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Abstract: Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of
a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves,
SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic
waves are generated through an electromechanical coupling. Electromechanical coupling in both
active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with
the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and
application of SAW sensors. This review article presents the physics of guided surface acoustic
waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric
materials and cuts could alter the functionality of the sensors is explained. The article summarizes a
few key configurations of the electrodes and respective guidelines for generating different guided
wave patterns such that new applications can be foreseen. Finally, the article explores the applications
of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-
biological applications along with their crucial roles and potential plans for improvements in the
long-term future in the field of science and technology.

Keywords: surface acoustic waves (SAW); chemical sensors; point-of-care (POC); biosensors; SAW
devices; SAW wave; lithium niobate; lithium tantalate; interdigitated electrodes; IDT; crystal cut;
MEMS; ZnO; AlN; GaAs; GaN; Rayleigh wave; Love wave; Lamb wave; SH-wave

1. Introduction

Human civilization is standing at a juncture in which the application of sensors in
various fields is at its peak, which has never been seen before, and this will only increase
in the future. Applications intensively rely on many devices and sensors that sense the
environment, process information, and subsequently respond to the surroundings with the
help of actuators. For daily actions, education, medical safety, and entertainment, sensors
and actuators are key to the future. It is required that sensors and actuators should be
responsive as quickly as possible and miniaturized at the same time. It is also realized that
the sensors should be available at low cost for general affordability. These sensors and
actuators are often called Microelectromechanical Systems (MEMS) [1–5]. MEMS in itself is
a vast field, and it has applications in a wide variety of sectors such as electronics, aerospace,
automotive, chemical, optical, wireless communications, biomedical, etc. The biosensor,
which is a sub-field of the biomedical devices, is widely used for early diagnostics, and the
detection of analytes now utilizes MEMS technology. A key aspect of using MEMS devices
as biosensors is that they have made a promising impact on medical research. The devices
have the potential to transform a complete wet laboratory into a tiny, miniaturized chip.
They can even have wider applicability, from mechanical to chemical uses and in electrical
and civil applications, along with many other fields [6–10]. These devices consist of both
electrical and mechanical components under a single unit and can measure temperature,
pressure, viscosity, stress, and mass change [11–16]. In the biomedical and chemical sectors,
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the lab-on-a-chip devices have attracted attention in recent decades. Advancements such
as a reduced sample size, faster reaction and analysis, high-throughput, automation, and
portability makes them highly demanded devices. However, irrespective of their field
of application and advancements, and while lab-on-a-chip devices are very effective at
sensing different parameters, they also suffer limitations. One of the major limitations
comes from the requirements of simultaneous sensing and the actuation in an environment
while engaging with mutually exclusive physics and mechanisms [17,18].

To overcome such limitations, acoustic wave devices are proposed for both sensing
and actuation under a single platform simultaneously [19,20]. The physics of surface
acoustic waves (SAWs) were found to be valuable for MEMS devices that require both
sensing and actuation, generally known as SAW devices or sensors. SAW sensors may
cover a wide range of applications, which are not only limited to sensors and actuators
but also as filters, oscillators, transformers, etc. These applications were made possible by
using piezoelectric components as the central backbone of the SAW sensors. Piezoelectric
crystals have a unique property of electromechanical coupling that makes them remarkably
robust [21–23]. Surface acoustic wave technology consists of a piezoelectric substrate and
interdigitated electrodes or transducers (IDTs). The IDTs are patterned on the surface
of the piezo substrates by design. Together, they transform the applied electrical energy
into mechanical energy and generate surface acoustic waves. This process is known as
actuation. The electrical component generates the mechanical energy as acoustic waves in
the piezoelectric substrate under the dynamic change of the electrical input signal due to
the electromechanical coupling [24–28]. The generated surface acoustic waves propagate
on the surface of the piezoelectric wafer and interact with the other patterned interdigitated
electrodes. The IDT at the receiving end produces electrical signals through the mechano-
electrical coupling of the piezoelectric substrate sensing the surface waves using the reverse
mechanism. This process is referred to as acoustic sensing. The surface acoustic waves can
be manipulated in various ways and can be modified considering the variation of different
physical changes, which makes them magnificent actuators and sensors [29–31]. SAW
devices are widely used in many fields, such as in mechanical, chemical, electrical, physical
science, and biological applications. Figure 1 depicts the applications of SAW devices in
various fields and their respective sub-fields. These sensors have the capability of detecting
slightest disturbances on the surface [32–49]. The acoustic wave technology is very useful in
the sensing and structural health monitoring of mechanical structures. Studies have shown
that SAW devices are often used as actuators for repairing or quarantining the damage in a
mechanical system, which is crucial in structural health monitoring [50]. SAW devices have
been successfully demonstrated for material transport in micro and nanoscales [51]. SAW-
based technology is gradually influencing the field of biosensing day-by-day. Applications
from the detection of cancer cells, DNA, antigens–antibodies, biotoxins, and the detection
of biowarfare agents, etc. to bio-actuation and biofluid transport have been successfully
demonstrated using acoustic wave devices [52–59]. In addition to the field of biosensing,
SAWs have made a significant impact on chemical and gas sensing. This includes the
detection of chemical warfare agents, explosives, organic and inorganic vapors, etc. [60–68].
The bio-MEMS devices that are frequently used in the field of biomedical applications have
transformed lab-on-a-chip research. Organ-on-a-chip or lab-on-a-chip devices utilize the
physics of the microfluidic system. SAW sensors have gained a great deal of attention in
the area of microfluidics in the past few years. Only recently, the transportation and control
of cells and fluids in micro-nano scales, sensing of specific fluid species, sensing of heavy
metals, and detection of contaminants in the bio environment have been proposed using
SAW-based microfluidic devices [69–77]. SAW sensors have been widely utilized recently
in light sensing as well. The sensing area of the SAW devices is coated with a photosensitive
chemical that changes its properties upon light exposure, resulting in the mass loading
effect, which changes the acoustic velocity and subsequently affects the frequency shift
utilized for sensing purposes [78–80]. In a very similar manner, SAW devices are also
widely being used as pH sensors [81,82].
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Figure 1. Classification of SAW applications and their detection parameters.

Over the years, many studies and reviews have been conducted on SAWs and devices.
Go et al. (2017) [17] conducted a review on SAW devices for chemical and microfluidics
sensing, Länge et al. (2019) [83] published a review on bulk and SAW sensor arrays for
multi-analyte detection. Similarly, Devkota et al. (2017) [84] published an article on SAW
sensors on chemical vapors and gases. Gowdhaman et al. (2018) [85] conducted a study
of SAW sensors for the detection and identification of toxic gases. Additionally, Priya
et al. (2015) [86] conducted a short review on SAW sensors. Likewise, many other authors
and researchers have studied and conducted reviews on SAW sensors and their various
applications in different fields. None of the above review articles describes an integrated ap-
proach with the physics of waves, their relevance to the selection of piezoelectric substrate,
substrate cut and wave directions, the physics of designing the interdigitated electrodes,
and how different wave physics and different materials could be used for different applica-
tions under one umbrella. In this article, we present four pillars of SAW sensors—a. the
physics of waves, b. the physics of piezoelectric materials and their cut and their influence
on wave propagation, c. the physics of electrode design, and d. fundamental physical
variables—that could be sensed by exploiting the wave physics in an integrated form.

In SAW devices, a piezoelectric substrate is used that generates surface acoustic waves
when an electrical voltage is applied. In other words, the acoustic devices are responsive
to the physical parameters of the species that interact with the mechanical properties of
the guided waves in the SAW sensors. These interactions are manifested by altering the
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respective electrical output from the device in the form of current, voltage, or capacitance.
As a result, SAW sensors that are used for chemical or biological sensing are designed
in such a way that the transducer layer should have the opportunity to interact with the
chemical or biological agents. Then, these interactions are quantitatively converted into a
desired mechanical or electrical response as output. Hoummady et al. (1997) described how
the acoustic phase velocity can be affected by various physical parameters [87–89]. In a
linear sense, Equation (1) elucidates the interruption of the acoustic wave velocity by mass,
electrical, mechanical, and environmental properties. Let us assume that V is the velocity
of the SAW in the substrate and is a function of multiple physical and environmental
parameters. For example, V is a function of mass (m); the effect of electrical properties
(E)—e.g., conductivity; the effect of mechanical properties (Mi)—e.g., elastic modulus
and viscosity; and the effect of the environment (ev), which may include temperature,
pressure, and humidity. Further, if ∂V is the change or perturbation of the wave velocity,
then following the chain rule, dV can be expressed as follows.

dV =

(
∂V
∂m

dm +
∂V
∂E

dE +
∂V

∂Mi
dMi +

∂V
∂ev

dev

)
(1)

Surface acoustic devices explore various sensing parameters. It is evident from the
previous flowchart that, irrespective of their applications, SAW sensing parameters can be
broadly classified into few parameters such as mass, density, viscosity, elastic modulus,
conductivity, temperature, and pressure. Equation (1) collectively present the effects of
these parameters on the wave velocity. It is apparent that the collective change in wave
velocity would not be able to distinguish the change in individual variables in Equation (1).
However, using SAW sensors, measuring the change in wave velocity (dV) is not the only
method to measure the influence parameters or the sensing variables. Using SAW sensor,
one could collect an entire time history signal from an IDT receptor, as discussed later in this
article. The wave signals received by the receptor end the IDTs could be further analyzed
using different analysis methods. The wave signals carry various signal features that are
possibly influenced by the individual sensing variable but appear to be coupled while
measuring the dV. Hence, measuring the change in amplitude of the central frequency, the
frequency shift of the given frequency input, kurtosis, change in phase, and higher-order
frequency peaks to measure nonlinearity will help us to measure the change in sensing
variables individually. Figure 2 describes the classification of different sensing parameters
that are mostly exploited in SAW sensors and possible wave features to find their effects.
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Here, it is necessary to discuss the sensitivity and selectivity of the SAW sensors. In the
most basic terms, sensitivity defines how small of a change in a sensing parameter could be
detected by a sensor. Sensitivity of detection is defined based on the detection of the main
analytes, not the parameters in Figure 2 directly. Please note that the sensing parameters
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in Figure 2 may be the secondary parameters because of external analytes or some other
form of mechanism. It is possible to have a higher sensitivity for a specifically designed
SAW sensor to measure the change in temperature but have very poor sensitivity when
measuring the mass loading. Hence, SAW sensors are not certain to have high sensitivity
for all secondary parameters. Targeted application-driven SAW sensors must be designed
with a specific geometric configuration and specific material, with a specific design of IDTs
to ensure the detection of a specific mechanism through a specific secondary parameter.
For example, a layer of antigen (Ag) will bind with a specific antibody (Ab). This physical
mechanism can be implemented on a SAW sensor, and if the Ab combines with the Ag, the
mass loading will change compared to a layer of a bare Ag. This change in mass loading
may affect the wave velocity and/or the frequency amplitude. The targeted detection of the
change in the wave velocity (feature) will point to the detection of the mechanism of Ab–Ag
combination (primary) via the change in mass loading (secondary). The ultimate target here
will be the detection of an Ab. Thus, sensitivity could be defined by how small an amount
of Ab could be detected. In a nutshell, a feature points to the change in the secondary
parameters as observables to detect the primary mechanism to be detected. On the other
hand, selectivity defines how specific the detection is. For example, in the above experiment,
if a different antibody (Ab) is given and the Ab does not combine with the antigen (Ag),
then the mass loading will not increase, and the detection should be negative. Detection
should be positive and only positive when the Ab is present but should be negative and
only negative when Bb is present. On many occasions, SAW sensors may provide false
positives or false negatives. Both situations compromise the sensitivity and selectivity of
the sensors. When selectivity is confirmed, it is not guaranteed to obtain a highly sensitive
sensor. Vice versa, if sensitivity is enhanced, it is not guaranteed to have a highly selective
sensor. Thus, in the author’s opinion, it is necessary to impose multichannel and multi-
aperture detection to simultaneously ensure sensitivity and selectivity in SAW sensors. A
higher number of fingers in IDTs and more than one IDT terminal for sensing may increase
both the sensitivity and selectivity of the sensors. In the future, more innovative design of
SAW sensors will be required to achieve both of these aims simultaneously. The following
sections shed light on this topic with a more detailed understanding and citing applications.

2. Types of Waves in SAW Devices

SAW devices are designed to operate at ultrasonic frequencies, and an ultrasonic wave
propagates in the substrate. To design a specific SAW sensor for a specific application
(based on target application), it is necessary to know different types of waves that can be
generated in a substrate. In this section, different types of waves that are important for
SAW devices are discussed.

2.1. Rayleigh Waves

Rayleigh waves propagate through the surface of a substrate. The polarization of the
Rayleigh waves is along the plane perpendicular to the surface of the substrate, and the
amplitude of the particle motion decreases exponentially with the depth of the substrate.
Rayleigh waves are the modal superposition of longitudinal (P) and shear vertical (SV)
wave components with traction-free boundary conditions on the substrate [24]. Due to
the property of this wave, the surface particles move in an elliptical fashion, normal to the
surface and parallel to the direction of the propagation [90,91]. In this type of wave, the
velocity of the wave is solely dependent on the material of the substrate and the orientation
of the crystals. The Rayleigh wave velocity is defined by the following equation [91].

cR = cS

(
0.87 + 1.12ν

1 + ν

)
(2)

where ν is the Poisson’s ratio and cS is the shear wave speed through the substrate. Figure 3
shows the schematic of the Rayleigh waves propagating through a surface.
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The effective penetration of the Rayleigh waves is usually less than a wavelength along
the direction into the substrate. The longitudinal and shear potentials that are assumed
to solve the Rayleigh wave are shown in Figure 3, where two unknowns to describe the
longitudinal wave amplitude (AP) and shear-vertical wave amplitude (BSV) are assumed.
A detailed derivation of the Rayleigh wave–particle motions can be found elsewhere [91];
however, final equations for the particle motion in a Rayleigh wave are given by the
following equations:

u1(x2) = Ai

(
k. exp(−αx2) –

(
β2 + k2)

2k
exp(−βx2)

)
(3)

u2(x2) = A

(
−α. exp(−αx2) + i

(
β2 + k2)

2β
exp(−βx2)

)
(4)

where k is the wavenumber along the direction of the wave propagation along the x1 axis;

α =

√
k2 − ω2

c2
p

and β =
√

k2 − ω2

c2
s

are the wave numbers along the x2 axis for longitudinal

and shear-vertical waves, respectively; cS is the shear wave speed; cP is the longitudinal
wave speed in the substrate; and ω is the frequency of the wave.

2.2. Shear Horizontal Waves

For shear horizontal (SH) waves, the motion of the particles is perpendicular (Figure 4)
to the direction of the wave propagation [91]. However, unlike the Rayleigh wave, the
amplitude of the particle displacements does not decay exponentially along the depth. As
the amplitude does not decay, multiple wavelengths are feasible to transmit though the
substrate, and hence this type of wave travels several wavelengths into the substrate or
saturates the complete thickness of the substrate used. This makes it sensitive to the changes
in the device surface. The shear horizontal-SAW sensors are very useful and are widely
used for biochemical detection, especially in liquid media. Compared to the bulk waves,
the surface waves are more sensitive to the perturbations generated in the environment.
The SH-SAW device can be scaled to work at more than a ~100 MHz frequency. This
enables the device to have higher sensitivity while keeping a low signal-to-noise ratio.
These devices are not only small and robust but also are easy to incorporate into on-line,
low-cost systems [92]. The sensitivity of the SH-SAW devices is often enhanced using a
thin guiding layer. Different dielectric materials such as silicon dioxide, silicon nitride,
and various polymers such as PMMA and polyimides are used as the guiding layers on
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SH-SAW devices. With the help of these guiding layers, the propagation velocities are
reduced, and the acoustic energies are trapped in the vicinity of the sensing surface, thus
enhancing the sensitivity to the surface perturbations. The biological/chemical detection
process using the SH-SAW uses the delay line configurations where the sensing area is
between the two IDTs. To design these devices, the effect of the sensor-side IDT is accounted
for in the design responses. Equation (5) states the sensor response that can be modeled by
the transfer function [93].

T2( f )= T12( f )e−i(2πl/λ)ei(2πδls/λ) e−als (5)

where T2 and T12 are the transfer functions in 2-2 and 1-2 directions, δ is the fractional
velocity change of the SH-SAW due to the sensing effect, a is the attenuation coefficient due
to the wave guide layer and the bio/chemically sensitive layer composite, and l and ls are
the IDT’s center-to-center separation and sensing path length.
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The waveguiding of the guiding layer of an appropriate thickness occurs when the
shear wave velocity in the guiding layer is less than the velocity in the substrate. By
assuming that the SH wave is coupled to the IDT, the fractional change in the wave velocity
and the measure of the sensitivity to the mechanical perturbations on the surface are
obtained using perturbation theory [93]:

∆V
V

= −VSH
4

(ρh)

[
1−

(
VM
VSH

)2
]
|U2|2 (6)

where VSH is the unperturbed velocity in the substrate, VM is the velocity in the guiding
layer, ρ is the mass density, h is the layer thickness, and U2 is the normalized particle
velocity displacement amplitude at the surface. In the case when the resulting wave does
not have dispersion and the sensing path equals the propagation length of the SH-SAW, the
equation above also describes the relative frequency shift. Due to this feature, assuming
a purely elastic film, the sensitivities due to mass loading and viscoelastic loadings are
calculated by

Sm = lim
∆m→0

(
∆ f
f

)
/∆m (7)

where ∆m = ρh. The change in the ∆ f is mostly contributed by the mass loading,
but at times the viscoelastic loadings contribute to this change as well. In biosensing
and other chemical applications, the above equation is more than suitable because the
biolayer consisting of the bioreceptors on top of the guiding layer used for detection or
capturing the bio-analytes is on the order of a few molecules and consists of negligible
viscoelastic contributions. This phenomenon is the reason why many researchers have
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used the frequency shifts of SH-SAW devices for acoustic biosensing/chemical applications.
Examples of materials that can generate SH-SAW waves include 36◦ YX-cut LiTaO3, Quartz,
36◦ YX-cut LiNbO3, and 64◦ YX-cut LiNbO3. Please refer to Section 3.2 for an understanding
of crystal-cut SAW wave propagation. A SAW sensor based on SH waves can be used for
liquid and gas sensing [90]. Figure 4 shows the schematic of the shear horizontal waves.

The displacement function for the SH wave can be written as

u3(x1, x2) = (exp(ikx1 − iβx2) + R exp(ikx1 + iβx2)) (8)

SH wave shear stress along direction x3 but perpendicular to x1 is the only non-
vanishing stress that acts in the substrate boundary and can be expressed as

σ13 = 2ikc2
s ρ cos(βx2) exp(ikx1) (9)

where k is the wavenumber along the direction of the wave propagation along the x1 axis,
β2 = k2 − ω2

c2
s

, cS is the shear wave speed, and ρ is the density of the substrate.

2.3. Lamb Waves

Lamb waves are generated in a wave guide between two parallel surfaces; for example,
between the upper and lower surfaces of a wafer or substrate. In other words, Lamb wave
saturates the complete thickness of the substrate. Lamb waves are categorized into two
modal wave types—antisymmetric and symmetric waves—that can propagate through the
plate independently depending on the frequency of the wave. The Lamb wave velocity is
dependent on the product of the frequency and the wafer thickness. The velocity of each
Lamb wave mode varies with frequencies because they are highly dispersive. Depending
on the media and excitation frequency, Lamb waves can propagate at very high velocities
ranging from 800 m/s to 6000 m/s, making them suitable for SAW applications. The Lamb
wave frequency of propagation increases with increasing thickness. Hence, for sensor
applications using Lamb waves, either it is necessary to use a lower frequency (below
5 MHz) or use incredibly thin wafers to access higher frequencies. Figure 5 represents the
schematic of the symmetric and antisymmetric Lamb waves [91].
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those used in deriving the Lamb wave dispersion [91].

In Figure 5, two sets of waves are presented: first, the upward longitudinal and
shear vertical waves, and second the downward longitudinal and shear vertical waves. In
Figure 5, four unknowns are assumed to describe the upward longitudinal wave amplitude
(APu) and shear-vertical wave amplitude (BSVu), and downward longitudinal wave ampli-
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tude (APd) and shear-vertical wave amplitude (BSVd). Additionally, k is the wavenumber

along the direction of the wave propagation along the x1 axis, and α =

√
k2 − ω2

c2
p

and

β =
√

k2 − ω2

c2
s

are the wave numbers along the x2 axis for longitudinal and shear-vertical
waves, respectively; cS is the shear wave speed; cP is the longitudinal wave speed in the
substrate; and ω is the frequency of the wave.

Lamb waves consist of antisymmetric (A) and symmetric (S) wave modes. In the symmet-
ric Lamb wave mode, the displacements of the particles are given by the following equations:

u1(x2) = Ai k· cos(px2) + Bi q· cos(qx2) (10)

u2(x2) = −Ap· sin(px2)− Bi k· sin(qx2) (11)

where p2 = ω2

c2
p
− k2 and q2 = ω2

c2
s
− k2, synonymous to α and β but imaginary.

2.4. Love Waves

Like Rayleigh wave, an SH wave with a decaying amplitude along its depth is not
sustainable. Hence, a thin layer is necessary to guide the SH wave, and then the wave can
decay along with the depth of another layer attached to the thin layer. Such SH waves are
called Love waves. Hence, the Love waves are generated at the interface of two solid elastic
substrate layers where one layer is very thick and the other layer is a thin part on top of the
thick layer. These are the guided waves that propagate through a thin layer of deposition
made on top of the SAW substrate. Very high acoustic energies are concentrated in the
thin guiding layer when Love waves are generated. Thus, these waves are very sensitive
to mass loading on the substrate. Substrates such as 36◦ YX-cut LiTaO3 and 64◦ YX-cut
LiNbO3 are suitable for Love waves where, on top of the SAW substrate, guiding layers
such as SiO2, ZnO, PMMA, SU-8 photoresist, and TiO2 are deposited. This type of wave
has the advantage of having the highest sensitivity (amongst the SAW sensors) due to its
concentrated guiding characteristics. Furthermore, due to their surface-based nature, Love
waves can propagate into liquid media, making them suitable for biosensing. Figure 6
represents the schematic of the Love waves. The motion of the particles of the Love wave
are orthogonal to the direction of the wave propagation [91].
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In Figure 6 three sets are waves are presented: first, an upward shear horizontal wave;
second, a downward shear horizontal wave in the thin solid layer; and third, a decaying



Sensors 2022, 22, 820 10 of 38

shear horizontal wave. In Figure 6, three unknowns are assumed to describe the upward
shear-horizontal wave amplitude (BSHu), downward shear-horizontal wave amplitude
(BSHd) in the thin solid layer, and a decaying shear-horizontal wave amplitude (BSH) in
the thick solid layer. Additionally, k is the wavenumber along the direction of the wave

propagation along x1 axis, β =
√

k2 − ω2

c2
s

is the wave numbers along the x2 axis for the
shear-horizontal wave, cS is the shear wave speed in the substrate, and ω is the frequency
of the Love wave.

Below, Table 1 summarizes different types of waves discussed above and materials to
generate them, application frequencies, attenuation factors and miscellaneous comments
are also presented.

Table 1. Table describing types of waves and materials to be used.

Wave Type Materials Applicable
Frequency Range Attenuat ion Misc. Comments

Rayleigh
Wave

• 128◦ YX lithium niobate
• 41◦ YX lithium niobate
• ST-Quartz

• ~3 MHz–~2
GHz

• Most
application
345 MHz

• Highly attenuative
• With fluid load on the

top of the substrate,
attenuation is
significant

• For Rayleigh wave
generation, power
consumption is lower

• Can be of low cost

Lamb Wave

Generated in any bounded
plate-like structure. This wave
is generated in layered media
at lower frequencies. However,
for high frequency
applications, it is hard to find
natural material where Lamb
wave could be used for SAW
sensors. Thus, artificial thin
films—e.g., ZnO, AlN, PVDF
thin film—could be used

• ~200–~2 MHz
in natural
materials

• 200 MHz–2
GHz in
artificially
made thin
films

• Low attenuation,
propagates long
distance

• In presence of liquid
load on the substrate,
leaky-Lamb wave
propagates

• Leaky waves
attenuate faster

• Lamb waves consists
of Antisymmetric and
Symmetric wave
modes.

• First antisymmetric
(A0) and first
symmetric (S0) wave
modes are easy to
detect with
appropriate delay
lines.

SH-Wave
• 64◦ YX lithium niobate
• 36◦ YX lithium niobate
• Quartz

• ~100–~450
MHz

• Nondispersive
• Low attenuation;

however, sometimes
combined with bulk
wave, so hard to
detect

• Low cost
• Wide application,
• Suitable to use with

fluid loading on the
substrate

Love Wave

• Must have a guiding
layer on top of the
substrate

• Possible substrates:
Similar to SH-wave

• Possible guiding layers:
SiO2, ZnO, TiO2, SU-8
photoresists, polymethyl
methacrylate etc.

• ~100–~450
MHz same as
SH wave

• With increasing
coating thickness
insertion loss
increases

• Attenuation in
guiding layer or the
coating layer affects
significantly

• Highly sensitive
• Works in fluid

loading environment

3. Materials for the SAW Devices
3.1. Constitutive Properties of Piezoelectric Materials

SAW technology is truly based on the piezoelectric phenomenon. Piezoelectric crystals
have fixed dipoles that re-orient in a fixed direction with the application of an external
electric field to the crystal. This re-orientation of the dipoles causes mechanical strains in the
piezo-crystals. The piezoelectric effect works exclusively with the anisotropic crystal lattice.
Hence, high importance is given to the cut and the orientation of the crystal during the
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design and manufacturing of the base piezoelectric material. The most important physics
that separate piezoelectric devices from others is their unique property of electromechanical
coupling. Unlike pure mechanical or electrical devices, the electromechanical property
of the piezoelectric crystals enables an electrical response with mechanical perturbation
and vice versa. [94–100]. The following are the constitutive equations that describe the
piezoelectric phenomena [101]:

Strain–Charge Form : Strain–Charge Form :
S = sE·T+dt·E T = cE·S−et·E
D = d·T+εT·E D = e · S+εS·E
provided, cE = s−1

E ; e = d·s−1
E and εS = εT−d·s−1

E ·d
t

(12)

where S denotes the vectorized strain tensor; T represents the vectorized stress tensor; ε
refers to the dielectric permittivity tensor; E refers to the external electric field; s represents
the compliance matrix, written in 6 × 6 matrix form, where it is a fourth-order tensor; D
denotes the electric displacement; and d is a third-order tensor representing the piezoelectric
constant, written in a 3 × 6 matrix to be multiplied with the vectorized stress tensor. The
governing differential equation of wave propagation in the substrate takes the traditional
Navier’s equation as follows:

ρ
∂2ui
∂t2 =

∂σij

∂xj
+ fi (13)

where ui is the displacement of the media in three directions, σij is a stress tensor, and fi is
the body force in the i-th direction. The solution of the above equation with an appropriate
form of the constitutive relation of the substrate and boundary condition will provide the
different forms of waves discussed in the previous section. Specific solutions of SAW with
different scenarios are not presented herein and can be found elsewhere [91]. However, the
displacement potential functions that are required to solve Equation (13) for different wave
types are given in Section 2 (Figures 3–6).

Additionally, specific to the substrate, an important factor that determines the effi-
ciency of a piezoelectric material is the piezoelectric coupling coefficient factor. This is also
at times referred to as the electromechanical coupling coefficient, which is also defined as
the ratio of the mechanical energy collected in return to an electrical input or vice-versa.
The electromechanical coupling coefficient is given by k, where

k =
d√
sε

(14)

To receive maximum efficacy of the piezoelectric material, a higher value of the
piezoelectric charge constant is required. A SAW device consists of interdigitated electrodes
(IDTs) patterned on top of the piezoelectric wafer. The input terminals of the IDTs are
connected to an alternating current (AC) terminal (sinusoidal electric signal). As a result,
the polarity of the interdigitated electrodes is alternated with the AC signal, which in turn
generates alternating positive and negative electric fields between the fingers of the IDTs.
Due to the piezoelectric properties, these alternating regions induce mechanical strains;
i.e., local tension and compression produced between the fingers of the electrodes. This
phenomenon generates mechanical waves—a sinusoidal effect along the surface of the
wafer. As per the conventional setup of the device, the mechanical waves are generated
along both sides of the electrodes, thus producing half of the energy of the waveform
propagating through the delay line towards the direction of the output IDTs [102–104].
Figure 7 shows a basic schematic of the phenomenon of a surface acoustic wave generated
in a piezoelectric wafer.
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The surface acoustic wave propagates through the delay line to another set of the
interdigitated electrodes on the other side. Due to the direct piezoelectric property, the
surface acoustic wave (crests and troughs) produces an alternating electrical output sig-
nal when it interacts with the IDTs on the opposite side. The output signal is recorded,
compared, and analyzed with the input signal. The changes in the wave velocity and the
amplitude recorded from the sensing terminal can be determined. A frequency shift, or
the amplitude of a specific frequency, and the time-delay of the output signal are used to
measure different physical parameters and properties [105–108]. The material selection of
the substrate or the wafer equally plays a crucial role in the design of SAW devices. The
substrate selection requires both the material type and considerations of crystal orientations
for the desired piezoelectric output. The properties that are highly involved in the material
selection include the electromechanical coupling factor, coefficient of thermal expansion,
wave velocity, compatibility, and finally the cost of the raw materials. The wave velocity
through the material is crucial in the design of SAW devices. The crystalline cut of the
piezo materials in a desired orientation enhances the electromechanical coupling of the
piezoelectric wafer, which is highly important for the design [109–112]. Additionally, a
low coefficient of thermal expansion of the piezoelectric materials is preferred, excluding
in temperature sensing using SAW devices. Table 2 shows the comparison of various
piezoelectric substrates with respect to the orientation, wave velocity, electromechanical
coupling, and thermal coefficient factors.
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Table 2. Comparison table for the properties of different bulk piezoelectric materials.

Materials Orientation/Cut Piezoelectric
Coefficient (C/N), d33 Wave Velocity (m/s) Density (Kg/m3)

Quartz X axis 2.3 × 10−12 (d11) 3159 (Transverse) 2650
Quartz ST-cut 2.3 × 10−12 (d11) 3159 (Transverse) 2650

Lithium niobate Y, Z axis 6 × 10−12 3488 4650
Lithium niobate 128◦ Y, X axis 12 × 10−12 3992 4650

Lithium tantalate Y, Z axis 8 × 10−12 3230 7465
Lithium tantalate X-cut 5.7 × 10−12 3290 7465

Langasite 7 × 10−12 2723 (0◦; 138,5◦; 26,7◦) 5746
PVDF film 20 × 10−12 2600 (Longitudinal) 1780

Lead zirconate titanate (PZT) 110 × 10−12 3900 (Longitudinal) 7500
Barium titanate 160 × 10−12 4392 5700

Materials Orientation/Cut Elastic Modulus (GPa) Curie Temperature
(◦C)

Electromechanical
Coupling Coefficient,

k2 (%)

Quartz X axis 97.2 573 0.14
Quartz ST-cut 71.7 573 0.03

lithium niobate Y, Z axis 202 (C11) 1150 0.045
lithium niobate 128◦ Y, X axis 202 (C11) 1150 5–11.3

Lithium tantalate Y, Z axis 233.1 (C11) 607 0.66
Lithium tantalate X-cut 233.1 (C11) 607 0.75

Langasite 189.2 (C11) N/A 0.36
PVDF film 2.5 80–100 2.9

Lead zirconate titanate (PZT) 60 200 20–35
Barium titanate 110 120 0.34

3.2. Piezoelectric Crystal Cuts and Their SAW Propagation

Although there are very wide varieties of piezoelectric crystals, these crystals are often
cut to a specific orientation to achieve the highest piezoelectric efficiency and also for a
particular type of wave to be generated based on the user’s requirement. For example,
36◦ YX cut lithium tantalate generates shear horizontal waves. In a similar manner, a 128◦

YX cut of lithium niobate is capable of generating Rayleigh waves. A strong piezoelectric
effect is often achieved using the crystal cuts. The values of the piezoelectric coefficient
in the matrices have direct effects on the crystal cuts because of their effect on the elec-
tromechanical coupling coefficient, which subsequently corresponds to the efficacy of the
piezoelectric material or substrate. The understanding of the nomenclature of a specific cut
corresponding to a piezoelectric crystal is crucial for generating a particular type of wave
and enhancing its piezoelectric effect. The first letter corresponding to a piezo-crystal cut
refers to the thickness of the wafer along that direction, and the second letter corresponds
to the rotation about that axis corresponding to a specified angle. For example, a 64◦ YX
lithium niobate wafer has the thickness of the wafer along the first letter, which is the Y
axis, and then the crystal is rotated to 64◦ about the second letter, which is the X axis, and
then the crystal is cut into wafers. Figure 8 shows the concepts of 128◦ YX and 64◦ YX cut
lithium niobate crystal, 45◦ XZ cut Lithium Tetraborate, and 112◦ XY cut Lithium Tantalate.

The orientational cut of a particular piezoelectric crystal also has its effect on the wave
velocity. A Lithium Niobate crystal without any orientational cut has a wave velocity of
3488 m/s, whereas a 128◦ YX cut Lithium Niobate crystal has a Rayleigh wave velocity
of 3979 m/s. As mentioned above, a piezoelectric crystal is orientated and cut to specific
angles and axes based on the types of wave generation and velocity requirement, but the
orientational rotation also leads to the formation of three new different axes, namely x, y,
and z, respectively. The transformed axes when compared to the original axes are orientated
in certain angles known as the Eulerian angles. The Eulerian angles are represented by
α, β, and γ, respectively. These angles are utilized in the fabrication of the piezoelectric
wafers and are often used for the simulation process in predefining the axes of the plane of
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the piezo substrate. Based on these factors, we demonstrate a table (Table 3) with different
piezoelectric crystals and their orientational cuts in generating different types of waves.
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Table 3. Description of different piezoelectric materials and their cuts for specific wave generation.

Bare Substrates (Unless Specified with
Thin Film)

Direction of Wave
Propagation Rayleigh Waves SH-Waves Love Waves

128◦YX lithium niobate X-direction
√

64◦ YX lithium niobate, with coating X-direction
√

36◦ YX lithium tantalate X-direction
√

36◦ YX lithium tantalate Y-direction
√

36◦ YX lithium tantalate
with coating Y-direction

√

YZ-cut lithium niobate Z-direction
√

Langasite Euler angle (0◦, 22◦, 90◦)
√

Potassium Niobate Euler angle (0◦, 90◦, 0◦)
√

ST-cut Quartz with PMMA or SiO2 layer Y-direction
√

41◦ YX lithium niobate X-direction
√

36◦ YX lithium tantalate with PMMA or
SiO2 layer X-direction

√

ZnO thin films Euler angle (90◦, 90◦, 0◦)
√

In the field of SAW technologies, not only the bulk substrates but also the thin film
acoustic wave have attracted the attention of researchers over the past few years. Thin-film
piezoelectric materials such as ZnO, AlN, and PZT (Piezoceramics) are regarded as one of
the outstanding technologies for lab-on-a-chip and acoustofluidics devices [113–115]. The
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bulk substrates are often expensive and brittle. In such scenarios, the thin-film technologies
have an advantage over them. Additional merits of thin-film technologies, such as their
flexibility and the ability of depositing the film focused only into the acoustic sensing area
irrespective of the whole substrate, save both time and cost directly [116,117]. In this process,
the wave is propagated along the substrate without the requirement of the piezoelectric
top layer. Amongst the thin-film piezoelectric materials, piezoceramics have been reported
to demonstrate the largest piezoelectric constant and electromechanical coupling, which
are both crucial for sensing and actuation, although PZT suffers some disadvantages
such as high energy loss, low wave velocity, low-quality factors, and sometimes being
difficult to fabricate [118,119]. ZnO is another thin-film material that is highly regarded for
piezoelectric devices because of its higher piezoelectric coupling coefficient. It is reported
to have low film stress and has better adhesion than most of the substrates, due to which
thick films (few microns) can be deposited. In other words, ZnO films are acceptable
for thick film surface acoustic wave devices. ZnO film-based SAW devices are regarded
as very biocompatible, due to which they are popular and widely used in the field of
biosensing [120–125]. Aluminum nitride has also attracted attention in the past few years.
It is also considered to be one of the piezoelectric thin-film materials that can tolerate high
temperature, making it quite useful for high temperature-based SAW applications. One
of the most unique features about AlN films is that they have the highest wave velocity
among all other thin film piezoelectric deposits, positioning the film as a popular thin-film
piezoelectric material [126–132]. However, unlike the ZnO film, AlN cannot be used for
thick films and hence is mostly used in the applications of thin films and high-frequency-
based applications. Additional to these, certain materials such as gallium arsenide (GaAs),
polyvinylidene fluoride (PVDF), and gallium nitride (GaN) are also excellent piezoelectric
materials that are reported to be widely used in SAW devices. Only recently, aluminum
gallium nitride (AlGaN) has also been experimented with as a potential piezo thin film [126].
Table 4 shows the material properties of various deposited piezoelectric materials used in
surface acoustic wave devices.

Table 4. Description of different deposited piezoelectrical material properties.

Properties ZnO GaN AlN GaAs

Density (Kg/m3) 5610 6150 3300 5317
Elastic modulus (GPa) 140 320 300–350 86

Poisson’s ratio 0.36 0.183 0.29 0.31
Refractive index 2 2.5 1.96 3.85

Piezoelectric coefficient (pC/N), d33 12 4.5 4.5, 6.4 3.4
Electromechanical coupling coefficient, k2 (%) 1.5 0.13 3.1–8 0.07

Wave velocity (m/s) 2720 4130 5800 4730
Dielectric constant 8.66 8.9 8.5–10 12.9

Coefficient of thermal expansion (/◦C) 6.5 × 10−6 3.17 × 10−6 5.2 × 10−6 5.73 × 10−6

4. Configuration of the Interdigitated Electrodes in the SAW Devices

Surface acoustic waves (SAWs) are basically electromechanical waves generated on
the surface of a piezoelectric substrate. As discussed earlier, a traveling surface wave is
directed along the crystal generated by the interdigitated electrodes utilizing the electrome-
chanical coupling between the input electrical signal and the piezoelectric substrate. The
interdigitated electrodes can be designed in numerous ways and in a different configuration
depending on the target applications and user requirement. Additionally, efforts were
made towards achieving the valuable and unique design of IDTs to reduce the insertion loss
and achieve high center frequency responses. The frequency bandwidth and the electrical
impedance are highly dependent on certain parameters such as the electrode width, spac-
ing, aperture, and number of fingers of the designed IDT. Let us call the IDTs transducers
for the SAW sensors. Transducers are designed for electromechanical transduction and
should be designed based on the amount of energy to be transmitted at certain frequency.
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Through electromechanical transduction, mechanical energy as a stress wave propagates
in the substrate. The amplitude, phase, and frequency of the stress wave to be generated
in the substrate depend on the transducers. Once the wave is generated, the reflected
wave energy also travels back into the substrate in the opposite direction, which may
destructively interfere with and diminish the response signal. Hence, the design of IDTs
or transducers should be such that reflection by the IDTs could be reduced to increase
the sensitivity of the SAW sensors. On the other hand, to enhance both sensitivity and
selectivity, a high frequency wave is required in the same sensing platform. This could
be achieved by generating the higher harmonics of the central frequency of excitation.
The generation of a central frequency through transduction, the reduction of reflection,
re-generation, and accessing the higher harmonics is the guiding factor of the design of
IDTs. These properties could be manipulated using the following electrode parameters:
electrode width (w), spacing (s), aperture (W), number of fingers (N), and apodization.
Few physics facts are noted. A higher electrode width (w) causes a lower central frequency
f to be generated. A higher spacing (s) causes lower refection; however, spacing (s) and
width (w) should be on the integer order of the wavelength λ of the wave generated. For
most devices, the typical IDT spacing is a multiple of an integer or one half, one third, or
one quarter of the wavelength λ = 2π/k, where k is the wavenumber along the direction
of the wave propagation. The acoustic wavelength can also be obtained using the equation
λ = c/ f , where c refers to the phase wave velocity and f refers to the central frequency
of the surface wave. As the number of fingers (nf) increases, the aperture (W) decreases,
the transmitted wave energy increases, and thus the wave amplitude increases. However,
within one wavelength λ, if the number of fingers increases, the SAW sensor generates
higher harmonics. By controlling the finger width (w) to period (L) ratio, the period L < λ
controls the number of harmonics generated.

The interdigitated electrodes act as a capacitive system. As per the IDT configuration,
the total capacitance is given by

Ctotal = 1/2π f Z (15)

where Z refers to the impedance of the IDT. It has been shown that, for the best responsive
result, the impedance of the IDT should match the impedance of the whole measure-
ment system. Another important factor is the aperture (ap) of the IDTs. Considering the
overlapped part (fingers) of the IDT system, the aperture W is given by

W = Ctotal/Co·N (16)

where N represents the total number of the IDT fingers.
For the sensing purpose of a SAW device, the central frequency and the insertion loss

are also crucial. For example, a very sensitive SAW-based sensor must possess a central
frequency in the GHz range. However, to achieve this, the system suffers insertion losses.
Due to one of these reasons, there are various designs of IDTs that enhance efficiency,
performance, and stability based on the application or the required system [133–135].
Following the discussion, the pros and cons of each IDT design are tabulated in Table 4.

4.1. Delay Line Configuration

As for the SAW devices, a single interdigitated electrode-based configuration can be
used to generate planar traveling waves that propagate along the surface of the piezoelectric
device. However, a set of two or more opposing interdigitated electrodes can be used to
generate constructive interference and produce standing waves. One such design and the
basic configuration is known as the delay line configuration. Figure 9 describes the setup
of the basic delay line configuration with and without resonators.
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The delay line configuration consists of two IDTs present on top of the piezoelectric
substrate. The first IDT or the input IDT generates the surface acoustic waves, and the
generated wave propagates through the sensing platform. The wave interacts and an
electrical signal is generated on the second IDT, which is the readout, due to the piezoelectric
phenomenon [136,137]. Basically, the distance between the readout IDT and the input IDT
is called the delay line where, in general, the sensing layers are deposited. A very important
parameter known as the Q factor or quality factor is often used in the fields of physics
and engineering. The quality factor is a dimensionless parameter that indicates the energy
losses in the resonant element. For electrical and RF components, the Q factor is the ratio of
the energy stored in a resonator to the energy supplied to it per cycle. A Q factor with high
values increases the resonance, which directly enhances the sensitivity and the selectivity of
the sensor devices [138,139] defined at the end of Section 1. The amount of the energy losses
is very low with a higher quality factor, causing the oscillators to oscillate with a compact
range of frequencies and thus improving the stability of the devices. For SAW sensors, a
special configuration exists in which a pair of additional electrodes is deposited to enhance
the quality factor and decrease the insertion loss that reflects to produce resonating cavities.
The resulting resonant cavity helps in focusing the acoustic wave energy to the substrate,
which subsequently helps to improve the performance [140–143].

The general delay line configuration or the bi-directional electrode has a finger spacing
that usually consists of a grating structure with the intervals of λ/4. Figure 10 shows a
typical layout of the bi-directional electrodes.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 39 
 

 

generated wave propagates through the sensing platform. The wave interacts and an elec-

trical signal is generated on the second IDT, which is the readout, due to the piezoelectric 

phenomenon [136,137]. Basically, the distance between the readout IDT and the input IDT 

is called the delay line where, in general, the sensing layers are deposited. A very im-

portant parameter known as the Q factor or quality factor is often used in the fields of 

physics and engineering. The quality factor is a dimensionless parameter that indicates 

the energy losses in the resonant element. For electrical and RF components, the Q factor 

is the ratio of the energy stored in a resonator to the energy supplied to it per cycle. A Q 

factor with high values increases the resonance, which directly enhances the sensitivity 

and the selectivity of the sensor devices [138,139] defined at the end of Section 1. The 

amount of the energy losses is very low with a higher quality factor, causing the oscillators 

to oscillate with a compact range of frequencies and thus improving the stability of the 

devices. For SAW sensors, a special configuration exists in which a pair of additional elec-

trodes is deposited to enhance the quality factor and decrease the insertion loss that re-

flects to produce resonating cavities. The resulting resonant cavity helps in focusing the 

acoustic wave energy to the substrate, which subsequently helps to improve the perfor-

mance [140–143]. 

The general delay line configuration or the bi-directional electrode has a finger spac-

ing that usually consists of a grating structure with the intervals of λ/4. Figure 10 shows a 

typical layout of the bi-directional electrodes. 

 

Figure 10. Schematic representation of the bi-directional electrodes [2]. 

4.2. Split Electrodes or Double Electrode Configuration 

The split electrode design consists of a grating structure that has the electrodes at 

intervals of λ/8 along with a center-to-center distance of λ/4. The primary reasons for us-

ing a split electrode transducer is to eliminate reflections, to minimize triple transit and 

self-resonance, and to operate at the third harmonic to access higher frequencies. Figure 

11 describes the design of the split electrodes. The disadvantage of the split electrode con-

figuration is that it is not as effective in the reduction of the reflection of the waves as 

intended. The split electrodes allow operation at the third harmonic, giving room for the 

higher frequencies for a specific minimum electrode width [2,90,144]. In the split electrode 

configuration, there exists a design, which is also known as the meander line, in which all 

the gaps and the electrode fingers are at 3λ/8, which produces a third harmonic response 

stronger than its original response. 

Figure 10. Schematic representation of the bi-directional electrodes [2].



Sensors 2022, 22, 820 18 of 38

4.2. Split Electrodes or Double Electrode Configuration

The split electrode design consists of a grating structure that has the electrodes at
intervals of λ/8 along with a center-to-center distance of λ/4. The primary reasons for
using a split electrode transducer is to eliminate reflections, to minimize triple transit
and self-resonance, and to operate at the third harmonic to access higher frequencies.
Figure 11 describes the design of the split electrodes. The disadvantage of the split electrode
configuration is that it is not as effective in the reduction of the reflection of the waves as
intended. The split electrodes allow operation at the third harmonic, giving room for the
higher frequencies for a specific minimum electrode width [2,90,144]. In the split electrode
configuration, there exists a design, which is also known as the meander line, in which all
the gaps and the electrode fingers are at 3λ/8, which produces a third harmonic response
stronger than its original response.
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4.3. Single Phase Unidirectional Transducer (SPUDT) Electrode Configuration

The single-phase unidirectional transducer is another configuration consisting of inter-
digitated that which nullifies the regenerated waves with internally configured reflectors
and thus generates unidirectional surface acoustic waves that propagate from one side of
the IDTs. This special design has the potential to eliminate the triple transition effect and re-
duce the insertion loss. The single-phase unidirectional transducer design has an electrode
finger width of λ/4 and λ/8 with an interval spacing of λ/8 and 3λ/16 [2,90,145,146] in
both input and output IDTs. Figure 12 shows the design of the SPUDT. The SPUDT-based
SAW devices have their application in microfluidics and sensors. The design has shown not
only improved performance but also maintains the devices at the best operating conditions.
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4.4. Distributed Acoustic Reflecting Transducer (DART) Configuration

The distributed acoustic reflecting transducers (DARTs) consist of a series of simi-
lar cells with a length equivalent to the wavelength λ. In this design, each cell contains
two electrodes with λ/8 as their width, with individual electrodes as λ/4. The cell con-
sists of the inter-electrode region, which is equal to λ/8. Figure 13 shows the design of
the DART configuration. In this configuration, different reflections can be attained to
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nullify the net reflection and transmission effects [2,90,147–149]. Like the SPUDTs, the
distributed acoustic reflecting transducer-based SAW devices are also used for sensing and
microfluidic applications.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 39 
 

 

 

Figure 13. Schematic representation of the DART electrode configuration [2]. 

4.5. Floating Electrode Unidirectional Transducers (FEUDTs) Configuration 

One of the other electrode designs is the floating electrode unidirectional transduc-

ers. In this configuration, one or more electrodes are patterned and not connected between 

the simple interdigitated configurations. The electrodes appear to be freely floating as 

they are not connected to any subsequent terminals. The FEUDTs have the advantage of 

producing higher frequencies from the same electrode width when compared to the con-

ventional interdigitated pattern. It is reported that the FEUDTs type of pattern consists of 

higher acoustic energies in the forward directions and lower insertion losses when com-

pared to the bi-directional IDTs [2,90,150–152]. This phenomenon directly results in better 

sensitivity. The FEUDTs are also widely used in sensors and microfluidics where higher 

operational frequencies are required. Figure 14 shows the FEUDTs configuration. 

 

Figure 14. Schematic representation of the FEUDT electrodes configuration, where electrodes are num-

bered, 1, 2, 3, 4 designated by light blue, grey, red and dark blue colors, respectively in FEUDT layout [2]. 

4.6. Dispersive Delay Line (Chirped) Electrode Configuration 

The dispersive delay line is a type of IDT design for SAW devices in which the fingers 

of the electrodes have varied dimensions. The pitch and the width of the electrodes have 

different values within the same unit of the whole IDTs. The dispersive delay lines have 

varying widths that produce altered frequencies in the electrodes. The varied frequency 

setup enables the wave modes and the reflectivity to be controlled and for the pitch of the 

wave to be linearly modulated. This type of design can possess a huge number of band-

widths [2,90,153]. Figure 15 shows an example of a dispersive delay line configuration. 

This design can be used for microfluidics and other biochemical sensing purposes. It was 

found that the dispersive delay line design can also be used for the manipulation of the 

droplets in fluid dynamics, and it helps in producing focused acoustic energies. 

 

Figure 15. Schematic representation of the dispersive delay line electrode configuration [153]. 

Figure 13. Schematic representation of the DART electrode configuration [2].

4.5. Floating Electrode Unidirectional Transducers (FEUDTs) Configuration

One of the other electrode designs is the floating electrode unidirectional transducers.
In this configuration, one or more electrodes are patterned and not connected between the
simple interdigitated configurations. The electrodes appear to be freely floating as they are
not connected to any subsequent terminals. The FEUDTs have the advantage of producing
higher frequencies from the same electrode width when compared to the conventional
interdigitated pattern. It is reported that the FEUDTs type of pattern consists of higher
acoustic energies in the forward directions and lower insertion losses when compared to
the bi-directional IDTs [2,90,150–152]. This phenomenon directly results in better sensitivity.
The FEUDTs are also widely used in sensors and microfluidics where higher operational
frequencies are required. Figure 14 shows the FEUDTs configuration.
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Figure 14. Schematic representation of the FEUDT electrodes configuration, where electrodes are
numbered, 1, 2, 3, 4 designated by light blue, grey, red and dark blue colors, respectively in FEUDT
layout [2].

4.6. Dispersive Delay Line (Chirped) Electrode Configuration

The dispersive delay line is a type of IDT design for SAW devices in which the fingers
of the electrodes have varied dimensions. The pitch and the width of the electrodes have
different values within the same unit of the whole IDTs. The dispersive delay lines have
varying widths that produce altered frequencies in the electrodes. The varied frequency
setup enables the wave modes and the reflectivity to be controlled and for the pitch of
the wave to be linearly modulated. This type of design can possess a huge number of
bandwidths [2,90,153]. Figure 15 shows an example of a dispersive delay line configuration.
This design can be used for microfluidics and other biochemical sensing purposes. It was
found that the dispersive delay line design can also be used for the manipulation of the
droplets in fluid dynamics, and it helps in producing focused acoustic energies.
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4.7. Tapered Interdigitated Electrode Configuration

The tapered or slant interdigitated electrode configuration has a similar concept to
that of the dispersive delay line configuration. This design consists of each individual
electrode finger, which is tapered. The width of each electrode finger gradually changes
from thicker to thinner and vice versa. Like the dispersive delay configuration, the ta-
pered IDTs also enable varying frequencies to be produced with the electrodes due to
the gradual change in the periodicity. This configuration allows the system to achieve a
broader bandwidth. The slant electrode design is widely used in various applications,
such as the non-destructive evaluation of the thin films and measurements of the band
gaps in the phononic crystals [2,90,154–158]. Figure 16 denotes the schematic of the slant
interdigitated electrodes.
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4.8. Focused Electrodes Configuration

The focused electrodes are a type of design of the IDTs in which the interdigitated
electrodes are designed or curled in a particular manner such that all the generated waves
propagate to a particular point or focus of interest. Due to this typical circular design, a
large amount of focused acoustic energies is generated. This acoustic energy is used for
better pumping and mixing, particularly in the field of fluidics. Additionally, due to the
focused waves phenomenon, higher sensitivity is reported in the case of the sensors as
more wavefronts passes through a small area of interest [2,90,159–163]. Tan et al. (2009) [77]
performed an experiment in which the superposition of the focused surface acoustic waves
produced a strong standing wave. A droplet is placed into the directed area on which
the focused SAWs (Figure 17a) radiate into the droplet. Due to this phenomenon, the
droplet placed in the piezoelectric substrate deforms into a coherent elongated jet. Figure 17
shows the schematic of the circular electrodes and the jet formation of the droplet. This
configuration is widely used in both sensing and actuation applications. Additionally, this
design is reported to take advantage of a higher signal-to-noise ratio that enhances the
sensitivity of a particular sensor.
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Figure 17. Focused electrode configuration and F-SAW on liquid manipulation [77]. (a) a droplet is
placed into the directed area on which the focused SAWs radiate into the droplet. Jet formation of the
droplet at time (b) t = 0 s, (c) t = 0.67 ms and (d) t = 1.33 ms due to focused SAW exposure.

When designing a particular set of interdigitated electrodes, different crucial param-
eters are taken into account such as the resonant frequency, power output density, the
material of the electrodes, the geometry or dimensions of the electrodes, the properties of
the piezoelectric substrate, and the quantity of reflective electrodes. Overall, studies were
conducted and new configurations were developed to increase the efficacy of the acoustic
waves, to enhance the spurious signal suppression, to reduce the amount of insertion loss,
and to decrease the signal distortion. The following table (Table 5) lists the pros and cons of
each type of IDT discussed above.

Table 5. Comparison and recommendations of the IDT types for SAW applications.

Electrodes
Configuration

Pitch and Electrodes
Distances Advantages Disadvantages Recommended

Applications

Delay line
configuration λ/4 Simple design. Basic IDT

structure easy to fabricate

Internal mechanical
edge reflections, loss of
wave energy, low
quality factor

General basic SAW usage

Split electrode
configuration

Electrodes—λ/8
Center to center—λ/4

The operation at third
harmonic is feasible
allowing higher frequency
for a minimum electrode
width

The efficiency of
reducing the reflection
is not enough

General basic SAW usage

Single phase
unidirectional
transducers
(SPUDT)

Electrode width—λ/4
and λ/8
Interval
spacing—λ/8 and
3λ/16

Reduce insertion loss.
Cancels the regenerated
waves using the internal
tuned reflectors

Reduction in total SAW
energy

Microfluidics and
sensors, mobile and radio
applications, gas sensing

Distributed
Acoustic Reflecting
Transducers
(DART)

Each cell distance—λ
Each cell consists of
two electrodes—λ/8
one electrode—λ/4

The DART configuration
possesses the advantage of
cancelling the net reflection
and the transmission
effects that it achieves
using variable reflection

The fabrication of the
electrodes is slightly
complicated
comparatively

Sensors and actuators,
microfluidics and other
general SAW-based
application
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Table 5. Cont.

Electrodes
Configuration

Pitch and Electrodes
Distances Advantages Disadvantages Recommended

Applications

Floating Electrodes
Unidirectional
Transducers
(FEUDTs)

Floating electrodes to
the terminal
electrodes—λ/6

Produces higher frequency
from the same electrode
width compared to
conventional IDT. Higher
acoustic energies and
lower insertion loss

The fabrication of the
electrodes is slightly
complicated and not
recommended for
applications with a low
desired frequency

MEMS applications,
sensors and actuators
with highly desired
frequency

Dispersive delay
line configuration

The pitch and the
electrodes thickness
decrease gradually as
per the user
configuration or the
requirement

The varying width and the
pitch help in producing
different frequencies range
over entire electrode. A
large number of
bandwidths are attained

The fabrication is
slightly more
complicated than the
conventional IDT

MEMS applications,
sensors and actuators,
microfluidic
manipulation, chemical
and biosensing etc.

Tapered
interdigitated
electrodes

The width and the
pitch of the electrode
changes from thicker
to thinner and
vice-versa as per the
user.

The tapered IDTs produce
varying frequencies with
the electrodes as the
periodicity is changing. A
broader bandwidth is
achievable

The fabrication is
slightly more
complicated than the
conventional IDT

Non-Destructive
Evaluation of thin films,
phononic crystals band
gaps measurements,
MEMS applications,
sensors and actuators,
chemical and biosensing,
mechanical sensing etc.

Focused electrodes

The electrodes are
configured in a
circular arc with an
increasing radius
along with uniform
width and thickness

The focused electrodes
focus high number of
acoustic energies
concentrated to a particular
point of interest

Not suitable for the
applications where
strong acoustic energies
are not desired. Highly
specific and restricted
to shorter area of
interest

Mechanical/microfluidics
pumping and mixing.
Suitable of better
actuation and resolution
in the field of biomedical,
chemical, and mechanical
applications based on
SAW

4.9. Sensing Membranes for the SAW Sensors

As mentioned earlier, the SAW sensors are not only used in electronics, but their use
is also growing rapidly in the field of chemical and biomedical sensing. These sensors
for detection purposes are often used in liquid and gas media. Thus, the SAW sensor
consists of a sensing film and a conversion element. The sensing membrane or the sensing
film is the main core of the SAW sensor, especially in the field of biosensing and chemical
sensing. The sensing layer acts as a bridge, where the selective analytes or the target
molecules are adsorbed on the surface of the sensing membrane. As a result, the selective
mass loading of the analytes corresponds to the shifts in frequency, phase, or acoustic
velocity that lead to the detection process. For these purposes, the selection of a highly
sensitive and selective sensing membrane is desired for the SAW sensors. Although a
wide range of materials is used as sensing membranes, these membranes are majorly
categorized into polymers, semiconductors, and graphene-based sensing films [164]. The
selection of a suitable sensing membrane involves several factors such as good selectivity
of the target molecules or analytes, high response, stability, low-cost, and most of all,
good biocompatibility with low toxicity [165]. SH-SAWs are mostly used for microfluidic,
biological, and chemical sensing because of their excellent efficacy and low damping in
liquid or gas media. The commonly used sensing membranes for this type of sensors are
silicon dioxide and PMMA. Metal oxides have been widely used as sensing membranes over
the years. These are known to be used for SAW sensing, especially gas sensing, because of
their higher thermal stability, which makes them appropriate even under harsh conditions.
Metal oxides such as silicon dioxide (SiO2), indium oxide (InO2), tungsten trioxide (WO3),
and zinc oxide (ZnO) are very commonly utilized as sensing membranes [165]. In addition,



Sensors 2022, 22, 820 23 of 38

cobalt oxide (Co3O4) has been reported as a sensing membrane for the detection of the
carbon monoxide, hydrogen, ethanol, and nitrogen. Polymers are another excellent class
of sensing membrane materials that are extensively utilized in SAW sensors. Polymers
possess the advantage of easy integration into the transducer of the SAW sensors and better
efficiency under room temperature. The polymers that are promising and most commonly
used as sensing membranes are polyacetylene, polythiophene, polypyrrole, polyaniline,
etc. [165]. The chemical molecules or analytes upon adsorption on the surface of this
polymeric-based membrane correspond to the shift of the modulus of the polymers due to
the viscoelastic effect. As a result, the velocity of the wave is affected, which also influences
the change in the frequency. Many other chemoselective polymers are reported, such as
polyethylene imine (PEI), poly(epichlorhydrin) (PECH), polyisoprene (PIP), polybutadiene
(PBD), etc., which are used as sensing membranes, especially for the detection of chemical
warfare agents [166]. Similarly, there are many other materials such as graphene and carbon
nanotubes that are widely employed as a sensing membrane for SAW sensors. The choice
of sensing membranes for SAW sensors in itself is a vast and open field of research with
advancements in different directions under different physical and chemical conditions.
This section demands a complete individual review paper in its own right, and hence detail
descriptions are omitted herein.

5. SAW Applications
5.1. Biosensing Applications

Biosensing employing SAW technology has had its most significant applications in
recent times. The interest in this field has grown with a particular focus on separating,
identifying, and controlling biological targets such as biomolecules and/or proteins from
bio-species such as bacteria, fungi, viruses, etc. Figure 18 [167] shows the schematic of the
most generic form of the Love wave-based biosensor with the PDMS microchannels.
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Figure 18. Love-wave sensing platform with PDMS microchannels for biosensing [167]. Figure 18. Love-wave sensing platform with PDMS microchannels for biosensing [167].

In general, the antibodies are functionalized over the SAW sensing area, and the
analytes that bind with these specific antibodies or targets form a conjugate bio-complex
that then perturbs the acoustic phase velocity. These changes or perturbations are then
measured using the IDTs in the SAW devices followed by a mathematical analysis using the
software. This is the fundamental mechanism of biosensing using SAW devices [168,169].

Figure 19 shows the various SAW-based biosensors for different biological applications
such as virus detection, cell separations, tendon stem cell monitoring, bacterial biofilms,
DNA detection, etc. The derivatives of the basic approach are shown in Figure 19. All
these different biological applications are performed using the generic configuration in
which the bio-functionalized layer or the biosystems are placed between the two adjacent
interdigitated electrodes, followed by exciting the surface acoustic waves for either sensing
or actuation. In the case of sensing, the biomolecule (target) binds with the sensitive layer,
inducing a mass loading effect, resulting in a disturbance in the acoustic wave propagation
and decrementing the phase velocity and frequency modulation [170]. In contrast, in
actuation—for example, cell separation—the acoustic waves are used to isolate different
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cells at a certain frequency due to the difference in mass and density of the cells. Wang et al.
(2018) [171] used this approach for cell separation using an active SAW device, Bisoffi et al.
(2008) [172] used it for virus detection, Kim et al. (2015) [173] used it for the evaluation of
antibodies bonded to biofilm, Zhang et al. (2009) [174] used the technique for detecting
analytes reacting with nano rods, Wu et al. (2019) [175] proposed to monitor the adhesion
process of tendon stem cells, and Zhang et al. (2017) [176] proposed a similar process
for the detection of target DNA. Together with the quality of both sensing and actuation,
the SAW platform acts as a powerful device in the field of biosensing. These are the few
selected examples indicated regarding the surface acoustic waves used for biosensing
and bio-actuation. However, there are various other research works and experiments that
have been carried out over the years using surface acoustic waves with different physics,
biological targets, sensing, and experimental setups, making this an ongoing hot topic in
the field of biology.
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Figure 19. Using a similar philosophy, different applications of Love-wave based SAW sensing where
input frequencies and output frequencies are compared to detect the change in the bio-functionalized
layer [171–176].

5.2. Chemical and Gas Sensing Applications

Over the decades, SAW-based techniques have attracted a great deal of attention
for chemical and gas sensing purposes. The basic principle of this type of sensing is
quite similar to that of biosensing where a target chemical or gas molecule binds with
the functionalized surface layer placed in between the two electrodes. The presence of
the functionalized layer which binds with the target species results in perturbation to
the localized material property and thus affects the acoustic wave. The change in the
acoustic wave velocity affecting the frequencies is often measured. In case of chemical
and gas sensing, the species mostly give rise to the change in the frequency. This change
in frequency is studied in-depth and analyzed for the validation and quantification of
effective gas sensing [177,178]. Figure 20 [179] represents a fundamental design of the
gas/chemical-based SAW sensing platform.

As described in Figure 20, there are various other SAW sensing platforms that follow
similar configurations but for different applications; for example, the detection of hydrogen
sulfide by Wang et al. (2012) [180], or in a similar fashion, the detection of vapor, oxygen,
and hydrogen gas, and even the detection of humidity by Le et al. (2019) [181], Devkota
et al. (2017) [84], Shu et al. (2019) [182], Mujahid et al. (2017) [179], Penza et al. (2005) [183],
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etc. Figure 21 demonstrates a few different applications of SAW-based sensing for different
chemical and gas sensing applications following the generalized configuration in Figure 20.
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These different applications of chemical and gas sensing are used based on the generic
configuration, where the functionalized layer is either between or at the periphery of
the interdigitated electrodes. The gas molecules (target) bind with the functionalized
layer, inducing a mass loading effect and resulting in a disturbance in the acoustic wave
propagation and decrementing the phase velocity determining the sensing process. There
are also few unconventional designs that do not use the generic configuration. One of such
experiments was conducted by Raj et al. (2010) [184], where the author used a gas delivery
system in which the outlet system was connected to a pentagon-shaped five-channel SAW
oscillator device for the detection of ammonia vapors. Figure 22 shows the schematic of the
pentagon-shaped sensor cell and the gas delivery system.

The gas delivery system was designed in such a manner that one gas channel was
connected to nitrogen and the other was connected to a mixture of nitrogen and ammonia
at different concentrations. The gas delivery system consisted of a three-way solenoid valve
to open one of the two paths, and its outlet was connected to the sensor directly. The four
oscillators of the pentagon-shaped SAW sensor were coated with ZnO, and the fifth one
was left bare for reference purposes. ST-X Quartz was used as the piezoelectric substrate for
all the sensors, and the devices had the functionalization layer of ZnO depositions of 20 nm,
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40 nm, 80 nm, and 100 nm, respectively. Different concentrations (0.25–25%) of the liquor
ammonia were passed through the SAW sensors, and negative differential frequencies
changes were observed corresponding to different adsorption and desorption rates of the
ammonia vapors. These are a few selected examples describing surface acoustic waves
used for chemical and gas sensing. Likewise, there are various other research works and
experiments that have been carried out over the years and that are still on-going using
surface acoustic waves with different experimental setups, functionalized layers, chemical
targets, and different electrode configurations, corresponding to a powerful, promising
device in the field of chemistry.
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5.3. Microfluidics Applications

As discussed earlier, SAW-based sensors are used for biological targets in the field
of biosensing, and they can seamlessly interact in liquid media as well. The mechanism
of interactions of the surface acoustic waves with liquid media can lead to phenomenal
behavior that can not only be used for liquid sensing but also for the manipulation and
mixing of the liquids in the sensing area. Surface acoustic waves have widely been used in
the sector of microfluidics over decades. Applications such as microfluidic-based particle
separation, the isolation of cells in a microfluidic platform, fluid manipulation, the atom-
ization of droplets, mixing of microfluidics, fluid transport, and many other purposes are
served with SAW-based phenomena. SAW-based technology is widely used by both sensors
and actuators in the field of microfluidics, and thus a generic configuration of SAW-based
sensing and actuation is discussed. In the field of sensing, certain functionalized particles
are coated between the two adjacent interdigitated electrodes on top of the piezoelectric
substrate. The sensing area is usually encapsulated with the microfluidic channels, and the
fluid pertaining to the target particles to be sensed is passed along the microfluidic channel.
The relevant interaction takes place in the presence of the surface acoustic waves generated
by the piezoelectric substrate and analysis are made. Figure 23 [185] shows the schematic
of a generic microfluidic-based sensing platform.

Usually, in microfluidics, it is an intensive task to achieve the quick and efficient mixing
of reagents. Various types of perturbations such as electrohydrodynamics, magnetohydro-
dynamics, and pressure have been utilized over the years to achieve this task [186–190].
However, this task is conveniently achieved using surface acoustic waves technology as
an actuator. One of the generic configurations for SAW-based microfluidics is explained
for fluid mixing (actuation). Figure 24 shows the schematic of the application of Focused
Surface Acoustic Waves (FSAWs) in the field of microfluidics for enhancing the liquid
mixing (actuation) and diffusion rate [191]. In this configuration, the microfluidic system is
placed between the two focused interdigitated electrodes. The surface acoustic waves force
the fluid into motion using low-intensity vibrations which allow the fluids to mix efficiently
in an invasive way. Additionally, the acoustic energies are confined to the surface, which
helps in generating the acoustic streaming [192,193].
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There are many other applications of SAW-based microfluidic devices that have been
developed based on these generic configurations. Figure 25 shows different SAW-based
microfluidic applications, such as droplet splitting by Jung et.al. (2016) [194], the separation
of encapsulated cells by Nam et al. (2012) [195], the atomization of fluid particles by Qi et al.
(2009) [196], and particle manipulation in microfluidics by Ma et al. (2016) [197], Devendran
et al. (2015) [198], Shi et al. (2011) [199], etc. In summary, due to the properties of both
sensing and actuation, a SAW-based device is powerful, and with time, it will be highly
possible for the SAW devices to evolve beyond just a mere PZT crystal and maneuver into
biomedical, chemical, and mechanical industries.
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5.4. Mechano-Biological Applications

As discussed earlier, SAW-based devices can not only be utilized for sensing purposes
but also as an actuator. Unlike the sensors, the actuators consist of single or multiple pairs
of interdigitated electrodes for the purpose of the manipulation of the target material. As
discussed in Section 5.3, SAW-based devices are widely used in the microfluidics sector
to manipulate the fluid in the microchannel using the surface acoustic waves. In a similar
manner, there are different mechano-biological applications in which the SAW is used as
an actuator. The surface acoustic waves actively interact with the biological particles and
thus are manipulated by the user based on the designed IDTs, the input voltage, and other
factors such as the type of substrate, distance between the target and IDTs, etc. The surface
acoustic waves are actively used for wide mechano-bio purposes such as cell analysis,
cell lysis, acousto-mechanical phenotyping, assembling of tissues, cell washing, isolation
of the extracellular vesicles, sorting and patterning of the cells, etc. Li et al. (2015) [200]
utilized a 15◦ tilted microfluidic channel with interdigitated electrodes on a 128◦ YX-cut
lithium niobate wafer to generate a standing SAW resulting in the periodic distribution
of the pressure nodes and antinodes inside the microchannel. The lysed blood samples
were passed and the WBCs were washed based on the optimization of the frequency and
the input voltage. Guo et al. (2015) [37] performed the action of controlling the cell–cell
interactions by administering four orthogonal IDTs at a 45◦ angle to the X-axis of the
128 Y-cut lithium niobate substrate. Orthogonal standing SAWs were generated, and
their superimposition produced the square pressure nodes (acoustic well). Modulating
the input RF signals, the clusters of cells were trapped in the acoustic well, resulting in
controlled cell–cell interactions. Similarly, Tao et al. (2019) [201] employed the ZnO/Si thin
films surface acoustic waves for the manipulating and 3D patterning of yeast cells and
microparticles. Wang et al. (2017) [202] utilized SAWs for the purpose of cell lysis on a
128◦ YX-cut lithium niobate wafer. IDTs were fabricated on top of the wafer, and a fluidic
chamber was constructed where multiple micropillars of SU-8 photoresists were placed
for the lysis purpose. Figure 26 shows the above application in four panels. The SAW
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generated using the RF power amplifier on the IDTs and the propagated surface acoustic
waves induced high acoustic streaming, which forced the cells in the droplet placed in
the fluidic chamber to impact with the micropillars, resulting in the destruction of the cell
membranes and leading to the lysis phenomenon. The lysis rate and efficiency were both
controlled by the amount of RF powers induced. Figure 26 shows the various applications
of the SAW utilized for mechano-biological applications.
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Figure 26. Various mechano-biological applications using SAW devices [37,200–202]. (A) SAWs
for the purpose of cell lysis on a 128◦ YX-cut lithium niobate wafer, (B) controlling the cell–cell
interactions by administering four orthogonal IDTs at a 45◦ angle to the X-axis of the 128 Y-cut
lithium niobate substrate, (C) ZnO/Si thin films surface acoustic waves for the manipulating and 3D
patterning of yeast cells and microparticles, (D) 15◦ tilted microfluidic channel with interdigitated
electrodes on a 128◦ YX-cut lithium niobate wafer to generate a standing SAW.

Additionally, studies were also conducted in which the separation of the particles,
separation of the cells and the particles, and many more tasks are accomplished using the
phase modulation-based SAW techniques [203–205]. The phase-modulation techniques
are often used in SSAW devices, which create pressure nodes based on the constructive
and destructive interferences (crests and troughs). The nodes are often utilized to sep-
arate the particles. Lee et al. (2017) [205] utilized the phase-modulation technique to
separate human keratinocyte cells from a bead mixture with the advancement of contin-
uous phase-modulated SSAW applied for the separation of the particles and cells in a
micro-channel traversing multiple pressure nodes and enhancing the throughput. The
technique utilizes the pressure nodes that are constantly displaced by the modulation of
the phase of the acoustic waves to the rate for exerting the maximum acoustic radiation
force on the particles. The drag force on the particles in the microchannels and the acoustic
radiation forces balances, due to which the displacement occurs at a constant velocity equal
to the pressure nodes. Thus, the continuous phase modulation results in the displacement
of the particles of specific sizes and dimensions to the direction of the moving pressure
nodes, while the non-target particles (of non-specific sizes) remain intact in the channel,
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causing successful separation; in other words, a successful mechano-biological applica-
tion is achieved. Much other research works have been conducted in a similar fashion
over the years and are still ongoing where the surface acoustic waves are employed for
mechano-biological applications.

5.5. Possible Research Roadmap

SAW sensors will make a tremendous contribution to the growth of the biosensors
industry in the future. However, to create this big leap, a few bottleneck problems must
be solved. Currently, high selectivity and sensitivity of biosensors using the SAW devices
discussed in Section 1 are unattainable simultaneously. Ensuring the simultaneous attain-
ability of high sensitivity and selectivity will help SAW sensors to detect trace amounts
of analyte confidently without false positives or false negatives. For microfluidic applica-
tions, it is necessary for the reaction and detection to be explored under water. However,
Rayleigh waves in SAW sensors significantly attenuate due to the presence of water on
the top surface. More research and energy should be spent to find better materials or
mechanisms to explore SAWs under water such that both specificity and sensitivity can
be enhanced. Most SAW sensors are devices designed for very high frequencies >50 MHz.
This requires a special fabrication process. However, low frequency applications of SAWs
between 1–5 MHz are required to be explored for biosensing, chemical and gas sensing, and
microfluidic applications. Materials for biosensors should be carefully selected to be safe
for bio testing. Hence, biocompatible SAW sensor materials should be used. More research
is required to develop a novel biocompatible piezoelectric substrate that will help in the
safe implementation of SAW sensors for bio applications. Currently, the main drawbacks of
SAW sensors are that they are mostly research devices created in laboratories for feasibility
studies and they are expensive. Not many SAW bio sensors have matured as a product for
mass scale implementation. In order to create cheaper and safer SAW sensors as a product,
a standard design of IDTs and a standard and safer material type should be used to create
devices in micro fabrication facilities on a mass scale. The most achievable product-driven
application would be SAW sensors that use a shear-horizontal wave with a top analyte
coating generating Love waves.

6. Conclusions

It is highly evident from the above presentation that SAW-based techniques are in high
demand and an active research area because of their potential application to different engi-
neering, biological, and chemical applications as sensors and actuators. SAW devices could
be low cost, small, and consume low power. SAW devices are very trustworthy and compat-
ible even under different unfavorable ambiances such as structures with high temperatures
and magnetic fields. Even though there are a wide variety of applications of these devices
and advantages, there are many opportunities where improvements can be made for future
SAW sensors. SAW sensors, especially for biological and chemical/microfluidic-based
sensing, at times suffer the limitation of the damping effect, especially in liquid media.
Efficacy with higher sensitivity and specificity under the same sensing platform is often
challenging. The high cost of packaging and the difficulties in integrating microfluidics
make these devices less attractive compared to other commercially available devices for
diagnostics and sensing. It is also seen that the flexible polymeric SAW-based sensors are a
promising technology, but they also suffer challenges in the fabrication and manufacturing
processes, such as controlling the film thickness, the dispersion, and the damping of the
SAW on the polymeric substrate, improper adherence of the piezo film to the polymeric
substate etc. In the field of microfluidics, quantitative analysis of the non-linear interactions
between the liquid and particles on the SAW devices has much scope for improvements.
Although studies are on-going on these challenges, these areas can be further explored
to over these obstacles and advance the devices for better commercialization. Several
biosensors and other chemical sensors have used smartphone technologies to facilitate the
access to rapid and cost-effective diagnostic platforms. Although a few investigations have
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been performed, a substantial exploration of the integration of smartphone technology
with SAW-based sensors for detection will be immensely valuable, especially in rural areas
and low-income countries.

In this article, we have attempted to present the wide variety of techniques used in
SAW techniques, the state of the art, and applications in different fields—mainly biological
and chemical, microfluidics, and mechano-biological—over the course of their history.
We have also presented how this field and SAW devices could impact our technological
advancement in the upcoming future. The article discusses the factors that affect sensing
and the types of materials and waves associated with the SAW techniques. With the
help of appropriate knowledge on the design parameters and the selection of specific
materials, a SAW-based device can be developed to achieve effective sensing and actuation
needs. It is evident that the present and long-term evolution of SAW-based techniques will
impact various scientific research communities and will be an exciting field to follow. With
the ongoing desperate need for highly sensitive, selective, and more financially effective
technologies for point of care devices, SAW-based techniques have a huge potential and
have a great chance to make major incursions and become a crucial player in the field of
technology and public health.
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