of Atoms Under High Fields and Tem-

ANALYTICAL POTENTIAL FOR ATOMISTIC… PHYSICAL REVIEW B 71, 035211s2005d

035211-13



peratures: Applications, edited by V. T. BinhsKluwer, Amster-
dam, 1993d, pp. 185–205.

46S. J. Cook and P. Clancy, Phys. Rev. B47, 7686s1993d.
47H. J. C. Berendsen, J. P. M. Postma, W. F. Gunsteren, A. D. Nola,

and J. R. Haak, J. Chem. Phys.81, 3684s1984d.
48P. Erhart and K. Albesunpublishedd.
49I. Štich, R. Car, and M. Parrinello, Phys. Rev. B44, 4262s1991d.
50M. Ishimaru, K. Yoshida, and T. Motooka, Phys. Rev. B53, 7176

s1996d.
51L. Colombo, Annu. Rev. Mater. Sci.32, 271 s2002d.
52Numerical Data and Functional Relationships in Science and

Technology, edited by H. Ullmeier, Landolt-Börnstein New Se-
ries, Group III, Vol. 41, Pt. A2AsSpringer, Heidelberg, 2002d.

53M. J. Puska, S. Pöykkö, M. Pesola, and R. M. Nieminen, Phys.
Rev. B 58, 1318s1998d.

54S. Goedecker, T. Deutsch, and L. Billard, Phys. Rev. Lett.88,
235501s2002d.

55J. Tersoff, Phys. Rev. Lett.61, 2879s1988d.
56J. Furthmüller, J. Hafner, and G. Kresse, Phys. Rev. B50, 15 606

s1994d.
57S. Q. Wang and H. Q. Ye, J. Phys.: Condens. Matter15, 5307

s2003d.
58R. Q. Hood, P. R. C. Kent, R. J. Needs, and P. R. Briddon, Phys.

Rev. Lett. 91, 076403s2003d.
59J. Bernholc, A. Antonelli, T. M. Del Sole, Y. Bar-Yam, and S. T.

Pantelides, Phys. Rev. Lett.61, 2689s1988d.
60K. Karch, F. Bechstedt, P. Pavone, and D. Strauch, Phys. Rev. B

53, 13 400s1996d.
61C. H. Park, B.-H. Cheong, K.-H. Lee, and K. J. Chang, Phys. Rev.

B 49, 4485s1994d.
62J. M. L. Martin, J. P. Francois, and R. Gijbels, J. Chem. Phys.92,

6655 s1990d.
63P. F. Bernath, S. A. Rogers, L. C. O’Brien, C. R. Brazier, and A.

D. McLean, Phys. Rev. Lett.60, 197 s1988d.
64C. M. Rohlfing and R. L. Martin, J. Phys. Chem.90, 2043

s1986d.
65Numerical Data and Functional Relationships in Science and

Technology, edited by H. Ullmeier, Landolt-Börnstein New Se-
ries, Group III, Vol. 41, Pt. A1AsSpringer, Heidelberg, 2001d.

66W. R. L. Lambrecht, B. Segall, M. Methfessel, and M. van Schil-
fgaarde, Phys. Rev. B44, 3685s1991d.

67M. Prikhodko, M. Miao, and W. R. L. Lambrecht, Phys. Rev. B
66, 125201s2002d.

68C.-Z. Wang, R. Yu, and H. Krakauer, Phys. Rev. B53, 5430
s1996d.

69K. Karch, P. Pavone, W. Windl, O. Schütt, and D. Strauch, Phys.
Rev. B 50, 17 054s1994d.

70M. Tang and S. Yip, Phys. Rev. B52, 15 150s1995d.
71T. Halicioglu, Phys. Rev. B51, 7217s1995d.
72J. Tersoff, Phys. Rev. Lett.64, 1757s1990d.
73J. Tersoff, Phys. Rev. B49, 16 349s1994d.
74M. Yoshida, A. Onodera, M. Ueno, K. Takemura, and O. Shimo-

mura, Phys. Rev. B48, 10 587s1993d.
75T. Sekine and T. Kobayashi, Phys. Rev. B55, 8034s1997d.
76M. Catti, Phys. Rev. Lett.87, 035504s2001d.
77K. J. Chang and M. L. Cohen, Phys. Rev. B35, 8196s1987d.
78F. Gao, E. J. Bylaska, W. J. Weber, and R. Corrales, Phys. Rev. B

64, 245208s2001d.
79C. Wang, J. Bernholc, and R. F. Davis, Phys. Rev. B38, 12 752

s1988d.
80A. Gali, P. Deák, P. Ordejón, N. T. Son, E. Janzén, and W. J.

Choyke, Phys. Rev. B68, 125201s2003d.
81G.-X. Qian, R. M. Martin, and D. J. Chadi, Phys. Rev. B38,

7649 s1988d.
82M. Posseltsprivate communicationd.

P. ERHART AND K. ALBE PHYSICAL REVIEW B71, 035211s2005d

035211-14


