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Preface 

Diode lasers have become an important commercial component. They are used 

in a wide variety of applications ranging from the readout sources in compact 

disk players to the transmitters in optical fiber communication systems. New 

applications in local area data communications and telecommunications net- 

works as well as in consumer products continue to emerge as the devices 

become more reliable and manufacturable. Although the “short” wavelength 

(~0.7—0.9 um) GaAs based lasers and the “long” wavelength (~ 1.3—1.6 um) 

InP based lasers continue to fill most application needs, there is expanding 

interest in developing viable sources in the still shorter wavelength visible range 

as well as in the longer IR range. Learning the underlying basics as well as the 

desired advanced details in such a fast-moving field is difficult for graduate 

students as well as experienced engineers. 

The book has been written to provide a textbook for teaching the subject 

of diode lasers and related photonic integrated circuits to students with a wide 

variety of backgrounds. The depth of coverage is relatively advanced in most 

areas, but most of the elementary background material is also provided. 

Appendices are used both to provide review of background material as well as 

some of the details of the more advanced topics. Thus, by appropriate use of 

the appendices, the text can support teaching the material at different academic 

levels, but it remains self-contained. 

The text is intended for use at the graduate level, and it is assumed that 

students have been exposed to elementary quantum mechanics, solid-state 

physics, and electromagnetic theory at the undergraduate level, and it is 

recommended that they have had an introductory optoelectronics course. 

However, Appendices 1 and 3 review most of the necessary background in just 

about all of the required detail. Thus, it is possible to use the book with less 

background, provided these review appendices are covered with some care. In 

fact, Chapters 1 through 3 together with Appendices 1 through 7 provide a 

fairly comprehensive introduction to most kinds of diode lasers, and they can 

xvii 



xviii PREFACE 

be used for a relatively elementary course with students who have not had all 

of the recommended background material. That is, it would be possible to use 

this material even for an advanced undergraduate course. 

On the other hand, for use in a more advanced graduate class, it would not 

be necessary to cover the material in the first seven appendices. (Of course, it 

would still be there for reference, and the associated homework problems could 

still be assigned to insure its understanding. Nevertheless, it is still recommended 

that Appendix 5, which covers the definitions of modal gain and loss, be 

reviewed, since this is not well understood by the average worker in the field.) 

The coverage could then move efficiently through the first three chapters and 

into Chapters 4 and 5, which deal with the details of gain and laser dynamics 

in a first course. For more focus on the gain physics some of Appendices 8 

through 12 could be included in the coverage. In any event, their inclusion 

provides for a very self-contained treatment of this important subject matter. 

Chapters 6 through 8 deal more with the electromagnetic wave aspects of 

diode lasers. This material is essential for understanding the more advanced 

types of devices used in modern communication links and networks. However, 

keeping this material to last allows the student to develop a fairly complete 

understanding of the operation of lasers without getting bogged down in the 

mathematical techniques necessary for the lateral waveguide analysis. Thus, a 

working understanding and appreciation of laser operation can be gained in 

only one course. Chapter 6 deals with perturbation and coupled-mode theory 

and Chapter 7 with dielectric waveguide analysis. Putting Chapter 6 first 

emphasizes the generality of this material. That is, one really does not need to 

know the details of the lateral mode profile to develop these powerful 

techniques. Using the coupled-mode results, gratings and DFB lasers are again 

investigated. Historically, these components were primarily analyzed with this 

theory. However, in this text grating based DFB and DBR lasers are first 

analyzed in Chapter 3 using exact matrix multiplication techniques, from which 

approximate formulas identical to those derived with coupled mode theory 

result. The proliferation of computers and the advent of lasers using complex 

grating designs with many separate sections has led the authors to assert that 

the matrix multiplication technique should be the primary approach taught to 

students. The advent of the vertical-cavity laser also supports this approach. 

Nevertheless, it should be realized that coupled-mode theory is very important 

to reduce the description of the properties of complex waveguide geometries to 

simple analytic formulae, which are especially useful in design work. Chapter 8 

pulls together most of the material in the first seven chapters by providing a 

series of design examples of relatively complex photonic integrated circuits. 

Chapters 7 and 8 also introduce some basic numerical techniques. These are 
becoming increasingly more useful with the availability of good low-cost 

workstations and software for solving complex matrix equations. In Chapter 7 

the finite-difference technique is introduced for optical waveguide analysis and 

in Chapter 8 the beam-propagation method for analyzing real PIC structures 

is reviewed. ; : 



PREFACE xix 

Unlike many books in this field, this book is written as an engineering text. 

The student is first trained to be able to solve problems on real diode lasers, 

based upon a phenomenological understanding, before going into the complex 

physical details such as the material gain process or mode-coupling in dielectric 

waveguides. This provides motivation for learning the underlying details as well 

as a toolbox of techniques to immediately apply each new advanced detail in 

solving real problems. Also, attention has been paid to accuracy and consistency. 

For example, a careful distinction between the internal quantum efficiency in 

LEDs and lasers is made, and calculations of gain not only illustrate an analysis 

technique, but they actually agree with experimental data. Finally, by maintain- 

ing consistent notation throughout all of the chapters and appendices, a unique 

self-contained treatment of all of the included material emerges. 

L. A. COLDREN 

S. W. Corzine 
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List of Fundamental Constants 

m = 3.141 592 653 59 

c = 2,99792458 x 10'° cm/s 

Ho = 4x x 10° ° H/em 

Eq = 8.854 187 82 x 10° ** F/em or C?/(J-cm) (= 1/pi9c7) 

@=—1.6021892 x 10> *"'C orJ/ev 

mo = 9.109 534 x 10-3! kg 

h = 6.626176 x 10° 3* J-s 

h = 1.0545887 x 10-°* J-s 

kp = 1.380662 x 10-73 J/K = 8.617347 x 10-* eV/K 

ke T = 25.85204 meV (at T = 300K) 

Ayn’ Epn = 1.23985 um-eV 

Source: CRC Handbook of Chemistry and Physics, 62™! Edition, 1981-1982. 
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CHAPTER ONE 

UU sk ns teh ee eet 9 cen 

Ingredients 

1.1. INTRODUCTION 

Diode lasers, like most other lasers incorporate an optical gain medium in a 

resonant optical cavity. The design of both the gain medium and the resonant 

cavity are critical in modern lasers. The gain medium consists of a material 

which normally absorbs incident radiation over some wavelength range of 

interest. But, if it is pumped by inputting either electrical or optical energy, the 

electrons within the material can be excited to higher, nonequilibrium energy 

levels, so the incident radiation can be amplified rather than absorbed by 

stimulating the de-excitation of these electrons along with the generation of 

additional radiation. If the resulting gain is sufficient to overcome the losses of 

some resonant optical mode of the cavity, this mode is said to have reached 

threshold, and relatively coherent light will be emitted. The resonant cavity 

provides the necessary positive feedback for the radiation being amplified, so 

that a lasing oscillation can be established and sustained above threshold 

pumping levels. As in any other oscillator, the output power level saturates at 

a level equal to the input minus any internal losses. 

Diode lasers represent one class of many different types of lasers today. Two 

other important classes are gas lasers and solid-state lasers. The helium—neon 

gas laser and the Nd-doped YAG (yttrium—aluminum~garnet) solid-state laser 

are two popular examples. Diode lasers are distinguished from these other types 

primarily by their ability to be pumped directly by an electrical current. 

Generally, this results in a much more efficient operation. Overall power 

conversion efficiences of ~ 50% are not uncommon for a diode laser, whereas 

efficiencies on the order of 1% are common for gas and solid-state lasers, which 

generally are pumped by plasma excitation or an incoherent optical flashlamp 

source, respectively. However, efficiencies can be somewhat higher, such as in 

the case of the CO, gas laser which has a typical efficiency of over 10%. 

Because of their longer cavities and more narrow gain bandwidth, gas and 

solid-state lasers also tend to have more coherent outputs than simple 

1 
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semiconductor lasers. However, more sophisticated single-frequency diode 

lasers can have comparable linewidths in the low megahertz range. Net size is 

another striking difference between semiconductor and other lasers. While gas 

and solid-state lasers are typically tens of centimeters in length, diode laser 

chips are generally about the size of a grain of salt, although the mounting and 

packaging hardware increases the useful component size to the order of a cubic 

centimeter or so. 

A final attribute of diode lasers that has led to their widespread use in 

important applications such as fiber-optic communications systems is their high 

reliability or useful lifetime. While the useful life of gas or solid-state lasers is 

typically measured in thousands of hours, that of carefully qualified diode lasers 

is measured in hundreds of years. Recent use of diode lasers to pump solid-state 

lasers, e.g., diode-pumped Nd-YAG, may, however, provide the best advantages 

of both technologies. 

In this chapter, we shall attempt to introduce some of the basic ingredients 

needed to understand semiconductor diode lasers. First, energy levels and bands 

in semiconductors are described starting from background given in Appendix 

1. The interaction of light with these energy_levels is next introduced. Then, the 

enhancement of this interaction by carrier and photon confinement using 

heterostructures is discussed. Materials useful for diode lasers and how epitaxial 

layers of such materials can be grown is briefly reviewed. And finally, the lateral 

patterning of these layers to provide lateral current, carrier, and photon 

confinement for practical lasers is introduced. 

1.2 ENERGY LEVELS AND BANDS IN SOLIDS 

In order to begin to understand how gain is accomplished in lasers, we must 

have some knowledge of the energy levels that electrons can occupy in the gain 

medium. The allowed energy levels are obtained by solying Schrédinger’s 

equation using the appropriate electronic potentials. Appendix 1 gives a brief 

review of this important solid-state physics, as well as the derivation of some 

other functions that we shall need later. Figure 1.1 schematically illustrates the 

ES ——— Conduction 
SS band 

E>, rr E c 

FE SE, Valence 
1 Sas band 

ATOM SOLID 

FIGURE 1.1 Illustration of how two a energy levels of an atom develop into bands 
of many levels in a crystal. 
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energy levels that might be associated with optically induced transitions in both 
an isolated atom and a semiconductor solid. Electron potential is plotted 
vertically. 

In gas and solid-state lasers, the energy levels of the active atomic species 
are only perturbed slightly by the surrounding gas or solid host atoms, and 
they remain effectively as sharp as the original levels in the isolated atom. For 
example, lasers operating at the 1.06 um wavelength transition in Nd-doped 

YAG, use the *F3,, level of the Nd atom for the upper laser state #2, and the 

“I, 1/2 level for the lower laser state #1. Because only these atomic levels are 

involved, emitted or absorbed photons need to have almost exactly the 

correct energy, E,, = hc/1.06 um. 

On the other hand, in a covalently bonded solid like the semiconductor 
materials we use to make diode lasers, the uppermost energy levels of individual 

constituent atoms each broaden into bands of levels as the bonds are formed 

to make the solid. This phenomenon is illustrated in Fig. 1.1. The reason for 

the splitting can be realized most easily by first considering a single covalent 

bond. When two atoms are in close proximity, the outer valence electron of 

one atom can arrange itself into a low-energy bonding (symmetric) charge 

distribution concentrated between the two nuclei, or into a high-energy 

antibonding (antisymmetric) distribution devoid of charge between the two 

nuclei. In other words, the isolated energy level of the electron is now split into 

two levels due to the two ways the electron can arrange itself around the two 

atoms.’ In a covalent bond, the electrons of the two atoms both occupy the 

lower energy bonding level (provided they have opposite spin), while the higher 

energy antibonding level remains empty. 

If another atom is brought in line with the first two, a new charge distribution 

becomes possible that is neither completely bonding nor antibonding. Hence, 

a third energy level is formed between the two extremes. When N atoms are 

covalently bonded into a linear chain, N energy levels distributed between the 

lowest-energy bonding state and the highest-energy antibonding state appear, 

forming a band of energies. In our linear chain of atoms, spin degeneracy allows 

all N electrons to fall into the lower half of the energy band, leaving the upper 

half of the band empty. However in a three-dimensional crystal, the number 

of energy levels is more generally equated with the number of unit cells, not 

the number of atoms. In typical semiconductor crystals, there are two atoms 

per primitive unit cell. Thus, the first atom fills the lower half of the energy 

band (as with the linear chain) while the second atom fills the upper half, such 

that the energy band is entirely full. 
The semiconductor valence band is formed by the multiple splitting of the 

1 The energy level splitting is often incorrectly attributed to the Pauli exclusion principle which 

forbids electrons from occupying the same energy state (and thus forces the split, as the argument 

goes). In actuality, the splitting is a fundamental phenomenon associated with solutions to the 

wave equation involving two coupled systems, and applies equally to probability, electromagnetic, 

or any other kind of waves. It has nothing to do with the Pauli exclusion principle. 
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FIGURE 1.2 Electron energy vs. wavenumber in a semiconductor showing a transition 

of an electron from a bound state in the valence band (E,) to a free carrier state in the 

conduction band (E,). The transition leaves a hole in the valence band. The lowest and 

highest energies in the conduction and valence bands are E, and E,,, respectively. 

\ 

highest occupied atomic energy level of the constituent atoms. In semi- 

conductors, the valence band is by definition entirely filled with no external 

excitation at T = 0 K. Likewise, the next higher-lying atomic level splits apart 

into the conduction band which is entirely empty in semiconductors without any 

excitation. When thermal or other energy is added to the system, electrons in 

the valence band may be excited into the conduction band analogous to how 

electrons in isolated atoms can be excited to the next higher energy level of the 

atom. In the solid then, this excitation creates holes (missing electrons) in the 

valence band as well as electrons in the conduction band, and both can 

contribute to conduction. 
Although Fig. 1.1 suggests that many conduction—valence band state pairs 

may interact with photons of energy E,,, Appendix 1 shows that the imposition 

of momentum conservation in addition to energy conservation limits the 

interaction to a fairly limited set of state pairs for a given transition energy. 

This situation is illustrated on the electron energy vs. k-vector (E—k) plot shown 

schematically in Fig. 1.2. (Note that momentum = hk.) Since the momentum 

of the interacting photon is negligibly small, transitions between the conduction 

and valence band must have the same k-vector, and only vertical transitions 

are allowed on this diagram. This fact will be very important in the calculation 
of gain. 

1.3. SPONTANEOUS AND STIMULATED TRANSITIONS: THE CREATION 

OF LIGHT 

With a qualitative knowledge of the energy levels that exist in semiconductors, 

we can proceed to consider the electronic transitions that can exist and the 

interactions with lightwaves that are possible. Figure 1.3 illustrates the different 

kinds of electronic transitions that are important, emphasizing those that 

involve the absorption or emission of photons (lightwave quanta). 
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FIGURE 1.3. Electronic transitions between the conduction and valence bands. The first 
three represent radiative transitions in which the energy to free or bind an electron is 

supplied by or given to a photon. The fourth illustrates two nonradiative processes. 

nr 

Although we are explicitly considering semiconductors, only a single level 

in both the conduction and valence bands is illustrated. As discussed above 
and in Appendix 1, momentum conservation selects only a limited number of 

such pairs of levels from these bands for a given transition energy. In fact, if it 

were not for a finite bandwidth of interaction owing to the finite state lifetime, 

a single pair of states would be entirely correct. In any event, the procedure to 

calculate gain and other effects will be to find the contribution from a single 

state pair and then integrate to include contributions from other pairs; thus, 

the consideration of only a single conduction—valence band state pair forms an 

entirely rigorous basis. 

As illustrated, four basic electronic recombination/generation (photon 

emission/absorption) mechanisms must be considered separately: (1) spon- 

taneous recombination (photon emission), (2) stimulated generation (photon 

absorption), (3) stimulated recombination (coherent photon emission), and (4) 

nonradiative recombination. The open circles represent unfilled states (holes) 

and the solid circles represent filled states (electrons). Since electron and hole 

densities are highest near the bottom or top of the conduction or valence bands, 
respectively, most transitions of interest involve these carriers. Thus, photon 

energies tend to be only slightly larger than the bandgap, ie., E,, = hv ~ E,. 

The effects involving electrons in the conduction band are all enhanced by the 

addition of some pumping means to increase the electron density to above the 

equilibrium value there. Of course, the photon absorption can still take place 

even if some pumping has populated the conduction band somewhat. 

The first case (R,,) represents the case of an electron in the conduction band 

recombining spontaneously with a hole (missing electron) in the valence band 

to generate a photon. Obviously, if a large number of such events should occur, 
relatively incoherent emission would result, since the emission time and 

direction would be random, and the photons would not tend to contribute to 

a coherent radiation field. This is the primary mechanism within a light-emitting 

diode (LED), in which photon feedback is not provided. The second illustration 

(R,>) outlines photon absorption which stimulates the generation of an electron 

in the conduction band while leaving a hole in the valence band. The third 
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process (R,,) is exactly the same as the second, only the sign of the interaction 

is reversed. Here an incident photon perturbs the system, stimulating the 

recombination of an electron and hole, and simultaneously generating a new 

photon. Of course, this is the all-important positive gain mechanism that is 

necessary for lasers to operate. Actually, it should be realized that the net 

combination of stimulated absorption and emission of photons, effects (R, 2) 

and (R3,), will represent the net gain experienced by an incident radiation field. 

Because spontaneous recombination requires the presence of an electron-hole 

pair, the recombination rate tends to be proportional to the product of the 

density of electrons and holes, NP. In undoped active regions, charge neutrality 

requires that the hole and electron densities be equal. Thus, the spontaneous 

recombination rate becomes proportional to N*. In a similarly undoped active 

region, net stimulated recombination (photon emission) depends upon the 

existence of photons in addition to a certain value of electron density to 

overcome the photon absorption. Thus, as we shall later show more explicitly, 

the net rate of stimulated recombination is proportional to the photon density, 
N,, multiplied by (N — N,,), where N,, is a transparency value of electron density 

(i.c., where Rz, = R,3). . 

Finally, the fourth schematic in Fig. 1.3 represents the several nonradiative 

ways in which a conduction band electron can recombine with a valence band 

hole without generating any useful photons. Instead; the energy is dissipated 

as heat in the semiconductor crystal lattice. Thus, this schematic represents the 

ways in which conduction band electrons can escape from usefully contributing 

to the gain, and as such these effects are to be avoided if possible. In practice, 

there are two general nonradiative mechanisms for carriers that are important. 

The first involves nonradiative recombination centers, such as point defects, 

surfaces, and interfaces, in the active region of the laser. In order to be effective, 

these do not require the simultaneous existence of electrons and holes or other 

particles. Thus, the recombination rate via this path tends to be directly 

proportional to the carrier density, N. The second mechanism is Auger 

recombination, in which the electron—hole recombination energy, E,,, is given 

to another electron or hole in the form of kinetic energy. Thus, again for 

undoped active regions in which the electron and hole densities are equal, Auger 

recombination tends to be proportional to N*, since we must simultaneously 

have the recombining electron-hole pair and the third particle that receives the 

ionization energy. Appendix 2 gives techniques for calculating the carrier 

density from the density of electronic states and the probability that they are 

occupied, generally characterized by a Fermi function. 

1.4 TRANSVERSE CONFINEMENT OF CARRIERS AND PHOTONS IN DIODE 

LASERS: THE DOUBLE HETEROSTRUCTURE 

In order for the gain material in a semiconductor laser to function, it must be 

pumped or excited with some external energy source. A major attribute of diode 
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(d) 
x 

FIGURE 1.4 Aspects of the double-heterostructure diode laser: (a) a schematic of the 

material structure; (b) an energy diagram of the conduction and valence bands vs. 

transverse distance; (c) the refractive index profile; (d) the electric field profile for a 

mode traveling in the z-direction. 

lasers is their ability to be pumped directly with an electrical current. Of course, 

the active material can also be excited by the carriers generated from absorbed 

light, and this process is important in characterizing semiconductor material 

before electrical contacts are made. However, we shall focus mainly on the more 

technologically important direct current injection technique in most of our 

analysis. 
Figure 1.4 gives a schematic of a broad-area pin double-heterostructure (DH) 

laser diode, along with transverse sketches of the energy gap, index of refraction 

and resulting optical mode profile across the DH region. As illustrated, a 
thin slab of undoped active material is sandwiched between p- and n-type 

cladding layers which have a higher conduction—valence band energy gap. 

Typical thicknesses of the active layer for this simple three-layer structure are 

~0.1—0.2 um. Because the bandgap of the cladding layers is larger, light 

generated in the active region will not have sufficient photon energy to be 

absorbed in them, i.e., E,, = hv < Ey... 
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For this DH structure, a transverse (x-direction) potential well is formed for 

electrons and holes that aré being injected from the n- and p-type regions, 

respectively, under forward bias. As illustrated in part (b), they are captured 

and confined together, thereby increasing their probability of recombining with 

each other. In fact, unlike in most semiconductor diodes or transistors that are 

to be used in purely electronc circuits, it is desirable to have all of the injected 

carriers recombine in the active region to form photons in a laser or LED. 

Thus, simple pn-junction theory, which assumes that all carriers entering the 

depletion region are swept through with negligible recombination, is totally 

inappropriate for diode lasers and LEDs. In fact, a better assumption for lasers 

and LEDs is that all carriers recombine in the i-region [1]. Appendix 2 also 

discusses a possible “leakage current” which results from some of the carriers 

being thermionically emitted over the heterobarriers before they can recombine. 

To form the necessary resonant cavity for optical feedback, simple cleaved 

facets can be used, since the large index of ‘refraction discontinuity at the 

semiconductor—air interface provides a reflection coefficient of ~30%. The 

lower bandgap active region also usually has a higher index of refraction, n, 

than the cladding, as outlined in Fig. 1.4(c), so that a transverse dielectric optical 

waveguide is formed with its axis-along the z-direction. The resulting transverse 

optical energy density profile (proportional to the photon density or the electric 

field magnitude squared, |@|*) is illustrated in Fig. 1.4(d): The derivation of this 

optical mode shape is given in Appendix 3. Thus, with the in-plane waveguide 

and perpendicular mirrors at the ends, a complete resonant cavity is formed. 

Output is provided at the facets, which only partially reflect. Later on we shall 

consider more complex reflectors which can provide stronger feedback and 

wavelength selective feedback. One should also realize that if the end facet 

reflections are suppressed by antireflection coatings, the device would then 

function as an LED. When we analyze lasers in the next chapter, the case 
of no feedback will also be considered. 

The carrier-confining effect of the double-heterostructure is one of the most 

important features of modern diode lasers. After many early efforts that used 

homojunctions or single heterostructures, the advent of the DH structure made 
the diode laser truly practical for the first time. It turns out that many modern 

diode lasers involve a little more complexity in their transverse carrier and 

photon confinement structure as compared to Fig. 1.4, but the fundamental 

concepts remain valid. For example, with in-plane lasers, where the light 

propagates parallel to the substrate surface, a common departure from Fig. 1.4 

is to use a thinner quantum-well carrier-confining active region (d ~ 10 nm), 

and a surrounding intermediate bandgap separate confinement region to confine 

the photons. Figure 1.5 illustrates transverse bandgap profiles for such separate- 

confinement heterostructure, single quantum-well (SCH-SQW) lasers. The 

transverse optical energy density is also overlaid to show that the photons are 

confined primarily by the outer heterointerfaces and the carriers by the inner 

quantum well. The advantages of the quantum-well active region are introduced 

in Appendix 1 and discussed in detail in Chapter 4. \ 
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(a) (b) 
FIGURE 1.5 Transverse band structures for two different separate-confinement hetero- 
structures (SCHs): (a) standard SCH; (b) graded-index SCH (GRINSCH). The electric 
field (photons) are confined by the outer step or graded heterostructure; the central 
quantum well confines the electrons. 

1.5 SEMICONDUCTOR MATERIALS FOR DIODE LASERS 

The successful fabrication of a diode laser relies very heavily upon the properties 

of the materials involved. There is a very limited set of semiconductors that 

possess all of the necessary properties to make a good laser. For the desired 

double heterostructures at least two compatible materials must be found, one 

for the cladding layers and another for the active region. In more complex 

geometries, such as the SCH mentioned above, three or four different bandgaps 

may be required within the same structure. The most fundamental requirement 

for these different materials is that they have the same crystal structure and 

nearly the same lattice constant, so that single-crystal, defect-free films of one 

can be epitaxially grown on the other. Defects generally become nonradiative 

recombination centers which can steal many of the injected carriers that 

otherwise would provide gain and luminescence. In a later section we shall 

discuss some techniques for performing this epitaxial growth, but first we need 

to understand how to select materials that meet these fundamental boundary 

conditions. 

Figure 1.6 plots the bandgap vs. lattice constant for several families of III-V 

semiconductors. These III-V compounds (which consist of elements from 

columns III and V of the periodic table) have emerged as the materials of choice 

for lasers that emit in the 0.7—1.6 ym wavelength range. This range includes 

the important fiber-optic communication bands at 0.85, 1.31, and 1.55 ym, the 

pumping bands for fiber amplifiers at 1.48 and 0.98 jum, the window for pumping 

Nd-doped YAG at 0.81 um, and the wavelength currently used for optical disk 

players at 0.78 pm. Most of these materials have a direct gap in E-k space, 

which means that the minimum and maximum of the conduction and valence 

bands, respectively, fall at the same k-value, as illustrated in Fig. 1.2. This 

facilitates radiative transitions because momentum conservation is naturally 

satisfied by the annihilation of the equal and opposite momenta of the electron 

and hole. (The momentum of the photon is negligibly small.) 

The lines on this diagram represent ternary compounds which are alloys of 

the binaries labeled at their end-points. The dashed lines represent regions of 

indirect gap. The triangular areas enclosed by lines between three binaries 
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FIGURE 1.6 Energy gap vs. lattice constant of ternary compounds defined by curves 

that connect the illustrated binaries. 

represent quaternaries, which obviously have enough degrees of freedom that 

the energy gap can be adjusted somewhat without changing the lattice con- 

stant. Thus, in general, a quaternary compound is required in a DH laser to 

allow the adjustment of the energy gap while maintaining lattice matching. 

Fortunately, there are some unique situations which allow the use of more 

simple ternaries. As can be seen, the AlGaAs ternary line is almost vertical. 

That. is, the substitution of Al for Ga in GaAs does not change the lattice 

constant very much. Thus, if GaAs is used as the substrate, any alloy of 

Al,.Ga, _,.As can be grown and it will naturally lattice match, so that no misfit 

dislocations or other defects should form. As suggested by the formula, the 

x-value determines the percentage of Al in the group III half of the III-V 

compound. The AlGaAs/GaAs system provides lasers in the 0.7—0.9 um 

wavelength range. For DH structures in this system, about two-thirds of the 

band offset occurs in the conduction band. 

The most popular system for long-distance fiber optics is the InGaAsP/InP 

system. Here the quaternary is specified by an x and y value, ie., 

In, _,Ga,As,P,_,. This is grown on InP to form layers of various energy gap 

corresponding to wavelengths in the 1.0—1.6 ym range, where silica fiber has 

minima in loss (1.55 um) and dispersion (1.3 ym). Using InP as the substrate, 

a range of lattice-matched quaternaries extending from InP to the InGaAs 

ternary line can be accommodated, as indicated by the vertical line in Fig. 1.6. 

Fixing the quaternary lattice constant defines a relation between x and y. It 

has been found that choosing x equal to ~0.46y results in approximate lattice 

‘matching to InP. The ternary endpoint is Ing 53Gay 47As. For DH structures 

in this system, only about 40% of the band offset occurs in the. conduction band. 
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For a little more precision, the lattice constants of quaternaries can be 
calculated from Vegard’s law, which gives a value equal to the weighted 
average of all of the four possible constituent binaries. For example, in 
In, _,Ga,As,P,_,, we obtain 

a(x, Y) = XYAgaas + X(1 — y)dgap + (1 — x)yainas + (L — x)(L — y)ainp- (1-1) 

Similarly, the lattice constants for other alloys can be calculated. Table 1.1 

lists the lattice constants, bandgaps, effective masses, and indices of refraction 

for some common materials. (Subscripts on effective masses, C, HH, LH, 

and SH denote values in the conduction, heavy-hole, light-hole, and split-off 

bands, respectively.) Other parameters, for example bandgap, can also be 

interpolated in a similar fashion to Eq. (1.1), however a second-order bowing 

parameter must oftentimes be added to improve the fit. In addition, one must 
be careful if different bands come into play in the process. For example, in 

AlGaAs, the values for GaAs and Al) ,Gay gAs can be linearly extrapolated 

for direct gap AlGaAs up to x ~ 0.45, but fail to describe the indirect gap at 
higher x values. 

In addition to the usual III-V compounds discussed above, Table 1.1 also 

lists some of the nitride compounds. These have gained attention primarily 

because of some recent successes in demonstrating LEDs emitting at high 

energies in the visible spectrum. Whereas the InAlGaAsP based compounds 

are limited to emission in the red and near infrared regions, the nitrides have 

demonstrated blue and UV emission. Although they possess the primary feature 

of providing a higher-energy-gap system, there are problems in obtaining high 

quality epitaxial layers since substrates with similar lattice constants and 

thermal properties are not available. Thus, the nitrides remain an active area 

of research. 
Lattice matching is generally necessary to avoid defects which can destroy 

the proper operation of diode lasers. However, it is well known that a 

small lattice mismatch (Aa/a~1%) can be tolerated up to a certain 

thickness (~20nm) without any defects. Thus, for a thin active region, 

one can move slightly left or right of the lattice matching condition illus- 

trated in Fig. 1.6 or by Eg. (1.1). In this case, the lattice of the deposited 

film distorts so as to fit the substrate lattice in the plane, but it also must 

distort in the perpendicular direction to retain approximately the same 

unit cell volume it would have without distortion. Figure 1.7 shows a cross 

section of how unit cells might distort to accommodate a small lattice mismatch. 

After a critical thickness is exceeded, misfit defects are generated to relieve 

the integrated strain. However, up to this point, it turns out that such strained 

layers may have more desirable optoelectronic properties than their unstrained 

counterparts. Also, as we have already mentioned, quantum-well active regions, 

which are thinner than typical critical thicknesses, are desirable in diode 

lasers for reduced threshold and improved thermal properties. Thus, these 

quantum wells can also be strained-layer quantum wells without introducing 
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Compressive Tensile 

FIGURE 1.7 Schematic of sandwiching quantum wells with either a larger or smaller 
lattice constant to provide either compressive or tensile strain, respectively. 

any undesired defects. These structures will be analyzed in some detail in 
Chapter 4. 

1.6 EPITAXIAL GROWTH TECHNOLOGY 

In order to make the multilayer structures required for diode lasers, it is 

necessary to grow single-crystal lattice-matched layers with precisely controlled 

thicknesses over some suitable substrate. We have already discussed the issue 

of lattice matching and some of the materials involved. Here we briefly introduce 

several techniques to perform epitaxial growth of the desired thin layers. 

We shall focus on the three most important techniques in use today: 

liquid-phase epitaxy (LPE), molecular beam epitaxy (MBE), and organometallic 

vapor-phase epitaxy (OMVPE). OMVPE is often also referred to as metal- 

organic chemical vapor deposition (MOCVD), although purists do not like the 

omission of the word ‘epitaxy’. As the names imply, the three techniques refer 

to growth either in liquid, vacuum, or a flowing gas, respectively. The growth 

under liquid or moderate pressure gas tends to be done near equilibrium 

conditions, so that the reaction can proceed in either the forward or reverse 

direction to add or remove material, whereas the MBE growth tends to be 

more of a physical deposition process. Thus, the near-equibrium processes, LPE 

and MOCVD, tend to better provide for the removal of surface damage at the 
onset of growth, and they are known for providing higher quality interfaces 

generally important in devices. MBE on the other hand provides the ultimate 

in film uniformity and thickness control. 
Figure 1.8 gives a cross section of a modern LPE system. In this system the 

substrate is placed in a recess in a graphite slider bar which forms the bottom 

of a sequence of bins in a second graphite housing. The bins are filled with 

solutions from which a desired layer will grow as the substrate is slid beneath 

that bin. This entire assembly is positioned in a furnace, which is accurately 

controlled in temperature. There are several different techniques of controlling 

the temperature and the dwell time under each melt, but generally the solutions 

are successively brought to saturation by reducing the temperature very slowly 

as the substrate wafer is slid beneath alternate wells. In modern systems, the 

process of slider positioning and adjusting furnace temperature is done by 
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FIGURE 1.8 Schematic of liquid-phase epitaxy ee system [2]. (Reprinted, by 

permission, from Applied Physics Letters.) 

computer control for reproducibility and efficiency. However, LPE is rapidly 

being replaced by MOCVD for the manufacture of most diode lasers. 

The melts typically consist mostly of one of the group III metals with the 

other constituents dissolved in it. For InGaAsP growth, In metal constitutes 

most of the melt. For an Ing ,3Gag.47As film only about 2.5% of Ga and 6% As 

is added to the melt for growth at 650°C. For InP growth only about 0.8% of 

P is added. Needless to say, the dopants are added in much lesser amounts. 

Thus, LPE growth requires some very accurate scales for weighing out the 

constituents, and an operator with a lot of patience. 
Figure 1.9 shows a schematic of an MOCVD system. As can be seen, a large 

part of the system is devoted to gas valving and manifolding to obtain the 

proper mixtures for insertion into the growth reactor chamber. The substrate 
is positioned on a susceptor which is heated typically by rf induction, or in 

some cases, by resistive heaters. Both low-pressure and atmospheric-pressure 

systems are being used. While the atmospheric-pressure system uses the reactant 

gases more effectively, the layer uniformity and the time required to flush the 

reactor before beginning a new layer is long. Low pressure is more popular 

where very abrupt interfaces between layers are desired, and this is very 

important for quantum-well structures. 

The sources typically used for MOCVD consist of a combination of hydrides 

such as arsine (AsH;) and phosphine (PH3), and organometallic liquids which 

are used to saturate an H, carrier gas. Example organometallics are triethyl- 

indium and triethyl-gallium. Dopants can be derived from either other hydrides 

or liquid sources. For example, H,S or triethyl-zinc can be used for n- or p-type 
dopants, respectively. 

One of the key concerns with MOCVD is safety. The problems are primarily 

with the hydrides, which are very toxic. Thus, much of the cost of an MOCVD 

facility is associated with elaborate gas handling, monitoring; and emergency 



EPITAXIAL GROWTH TECHNOLOGY 15 

SCHEMATIC VIEW OF AN MOCVD REACTOR 
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FIGURE 1.9 Schematic of metal-organic chemical vapor deposition (MOCVD) system [3]. 

(From GalnAsP Alloy Semiconductors, T. P. Pearsall, Ed., Copyright © John Wiley & Sons, Inc. 

Reprinted by permission of John Wiley & Sons, Inc.) 

disposal techniques. Recently, however, there has been considerable work with 

less toxic liquid sources for As and P; e.g., t-butyl-arsine and t-butyl-phosphine. 

Although still toxic, liquid sources give off only modest amounts of poisonous 

gases due to their vapor pressure. Such quantities could be accommodated by 

conventional fume hoods. The hydrides, on the other hand, are contained in 

high-pressure gas cylinders which conceivably can fail and release large 

quantities of concentrated toxic gas in a short time. 

Figure 1.10 shows a cross section of a solid-source MBE growth chamber. 

As illustrated, MBE is carried out under ultrahigh vacuum (UHV) conditions. 

Constituent beams of atoms are evaporated from effusion cells, and these 

condense on a heated substrate. Liquid nitrogen cryoshields line the inside of 

the system to condense any stray gases. For stoichiometry control MBE makes 

use of the fact that the group V elements are much more volatile than the group 

III elements. Thus, if the substrate is sufficiently hot, the group V atoms will 

reevaporate unless there is a group III atom with which to form the compound. 

At the same time, the substrate must be sufficiently cool so that the group III 

atoms will stick. Therefore, the growth rate is determined by the group III flux, 

and the group V flux is typically set to several times that level. Typical growth 

temperatures for the AlGaAs system are in the 600—650°C range. However, 

because Al tends to oxidize easily, and such oxides create nonradiative 

recombination centers, AlGaAs lasers may be grown over 700°C. 
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FIGURE 1.10 Schematic of molecular beam epitaxy (MBE) system [4]. (Reprinted, by 

permission, from Journal of Applied Physics.) 

One of the key features of MBE is that UHV surface analysis techniques 

can be applied to the substrate either before or during growth in the same 

chamber. One of the most useful tools is reflection high-energy electron 

diffraction (RHEED) which is an integral part of any viable MBE system. It 

is particularly useful in monitoring the growth rate in situ, since the intensity 

of the RHEED pattern varies in intensity as successive monolayers are 

deposited. 

Some hybrid forms of the last two techniques have also been developed, i.e., 

gas source MBE, metal-organic MBE (MOMBEB), and chemical beam epitaxy 

(CBE) [5, 6]. These techniques are particularly interesting for the phosphorous- 

containing compounds, such as the important InGaAsP. Basically, gas-source 

MBE involves using the hydrides for the group V sources. Generally, these 

gases must be cracked by passing them through a hot cell prior to arriving at 

the substrate. MOMBE uses the metal-organics for the group III sources; again, 

some cracking is necessary. CBE is basically just ultralow-pressure MOCVD 

since both the group III and V sources are the same as in an MOCVD system. 

However, in the CBE case one still retains access to the UHV surface analysis 

techniques that have made MBE viable. . 
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1.7 LATERAL CONFINEMENT OF CURRENT, CARRIERS, AND PHOTONS 

FOR PRACTICAL LASERS 

Practical diode lasers come in two basic varieties: those with in-plane cavities 

and those with vertical cavities. The in-plane (or edge-emitting) types have been 

in existence since the late 1960s whereas the vertical cavity types have been 

viable only since about 1990. As mentioned earlier, feedback for the in-plane 

type can be accomplished with a simple cleaved-facet mirror; however, for 

vertical-cavity lasers a multilayer reflective stack must be grown below and 

above the active region for the necessary cavity mirrors. Figure 1.11 illustrates 

both types: 

As suggested by this figure, practical lasers must emit light in a narrow beam, 

which implies that a lateral patterning of the active region is necessary. In the 

case of the in-plane types, a stripe laser is formed which typically has lateral 

dimensions of a few microns. Similarly, the vertical-cavity types typically consist 

of a circular dot geometry with lateral dimensions of a few microns. This 

emitting aperture of a few microns facilitates coupling to optical fibers or other 

simple optics, since it is sufficiently narrow to support only a single lateral mode 

of the resulting optical waveguide, but sufficiently wide to provide an emerging 

optical beam with a relatively small diffraction angle. 

Figure 1.12 shows cross-sectional scanning electron micrographs (SEMs) of 

both the in-plane and vertical-cavity lasers. The reference coordinate systems, 

also introduced in Fig. 1.11, are somewhat different for these two generic types 

of diode lasers. The difference arises from our insistence on designating the 

optical propagation axis as the z-axis. We shall also refer to this direction as 
the axial direction. For both types the lateral y-direction is in the plane of the 

substrate. For in-plane lasers the vertical to the substrate is the transverse 

x-direction, as illustrated in Fig. 1.4, whereas for vertical-cavity lasers the 

x-direction lies in the plane and is deemed a second lateral direction. 

Once we have decided that a lateral patterning of the active region is 

desirable for lateral carrier and photon confinement, we also must consider 
lateral current confinement. That is, once the active region is limited in lateral 

extent, we must insure that all of the current is injected into it rather than 

In-Plane 

FIGURE 1.11 Schematic of in-plane and vertical-cavity surface-emitting lasers showing 

selected coordinate systems. 
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(a) 

1.72UM e@10 sB (b) 

FIGURE 1.12 Cross-sectional SEMs of (a) in-plane and (b) vertical-cavity semi- 

conductor lasers. 

finding some unproductive shunt path. In fact, current confinement is the first 

and simplest step in moving from a broad-area laser to an in-plane stripe or 

vertical-cavity dot laser. For example, current can be channeled to some degree 

simply by limiting the contact area. However, in the best lasers current 

confinement is combined with techniques to laterally confine the carriers and 

photons in a single structure. 

Lateral confinement of current, carriers, and photons has been accomplished 

in literally dozens of ways, and there are even more acronyms to describe all 

of these. For brevity’s sake, we will focus on only a few generic types illustrated 

in Fig. 1.13. The first two types only provide current confinement; the third 

adds a weak photon confinement;*and the last three provide all three types 
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FIGURE 1.13 Lateral confinement structures for heterostructure lasers: (a) oxide-stripe 

provides current confinement; (b) proton-implant provides current confinement; (c) 

ridge structure provides current plus photon confinement; (d) etched mesa buried- 
heterostructure (BH) provides current, photon, and carrier confinement; (e) impurity- 

induced disordered BH provides current, photon, and carrier confinement; (f) channeled 
substrate BH provides current, photon, and carrier confinement. 

of confinement. The examples are explicit for in-plane lasers, but many are also 

applicable to vertical-cavity lasers. 

Figure 1.13(a) illustrates a simple oxide stripe laser. This stripe laser is the 

simplest to make, since the area of current injection is limited simply by limiting 

the contact area. This laser has some current confinement, but no carrier or 

photon confinement. The proton-implanted configuration of Fig. 1.13(b) has 

essentially the same attributes, although the current confinement is extended 

to the active region. It uses the fact that implanted hydrogen ions (protons) 

create damage and trap out the mobile charge, rendering the implanted material 

nearly insulating. 

The configurations of Fig. 1.13(a) and (b) are described as gain-guided stripe 

lasers, since the current is apertured, but there is no lateral heterobarrier to 

provide a potential well for carriers or photons. Thus, carriers injected 

into the active region can diffuse laterally, decreasing the laser’s efficiency. 

Also, there is no lateral index change to guide photons along the axis 

of the cavity, so optical losses tend to be high. Although these two con- 

figurations were of some commercial importance in the early days of diode 

lasers before the advent of viable etching or regrowth techniques, currently 

their use is limited. The oxide stripe laser is still used in the lab to characterize 

material, since the processing is so simple, and proton isolation is still used to 

limit current leakage in practical lasers, but the implant areas are usually kept 

a few microns away from the active region for reduced loss and improved 

reliability. 
Figure 1.13(c) illustrates a ridge laser which combines current confinement 

with a weak photon confinement. The efficiency of current injection can be 

high, but since the processing involves etching down to just above the active 
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FIGURE 1.14 Practical examples of index-guided in-plane lasers—schematics and 

measured light-out vs. bias current. (a) 300 wm long, 1.2 um wide, 1.5 ym wavelength 

InGaAsP/InP BH structure with 80 and 95% facet coatings and a compressively strained 

SQW active region contained in a 1.2 um wavelength SCH region [7]. Data taken 

for the indicated temperatures. (© 1993 IEEE) (b) 690 nm wavelength strained-QW 

AlGaInP/GaAs buried ridge structure with 6%—HR facet coatings for high output 

power [8]. Far-field emission angle also indicated for various powers. (© 1993 IEEE) 

(c) Dry-etched ridge-waveguide InGaP/GaAs strained-QW laser with gold heat spreader 

shown in SEM photo [9]. Device length, L, ridge width, w, and characteristic 

temperature, 7) indicated with data. (© 1993 IEEE) 

region, carriers are still not confined laterally. They are free to diffuse laterally 

and recombine without contributing to the gain. The etching depth is adjusted 

to provide just enough effective lateral index change to provide a single lateral 

mode optical waveguide. If a deeper etch is used, e.g., down to the active layer, 

the device will support more than one lateral mode and coupling to fibers or 

other optics is spoiled. In fact, even if we ignore the optical waveguide problem, 

etching through the active region to laterally confine the carriers is not 

productive, because the nonradiative recombination associated with surface 

states can be as bad or even worse than the carrier loss due to lateral diffusion. 
Ridge lasers continue to be important because they can be fabricated following 

a single epitaxial crystal growth. Since optical guiding is provided by the 

dielectric loading of the ridge, optical losses can be low. Thus, this structure is 

still considered a good compromise by many looking for a simple device 

fabrication process. 
Figures 1.14 and 1.15 give cross-sectional schematics and illustrative light 

power out versus drive current characteristics of a number of experimental 

in-plane and vertical-cavity lasers [7-12]. The figure captions contain some of 

the relevant descriptive details. In the chapters to follow, the operating 

principles of such lasers will be detailed. 
Effective lateral carrier or photon confinement requires the creation of a 
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FIGURE 1.15 In-plane and vertical-cavity lasers using strained InGaAs QWs emitting 

at 980 nm on GaAs substrates—schematics and measured light-out vs. bias current. (a) 

Top-contacted impurity-induced disordered BH laser using a single strained QW active 

layer and uncoated facets [10]. Elemental Si is diffused from the top surface at 850°C 

to disorder the active region. (© 1993 IEEE) (b) Gain-guided VCSEL structure using 

a 3QW active region and proton implantation above the active region to aperture the 

current [11]. Data is from a device with a = g = 15 ym diameter contact and implant 
apertures. (© 1994 IEEE) (c) Index-guided 3QW VCSEL with an etched top mesa and 

intracavity contacts on a semi-insulatmg substrate [12]. Data is\given for several 

different device diameters. (© 1994 IEEE) 
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potential well for these particles. Just as in the discussion of transverse carrier 
and photon confinement in the one-dimensional diode (Fig. 1.4), we recognize 
that formation of a lateral heterostructure would be most desirable. Figure 
1.13(d) through (f) give examples of three different buried heterostructure (BH) 
configurations. These are clearly the most popular lateral configurations since 
they can combine all the desired features of current, carrier, and photon 

confinement. There are many variations on this theme beyond Fig. 1.13(d) 

through (f), but all require a second growth or solid-state intermixing step, 

unless a complex initial growth on a pre-patterned substrate is performed. 

Explicitly shown in Fig. 1.13(d) is an etched mesa BH (EMBH), which is 

formed by first growing a planar DH configuration, next etching a narrow 

mesa stripe down through the active region, and finally regrowing additional 

lattice-matched semiconductor material with a higher bandgap around this 

mesa. This regrown material must also block current flow, either by in- 

corporating reverse biased junctions as shown, or by utilizing material which 

is doped to be semi-insulating. This latter configuration has been dubbed the 

semi-insulating planar buried heterostructure (SIPBH). Another interesting 

variation on this theme, which works well in the InGaAsP/InP system, involves 

stopping the first growth after just completing the active layer, etching a channel 

on each side of what is to be the active stripe, and then regrowing with several 

layers of LPE, which tends to fill in the channels before any growth proceeds 

on the active stripe. If the doping type is switched a couple of times as the 

channels are being filled, blocking junctions can be formed there but not on 

the active stripe. This double-channel planar BH (DCPBH) has the additional 

advantage of having a larger contact area for reduced series resistance. 

Figure 1.13(e) gives another variation on the BH theme. In this case only 

one epitaxial growth is performed, but the active layer to the left and right of 

the desired active stripe is modified to increase its bandgap after growth. This 

laterally selective modification has been induced by the diffusion of impurities 
or vacancies implanted or otherwise created in the desired regions. The diffusing 

species cause an intermixing of the original cladding and active lattice atoms 

by requiring them to hop from site to site as the diffusing species move through. 

As indicated in Fig. 1.13(e), the result is a BH structure which provides lateral 

carrier and photon confinement. Current confinement is also facilitated by the 

increased turn-on voltage of the larger-bandgap heterojunction in the inter- 

mixed regions. This technique works particularly well in the AlGaAs/GaAs 

system, since the Al and Ga ions have the same size, and they can interchange 

without changing the lattice constant. Difficulties with the technique result from 

the relatively high temperatures required (>800°C for several hours with 

AlGaAs) to accomplish the intermixing. 

Figure 1.13(f) illustrates the final type of BH laser that we shall introduce. 

Here the device is formed by growing on a prepatterned substrate. That is, the 

laterally patterned active region is completely defined by a single growth. 

However, it may be desirable to grow a first epilayer before patterning the 

substrate to provide for better current confinement. This is the specific 
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embodiment illustrated. Again, there are many variations on this general theme, 

but the V-groove laser shown in Fig. 1.13(f) will make the point. In this case 

the substrate is first prepared by growing an epilayer of semi-insulating material, 

which for InP is accomplished by Fe doping the layer. V-grooves are then 

etched so that their bottoms extend through the semi-insulating layer to the 

conducting substrate. Finally, the DH laser layers are grown, but again, due 

to the tendency of the growth to planarize (especially by LPE or MOCVD), a 

thicker and separate active stripe is formed in the V-groove.where the current 

is constrained to flow. As in the other case, many variations on this general 

theme are possible. For example, the initial SI growth could be skipped in favor 

of using a final proton implant around the active stripe to improve current 

confinement. This type of laser is desired because the active region does not 

have to be exposed to air or damaged in the definition of the lateral 

heterostructure. Thus, nonradiative interface recombination should be avoided. 

However, forming a reproducible active region is a challenge, since such 

patterned growth tends to be very sensitive to the detailed shape of the substrate 
pattern as well as the growth system parameters. 
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PROBLEMS 

These problems draw on material from Appendices 1 through 3. 

1.1 List three advantages and three disadvantages diode lasers have relative 

to gas or solid-state lasers. 

12 Why are III-V materials better than Si for LEDs and lasers? 

13 An electron is trapped in a one-dimensional potential well 5 nm wide 

and 100 meV deep. 

(a) How many bound energy states exist? 

(b) What are the energy levels of the first three measured relative to the 

well bottom? 

(c) If the well energy depth were doubled, how many states would be 

confined? 

(Assume the free electron mass.) 

1.4 Repeat Problem 1.3 for a 10 nm wide GaAs well and AlGaAs barriers. 

15 Ten potential wells that each have two bound states are brought together 

so that their wavefunctions overlap slightly. How many bound energy 

states exist in this system? 

1.6 A very long one-dimensional chain consists of atoms covalently bonded 

together with a resulting center-to-center spacing of 0.3 nm. The band 

structure of this system can be determined from the overlap of the 

individual atomic wavefunctions. The coupling energy given by Eq. 

(A1.21) for a particular atomic energy level, E,, is 0.2 eV. 

(a) Calculate the band structure over the first two Brillouin zones. 

(b) Calculate the electron effective mass at the band extrema. 

1.7. A light source emits a uniform intensity in the wavelength range 

0.4—2.0 um. A polished wafer of GaAs with antireflection coatings on 
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both surfaces is placed between the source and an optical spectrum 

analyzer. 

(a) Sketch the wavelength spectrum received. 

(b) Which processes in Fig. 1.3 are significant in forming this spectrum? 

The light source in Problem 1.7 is replaced by a GaAs laser emitting at 

850 nm, and it is found that 99.5% of the incident light is absorbed in 

the GaAs wafer. Now an Ar-ion laser emitting at 488.nm is trained to 

the same place on the wafer. 

(a) As the power of the Ar-ion laser is increased to 3 W, the absorption 

of the GaAs laser beam is reduced to 50%. Assuming the heat is 

conducted away, explain what might be happening. 

(b) The power in the Ar-ion laser is further increased, and it is found 

that at about 10W the GaAs laser beam passes through the 

wafer unattenuated. Again, neglecting heating effects, explain why 

it requires 10 W rather than ~6 W to reach transparency. 

For good carrier confinement it has been found that the quasi-Fermi 

levels should remain at least 5 kT below the top of a quantum well at 

operating temperature. In a particular GaAs quantum-well SCH laser, 

the operating active region temperature is found to be 125°C. If the 

quantum well is 80 A wide, how much Al should be in the separate 
confinement region to provide the desired 5 kT margin in the conduction 

band at a carrier density of 4 x 10'® cm™ *? 

(a) Plot the carrier density vs. the quasi-Fermi level for the conduction 

band in bulk GaAs and InGaAsP (1.3 um) at 300 K. Cover the carrier 

density range from 1 x 10'7cm~> to 1 x 10'?cm~3, and use a 
logarithmic scale for the carrier density axis. 

(b) With this result answer Problem 1.9 for a AlGaAs/GaAs bulk DH 

structure. ; 

Calculate the density of states vs. energy for a “quantum wire” potential 

well in which two dimensions are relatively small. That is, assume a large 

dimension (>10nm) in the z-direction and quasi-continuous state 
energies only for k,. 

Calculate the density of states vs. momentum for a quantum well. 

Derive Eq. (A3.3). 

Photons are transversely confined in a simple three-layer waveguide in 

a DH laser consisting of an InGaAsP active region 0.2 ym thick 

sandwiched between InP cladding layers. The bandgap wavelength of the 
active region is 1.3 um. 

(a) How many transverse TE modes can exist in this slab waveguide? 

(b) Plot the transverse electric field for the lowest-order TE mode. 
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(c) What is the energy density 0.5 pm above the active-cladding interface 

relative to the peak value in the active region? 

(d) What is the effective index of the guided mode? 

(e) What is the transverse confinement factor? 

Suppose the DH laser of Problem 1.14 is now used to form a BH laser 

with an active region 2 um wide and InP lateral cladding regions, as in 

Fig. 1.13(d) 

(a) What is the effective index for the fundamental two-dimensionally 

guided mode? 

(b) How many lateral modes are possible? 

(c) What is the lateral confinement factor for the fundamental mode? 

VCSELs have been formed by etching 5 um square pillars through the 

entire laser structure, creating rather large index discontinuities at the 

lateral surfaces. Assuming the axial propagation constant, f, is fixed at 

the same value for all resonant modes, and that the lowest-order mode 

has a wavelength of 1.0 um, plot the mode spectrum including the first 

six lateral modes. 

Derive Eq. (A3.14) and verify Eq. (A3.15). 

It has been proposed that if the lateral dimensions of VCSELs or in-plane 

lasers become sufficiently small, the density of states for electrons and 

holes can be modified by the lateral size effect. In VCSEL material with 

an 80 A thick GaAs quantum-well active region and high barriers, devices 

of various lateral widths are formed. How narrow must the device be 

before the lateral size effect shifts the lowest state energy up by 10 meV 

(about $kT at room temperature)? Neglect any indirect surface-state 

pinning effect. 



CHAPTER TWO 

Me 

A Phenomenological Approach to 

Diode Lasers 

2.1 INTRODUCTION 

In this chapter we attempt to develop an engineering toolbox of diode laser 

properties based largely upon phenomenological arguments. In the course of 

this development, we make heavy reference to several appendices for a review 

of some of the underlying physics. 

The chapter begins by developing a rate equation model for the flow of 

charge into double-heterostructure active regions and its subsequent recom- 

bination. Some of this electron-hole recombination generates photons by 

spontaneous emission. This incoherent light is important in LEDs, and a section 

is devoted to deriving the relevant equations governing LED operation. 

Sections 2.4 through 2.6 provide a systematic derivation of the dc light- 

current characteristics of diode lasers. First, the rate equation for photon 
generation and loss in a laser cavity is developed. This shows that only a small 

portion of the spontaneously‘ generated light contributes to the lasing mode. 

Most of it comes from the stimulated recombination of carriers. All of the 

carriers that are stimulated to recombine by light in a certain mode contribute 

more photons to that same mode. Thus, the stimulated carrier recombination/ 

photon generation process is a gain process. The threshold gain for lasing is 

studied next, and it is found to be the gain necessary to compensate for cavity 

losses. The current required to reach this gain is called the threshold current, 
and it is shown to be the current necessary to supply carriers for the 

unproductive nonradiative and spontaneous recombination processes, which 

clamp at their threshold value as more current is applied. Above threshold, all 

additional injected carriers recombining in the active region are shown to 

contribute to photons in the lasing mode. A fraction escape through the mirrors; 

others are absorbed by optical losses in the cavity. 

The next section deals with the modulation of lasers. Here‘for the first time 

28 
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we solve the rate equations for a modulated current. Under small-signal 

modulation, the rate equations for carriers and photons are found to be 

analogous to the differential equations that describe the current and voltage in 

an RLC circuit. Thus, the optical modulation response is found to have a 
resonance and to fall off rapidly above this frequency. 

Finally, this chapter reviews techniques for characterizing real lasers. These 

techniques can be used to extract the important device parameters used in the 

theoretical derivations. They also provide practical terminal parameters that 
are useful in the design of optoelectronic circuits. 

2.2 CARRIER GENERATION AND RECOMBINATION IN ACTIVE REGIONS 

The text accompanying Figs. 1.4, 1.5, and 1.13 considers the current injected 

into the terminals of a diode laser or LED, and suggests it is desirable to have 

all of it contribute to electrons and holes which recombine in the active region. 

However, in practice only a fraction, y;, of the injected current, I, does 

contribute to such carriers. In Fig. 2.1 we again illustrate the process of carrier 

injection into a double-heterostructure active region using a somewhat more 

accurate sketch of the energy gap vs. depth into the substrate. 

Since the definitions of the active region and the internal quantum efficiency, 

Y;, are so critical to further analysis, we highlight them here for easy reference. 

Active region: the region where recombining carriers contribute to useful gain and 

photon emission. 

The active region is usually the lowest bandgap region within the depletion 

region of a pin diode for efficient injection. However, it occasionally is 

convenient to include some of the surrounding intermediate bandgap regions. 

Also in this definition, useful is the operative word. There may be photon 

emission and even gain at some undesired wavelength elsewhere in the device. 

Internal quantum efficiency, n;: the fraction of terminal current that generates 

carriers in the active region. 

Epitaxial growth ae 

p-contact n-substrate 

FIGURE 2.1 Band diagram of forward biased double-heterostructure diode. 
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It is important to realize that this definition includes all of the carriers that 

are injected into the active region, not just carriers that recombine radiatively at 

the desired transition energy. This definition is oftentimes misstated in the literature. 

We also will specifically analyze active regions that are undoped or lightly 

doped, so that under high injection levels relevant to LEDs and lasers, charge 

neutrality dictates that the electron density equals the hole density, 1.e., N = P 

in the active region. Thus, we can greatly simplify our analysis by specifically 

tracking only the electron density, N. \ 

The carrier density in the active region is governed by a dynamic process. 

In fact, we can compare the process of establishing a certain steady-state carrier 

density in the active region to that of establishing a certain water level in a 

reservoir which is being simultaneously filled and drained. This is shown 

schematically in Fig. 2.2. As we proceed, the various filling (generation) and 

drain (recombination) terms illustrated will be defined. The current leakage 

illustrated in Fig. 2.2 contributes to reducing n; and is created by possible shunt 

paths around the active region. The carrier leakage, R,, is due to carriers 

“splashing” out of the active region (by thermionic emission or by lateral 

diffusion if no lateral confinement exists) before recombining. Thus, this leakage 

contributes to a loss of carriers ‘in the active region that could otherwise be 

used to generate light. 

For the DH active region, the injected current provides a generation term, 

and various radiative and nonradiative recombination processes as well as 

carrier leakage provide recombination terms. Thus, we can write the rate equation, 

dN 
oF = Ugen — reco (2.1) 

where G,,,, is the rate of injected electrons and R,,, is the rate of recombining 

electrons per unit volume in the active region. Since there are n;I/q electrons 

per second being injected into the active region, 

I Cee a (2.2) 
qVv 

Current 
Leakage 

ee Rs 

FIGURE 2.2 Reservoir with continuous supply and leakage as an analog to a DH active 
region with current injection for carrier generation and radiative and nonradiative 
recombination (LED or laser below threshold). 
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where V is the volume of the active region. For example, if a current of 
I = 20 mA is flowing into the laser’s terminals, a fraction n; = 80% of the 
carriers are injected into the active region, and if the active volume is 100 ym’, 

then G,.,, = 10°’ electrons/s-cm*. Or, 10'® cm~? electrons are injected in | ns. 

The recombination process is a bit more complicated, since several mech- 

anisms must be considered. As introduced in Fig. 1.3, there is a spontaneous 
recombination rate, R,,, and a nonradiative recombination rate, R,,. And as 

depicted in Fig. 2.2, a carrier leakage rate, R,, must sometimes be included if 

the transverse and/or lateral potential barriers are not sufficiently high (see 

Appendix 2 for a discussion of R,). Finally, under the right conditions, a net 

stimulated recombination, R,,, including both stimulated absorption and 
emission, is important. Thus, we can write 

Roa ae Kes ne Roe i R, a Ry: (2.3) 

The first three terms on the right refer to the natural or unstimulated carrier 

decay processes. The fourth one, R,,, requires the presence of photons. It is 

common to describe the natural decay processes by a carrier lifetime, t. In the 

absence of photons or a generation term, the rate equation for carrier decay is 

just, dN/dt = N/t, where N/t = R,, + R,, + R;, by comparison to Eq. (2.3). 

This rate equation defines t. Also, as mentioned in Chapter 1, this natural decay 

can be expressed in a power series of the carrier density, N, since each of the 

terms depends upon the existence of carriers. Thus, we can rewrite Eq. (2.3) in 

several ways. 

|e = | ns a Rar aC R, ae Res (2.3a) 

N 
Ree cae 8 Rg; (2.3b) 

18 

Ryec = BN? + (AN + CN?) + Ry, (2.3c) 

where as the grouping suggests in (2.3c), it has been found that R,, ~ BN? and 

R,, + R, ~ (AN + CN?°). The coefficient B is called the bimolecular recombination 

coefficient, and it has a magnitude, B ~ 10~'° cm*/s for most AlGaAs and 
InGaAsP alloys of interest. We also note that the carrier lifetime, 1, is not 

independent of N in most circumstances. 
Thus, so far we can write our carrier rate equation in several equivalent 

ways. We shall deal with R,, a little later, but using Eq. (2.3b), our carrier rate 

equation may be expressed as 

dNgwinih wal 

GON GV 
= (2.4) st* 

In the absence of a large photon density, such as in a laser well below threshold 

or in most LEDs, it can be shown that R,, can be neglected. Figure 2.2 illustrates 

each of these terms in our reservoir analogy, explicitly showing “leaks” R,,, 

R,,, and R, for N/t. 
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2.3 SPONTANEOUS PHOTON GENERATION AND LEDs 

Before proceeding to the consideration of lasers, where R,, will become a 

dominant term above threshold, let us first try to gain some understanding of 

the situation where the photon density is relatively low, such as in an LED 

where no feedback is present to provide for the build-up of a large photon 

density. This case is actually similar to a laser below threshold, in which the 

gain is insufficient to compensate for cavity losses, and generated photons do 

not receive net amplification. 
The spontaneous photon generation rate per unit volume is exactly equal 

to the spontaneous electron recombination rate, R,,, since by definition every 

time an electron-hole pair recombines radiatively, a photon is generated. 
(Again, N equals the density of electron—hole pairs as well as electrons for 

relatively light doping). Under steady-state conditions (dN/dt = 0), the genera- 

tion rate equals the recombination rate, 1.¢., from Eqs. (2.2) and (2.3), with 

Re 0 

nil ne Ry, + Ry + Rr (2.5) 

The spontaneously generated optical power, P,,, is obtained by multiplying 

the number of photons generated per unit time per unit volume, R,,, by the 

energy per photon, hv, and the volume of the active region, V. We could solve 
Eq. (2.5) for R,,. but since the exact dependence of R,, + R, on I is unknown, 

this leads only to a parametric equation. The conventional approach is to bury 

this problem by defining a radiative efficiency, n,, where 

Re % 
| ; (2.6) 

Re se Re ar R, 

We must not forget that 7, usually depends upon carrier ‘density somewhat. 
Then, from Eqs. (2.5) and (2.6), 

hy 
P,, = hvVR,, = nin, — I. (2.7) 

q 

The product of n,n, is sometimes referred to as the LED internal efficiency. 

However, we shall not use this definition here, since it can lead to serious 

confusion when we move on to lasers. As we shall see, only y; appears in the 

laser output power, and we have called it alone the internal efficiency. 

If we are interested in how much power the LED emits into some receiving 

aperture, P,ep, we must further multiply P,,, by the net collection efficiency, n., 

experienced in transmitting photons out of the semiconductor and into this 

aperture. This is typically relatively low (< 10%) for most LEDs, because the 

light is emitted in all directions, and much of it is totally reflected at the 
semiconductor—air interface. This situation is illustrated in Fig. 2.3. 
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FIGURE 2.3 Schematic of LED showing how only a small portion of the generated light 

reaches a desired detector. 

As indicated by Fig. 2.3 much of the light is reflected back toward the active 

region rather than being coupled out of the semiconductor chip. A possible 

consequence is the regeneration of new carriers by the reabsorption of this light. 
In properly designed LEDs this “photon recycling” can greatly increase their 

efficiency, yielding an effective n, > 10%. 

In any event, the product of the three efficiencies (fraction of carriers 

injected into the active region, fraction of these recombining radiatively, and the 

fraction of those usefully coupled out) gives the external LED quantum efficiency, 

Nex. That is, 

hy hy 
Prep Nill pa [= Nex — JE (2.8) 

q q 

Thus, ignoring the slight dependence of 7,,. on I, we see that the power coupled 

from an LED is directly proportional to the drive current. The external LED 

quantum efficiency, 7,,, is the number of photons coupled to the receiving 

aperture per electron flowing into the LED. 
The frequency response of the LED can also be derived from the carrier rate 

equation (2.4), with R,, +0. We shall use the theorem that the Fourier 
transform of the impulse response in the time domain gives the frequency 

response. An impulse of current is simply a quantity of charge, which will 

establish an initial condition of N(t = 0*) =N,. For t > 0, the rate equation 

can be written as 

ENE NS DI RR? CNS. (2.9) 
at Tt 

With the polynomial expansion of the recombination rate, we are reminded 

that the carrier lifetime, t, is generally a function of the carrier density. If it 

were independent of N, the solution would be a simple exponential decay, and 

the frequency response would be analogous to that of a simple RC circuit in 
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which the 3 dB cutoff frequency, w, = 1/t. In order for t to be constant: (1) the 

cubic term must be negligible and (2) either the linear term, AN, must dominate 

(not good, since this represents nonradiative recombination) or the active region 

must be heavily doped, such that the BN* term which really equals BNP, can 

be written as (BP,)N. That is, the p-type doping level, P,, must be greater than 

the injection level, N, so that P, + P ~ P,. Under these conditions, then, the 

time response is just a simple exponential decay, 

XS 

N(t) = Nie“, (2.10) 

and the frequency response is a Lorentzian function, 

N(O 
N(@) = ”) (2.11) 

1+ jor 

which drops to 0.707 N(0) at wt = 1. For R,, ~ (BP;)N, the power out, Prep, 

which is proportional to R,,, will also have the same frequency response. The 

other cases are left as exercises for the reader, but it should be clear that the 

cutoff frequency will be reduced if the carrier lifetime is increased. 

S 

2.4 PHOTON GENERATION AND LOSS IN LASER CAVITIES 

For the diode laser, we must now further investigate the nature of the net 

stimulated recombination rate, R,,, in generating photons as well as the effect 

of the resonant cavity in storing photons. In analogy with Section 2.2, we wish 

to construct a rate equation for the photon density, N,, which includes the 

photon generation and loss terms. We shall use the subscript p to indicate that 

variables are referring to photons. 

A main difference between the laser and LED, discussed in Section 2.3 above, 
is that we only consider light emission into a single mode of the resonant cavity 

in the laser. Since there are typically thousands of possible optical modes in a 

diode laser cavity, only a small fraction of R,, contributes to the photon 

generation rate for a particular mode. Appendix 4 discusses the possible optical 

modes of a resonant cavity using some of the results of Appendix 3. Note that 

the number of effective modes in a small vertical-cavity laser can be much fewer, 

typically dozens rather than thousands. 

The main photon generation term above threshold (the regime of interest in 

lasers) is R,,. Every time an electron-hole pair is stimulated to recombine, 

another photon is generated. However, as indicated in Fig. 2.4, since the cavity 

volume occupied by photons, V,, is usually larger than the active region volume 

occupied by electrons, V, the photon density generation rate will be [V/V,]R,, 

not just R,,. This electron—photon overlap factor, V/V,, is generally referred to 

as the confinement factor, . Sometimes it is convenient to introduce an effective 

thickness, width, and length that ‘contains the photons, Asyps Weer, and L, 
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Cavity: V, 

Mirror 2 Mirror 1 

In-plane laser 

Mirror 1] 

— Cavity: V, ae 

N Active: N, Np,V 

Mirror 2 

VCSEL 

FIGURE 2.4 Schematics of in-plane and vertical-cavity lasers illustrating the active 

(cross-hatched) and cavity (within dashed lines) volumes as well as the coordinate 

systems. 

respectively. That is, V, = d.-,w.,,L. Then, if the active region has dimensions, 

d, w, and L,, the confinement factor can be expressed as, T = III, where 

T= d/d.-¢, 1, = w/werr, and T, = L,/L. Appendix 5 puts the derivation of I 

on a more rigorous foundation, pointing out that I", is subject to an enhancement 
factor for L, < A. 

Photon loss occurs within the cavity due to optical absorption and scattering 

out of the mode, and it also occurs at the output coupling mirror where a 

portion of the resonant mode is usefully coupled to some output medium. 

These losses will be quantified in the next section, but for now we can 

characterize the net loss by a photon (or cavity) lifetime, t,, analogous to how 

we handled electron losses above. A first version of the photon rate equation 

takes the form: 

se = DK, + per, = =, (2.12) 
P 

where f,, is the spontaneous emission factor. As indicated in Appendix 4 for 

uniform coupling to all modes, f,,, is just the reciprocal of the number of optical 

modes in the bandwidth of the spontaneous emission. As also indicated by Eq. 
(2.12), in the absence of generation terms, the photons decay exponentially with 

a decay constant of t,. Again, this is really the definition of t,. 

Equations (2.4) and (2.12) are two coupled equations that can be solved for 

the steady-state and dynamic responses of a diode laser. However, in their 

present form there are still several terms that need to be written explicitly in 

terms of N and N, before such solutions are possible. First, we shall consider R,,. 
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R,, represents the photon-stimulated net electron—hole recombination which 

generates more photons. This is a gain process for photons. As illustrated in 

Fig. 1.3 and discussed more fully in Appendix 6, the net effect of the upward 

and downward electronic transitions, corresponding to stimulated absorption 

and emission of photons, respectively, are included. In Fig. 2.5 we show the 
growth of a photon density from an incoming value of N, to an exiting value 

of N, + AN, as it passes through a small length, Az, of active region. Without 

loss of generality, but for simplicity, we assume full overlap between the active 

region and the photon field, i.c., [ = 1. As shown, we can also describe this 

growth in terms of a gain per unit length, g, by 

N, + AN, = N,e?™. (2.13) 

If Az is sufficiently small, exp(gAz) ~ (1+.gAz). Also, using the fact that 

Az = v,At, where v, is the group velocity, we find that, AN, = N,gv, At. That 

is, the generation term for dN,/dt is given by 

dN AN, 
(=) = R,, = —* =0,gN,. (2.14) 

diy aca: At 

Thus, we can now rewrite the carrier and photon density rate equations, 

GING nl aN: 
zs = ane Og. C15) 

dN, N 
FF =lujgNe- 1 piyky . (2.16) 

Of course, we still have not made all the substitutions necessary to directly 

solve the two equations simultaneously. In Appendix 6 it is suggested that the 

FIGURE 2.5 Definition of gain in terms of the increase in photon number across a small 
segment of gain material. , \ 
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gain as a function of carrier density can be approximated by a straight line, at 
least under small-signal conditions. That is, 

where a is the differential gain, 0g/ON, and N,, is a transparency carrier density. 
(Actually, a logarithmic function fits the gain better over a wider range of N, 
as we shall detail in Chapter 4.) Of course, we also know that N/t can be 

replaced by the polynomial AN + BN? + CN?, where the terms estimate defect, 

spontaneous (R,,), and Auger recombination, respectively. Nevertheless, we 

shall leave the rate equations in the general form of Eqs. (2.15) and (2.16) for 
future reference. 

2.5 THRESHOLD OR STEADY-STATE GAIN IN LASERS 

In Section 2.4, we characterized the cavity loss by a photon decay constant or 

lifetime, t,,. Here, we wish to explicitly express t, in terms of the losses associated 

with optical propagation along the cavity and the cavity mirrors. Also, we wish 

to show that the net loss of some mode gives the value of net gain required to 

reach the lasing threshold. 

As shown in Appendix 3 and discussed in Chapter 1, the optical energy of 

a modern diode laser propagates in a dielectric waveguide mode which is 

confined both transversely and laterally as defined by a normalized transverse 

electric field profile, U(x, y). In the axial direction this mode propagates as 

exp(—jfz), where f is the complex propagation constant which includes any 

loss or gain. Thus, the time- and space-varying electric field can be written as 

& = 6, E,U(x, yet), (2.18) 

where é, is the unit vector indicating TE polarization and Ey is the magnitude 

of the field. The complex propagation constant, B, includes the incremental 

transverse modal gain, <g>, and internal modal loss, <%;>,,. That is, 

a ee ee : CEE (2.19) 

where the real part of B; B = 2nn/d, and fi is an effective index of refraction for 

the mode, also defined in Appendix 3. As shown in Appendix 5, the transverse 

modal gain, <g>,,, and loss, <a;>,,, are found from weighted averages of the 

gain and loss, respectively, across the mode shape, U(x, y). Both are related to 

power; thus, the factor of 3 in this equation for the amplitude propagation 

coefficient. From Appendix 5, we can let ¢g>,,=TI,,g, where T,, is the 

transverse confinement factor, if g(x, y) is constant across the active region and 
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U(x, y) i 

FIGURE 2.6 Generic laser cavity cross section showing active and passive sections (no 

impedance discontinuity assumed) and the guided-mode profile. 

zero elsewhere. This is generally valid for in-plane lasers, but not for VCSELs. 

Also, for notational convenience, we shall let <«;>,,. = %;. 

As illustrated in Fig. 2.6, most laser cavities can be divided into two general 

sections: an active section of length L, and a passive section of length L,. Also, 

g and «; will clearly be different in these-two sections. In the passive section, 

by definition g = 0, and «, can be given a second subscript to designate its 

location. The propagating mode is reflected by end mirrors, which have 

amplitude reflection coefficients of r, and r,, respectively, to provide a resonant 

cavity. The amount transmitted is potentially useful output. 

In order for a mode of the laser to reach threshold, the gain in the active 

section must be increased to the point where all the propagation and mirror 

losses are compensated, so that the electric field exactly replicates itself after 

one round-trip in the cavity. Equivalently, we can unravel the round-trip to lie 

along the z-axis and require that &(z = 2L) = &(z = 0), provided we insert the 

mode reflection coefficients at z = 0 and z = L. As a consequence of inserting 

these boundaries into Eq. (2.18), we obtain 

ryrze” 2ihatnbag—2iBoinke — 1. (2.20) 

The subscript th denotes that this characteristic equation only defines the 

threshold value of f. (In Chapter 3 we shall take a more basic approach to 

obtain this same characteristic equation.) Using Eq. (2.19), we can break the 

complex Eq. (2.20) into two equations for its magnitude and phase. For the 
magnitude, 

Pye ah alka ately — 1, Q21) 

where we have chosen reference planes to make the mirror reflectivities real. 

Solving for T’,,g,,L, we obtain 

1 
Ginn = Cl Lops + oy bye ar in( 2) (2:22) 
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where the mean mirror intensity reflection coefficient, R = r,r,. For cleaved- 
facet lasers based upon GaAs or InP, R ~ 0.32. Dividing Eq. (2.22) by the total 
cavity length, L, realizing that T,,L,/L ~T,,0, =T (exact for L, > A), and XVes 

defining the average internal loss (a,,L, + a;,L,)/L as <a;> we have 

1 1 
C9 tn = V9 en = (4) + L In R) (2.23) 

For convenience the mirror loss term is sometimes abbreviated as, «,, = 

(1/L) In(Q1/R). Noting that the photon decay rate, 1/t, = 1/t; + 1/te = 

Vg(Xa;> + &,), we can also write 

1 
Ig, = <a> + 4, = —. (2.24) 

UgTp 

As noted in Appendix 5, if the averaging is initially done over the whole 

volume, the three-dimensional modal gain and loss used in Eqs. (2.23) and 

(2.24) are obtained directly. However, this obscures the physics of the re- 

circulating mode in the cavity, so we have chosen to show the longitudinal 

weighting separately here. As suggested above, the general <g),,, form is always 

valid, but the I'g,, form only should be used for in-plane lasers. The limitation 

that L, >A for L,/L =T, listed above is also discussed in Appendix 5. As 

explained there, the axial averaging of gain and loss must also use a weighted 

average over the axial standing wave pattern in the general case. In fact, for 

very short active regions (L, « 4), such as in many vertical-cavity lasers, it is 
possible for T, ~ 2L,/L, if the active segment is placed at the peak of the 

electric-field standing wave (see Appendix 5). 

It is important to realize that Eqs. (2.23) and (2.24) give only the cavity loss 

parameters necessary to calculate the threshold gain. They have nothing to do 

with the stimulated emission physics which determines what the gain is for a 

given injection current. This physics is briefly summarized in Appendix 6, and 

it will be the primary subject of Chapter 4. 
For the phase part of Eq. (2.20), exp(2jBinaLa) €XP(2iBinp Lp) = 1, requires 

that BijqgLla + BinpLp = mn, which gives a condition on the modal wavelength, 

2 
Ath = he [nds ae ry les, 3 (2.25) 

m 

where m is the longitudinal mode number. It should also be realized that n 

varies with wavelength (0//0A, dispersion), and it generally is also dependent 

upon the carrier density (@n/0N, plasma loading). Thus, when making computa- 

tions these dependences must be included. That is, to determine n at a 
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wavelength 2 = 1, + Ad and a carrier density, N = No + AN, we use 

on on 
A, N) = A(Ay, No) + — AA + — AN. 2.26 n(Aa, N) = n(Ao, No) AA a (2.26) 

Typically, 0”/0A~ —1pm', and @n/0N ~T,,0n,/ON ~ —T,y10~7° cm? 
where n, is the index in the active region. Using Eqs. (2.25) and (2.26) we can 

find the wavelength separation between two modes, m and m + 1, to be 

j2 

py fee See a Pad (2.27) 
2 ber Ake) 

where the group effective index for the, jth section, n,, =n, — A(0n/0A) = 
i; + w(dn/dw). The group index in semiconductors is typically 20-30% larger 

than the index of refraction, depending on the specific wavelength relative to 

the band edge. From experiments, the values of n, for the active sections of 

GaAs and InGaAsP DH in-plane lasers are near 4.5 and 4, respectively. 

Finally, it is important to note that the steady-state gain in a laser operating 

above threshold must also equal its threshold value as given by Eq. (2.23). That 

is, in a laser cavity, . 

gl > In) = Gen- (steady state) (2.28) 

If the gain were higher than g,,, then the field amplitude would continue to 

increase without bound, and this clearly cannot exist in the steady state. 

Furthermore, since the gain is monotonically related.to the carrier density, this 

implies that the carrier density must also clamp at its threshold value. That is, 

Ne iN (steady state) (2.29) 

In fact, what happens when the current is increased to a value above 

threshold is that the carrier density and gain initially (for on the order of a 

nanosecond) increase to values above their threshold levels, and the photon 

density grows. But then, the stimulated recombination term R,, also increases, 

reducing the carrier density and gain until a new steady-state dynamic balance 

is struck where Eqs. (2.28) and (2.29) are again satisfied. Put another way, the 

stimulated recombination term in (2.15) uses up all additional carrier injection 

above threshold. In terms of our reservoir analogy depicted in Fig. 2.2, the 

water level has reached the spillway and any further increase in input goes over 

the spillway without increasing the water depth. Of course, the spillway 

represents simulated recombination. Figure 2.7 shows the analogy in this case. 

_ Figure 2.8 summarizes this carrier clamping effect in a laser cavity. The 
physics of the g vs. N curve never changes. The feedback effect causes the carrier 
density to clamp, in order to keep the gain at its threshold value. 



THRESHOLD CURRENT AND POWER OUT VS. CURRENT 41 

FIGURE 2.7 Reservoir analogy above threshold where water level has risen to the 
spillway so that an increased input results in an increased output (R,,) but no increase 
in carrier density (water level). The flows R,, and R,, do not change above threshold. 

Tih 7, 

FIGURE 2.8 Gain vs. carrier density and carrier density vs. input current. The carrier 

density clamps at threshold causing the gain to clamp also. 

2.6 THRESHOLD CURRENT AND POWER OUT VS. CURRENT 

2.6.1 Basic P—/ Characteristics 

Although the rate equations (2.15) and (2.16) are valid both above and below 

threshold, we shall piece together a below-threshold LED characteristic with 

an above-threshold laser characteristic to construct the power out vs. current 

in for a diode laser. The LED part is already largely complete with Eq. (2.8). 

Thus, we shall here concentrate on the above threshold laser part. The first 
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step is to use the below threshold steady-state carrier rate equation, Eq. (2.5) 

almost at threshold. That is, 

a N 
Ih = (R,, FREER a (2.30) 
qVv é 

Then, recognizing that (R,, + R,, + R,) = AN-+ BN? + CN? depends mono- 
tonically on N, we observe from Eq. (2.29) that above threshold (R,, + R,, + R,) 

will also clamp at its threshold value, given by Eq. (2.30). Thus, we can substitute 

Eq. (2.30) into the carrier rate equation, Eq. (2.15), to obtain a new above- 

threshold carrier rate equation, 

dN I — In) 
= i —— ith N. 5 

dt i qV a2 BA 
(PS ih) (2.31) 

where we have assumed y; is not a function of current above threshold. From 

Eq. (2.31) we can now calculate a steady-st state photon density above threshold 

where g = g,,,. That is, 

ULES er 0 is Tin) 

QU 9tnV 
N, = 

Pp 
(steady state) (2.32) 

Now with some relatively straightforward substitutions, we can calculate the 

power out, since it must be proportional to N,. To obtain the power out, we 

first construct the stored optical energy in the cavity, E,,, by multiplying the 

photon density, N,, by the energy per photon, hy, and the cavity volume, V,. 

That is, E,, = N,hvV,. Then, we multiply this by the energy loss rate through 

the mirrors, Vg%m = 1/Ttm, to get the optical power output from the mirrors, 

Py = 0,%_N,hvV,. (2.33) 

Substituting from Eqs. (2.32) and (2.24), and using I = V/V,, in Eq. (2.33), 

Ln hy 
Po nla ip -) F — 15). (Chay fy) (2.34) 

Now, by defining 

On 

(ha (2:35) 

we can simplify Eq. (2.34) to be 

hy 
Foe ta rs Wage nye (I > In) (2.36) 
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Equation (2.36) represents the total power out of both mirrors. If the mirrors 

have equal reflectivity, then exactly half will be emitted out of each. If one is 

totally reflecting, then all will be emitted out the other. On the other hand, if 

the mirrors have partial but unequal reflectivity, the fraction emitted from each 
is a nontrivial function which we shall derive in Chapter 3. Equation (2.36) also 

shows that the power out above threshold is a linear function of the current 
above threshold. This is true regardless of our assumptions about the form of 

the gain—current relationship or the nature of the nonradiative recombination 

mechanisms. The assumptions necessary for this P—I linearity are that the 

gain—current relationship, the internal efficiency, the confinement factor, and 

the cavity losses remain constant. As shown in Appendix 5, by confinement 

factor, we really mean that the modal gain must remain constant. 

To determine what we should call 47,, we can compare the calculated result 

of Eq. (2.36) to a measurement. Postulating that it might be related to a 

quantum efficiency, we calculate a differential quantum efficiency, defined as 

the number of photons out per electron in from a measured P—I characteristic. 

As shown in Fig. 2.9, the differential quantum efficiency would be found by 

measuring the slope [AP,/AI ] in watts/amp above threshold (including output 

from both ends) and then multiplying this number by [q/hv] in Coulombs/joule 

to get an empirical number of photons per electron equal to [AP)/AI ][q/hyv]. 

Now, if we take the derivative with respect to current of Eq. (2.36), and solve 
for yz, we get the same result. This shows that y, is indeed the differential 

quantum efficiency. To repeat then, 

ne \4| Ladin (Bs 8 (2.37) 
y 

The region in Fig. 2.9 below threshold (J < I,,) can be approximated by 

neglecting the stimulated emission term in Eq. (2.16) and solving for N,, again 

Stimulated 
emission 

Spontaneous 
emission 

FIGURE 2.9 Illustration of output power vs. current for a diode laser. Below threshold 

only spontaneous emission is important; above threshold the stimulated emission power 

increases while the spontaneous emission is clamped at its threshold value. 
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under steady-state conditions. In this case we find that 

N, =TB.pR (at) (2.38) 
sp'p: 

Using Eggs. (2.38), (2.23), (2.6), and (2.5) in Eq. (2.33), we get the spontaneous 

emission into the laser mode as 

a 
Pol < In) = nen thas Baga (2.39) 

CAD tc py ANC) x 

Comparing this to the LED expression of Eq. (2.8) shows that 7, = 

Om Bsp/(<%; > + %m) as might have been expected. 
At threshold the spontaneous emission clamps as the carrier density clamps 

since R,, depends upon N. Thus, as the current is increased above threshold, 

the spontaneous emission noise remains constant at the value of Eq. (2.39) with 

I = I,,, while the coherent stimulated emission. power grows according to Eq. 

(2.34). As we shall find in Chapter 5, this results in a gradual reduction in the 

linewidth of the output wavelength as the power is increased. 

2.6.2 Relation of Laser Drive Current to Mirror Reflectivity and Cavity Length 

Equation (2.36) gives the output power in terms of the additional current 

applied above threshold. The proportionality factors are constants involving 

the cavity losses, the lasing wavelength, and the internal efficiency. To design 

lasers for minimum current at a given output power, we also need an analytic 

expression for the threshold current. We have the threshold modal gain in terms 

of the cavity losses, Eq. (2.24), and we have suggested that the gain can be 

related to the carrier density by either an approximate linear, Eq. (2.17), or 

more accurate logarithmic (Chapter 4) relationship> The threshold current is 

also related to the threshold carrier density via the recombination rates, which 

can be expressed as a polynomial in N, e.g., Eq. (2.30). 

In Chapter 4 it will be shown that the gain vs. carrier density can be well 

approximated by a simple three-parameter logarithmic formula. 

N+N, 
N, +N, 

g = go in (2.40) 

In this approximation, go is an empirical gain coefficient, N,, is the transparency 

carrier density, and N, is a shift to force the natural logarithm to be finite at 

N = Osuch that the gain equals the unpumped absorption. However, if we restrict 

our attention to positive gains, g > 0, Eq. (2.40) can be further approximated as 

N 
g= 95 ln (G0) (2.41) 

Nr 

provided that we use a new gain coefficient go. In this case the differential gain, 

0g/0N = go/N. Generally, N,, and dg/0N will be quite different for bulk, 

quantum-well, and strained-layer quantum-well active regions. This is the basis 
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N eN N 

FIGURE 2.10 Schematic illustration of modal gain versus injected carrier density with 

values labeled from the two-parameter logarithmic fit of Eq. (2.41). 

for many of the arguments for and against certain of these structures. Figure 

2.10 illustrates schematically the modal gain vs. carrier density with some of 

the relevant parameters labeled. The point where a line from the origin is 

tangent, which represents the maximum gain per unit carrier density injected, 

is simply given by the coordinates, T'gy, eN,, with the assumed analytic 

approximation, Eq. (2.41). 

Fitting Eq. (2.41) to numerical gain plots to be found in Chapter 4, a strained 

80A InGaAs/GaAs quantum well yields g) ~2100cm™! and N,, ~ 1.8 x 

10'8cm~3; and an 80A GaAs quantum well gives g) ~ 2400cm~! and 
N, ~ 2.6 x 1018 cm~?. For InP substrate cases, a strained 30A InGaAs/InP 
gives go ~ 4000cm~! and N,, ~ 3.3 x 1018 cm~?; and an unstrained 60A 
InGaAs quantum well gives gy ~ 1800 cm~' and N,, ~ 2.2 x 10'8 cm~ 3. 

Now we can combine Eqs. (2.24) and (2.41) to get the threshold carrier 

density, 
N, = N,,e%"/9° past N,, eS? t am)iT G0, (2.42) 

Using the polynomial fit for the recombination rates in Eq. (2.30), and 

recognizing that for the best laser material the recombination at threshold is 

dominated by spontaneous recombination, we have, I,, = BNj,qV/n;. Thus, 

~ qVBN;, e2(<ai Nam > +am)/Tgo (2.43) 

Ni 

where for most IIJ—Vs of interest the bimolecular recombination coefficient, 

B ~ 10° ?° cm?/s. 
Equations (2.36) and (2.43) can now be used for a closed-form expression 

of output power vs. applied current. However, since we are usually trying to 

minimize the current needed for a given required power from one mirror, Po,, 
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we solve for I. 
, 2 

qPo 1 (<a> a On ) a qVBN;, e2Kap> + a m)/F G0. (2.44) 

Fin, hvo%, Ni 
I= 

where the first term is the additional current required above threshold to obtain 

power P,, from Eq. (2.36), and the second term is the threshold current, or Eq. 

(2.43). The factor F, is the fraction of the totaloutput power coming out of 

mirror 1. An exact analytic formula for it will be derived in Chapter 3, but 

clearly, it is one-half for equal mirrors and unity if mirror 2 has a reflectivity 

of one. 
Equations (2.43) and (2.44) give reasonable accuracy in simple analytic 

expressions which correctly show that it is always desirable to reduce the 

transparency value and increase the differential gain of the active material. Both 

points argue in favor of using quantum-well, especially strained-layer quantum- 

well, active regions. Relative to the cavity design, the equations also indicate 

that it is desirable to reduce the cavity loss (<a;> + «,,) and volume, V, subject 

to retaining a reasonably large confinement factor, I’. Thus, the merits of using 

vertical-cavity surface emitters or short-cavity in-plane lasers with coated facets 

are also suggested. These points are quantified in the example given in Fig. 

2.11, which plots Eq. (2.44) for a typical set of assumed. parameters. Note that 

for any given values of internal loss and power out there is a trough in required 

drive current which slopes monotonically downward as R approaches unity 

and L tends to zero. In practice, this R= 1, L=0O minimum can not be 

approached too closely, since high current densities lead to device heating. For 

higher powers out or internal losses, the bottom of the current trough moves 

to smaller Ls and Rs. Figure 2.11 (b) isolates two.specific lengths from part 

(a) and adds other power levels to illustrate this point. Further discussion of 

optimum laser design is left until Chapter 8 and Appendix 17. 

Due to the exponential dependence on g,,,/go in Eqs. (2.43) and (2.44), it may 

be beneficial to use more than one quantum well to increase F in a quantum-well 

laser. This dependence is a result of the saturation of the gain as the carrier 

density is increased to nearly fill the lowest set of states, as discussed in Appendix 

6 and Chapter 4. Thus, by distributing the carriers over N,, wells, the gain per 

well is reduced by less than N,, times, but the modal gain is still multiplied by 

nearly N,, times this value. For such multiple quantum-well (MQW) lasers Eqs. 

(2.43) and (2.44) are still valid but one must be sure to multiply the single-well 

confinement factor, I,, and volume, V,, by the number of wells, N,,. That is, 

for an MQW laser, from Eq. (2.43) or the second term in Eq. (2.44), one can 

explicitly write 

— Ny V,BN2 I tr e2(<aj> +am)/NwP igo. (2.45) 

Ni 
thuow = 

Here, we have assumed a separate confinement waveguide, so that the optical 

mode does not change significantly’as more wells are added. Also, the number 
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FIGURE 2.11 (a) Three-dimensional plot of current required for 10 mW of power out 

for lasers of variable length, L, and mean mirror reflectivity, R. Other parameters are: 

w=2,0 pmsd=10mmexa,) = 20.cm 51; gp —50cms i s.Fy= 0:5; N= 2-« 10% .cm 73; 
n; = 1;T,, = 0.033; T, = 1. (b) J vs. R for two lengths from (a) with two additional power 

levels shown. (c) Comparison of small in-plane laser and VCSEL. I, = 1; I, = 0.06 

for VCSEL. Active area (A = 20 um?) is the same in both. The VCSEL uses three 

quantum wells rather than one, tripling the active volume. This reduces the value of the 

optimum R for the VCSEL and broadens the current minimum. However, the VCSEL 

minimum current is nearly the same as the IPL laser here, since three wells are used. 

47 
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of wells is limited to the number that can be placed near the maximum of the 

optical mode. The optimum number of wells is the number that minimizes Eq. 

(2.45), neglecting nonradiative recombination. With the increased confinement 

factor we also see that higher powers can be obtained efficiently without moving 

too far up the gain curve. 
If nonradiative recombination is important at threshold, an additional 

nonradiative threshold current component must be added as outlined earlier. 

For the long-wavelength InGaAsP/InP materials, nonradiative recombination 

is known to be very important. In fact, were it not for such recombination, the 

threshold current densities of lasers using such materials would be lower than 

those using GaAs quantum wells, as indicated by the gain parameters listed 

after Eq. (2.41). If such higher-order nonradiative carrier recombination is 

important at threshold, one must add another component to the threshold 

current due to the CN}, term in the recombination rate. Then, Eqs. (2.43) and 

(2.44) should be increased by : 

_ qVCN;, e3(<ai> +am)/Tgo (2.46) 
Ni 

~ 

where for 1.3 ym InGaAsP material, the Auger coefficient, C ~ 3 x 10-*? cm®/s, 
and for 1.55 ,m material it is about two or three times larger. The cubic 

dependence on N,, places more importance on reducing the threshold carrier 

density in this material system. In fact, this additive Auger term dominates Eq. 

(2.43) for carrier densities above N,, ~ 3 x 10'8 or 1.5 x 10'8 cm~? at 1.3 and 
1.55 um, respectively. This fact focuses more attention on reducing cavity losses, 

(<a;> + a,,), and maintaining a large confinement factor, I. With the use 

of sirained-layer InGaAs/InGaAsP or InGaAs/InGaAlAs quantum wells on 

InP, a considerable improvement is possible, since all the parameters affecting 

Nw» Move in the right direction. In fact, the Auger coefficient, C, may also be 

reduced due to the splitting of the valence bands. 

2.7 RELAXATION RESONANCE AND FREQUENCY RESPONSE 

Chapter 5 will discuss dynamic effects in some detail. Here, we wish to use Eqs. 

(2.15) and (2.16) to briefly outline the calculation of relaxation resonance 

frequency and its relationship to laser modulation bandwidth. As shown in 

Chapter 5, because of gain compression with increasing photon density and 

possible transport effects, the calculations are a bit oversimplified, particularly 

with respect to quantum-well structures. However, these simple equations do 
seem to work well for standard DH structures, and the method of attack for 
calculating resonance frequency is also instructive for the more complex 
calculations to follow in Chapter 5. 

Consider the application of an above-threshold dc current, I), superimposed 
with a small ac current, I,, to a diode laser. Then, under steady-state conditions 
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the laser’s carrier density and photon density would respond similarly, with 
some possible harmonics of the drive frequency, w, that we shall ignore. Using 
complex frequency domain notation, 

Tiers Leint (2.47a) 
N=N)+N,ei, (2.47b) 

N, = Nyo + N, 163". (2.47c) 

Before applying these to Eqs. (2.15) and (2.16), we first rewrite the rate equations 

using Eq. (2.17) for the gain. This is valid since small-signal conditions are 

assumed and the gain can be well approximated as a straight line over some 

distance, provided the local slope is used. We also assume the dc current is 

sufficiently far above threshold that the spontaneous emission can be neglected. 
That is, 

eee (N —N,)N. 2.48 = + — ——v,a(N — ; : 
Ai aGVas eat : cs ie eee) 

dN N, 
— 2 = Doga(N — Nu)N — =. (2.49) 

HLF 
Pp 

Now, after plugging in Eqs. (2.47) for I, N, and N,, we recognize that the dc 

components satisfy the steady-state versions of Eqs. (2.48) and (2.49), i.e., with 

d/dt — 0; and they can be grouped together and set to zero. Next, we recognize 

that the steady-state gain factors, a(No — N,,) are just equal to g,,, and can be 

replaced by [I'v,t,]~* according to Eq. (2.23). Finally, we delete the second- 

harmonic terms that involve e/?®', and divide out an e/”' common factor. Then, 

PL y aN,Noos (2.50) 

JON»: — Pv, aN, N,o- (2.51) 

With the above manipulations we have generated frequency domain equations 

which can easily be solved for the transfer function N,,(@)/I,(@). 

Before doing this however, let’s briefly examine the coupling between the 

small-signal photon density, N,,, and the small-signal carrier density, N,. The 

carrier density depends on N,, through the third term in Eq. (2.50), while the 

photon density depends on N, through Eq. (2.51). If we view the left-hand sides 

of these two equations as time derivatives, then we observe from Eq. (2.51) that 

as N, increases and becomes positive, N,, increases in time due to increased 

gain in the laser. However, from the third term in Eq. (2.50), once N,,; becomes 

positive, it serves to decrease N, through increased stimulated emission. As N, 

decreases and becomes negative, N,, begins to fall, and once it becomes 

negative, it again produces an increase in N,. At this point, the cycle repeats 
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itself. This phenomenon produces a natural resonance in the laser cavity which 

shows up as a ringing in the output power of the laser in response to sudden 

changes in the input current. The natural frequency of oscillation associated 

with this mutual dependence between N, and N,, can be found by multiplying 

Eqs. (2.50) and (2.51) together, ignoring all but the third term on the right-hand 

side of the first equation: 

%g4Npo (2.52) Dye 
T 

Pp 

This natural resonance frequency is commonly referred to as the relaxation 

resonance frequency, Wp (where relaxation refers to an attempt by the photons 

and carriers to relax to their steady-state values). It is directly proportional to 

the square root of the differential gain and average photon density in the cavity 

(output power), and inversely proportional to the square root of the photon 

lifetime in the cavity. 

The relaxation resonance of the laser cavity is much like the natural 

oscillation of an LC circuit. However, the additional terms present in Eq. (2.50) 

lead to more of an RLC circuit, behavior, dampening the resonant response. 

The overall modulation frequency response including these terms is governed 

by the small-signal transfer function, N,,(@)/I,(@). Solving for N, in Eq. (2.51), 

we have N, = j@N,,/Iv,aN,o. Then eliminating N, from Eq. (2.50), and using 

P,, = Vg%mN,ihvV,, we obtain 

P,(@) es nihv Vg %m(Vg4Npo) 
= aa s (2.53) 

I,(@) q v,4N,0/Tp — w° + jalv,aN,o + 1/7] 

Setting v,aN,o = wRt, and using Eqs. (2.24) and (2.35), the transfer function 

can be written in a more normalized form: 

Pil) _ nahv/q 
I,(@) 1 ~ (@/og)? + j(@/Og)LORt, + 1/ogt] 

(2.54) 

For sufficiently low modulation frequencies, the denominator reduces to one 

and Eq. (2.54) reduces to the ac equivalent of Eq. (2.36). For higher modulation 

frequencies, the 1 — (w/w )* term in the denominator creates a strong resonance 

in the response. Figure 2.12 illustrates the frequency dependence for a wide 

range of output powers. Note that the resonance is damped at low and high 

output powers. This occurs because the imaginary damping term in Eq. (2.54) 

depends on both wz and 1/wg. In Chapter 5, we will find that inclusion of gain 

compression and transport effects creates significantly more damping than 

predicted here. In fact, on real laser devices the resonance is typically limited 
to 5-10 dB (as opposed to the peak ~25 dB suggested in Fig. 2.12). 

Beyond the strong resonance, the transfer characteristics degrade significantly. 

Thus, effective modulation of the output power can only be achieved over a 
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FIGURE 2.12 Frequency response of an idealized diode laser for several different output 

powers. The active region is characterized by: hy = 1.5eV, a=5 x 10° '® cm?, t= 

3 x 10°" s, n; = 86.7%, and v, = 3 x 10'°/4 cm/s. The laser cavity is characterized by: 
tp =2 x 10's (with a, = 60cm~' and a; =5cm~'), 4, = 80%, and V, = Spm x 
0.25 um x 200 pm. The 20 log [P,,(@)/P,,(0)] is used because photodetection generates 

an electrical current in direct proportion to the optical power. Thus, for a power ratio 

in the electrical circuit, this current must be squared. 

modulation bandwidth of ~w,z. When the damping is small, the electrical 3 dB 

down frequency (i.e. the frequency which reduces the received electrical power 

to one-half its de value) is given by @3 gn = ./1 + ./2mp. Expanding Eq. (2.52) 

using Eqs. (2.24), (2.33), and (2.35), we can express this result in terms of the 

output power: 

55[Tv,a n; |? 
‘Laas =| oe a i Pee (small damping) (a5) 

2a LhvV ng 

The modulation bandwidth of the laser can be steadily enhanced by increasing 

the output power. However, increased damping of the resonance at high powers, 

thermal limitations, and high-power mirror facet damage set practical limits on 

the maximum average operating power we can use. 

Since thermal limits are usually associated with the drive current, it is also 

convenient to express Wp in terms of current. Using Eq. (2.32) for N,o, with gp 

given by Eq. (2.24), Eq. (2.52) becomes 

T 1/2 

Or = | wf ni — I ; (2.56) 
qVv 

In this form we observe that it is desirable to enhance the differential gain, 

minimize the volume of the mode (I’/V = 1/V,), and maximize the current 
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relative to threshold for maximum bandwidth. If we want to keep the overall 

drive current low, then we should also try to minimize the threshold current, 

perhaps by increasing the facet reflectivity. If however, we are more concerned 

about keeping the photon density low (for example, to reduce the risk of facet 

damage), then from (2.52) we should try to decrease the cavity lifetime instead, 

perhaps by decreasing the facet reflectivity. Thus, the optimum cavity design 

for a high-speed laser depends on what constraints we place on the device 

operation. In Chapter 5 we will find that at very high powers, the maximum 

bandwidth actually becomes independent of wp, and is more fundamentally 

related to the damping factor (the K-factor) which is affected by gain 

compression and transport effects. 

2.8 CHARACTERIZING REAL DIODE LASERS 

In this section we wish to review some of the common measurements that are 

made on diode lasers. We shall emphasize those which can be used to extract 

internal parameters that we have used in the rest of this chapter. More complex 

characterization techniques will be delayed until after the discussion of dynamic 

effects and the introduction of more complex cavity geometries. 

2.8.1 Internal Parameters for In-Plane Lasers: (a%;>, n,, and g vs. J 

Perhaps the most fundamental characteristic of a diode laser is the P-—I 

characteristic as has been illustrated in Fig. 2.9. From a measured P-I 

characteristic one can immediately determine the experimental threshold 

current, I,,,, from the intercept of the above-threshold curve with the abscissa. 

The differential quantum efficiency, y,, can be calculated from Eq. (2.36), 

provided the wavelength is known. Usually the mean mirror reflectivity, 

R=ry,r,, can be calculated with good accuracy, and the length, L, can be 

measured. Thus, the mirror loss, «,, = (1/L) In(1/R) can be calculated. However, 

the net internal optical loss <«;> and quantum efficiency, 74;, cannot be 

determined from a single device. 

To determine these important internal parameters, one commonly uses two 

or more lasers of different length fabricated from the same material with 

identical mirrors. This is relatively straightforward for in-plane lasers, since the 

length can be varied at the final cleaving step. From Eq. (2.35) it can be seen 

that by measuring the differential efficiency of two such lasers, one is left with 
two equations containing two unknowns, <a@;> and 7;. That is, 
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in( *) . Nj R 

Na = 1 ) 

L’<a;> + In| — a (5) 

where L and L’ are the lengths of the two different lasers. Solving, we find 

i 1 
py Se eee n( i 

Ing — Ling R 
and (2.58) 

L-L’ 

Lg Lay 

and 

(2.57) 

Ni = Nana 

If indeed one can make two identical lasers except for their lengths, then 
Eqs. (2.58) will give the desired internal parameters. However, experimental 

data usually have some uncertainty which limits the utility of these expressions. 
For more reliability, it is generally better to plot a number of data points on 

a graph and determine the unknowns by fitting a curve to the data. In the 

present case it is most convenient to plot the reciprocal of the measured 

differential efficiencies vs. L. Then a straight line through the data has a slope 

and intercept from which <«;> and y; can be determined. More specifically, 

bs Sal OLY, nasty ie (2.59) 
Na 7 n; In(1/R) Ni 

Thus, the intercept gives 7;, and this can be used in the slope to get <a;>. 

Figure 2.13 shows such a plot for some data taken from broad-area in-plane 

InGaAs/GaAs quantum-well lasers. Single (SQW) and double (DQW) quantum- 

well cases are included [1]. 

For shorter cavity lengths, the data in Fig. 2.13 will fall above the line 

indicated. This data was ignored when determining the line fit because it 

represents a region where higher-order effects result in an incomplete clamping 

of the carrier density above threshold. The result is an apparent decrease in n; 

(see Appendix 2 for details). If one assumes that the net internal loss does not 

change in this process, it is possible to estimate the decrease in n; by repeated 
use of Eq. (2.59) or (2.35) for these high-gain points. 

In the process of taking the above data, one can also generate a table of 

threshold current densities in the active region, J, = (1;1,,/wL) vs. L. These are 

usually taken from broad-area devices so that lateral current and carrier leakage 

can be neglected. From Eq. (2.23) we also see that corresponding threshold 

modal gains I'g,, can be calculated for each length once the internal loss is 

found. Thus, it is possible to construct the modal gain vs. current density 
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FIGURE 2.13 Plot of experimental reciprocal external differential efficiencies vs. laser 

cavity length for 50 ym wide Inp »Gay.gAs GRINSCH quantum well lasers. For both 

single quantum-well (SQW) and double quantum-well (DQW) cases, the Ing ,Gao.gAs 

well(s) was 80A wide. For the DQW a 12 nm GaAs separation barrier was used, and 

in both cases 40 nm of GaAs was used on each side of the well(s). On each side of this 

active region, the barrier stepped to Alo »Ga As for 8nm and then tapered to 

Alp. gGao.2As over 80 nm to form the graded-index GRINSCH structure [1]. From these 

data the SQW had a; = 3.2 cm! and n; = 89.6%; and the DQW had a; = 2.6 cm~* and 
4; = 98.67. 

characteristic for the laser from these threshold values. Since the confinement 

factor, T, can usually be calculated as discussed in Appendix 5, one can 

ultimately determine the basic material gain vs. current density characteristic 

for the active material. Figure 2.14 gives the result for the example in Fig. 2.13. 

2.8.2 Internal Parameters for VCSELs: n; and g vs. J, <a;>, and @,, 

In vertical-cavity lasers the above procedure is a little difficult to carry out since 

the cavity length is set by the crystal growth. Multiple growths may result in 

other changes in the material besides the cavity length. Therefore, it has been 

proposed that the desired information can be determined by making in-plane 

cleaved lasers fabricated from the vertical-cavity laser material. However, a 

somewhat different approach is followed. Clearly, the internal loss determined 

for the in-plane laser will not be the same as for the VCSEL since the optical 

mode travels through a different cross section of materials. Nevertheless, if the 

electrical pumping current follows the same path and the threshold current 

densities covered in the in-plane diagnostic lasers includes the VCSEL values, 

the measured internal quantum efficiency should be the same. 

The most valuable piece of information provided by the diagnostic lasers is 

the gain vs. current density characteristic. Combining this characteristic and 
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FIGURE 2.14 Experimentally determined gain vs. current density for an InGaAs/GaAs 

quantum well laser described in Fig. 2.13 [1]. For the ordinate the modal gain Ig is 

divided by the confinement factor for one well I’, to give the material gain g times the 

number of wells, N,,. The solid curves are from a calculation based upon the theory to 

be developed in Chapter 4. 

the internal quantum efficiency from the in-plane lasers together with the 

measured threshold current density and differential quantum efficiency from 

the VCSEL, we now have enough information to unambiguously determine the 

VCSEL internal loss and mirror loss (and thus, reflectivity). That is, Eqs. (2.35) 

and (2.23) can be solved for <a;> and a,,, since Ig,,, ng, and n; are known. The 

results are 

bn = V9, aa 

and (2.60) 

<a) =Tan 1 - 
l 

As before, the confinement factors for both the in-plane diagnostic lasers and 

the VCSELs must be calculated. 

2.8.3 Efficiency and Heat Flow 

Just as the differential efficiency is important in determining the electrical to 

optical modulation efficiency, the overall net power conversion efficiency is also 

important in determining the achievable optical power out as well as the circuit 

heating and system power requirements. This so-called wall-plug efficiency is 

simply the optical power out relative to the electrical power in, 7 = P)/P,,. The 

optical power out is given by Eq. (2.34), and the electrical power in is the 
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product of the drive current and the total voltage across the diode’s terminals. 

We can express this as 

P,, = PR, + IV, + IV,, (2.61) 

where R, is the series resistance, V, is a current-independent series voltage, and 

V, is the ideal diode voltage, which is equal to the quasi-Fermi level separation. 

This voltage is clamped at its threshold value above threshold. 

The power dissipated in the laser is 

Ep = Fin Po = Fall sad, (2.62) 

and the temperature rise is 

AT = PpZqs (2.63) 

\ 

where Z, is the thermal impedance. Analytic expressions for Z;, which are 

approximately valid for several practical cases of interest, exist. Three are 

illustrated in Fig. 2.15. For a heat sink plane positioned much closer than the 

lateral dimensions of the regions generating the heat (Fig. 2.15(a)), a one- 

dimensional heat flow can be assumed. In this case, 

h 
= ZA ; (1-D flow) (2.64) £ 

where € is the thermal conductivity of the material separating the source of 
area A a distance h from the ideal sink. For GaAs and AlAs, € ~ 0.45 and 

0.9 W/cm-°C. For Al,Ga,_,As, alloy scattering reduces € to a minimum of 

0.11 W/cm-°C at x x 0.5. For a linear stripe heat source of length / and width 

w on a thick substrate (thickness h), which is somewhat wider (width 2w,) than 

this thickness (Fig. 2.15(b)), a quasi two-dimensional heat flow results. Then, 

_ In(4h/w) 
Ly 

. nél 
(line: w « h < w,) (2.65) 

. ee 2w, 

(a) (b) (c) 

_ FIGURE 2.15 Schematics of heat flow geometries relevant to lasers: (a) planar or 
one-dimensional flow for a heat sink relatively near the heat source; (b) a line source 
on a thick substrate; and (c) a disk source on a half-space. 
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A narrow stripe in-plane laser mounted active region up on a relatively thick 
substrate approximates this case. For a disk heat source of diameter s on a 
half-space (Fig. 2.15(c)), a three-dimensional flow into the half-space can be 
assumed. Then, 

Zp eas) (2.66) 

This is approximately valid for a small-diameter VCSEL mounted on the top 
side of a relatively thick substrate. 

2.8.4 Temperature Dependence of Drive Current 

The required drive current for a given power out of a laser is given by Eq. 

(2.44), in which the first and second terms give the needed current above 

threshold and the threshold current, respectively. In this equation it is assumed 

that the recombination below threshold is dominated by spontaneous emission 

events. If significant nonradiative recombination exists, an additional threshold 

term, such as Eq. (2.46), must be added. For both in-plane and vertical cavity 

lasers these expressions are functions of temperature. Generally, more current 

is required both for threshold and the increment above threshold as the 

temperature is increased, and we can estimate the nature of this dependence by 

exploring the temperature dependence of each of the factors in the terms 

of Eqs. (2.44) and (2.46). 

However, for VCSELs as well as single axial-mode in-plane lasers, the 

situation is complicated by the integrated mode selection filter (e.g., Bragg 

mirrors), which can force the lasing mode to be well off the wavelength where 

the gain is a maximum. Thus, such lasers can be designed to have anomolous 

temperature behavior, since the wavelength of the cavity mode and the gain 

peak shift at different rates versus temperature. In fact, by deliberately 

misaligning the mode from the gain peak at room temperature, it is even 

possible to make the threshold go down with increasing temperature as the 

gain moves into alignment with the mode [2]. In this section, we will not 

consider these relative mode—gain alignment issues. Rather, we shall assume 

that a spectrum of modes exist, as in a simple in-plane laser, so that lasing 

always can occur at the gain peak. Thus, we again can focus only on the 

temperature dependence of the various factors in Eqs. (2.44) and (2.46). 

For the threshold current in Eq. (2.43), there are three factors which generally 

have a significant temperature dependence: N,,, go, and <a;>. From the gain 

calculations of Chapter 4, it may be shown that over some range of temperatures, 

N,, < T, go « 1/T, and <a;> « T. The transparency carrier density is increased 

and the gain parameter is reduced because injected carriers spread over a wider 

range in energy with higher temperatures. The increased internal loss results 

from the required higher carrier densities for threshold. From Eq. (2.43), we 

conclude that both the gain and the internal loss variations result in an 

exponential temperature dependence of the threshold current, while the linear 



58 A PHENOMENOLOGICAL APPROACH TO DIODE LASERS 

dependence of the transparency carrier density is not significant over small 

temperature ranges. Additional threshold components such as Eq. (2.46) will 

introduce further temperature dependencies. For example, in Chapter 4 and 
Appendix 2 it is shown that C o exp(ycT) and R, « exp(y,7). Thus, Auger 

recombination and carrier leakage both contribute additional exponential 

increases in the threshold current. These observations suggest that the threshold 

current can be approximately modeled by 

[Toe se (2.67) 

where J, is some overall characteristic temperature, and both temperatures are 

given in degrees Kelvin, K. Note that small values of 7) indicate a larger 

dependence on temperature (since dl,,/dT = I,,/To). It should also be noted 

that any minor temperature dependence of other parameters can easily fit into 

this model over some limited temperature range. For example, the internal 

efficiency can decrease at higher temperatures due to increased leakage currents 

and/or higher-order effects discussed in Appendix 2. This decrease in n; will 

show up as a reduction of 7) over a limited temperature range, regardless of 

the exact dependence of 7; on temperature. 

For good near-infrared (~850 nm) GaAs/AlGaAs DH lasers, observed 

values of 7) tend to be greater than 120K near room temperature. For 

quantum-well GaAs/AlGaAs the values are somewhat higher (~ 150—180 K), 

and for strained-layer InGaAs/AlGaAs quantum wells, 7, > 200 K have been 

observed. For 1.3—1.55 pm InGaAsP/InP DH and quantum-well lasers the 

characteristic temperature is generally quite a bit lower as expected. Measured 

values tend to fall in the 50-70 K range, due to Auger recombination as well 

as possible carrier leakage and intervalence band absorption effects. Thus, the 

threshold tends to change significantly between room temperature and 100°C, 

usually resulting in relatively poor performance at the higher temperatures, and 

generally requiring the use of thermoelectric coolers. Shorter wavelength 

(600-800 nm) AlGaAs/GaAs and AlInGaP/GaAs lasers also tend to have a 

smaller 7, than the near-infrared variety, presumably due to increased carrier 
leakage. 

The above-threshold current required to obtain a desired output power is 

also temperature dependent, although the dependence is usually smaller than 

for the threshold current. This dependence results from a reduction in the 

differential quantum efficiency. As suggested by the constituent factors in the 

first term in Eq. (2.44), an increase in <a;> as well as a drop in n; are usually 

the cause of the increase in I — I,,. In analogy with Eq. (2.67), we can write 

I = Iq = I,oe™™, (2.68) 

_ where T, is the characteristic temperature for the above-threshold current 
increment. As can be found from Fig. 1.14, T,, is generally two or three times 

larger than 7), as might be expected from the above discussion. That is, Tp 
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includes several effects in addition to those in T,. In summary, for the total 
drive current for a given power out, we need four parameters to express the 
temperature dependence. That is, 

LaIpe™?? + 1 gett, (2.69) 

2.8.5 Derivative Analysis 

Real diode lasers do not always have perfectly linear P—I characteristics above 

threshold, and they have parasitic series resistance as well as a possible series 
voltage as outlined in Eq. (2.61) above. Derivatives of the P-I and V-—I 

characteristics can be useful in sorting out these nonidealities. The dP/dI 

characteristic in an ideal laser would only provide a good measure of the 

threshold current and a slope to determine 7, above threshold. However, actual 

P—I characteristics can have kinks, and they tend to be nonlinear. The kinks 
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FIGURE 2.16 (a) Plots of optical output power, P, and its derivative, dP/dI = dL/dI, vs. 

drive current, J, for a stripe-geometry gain-guided InGaAsP laser. (b) Plots of the 

terminal voltage, V, and IdV/dI vs. current for the same device [3]. (Reproduced, by 

permission, from Semiconductor Lasers.) 
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can indicate a switching between lateral or axial modes or an additional 
parasitic mirror in the device. These are obviously emphasized in a derivative 

curve. Premature saturation of the output power may indicate the existence of 

current leakage paths that “turn-on” at higher current levels or excessive 

heating of the gain material. The derivative curve gives a good quantitative 

measure of these symptoms. Figure 2.16(a) gives example plots of P—J and 

dP/dI for an in-plane laser. 

In addition to the V—I characteristic, it is common to. plot I[dV/dI vs. I. 

This latter characteristic gives a sensitive measure of the series resistance, and 

it is particularly useful in identifying shunt current paths. Since the voltage 

across the junction clamps at threshold with the carrier density, a kink in the 

curve occurs at that point. Figure 2.16(b) shows example plots of both V and 

IdV/dI vs. I. The information contained in the plot can be derived by 
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(b) 
+ FIGURE 2.17 (a) Output power and terminal voltage for a 20 ym diameter VCSEL with 

three InGaAs strained quantum wells and AlAs/GaAs DBR mirrors. (b) Derivative 
curves for the same device [4]. 
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considering an equivalent circuit with a parasitic resistance in series with an 
ideal heterojunction diode. The diode V—I is described by 

I = Ip[et”a*T — 1], (2.70) 

Taking the derivative of the terminal voltage, V = V, + IR, and solving for 
dV,/dI from Eq. (2.70), we obtain for I > I, but below threshold, 

[= IR: (2.71) 

Above threshold V, is constant, so 

dV 
TR! (2.72) 

dl 

Thus, we see that the slope above and below threshold should be R, but there 

is a positive offset of nkT/q below threshold, which provides a kink of this 

magnitude at threshold. Now if a shunt resistance is added to the equivalent 
circuit, it turns out that an additional term must be added to Eq. (2.71). This 

provides a peak in the I(dV/dI) characteristic below threshold. For common 

DH structures the diode ideality factor n ~ 2. 

Figure 2.17 gives plots analogous to Fig. 2.16 for an InGaAs/GaAs VCSEL. 

Here, significant local heating causes the P—I curve to roll over at relatively 

low powers. This results in a negative dP/dI beyond this point. In addition, 

significant series resistance makes it difficult to discern the nkT/q kink in the 

IdV/dI characteristic at threshold. Thus, the derivative analysis is not always 

very effective for VCSELs. 
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PROBLEMS > 

These problems draw on material from Appendices 4 through 6. 

2.1. Ina diode laser, the terminal current is I, the current bypassing the active 

region is J,, the current due to carriers leaking out of the active region 

before they recombine is J,, the current contributing to nonradiative 

recombination in the active region is /,,, the current contributing to 

spontaneous emission in the active region is J,,, the currents contributing 

to spontaneous emission and nonradiative recombination outside the 

active region are I, and I,,, respectively, and the current contributing 

to stimulated emission in the active region is I,,. 

(a) What is the internal efficiency? 

(b) If the measured external differential efficiency above threshold is 7,, 

what is the ratio of the mirror loss to the total cavity loss? 

(c) For below-threshold operation, what is the radiative efficiency? 

2.2 A reservoir of area A is filled at a rate of R, (in ft?/min.) and 

simultaneously drained from two pipes which have flow rates that depend 

upon the height of water, h. The drain™“rates are, Rj, = C,h, and 
Rj = Czh?, respectively. 

(a) Write a rate equation for the water height. 

(b) What is the steady-state water height? 

(c) If A = 100 ft”, R, = 10 ft?/min, and C, ~ 0, what is C, for a steady- 
state depth of 5 ft? 

2.3. What is the approximate intrinsic cutoff frequency of an LED with a 

p-type active region doping of 6.3 x 1018 cm~ 3? 

2.4 The relative increase in photons in passing through a piece of GaAs is 

found to be, [1/N,][dN,/dt] = 10**s~*. What is the material gain in 
Gin me? 

2.5 A 1.3 um wavelength InGaAsP/InP diode laser cavity is found to have 

an optical loss rate of 4 x 10'? photons/s. 

(a) What is the photon lifetime? 

(b) What is the threshold modal gain? 

2.6 In a cleaved-facet 1.55 ym’ InGaAsP/InP multiple quantum-well laser 
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400 pm in length, it is known that the internal efficiency and losses are 
80% and 10 cm “’, respectively. 

(a) What is the threshold modal gain? 

(b) What is the differential efficiency? 

(c) What is the axial mode spacing? 

A cleaved-facet, DH GaAs laser has an active layer thickness of 0.1 um, 

a length of 300 pm, and a threshold current density of 1 kA/cm?. Assume 

unity internal efficiency, an internal loss of 10 cm™!, and only radiative 
recombination. 

(a) What is the threshold carrier density in the active region? 

(b) What is the power out of one cleaved facet per micrometer of width 

at a current density of 2 kA/cm?? 

(c) What are the photon and carrier densities at 2 kA/cm?? 

In the device of Problem 2.7, gain transparency (g = 0) is found to occur 

at 0.5 kA/cm? and the transverse confinement factor is 0.15. What is the 

relaxation resonance frequency at 2 kA/cm?? 

Two broad-area DH 1.3 pm InGaAsP/InP lasers are cleaved from the 

same material. One is 200 ym long and the other is 400 pm long. The 

threshold current densities are found to be 3 kA/cm* and 2 kA/cm?, 

respectively, and the differential efficiencies including both ends are 

measured to be 60% and 50%, respectively. 

(a) What are the internal quantum efficiency and internal loss for this 

material? 

(b) For a +1% error in each of the measured differential efficiencies, 

what are the errors in the calculated internal loss and quantum 

efficiency? 

For the material of Problem 2.9, the relaxation resonance frequency for 
the 200 um laser biased at twice threshold is found to be 3 GHz. What 

is the resonance frequency for the 400 ym device also biased at twice 

threshold? 

A VCSEL is formed with multilayer AlGaAs mirrors and a 3-quantum- 

well GaAs active region. Current is injected through the mirrors. At a 

current density input of 1 kA/cm? the active region provides 1% of 

one-pass gain for the propagating axial mode. The internal efficiency is 

assumed to be 80% and the average internal loss is 25 cm '. The effective 

cavity length is 1.5 pm. 

(a) What mean mirror reflectivity is necessary for the device to reach 

threshold at 1 kA/cm?? 

(b) For this case, plot the output power density vs. input current density. 

(c) If we assume the gain is linear with carrier density, and that only 
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spontaneous recombination is important below threshold, plot the 

threshold current’ density vs. mean mirror reflectivity for 0.98 < R < 

1.0. On the opposite axis label the differential efficiency at each 0.005 

reflectivity increment. 

With the VCSEL material of Problem 2.11, etched square mesas are now 

formed measuring s on each side. Assuming a spontaneous bandwidth 

of 30nm, an axial confinement factor.of 2L,/L, lateral confinement 

factors of unity, and that the approximations of Appendix 4 are valid, 

plot the spontaneous emission factor vs. s. 

Again with the VCSEL material of Problem 2.11, square mesas are 

formed measuring s on each side by etching down to the active region, 

as illustrated in Fig. 1.11. The GaAs substrate may be assumed to be 

thick and wide. If we assume a threshold current density of 1 kA/cm? 

independent of area, a series voltage of 1 V, and a series resistance that 

is inversely proportional to device area, R, = 20 kQ-um?/s?. 

(a) Plot the temperature at the base of the mesa (active region location) 

vs. s for a current of twice threshold. Cover 1 < s < 20 pm. 

(b) Assuming a differential efficiency of 50%, plot the power out and 

required current vs. s for the conditions of (a). 

In a 1.55 um InGaAsP/InP BH laser, the active region is 0.2 ym thick, 

3 pm wide and 300 um long. The internal efficiency is 70%. In addition, 

there is a 400 um long passive waveguide channel with the same lateral 

and transverse dimensions butted to the end of the active region. The 

transverse and lateral confinement factors are 0.2 and 0.8, respectively. 

Cleaved mirrors form a 700 pm long cavity, and other internal reflections 

can be neglected. The material losses are 80 cm~', 20 cm~', and 5cm“! 
in the active, passive, and cladding regions, respectively. The gain vs. 

carrier density characteristic for the active material is linear with a 

transparency carrier density of 2 x 10'8 cm~3 and 4 differential gain of 

5 x 10° *® cm*. Assume a spontaneous emission bandwidth of 100 nm. 

At transparency the Auger recombination rate equals the spontaneous 

recombination rate, and other nonradiative terms can be neglected. 

(a) Plot the P-—I characteristic, labeling the threshold current, the 

spontaneous emission power into the mode at threshold, and the 
differential efficiency above threshold. 

(b) Plot the small-signal frequency response for a bias current of twice 

threshold. 

Using Eq. (A6.25) calculate the gain 50 meV above the band edge in GaAs 

as a function of (f, — f,). (Assume 12} = 0.3 ns, and consider only the 
heavy-hole band.) 



CHAPTER THREE 

Mirrors and Resonators for Diode 

Lasers 

3.1. INTRODUCTION 

Modern diode lasers use a variety of cavity structures. In Chapter 1 and 

Appendix 3 we introduced the transverse and lateral guiding structures that are 

generally used. However, the axial structure has not been discussed in much 

detail. In gas and solid-state lasers the entire cavity is defined by the axial 

mirrors, since no lateral guiding structure tends to be employed. So far, our 

analysis has assumed a simple two-mirror Fabry—Perot cavity for axial photon 

confinement and some waveguide for lateral and transverse confinement. In 

this chapter we shall focus on the axial dimension. 

First, we develop a scattering matrix formalism so the various structures can 

be analyzed rigorously and easily. The use of the associated transmission 

matrices reduces the analysis of axial structures with numerous impedance 

discontinuities to a mathematical exercise in matrix multiplication. 

Next, we successively explore several different axial geometries for diode 

lasers. Three- and four-mirror cavities are treated first. The mathematical 

condensation of the additional cavities and mirrors into a single effective 

complex mirror allows many of the basic formulae for Fabry-Perot lasers to 

be used. Because the mirror loss varies with wavelength, the loss of a single 

axial mode can be less than others. Thus, lasing in a single axial mode is possible. 

Also, if the phase in various laser sections can be changed independently, a 

tuning of the laser’s wavelength can result. 

Third, we introduce the concept of grating mirrors. These mirrors are 

interesting for both in-plane and vertical-cavity lasers. They consist of a series 

of relatively small impedance discontinuities along the axial propagation 

direction, phased so that the reflections add constructively at some frequency. 
Thus, the grating mirrors can provide a high level of net reflection when only 

small impedance differences exist, and because these gratings may be many 

65 
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wavelengths in length, the desired phasing can only occur over a narrow band 

of wavelengths to providé single-frequency operation. If substituted for a 

discrete mirror of a diode laser, a distributed Bragg reflector (DBR) laser results. 

In such cases the net complex grating reflection can replace the discrete mirror 

reflectivity in the Fabry-Perot formulae of Chapter 2. Multiple section DBR 

lasers have emerged as the most practical for wide wavelength tunability. 

Fourth, we consider gratings with gain. Lasers made with such gratings are 

called distributed feedback (DFB) lasers. They can be simpler to fabricate than 

DBRs, since no transitions from active to passive regions are necessary, but 

their analysis is a little more complex. Fortunately, the transmission matrix 

formalism still works for complex propagation constants, so the threshold gains 

and wavelengths can still be obtained numerically. Because of their relative 

fabrication simplicity, DFB lasers have emerged as the best choice for single- 

frequency operation. Wavelength tuning is ok but the range is limited as 

compared to the DBR. 

The final section of this chapter deals with the spectral purity of axial mode 

selection that is possible with the above compound cavity lasers. The mode 

suppression ratio (MSR) is the ratio of the power out of the primary mode to 

the next largest mode. Experiments have shown that an MSR of at least 30 dB 

is necessary for single-frequency system applications. 

3.2 SCATTERING THEORY 

In working with complex laser cavities it is convenient to work with normalized 

amplitudes, a;, which have a magnitude equal to the square root of the power 

flow and a phase equal to a selected observable such as the electric field. If we 

choose to reference the phase to the electric field, which we have written as 

&(x, y, z, t) = GE) U(x, y)eiot #2), (3.1) 

we define 

a; = oP Db e~ ib 
s/ 2; 

J 

(3.2) 

where 1; = 377Q/n; is the mode impedance (the ratio of the transverse electric to 

transverse magnetic field magnitudes of the mode). Thus, provided { |U|* dx dy=1, 
we see that aja* = P;’, the power flowing in the positive z-direction in the mode. 

At some waveguide reference plane, in general, there are incident and 

reflected powers. We characterize the incident waves (or inputs) by a normalized 
amplitude, a;, and the reflected waves (or outputs) by a normalized amplitude, 
b;, where the j’s refer to the reference plane or port in question. Thus, at port 
j, the net power flowing into the port is 

P; = ajaf — b,bF. (3.3) 
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FIGURE 3.1 Generic scattering junction illustrating the inputs, a;, and outputs, b jj» for 
the various ports. 

Note that the impedance can be different at each port, but the definitions are 

unchanged. This is one of the most important features of the normalized 
amplitudes. Figure 3.1 shows a multiport scattering junction with inputs and 
outputs at each port for reference. 

If the outputs can be linearly related to the inputs, a matrix formalism can 

be developed to express the outputs as a weighted combination of the inputs: 

b; = s S;;4j, (3.4) 

j 

where the S;; are called the scattering coefficients. Note from Eq. (3.4) that to 

determine a particular S;;, all inputs except a; must be set to zero. That is, 

bi 
a 

(3.5) 
J la~=O,k Fj 

This is equivalent to terminating all ports in their characteristic impedance to 

prevent reflections back into the network. 

More generally, b = Sa, where a and b are column vectors and S is a matrix. 

For example, for a two-port scattering junction, such as a partially transmissive 

mirror, we have 

as = ie | ea (3.6) 

b> So: Sp2 ILa2 

The scattering coefficients are particularly useful because they have direct 

physical significance. All represent the ratio of a normalized output amplitude 

to a normalized input amplitude. The diagonal elements of the matrix are the 

respective complex amplitude reflection coefficients. For example in the two- 
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port, we have previously referred to S,, and S,, as simply r, and r,. The power 

reflection coefficients in this case are |S,,|7 and |S,,|*, respectively. The 

off-diagonal terms represent the complex (amplitude and phase) output at one 

port due to the input at another. Thus, they are really transfer functions. In all 

cases the magnitude squared of a scattering coefficient, |S,,|”, represents the 

fraction of power appearing at the port i due to the power entering port /. 

Scattering matrices may have a number of interesting properties if the 

networks they describe satisfy certain criteria. For example, the scattering 

matrix of a linear reciprocal system is symmetric. That is for a two-port, 

S,. = S),. Fora lossless two-port, power conservation yields, |S,,|? + |S.,|7 = 1, 

and |S,,|7 +|S,|? =1. Also, the scattering matrix of a lossless system is 
unitary. 

Another important matrix that relates the normalized amplitudes is the 

transmission matrix. The transmission matrix expresses the inputs and outputs 

at a given port in terms of those at the others. In the case of a two-port, it is 

used most often to cascade networks together, since simple matrix multi- 

plication can be used (as we will see in a moment). Referring to Fig. 3.2(a), the 

transmission matrix of a two-port is defined as 

ial £ ies a ek ‘ G7) 
B, Ty, T> B, : 

where instead of using the input and output amplitudes, a; and b;, defined 

above, we have chosen to denote right or forward-going waves as A,, and left 

or backward-going waves as B;. From Fig. 3.2(a), the correspondence between 

the T-matrix and S-matrix amplitudes is as follows:.A, = a,, B, = b,, A, = by, 

and B, = a,. This change of notation is convenient when cascading two-port 

networks in a serial chain. For example, in Fig. 3.2(b), port #1 of the second 

is connected to port #2 of the first. By equating A, = A, and B, = B',, we can 

relate the fields on the left side of the overall structure, A, and B,, to the fields 

on the right side, A, and B;, as follows: 

alle el aiee pales ball (38) 
B, Tried alae FO ION Fgh i pee | PY 

(a) (b) 

FIGURE 3.2 (a) Single two-port network. (b) Two networks cascaded together. 
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This process can be continued to obtain the net transmission matrix of 

arbitrarily complex multisection waveguide devices. The T-matrix can be 

obtained directly from the S-matrix using the following: 

1 iS 
i UB Gee 

Soy Sx1 G9) 

| ae Siy T. S11S22 — $1281 
Ot ae 22 a 

So So1 

Definitions and relations between the S- and T-matrices are summarized in 

Table 3.1. 

TABLE 3.1 Relations Between Scattering and Transmission Matrices. 

Scattering Matrix Transmission Matrix 

Definition Definition 

Gif Se) LE elle b, Sr, S22 La. B, Th, Tho ILB 

by = S414, + S124, A, = 7,,;A2. + T,2B, 

by = S344, + S24, B, = T,,A2 + Th. By 

Relation to r and t Relation to r and t 

b, B, Th, 

Vie = — =§ ry2 = — — 

si G1 |a.=0 : Ailp=0 Thi 

t = = § ti2 = —— —_ a 

* Q |a.=0 4 A eee 1a 

b, A, Ti > 
r = — =§ r4 => — = — ———— 

* Q2 |a,=0 . By |4,=0 T\, 

b B, det T 
to4 == = Si2 ayy) = a = 

42 |a,=0 By |4,=0 Ti 

wre ria a T=2| 1 —11 | 

tia Tai tia Lia by2l21 — Tiaras 

det S=S, S22 —S,2S21 =112"21 —bi2tor det T= 7, , Ty. — Ty Toy =ta1/t12 

Relation to T Matrix Relation to S Matrix 

Th 1 —T;> So1 Si —detS 
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As mentioned earlier, various network properties allow us to specify 

relationships between the matrix coefficients, allowing us to reduce the total 

number of independent parameters. For example, the normalized fields of a 

system which satisfy Maxwell’s equations with scalar ¢ and yw are known to 

obey reciprocity, which simply put, means that the scattering matrix is equal 

to its transpose, or that S,, = S). 

In addition to being reciprocal (a property of any linear network), the 

network might also be lossless. If this is the case; then other simplifying relations 

can be derived. For example, it can be shown that 7,, = TS, and 75, = 77, 

which simplifies the determination of the T-matrix significantly. Table 3.2 

summarizes these relations for various network properties. 

TABLE 3.2 Network Properties and Their Consequences on the Matrix 

Coefficients. . 

Reciprocal Network (valid for normalized fields with and without loss) 

Siz = S21 

demiu—w! 

s- [5s eae 
Sy Soo Th 1 =p 

pas Lome let =k 
Th; (T1271 + 1)/T,, So4 Sis S31 — 811822 

Lossless Reciprocal Network 

isl? +18? =1 TJ? 44 =| Tal? 

StS=15 [S:ol? + (Sool? =1 > 141 Trl? =1Tul? 
StSLPS? SS) 20 Bie rs 0 

s-| Soy |---|” | 

So —S¥,(S21/S3,) Ti; 1 in 

ats Ge al Z 1/So1 Hel 
Ty Till SSeS. ete 

Lossless Reciprocal Network with r and t Phase Shifts of 0 or x 
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3.3. S AND T MATRICES FOR SOME COMMON ELEMENTS 

The utility of the S and T matrices should become clearer as we consider a 
few common “scattering junctions.” As we shall see, these form the basis of 

many more complex waveguide networks encountered in diode lasers. The 

further development of these matrices for more complex photonic integrated 

circuits, such as ones including directional couplers, will be left to a later 
chapter. 

3.3.1. The Dielectric Interface 

Figure 3.3 illustrates the normalized amplitudes at a dielectric interface. The 

media are characterized by indices of refraction n, and n,. 

In any such problem, one has the freedom to select reference planes for each 

port. The phase of the scattering coefficients will clearly depend upon the 

location of such planes. Some feel that it is important to make such an 
asymmetric problem have a symmetric scattering matrix by carefully selecting 

the reference planes, so that S will satisfy certain mathematical niceties. 

However, we believe that tends to create confusion, and it certainly obscures 

the physics of the problem. Thus, we shall always attempt to select “natural” 

reference planes at physical boundaries. 

In the present case we select both reference planes at the physical interface 

between the two dielectrics, so that the scattering junction has zero length. 

Using Eq. (3.5), this leads to 

Si. = a, (3.10) 

where for the last equality, we have assumed normally incident plane waves. 

This is approximately true for weakly guided dielectric waveguide modes, 

but n, and n, should be replaced by the effective indices of the modes, n, and 

n,. Note that we have chosen to label the reflection from the n, side —r, rather 
than +r, in Fig. 3.3. The reason is for compatibility with other calculations in 

this book. Also, if n, >n,, r, would be a positive real number. 

Similarly, for the second port 

S22 =— =r, = —(-1;), (3211) 
42 \a,=0 

SS eae (er, (3.12) 

where we have used power conservation for Eq. (3.12). This is clearly valid for 

plane waves, since there can be no loss in zero length, but for waveguide modes, 

power conservation also implies that the transverse mode profiles are equal. (If 

and 
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FIGURE 3.3. Interface between two dielectrics illustrating reference planes at interface 

for both ports. 

the waveguide modes do not match, there can be scattering loss. This will be 

taken up in a later chapter.) For the normally incident plane wave case, 

t = 2(nynz)"/?/(ny + 13). 
Thus, the complete scattering matrix for the dielectric interface can be written 

oof “| (3.13) 
te var; 

where again, the sign of r, follows the convention in Fig. 3.3. The corresponding 

T-matrix is 

1 1 Salt 

i : (3.14) 

3.3.2. Transmission Line with no Discontinuities 

as 

Figure 3.4 shows a network which is a length of waveguide, L, in which 

there are no discontinuities. In fact, this network consists only of two reference 

planes on a waveguide. Thus, the problem is to find how to relate variables 

FIGURE 3.4 Transmission line section of length W. 
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from one reference plane to another where there are no scattering junctions in 
between. 

In such cases it is common to express the normalized amplitudes as a function 
of distance as defined by Eq. (3.2). Thus, if the origin is put at port #1, then 
b, = a,(L) and a, = b,(L), as indicated in Fig. 3.4. Since there is no coupling 
between the waves propagating in the forward and_ backward directions, 
S;; = S,2 = 0. From Eq. (3.2), we have a,(z) = a,(O)e /*? and b,(z) = b,(O)e*?, 
for the forward and backward modes. Thus, 

by = a,(L) = a,(O)e~#t = aye #E, 

and - : (3.15) 
Gs = bi (1) = b, (Oet = beh 

Forming S,, and S,,, we find that 

Sin = S,, =e BE, (3.16) 

This is a very important result because it verifies that a propagation delay is 

the same for both forward and backward waves. In other words, the waveguide 

modes do not know how you have chosen the coordinate system. Mode 

propagation a distance L in any direction results in a phase shift of — PL and 

a growth rate $,L for that mode, assuming that f = B + jf, as in Eq. (2.19). 

The scattering matrix is summarized as 

OQ) ee 
= oar ; | (G.17) 

The corresponding T-matrix found using Eqs. (3.9) is given by 

ae) 
| - Bal (3.18) 

The basic component matrices are summarized in Table 3.3. For the 

T-matrix, lossless mirrors have been assumed in the first and third cases. 

To include the possibility of a lossy mirror, T,, for these two cases should 

be multiplied by r?, + 1t7,. An advantage of the T-matrices is that more 
complicated structures can be constructed simply by matrix multiplying 

together the basic components shown in the table. For example, the third 

matrix in the list is easily constructed by matrix multiplying the first by the 

second. 

3.3.3 Dielectric Segment and the Fabry—Perot Etalon 

Figure 3.5 shows a dielectric block of length L and index n). To the left is a 

region of index, n,, and to the right is a region of index n3. We shall use r, 
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TABLE 3.3. Summary of S- and T-matrices for Simple “Building-Block” Components. 

Scattering Matrix Structure Transmission Matrix 

1 fe ‘a 

tioLti2 1 

rio t+ ti, =1 

1 ei meen 

ria t+ ti, =1 

and t, for the left interface and r, and t, for the right interface viewed from 

the central medium. (Thus, choosing the reference planes at the physical 

interfaces and assuming that n, > n,,r, would be a positive real number.) Such 

a structure is known as a Fabry—Perot etalon. 

FIGURE 3.5 Dielectric block of length L. 
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As indicated in the diagram, we can look at this problem as three scattering 
networks cascaded—two dielectric interfaces and one transmission line. Thus, 
the problem could be solved by multiplying the T-matrices. This is to be shown 
in one of the problems at the end of the chapter. Here, however, we would like 
to demonstrate how to solve the system of normalized amplitudes to obtain 
the S-matrix directly. As we shall see as this chapter proceeds, once we have 
the S and T-matrices of such a dielectric segment, most multisection diode laser 
problems can be solved by their repetitive use. 

Referring to Fig. 3.5 where primes are used for internal variables, and initially 

assuming that a, = 0, we can write the following relationships for the outputs, 

b;: 
J 

b, = —a,r, + jth, 

by = a,t, + ajr,, 

by = a5tp, 

Db, = 45>: 

Also, we can express 

[pm eet FS — jBpL 

ay Tk be > 

a, = bier Es 
(3.19) 

Solving this system of equations for S,, =b,/a, and S,, = b,/a, (since 

a, = 0), we obtain 

t?r,e 2jBL cL 2 ae a (3.20) 
i ey tii Filo Cae 

frien Say ey ye (3.21) 

Similarly, with a, = 0, 

t2r,e7 2JBL 
s es (3.22) 
ag a forge 

Si2 = So1- (3.23) 

The common factor of 1 — r,r,e7 7/4 gives rise to the characteristic resonances 

and antiresonances associated with Fabry—Perot etalons. 

The corresponding T-matrix for the Fabry—Perot etalon can be obtained in 

a number of ways: (1) we can use the S-matrix coefficients and apply Eqs. (3.9); 

(2) we can multiply the third and first matrices in Table 3.3, using the 

appropriate refractive indices; or (3) we can solve for the relevant ratios, 
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T,, =a,/b, and T,, = b,/b,, (with a, =0); T,, = —T,,b2/a. and Th, = 
b,/a, — Ty1b>/a, (with a, = 0). With a, = 0, 

1 a A 
T= —— | eeataioe ol, (3.24) 

1b 

| jBL — jBL T,, = ——I[r,e"/"— ne te (3.25) 
Cyl a 

Similarly, with a, = 0, 

I — jpL jBL 
T,> = Ae hols iP (3.26) 

142 ‘ 

\ 

1 i # 
Th, = — [ey Wilo cael. G.27) 

142 

For the latter three 7-parameters we have assumed lossless interfaces, 

t? = 1—r? and t3 = 1 —F3, to simplify the expressions. For the S-parameters, 
Eqs. (3.20) to (3.23), the reflection and transmission at each mirror has been 

left in general form. Thus, these apply to any Fabry—Perot etalon of length L. 

For example, the dielectric interfaces could include loss, or they could be coated 

to enhance the reflectivities, r; and r,, to values greater than that indicated by 

Eq. (3.10). 

The absolute squares of S,, and S,, give the amount of power reflected by 

and transmitted through the Fabry—Perot etalon as:a function of the wavelength 

of the incident field. Using Eqs. (3.20) and (3.21), and assuming t? = 1 — r?, we 
obtain 

ye (He be) aR sins 4R sin* BL — 
=a ¥ 5) ‘ (1—R)?+4Rsin? pL (1 'R)? + 4R sin? BL 

Meglio Oe Es: |S2,| : (i= R)? + 4Risin 8 (1 BR)? Rin 

where R = r,r,e7" and B = B + jf;. The arrows indicate the special case of a 
symmetric (7; = 1), lossless (6; = 0) Fabry—Perot cavity. Note that without 

loss, |S, ,|? + |S2,|* = 1, as required by power conservation. Figure 3.6 plots 
both the magnitude and phase of S,, and S,, vs. 2BL using three different 

reflectivities. The periodic maxima in the transmission spectrum of S,, go to 

unity for this symmetric, lossless case, and become extremely sharp at high 

values of r. These maxima occur at the axial resonances or modes of the 

Fabry—Perot cavity where e~ */*" = |r,r,|/r,r, = 1. By power conservation, the 
* minima of the net reflection, S,,, go to zero at the resonances in this case. If the 

cavity has loss, the maxima of S,, cannot reach unity. Of course, if the cavity 
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2 2 
Sq |S>,| 

1 

0.8 

0.6 

2 a5 a) OS © OS 7 We 2 A A/a) OS We OS WF es 2 

(2BL — 2nm)/2n (2BL — 2nm)/2n 

RB AG 36S OF OF 4 16-2 AG = 05 0 05 1 7G 2 

(2BL — 2mm)/2n (2BL — 2nm)/2n 

Reflection Transmission 

FIGURE 3.6 Magnitude and phase of the reflection (S;,) and transmission (S,,) 

coefficients of a Fabry—Perot etalon as a function of the cavity round-trip phase relative 

to an integer multiple of 2x (in the lower-right plot, the phase is relative to an even 

multiple of 27). Three mirror reflectivities are plotted assuming r = r, = r, and zero loss 

(a cleaved-facet cavity corresponds to r = 0.565). 

has gain as in a laser, the maxima can be larger than unity. In the lossy case, 

it is also worth noting that S,, can still be adjusted to zero by reducing the 

reflectivity of the input mirror to be lower than the output mirror such that 

r, =1r,e *“. This is equivalent to setting the first term equal to the second in 

Eq. (3.20) on resonance. This asymmetric Fabry-Perot is useful in efficient 

optical modulators and detectors. 

3.3.4 Fabry—Perot Laser 

In Chapter 2 we analyzed the use of a Fabry—Perot cavity to form a diode 

laser. Based upon an intuitive argument, we labeled threshold as the point 

where the net round-trip gain equaled the net round-trip loss for an axial mode. 
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We now can argue this point more rigorously using the S-parameters. For 

lasing we must have coherent light being emitted for no optical inputs. Thus, 

the threshold for lasing must correspond to a pole of the S-parameters, which 

give the ratio of outputs over inputs. Referring to Eqs. (3.20) to (3.23), we 

observe that all of the S-parameters have a factor [1 —r,r,e */*"] in the 
denominator of one term. Setting this factor to zero gives the needed pole. This 

definition of threshold is therefore equivalent, to Eq. (2.20). 

For lossless mirrors the differential efficiency is given by Eq. (2.35), and the 

power out is given by Eq. (2.36). However, we have not solved for the relative 

power out of each end of the laser. We now can determine the ratio of the 

powers out of each end, P,,/Po>, since it equals |b,/b,|”. Looking at Fig. 3.5 

with a, = a, = 0, we can see that b, = ajt,, b, = a,t,, and a, = a,r,e *". For 
a mode above threshold, Im{p} = (C5 yGn.— %)/2. Thus, 

Pou 
Poo 

by 
by 

ge 

2 
{3 

rZ eFavgen— aL, (3.28) 

But, exp[T’,,g,— % JL = 1/(ryrg) from Eq. (2.21). Therefore, 

Pope le : (3.29) 
Por tery 

The more general result for more complex cavities can be obtained directly 

from either the T-matrix or S-matrix coefficients using Po,/P). =|T,|* = 

|S,,/S2,|? evaluated at threshold. , 
Now if the mirrors are lossy, such that ry + t? # 1, we are more interested 

in the fraction, F,, of power delivered from end 1, Pp, relative to the total coupled 

out of the cavity by the mirrors, P,,. This is because it is F, that must multiply 

the differential quantum efficiency and power expressions of Chapter 2, which 

assumed that all mirror loss was delivered to the outside. Referring again to 

Fig. 3.5 with a, =a, =0, we construct the desired ratio, F, = P,,/P,,= 

}bs1?/Ela; |? — rt) + |a3|7(1 — r3)], which gives 

ti 
F, = : : (3.30) 

(1 — 1?) + =(1 — 73) 
rg 

Therefore, using Eq. (2.35), the differential quantum efficiencies for light 

delivered out of end 1 and end 2 of the general Fabry—Perot laser are 

a m 

Ca» ale coy 

Nar = Fini 
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and 

Na2 = Fan; (3.31) 
Xm 

<a; > is bmn 

where F, is given by Eq. (3.30) and F, is found by switching subscripts in F,. 
From the above and Eq. (2.36) the power out of the jth port is 

hy 
Po; aa ler Ce): (3.32) 

For a symmetrical laser cavity with r, =r, =r and t, =t, = t, the fractions 
reduce to 

(333) 

Therefore, any loss occurring at the mirrors (other than what is coupled as 

useful output) is taken into account through F, and F,. 

3.4 THREE- AND FOUR-MIRROR LASER CAVITIES 

Many modern diode laser configurations have at least one additional dis- 

continuity within their cavities. In Fig. 2.6 and the associated derivations, we 

neglected any reflection from the interface between the active and passive 

sections. Here we shall discuss first one and then two discontinuities within the 

laser. The additional discontinuities may be within the semiconductor material 

or one may be at the semiconductor—air interface in an external cavity 

configuration. 

3.4.1. Three-Mirror Lasers 

Figure 3.7 gives a schematic of a three-mirror laser. The transmission coefficient 

across the interface, t,, includes any scattering or coupling loss, so rj + t3 4 1, 

in general. Generally, our analysis will hold for active—active as well as 

active—passive devices, but the results presented are only meaningful if the first 

cavity (labeled active) is the dominant cavity, which provides most of the 

gain. 
Also shown in Fig. 3.7 is an equivalent two-mirror cavity which replaces the 

passive section by an effective mirror with reflectivity, r.-,. This substitution is 

valid for steady-state analyses, but it will not necessarily properly model the 

compound cavity for dynamic operation. The value of r,,, was derived above, 

since it is really S,, for the passive section as viewed from the active section. 
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FIGURE 3.7 External cavity laser and equivalent cavity with effective mirror to model 

the external section. 

Using the reference planes and mirror reflectivities defined in Fig. 3.7 and Eq. 

(3.20) we find that 
5) (5 Cm 2jBpLp 

lors = i) (3.34) 
=2jBpLp” 1+r.r3e pre 

The complete characteristic equation for a three-mirror laser may be 

constructed by replacing r, by r.,, in Eq. (2.20), (or by solving for the poles 

of an active-cavity S-parameter with this substitution). However, this leads to 

a fairly complex equation. We can obtain most of the information we want by 

using the equivalent cavity in Fig. 3.7, and carrying r,,, along in the threshold 

calculation. This results in only a slight modification to the threshold gain 

expression of Eq. (2.23). That is, the threshold gain of our three-mirror laser 

can be written as 

V9 in = (%i)a + ae nf i! (3.35) 
L, rilreryl 

where I’ and <a>, average over the active section of the cavity only (any losses 

encountered in the passive section are contained in r,,,). To complete the 

model, we need to specify the threshold condition for the round-trip phase. 

With rp = |rerple’e4? and r, positive and real, the round-trip phase must 
satisfy e~ 7/Pete/ers — 1, which translates into 28,L, — d.r, = 2am. Taking 
derivatives of all variables dependent on frequency, we obtain 

dB, Ly = Faber, = mdm. (3.36) 
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The spacing between adjacent modes is found by setting dm = 1 and solving 
for dB,: 

AG 

J he = 24b.5¢/dB, 

dp, = (3.37) 

In this expression, the cavity length which defines the mode spacing includes 
the active section length plus an additional factor dependent on how the 
effective mirror phase changes with frequency, motivating us to consider the 
second quantity as an effective length. However, because ¢, rp explicitly depends 
on f,, not £,, we choose to define the effective length as 

1 dd, 
ep _ Ldgers (3.38) 

2 dp, 

The mode spacing can be defined in terms of wavelength, dB, = —dA(2n/A*)iigg; 

or in terms of frequency, dB, = dv(2n/c)n,,, where n, = n — A On/OA. Further- 

more, it follows that 0f,/08, = 1,,/f.. Using these expressions in Eq. (3.37), 

the mode spacing in either wavelength or frequency becomes 

We C 
di = — - or dy = — ~ é 

2(Ngglig + NgpLess) 2(Agglig + NgpLes r) 
(3.39) 

If no reflection exists at the active—passive interface (r, = 0) and r; is positive 

and real, then $,-, = —2f,L,, and L.,, = L,, reducing Eq. (3.39) to Eq. (2.25) 

given earlier. For the more general Fabry-Perot etalon, the slope of the phase 

will be dependent on whether we are near a resonance or an antiresonance of 

the etalon (as shown earlier in Fig. 3.6). Thus, L,,, can be larger or smaller 

than L,. However, if the phase varies rapidly and nonlinearly within the range 

of one mode spacing (for example, near the Fabry-Perot resonances (BL = mz) 

in Fig. 3.6), then Eq. (3.39) will most likely not be very accurate, since this 

derivation assumes that $,,, varies linearly over at least one mode spacing. 
The differential quantum efficiency and power out of end | are given by Eqs. 

(3.31) and (3.32), respectively, using Eq. (3.30). The second mirror reflectivity, 

r,, in these single-section laser expressions should be replaced by r,,, wherever 

it shows up, and the mirror loss, «,,, is given by the second term in Eq. (3.35) 

above. 
Figure 3.6 gives plots of the magnitude of r,,, in the special case where 

ry = —r3 and loss can be neglected. As can be seen, the magnitude of the 
reflectivity of this mirror can vary significantly, and this will provide a filtering 

effect on the cavity modes. As indicated by Eq. (3.35), the modes with the lowest 

loss or highest mirror reflectivity will tend to lase first. Thus, such a second 

section or etalon can be used to filter out unwanted modes. However, a point 

often confused is that the maxima of r,,, always occur at the antiresonances of 

the etalon. Thus, in the three-mirror configuration, having a high-Q external 
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cavity actually leads to worse mode selectivity, because the maxima become 

very flat in this case. In fact, there is an optimum value of net external cavity 

loss that provides the largest curvature at the maxima of r,,,. Figure 3.6 is 

actually not a very practical case, since there is usually some loss both in 

traversing the passive cavity and in coupling back into the active section, 

and generally r, #r3,. Thus, the minima do not tend to be as deep, and 
the maxima have more shape. This is one casein nature where loss seems to 

help. SS 
External cavities are not very useful for axial mode selection in the VCSEL 

case, since their short cavities together with the finite gain bandwidth usually 

provides single-axial mode operation. Here lateral modes are the larger 

problem. However, for in-plane lasers > 100 um in length several axial modes 

will exist near the gain maximum, and the loss modulation caused by the 

external cavity is useful for axial mode selection. 

The length of the external cavity (etalon) determines how modes will be 

selected. Ideally, the periodic loss modulation will combine with the gain roll-off 

to provide a single net gain maximum where the nearest axial mode will be 

selected. Figure 3.8 illustrates the three cases where the relative length, L,/L, is 

(a) «1, (b) ~1 (but 41), and (Cc) > 1. 

Here we show the variations of «,,, from Eq. (3.35), and a generic net gain 

curve, (I’,,g — a;) vs. wavelength along with indications ofthe mode locations. 

(Note that the maxima in r,,, correspond to minima in @,,.) The active cavity 

length and the width of the gain peak are held constant for all three cases. 

When the gain reaches the loss at some point, the mode at that wavelength 

reaches threshold. Also, we know that once one mode reaches threshold, the 

gain becomes clamped, and if the loss margin (the loss minus the gain) is large 

enough, the other modes are suppressed. 

If the external cavity is somewhat shorter than the active section, as in case 

(a), the modes of the active cavity will be more closely spaced than the minima 

in @,,. In this case a single loss minimum can effectively select a single axial 

mode of the active cavity, if «,, varies enough. That is, the period of the loss 

modulation cannot be so large that the minimum of «,, is as wide as the gain 

peak, or no additional filtering will be provided. On the other hand, it must be 

large enough so that the next minima of «,, fall sufficiently far off the gain peak. 

(If too close, these secondary minima may select unwanted repeat modes.) 

If the lengths are comparable as in Fig. 3.8(b), the resonances of both cavities 

are spaced by about the same amount, and the active cavity modes will slowly 

slide across the minima of «,, providing an action similar to a vernier scale. 

Again, relatively good mode suppression is possible if the beat period is not 

too large or too small. In the third case, Fig. 3.8(c), good mode suppression is 

generally not possible unless the external cavity mirror itself is a filter. In fact, 
a grating mirror is sometimes used to provide for single-frequency operation 
of the laser with a long external cavity. 

One of the uses of a two-section (three-mirror) laser is to provide a tunable 
single-frequency source. The repeat modes can make this somewhat problematic, 
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FIGURE 3.8 Schematic illustration of net propagation gain, I,,g —;, and the net 

mirror loss, «,,, aS a function of wavelength for external cavities with length (a) shorter, 

(b) about the same, and (c) longer than the active section. 

but the tuning mechanism is still worth reviewing. If the passive section shown 

in Fig. 3.7 is formed of electro-optic material, it would be possible to change 
its index and the round-trip phase, —£,L,, by applying an electric field across 

the material. Then, according to Eq. (3.34), ther,,;, and ,, characteristics would 

tune in wavelength. This would cause a successive selection of different axial 

modes, as can be envisioned from Fig. 3.8. Moreover, because the phase of r,;, 

also varies across each period, some continuous tuning of the cavity mode is 

possible prior to the shift to a new mode. Perhaps one of the key reasons to 

have the tunability is to provide an active mechanism to optimally align the 

loss minimum with an axial mode for best spurious mode suppression. 

3.4.2 Four-Mirror Lasers 

If the r,-, characteristic could be flipped over so that its maxima («,, minima) 

also occurred at the resonances of the external cavity, the filtering action would 
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be much better. As stated above this is not possible in a three-mirror cavity, 

but with a four-mirror cavity it is. However, the relative positions of the reflectors 

must provide the desired phasing. The best known example of a four-mirror 

laser is the coupled-cavity laser, which incorporates a narrow space to separate 

two active sections. This same effect can also be achieved by using coatings on 

the facet of the active section in an external-cavity laser. 

To model the four-mirror laser, we replace the interface between the active 

and passive sections in Fig. 3.7 by another section, which can be fully described 

by another complex scattering matrix. (Again, this analysis also holds for the 

active—active situation, in which the highest gain cavity is referred to as the 

active cavity.) Physically, this interface section might be another dielectric 

region with an index different from either the active or passive sections. Figure 

3.9 shows the model and a possible implementation. 

For this case we only need to modify the expression for r.,, slightly. 

Replacing r,, —r,, t,, and t, with the more general terms, S,,,, S,.2, S,.1, and 

S12, respectively, in Eq. (3.34), we obtain 

Siren 
ere = Ssti + : F 3.40 

or rearranging, 

oR’ 
Uggs Su ars =I (3.41) 

FIGURE 3.9 Generic four-mirror or three-section laser and equivalent mirror 
representation. , \ 



GRATINGS 85 

where R’ = S,,,r3e ~/’r', and o = (S,71S,19/Se1 8,92). Equation (3.41) shows 
that for resonance R’ is real and positive. Thus, for the second term to add to 
the first for a maximum in r,,,, the ratio ¢ must also be real and positive. As 
can be verified by reference to Eqs. (3.20) to (3.23), this occurs when the space 
is a multiple of a half-wavelength wide, if its index is either lower or higher 
than both end cavities (e.g., a simple air gap between two semiconductors). 
Other situations will be left as exercises for the reader, but it should be clear 
that the phase of this gap factor, o, will determine whether the maxima of r, if 
will occur at passive cavity resonances (Zo = 0), or antiresonances (/.¢ = 7), 

as in Fig. 3.6. In the case of the three-mirror cavity, the phase of the gap factor 
is always 7. 

For the optimum case of o = 0 the minima in «,, are sharpest and the 

mode selection best. Also, if the index can be adjusted in the second cavity, the 

resulting tunability is somewhat improved. In particular, since the phase of r, ;, 

varies most rapidly near the resonance of the second cavity, this optimum case 

leads to better continuous tunability. 

3.5 GRATINGS 

3.5.1. Introduction 

Many important diode lasers use gratings or distributed Bragg reflectors 

(DBRs) for one or both cavity mirrors. With in-plane lasers the reason is to 

use their frequency selectivity for single-axial mode operation, and with 

vertical-cavity lasers the reason is to obtain a very high value of reflectivity. 

Gratings consist of a periodic array of index (sometimes gain) variations. At 

the Bragg frequency, the period of the grating is half of the average optical 

wavelength in the medium, Significant reflections can also occur at harmonics 
of this frequency. In the vertical-cavity case, quarter wavelength thick layers of 

two different index materials are alternated during growth. In the in-plane case, 

corrugations are typically etched on the surface of the waveguide, and these 

are refilled with a different index material during a second growth. Figure 3.10 

illustrates the two cases. As indicated, the in-plane case usually has many more 

grating periods than the VCSEL. 
In either case, the concept of the grating is that many small reflections can 

add up to a large net reflection. At the Bragg frequency the reflections from 

each discontinuity add up exactly in phase. For the rectangular gratings shown, 

there are two discontinuities per peiod, each of reflectivity r. Thus, the net 

reflection from m grating periods is r, ~ 2mr when the net reflection is weak, 

so that each discontinuity sees nearly the same incident field. For a significant 

reflection the field will fall off into the grating and the problem becomes more 

difficult. As the frequency is deviated from the Bragg condition, the reflections 

from discontinuities further into the grating return with progressively larger 
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: In-plane 

(b) 

FIGURE 3.10 (a) Schematic of a DBR mirror for a vertical-cavity laser. (b) Schematic 

of a DBR mirror for an in-plane laser. 

s 

phase mismatch. This causes a roll-off in the net reflection which occurs more 

rapidly in longer gratings. 
Since the dielectric interfaces extend uniformly across the mode in the 

vertical-cavity case, the results from Section 3.3.3 above apply directly. That is, 
we can obtain the net grating reflectivity, r,, exactly by cascading the T-matrices, 

Eqs. (3.24) to (3.27). For the in-plane case, we must assume some effective 

reflectivity at each discontinuity in order to use these results. This is indicated 

by the inset in Fig. 3.10(b). For the rectangular gratings shown, this effective 

modal reflectivity at each discontinuity can be estimated by using the effective 

indices in each waveguide segment in Eq. (3.10). That is, if 7, and v, are the 

effective indices in waveguide segments | and 2 of width d, and d,, respectively, 
the reflectivity in going from segment 2 to segment 1 is approximately 

Des (3.42) 
Ny + ny 

The effective indices can be calculated following the procedure outlined in 

Appendix 3. The approximation is necessary because the transverse grating 

mode will be different from (actually something in between) the modes in 

uniform waveguides of width d, or d,. The approximation is best for small 

impedance discontinuities. The reflectivity in going from segment 1 to segment 

‘2 is —7 by symmetry. As we shall discuss more in Chapter 6, for grating profiles 

other than rectangular, the effective reflectivity at each segment interface can 
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be found by multiplying Eq. (3.42) by the relative Fourier coefficients for the 
harmonic of interest. 

3.5.2 Transmission Matrix Theory 

Figure 3.11 shows how the periodic gratings of Fig. 3.10 can be represented 
using T-matrices. If the output fields are known, the input fields (and hence the 

reflectivity, r, = B,,/A,,) can be determined by matrix multiplying the individual 

components of the grating, starting from the output and proceeding to the 

input. Now, for the simple uniform gratings depicted in Fig. 3.10, in which only 

two indices are involved, the matrix multiplication to obtain r, can be simplified 

by realizing that each period is the same. (However, we may need to use a 

different T-matrix for the output segment.) 

To determine the T-matrix for a single period, we must matrix multiply four 
simple T-matrices together. Starting at the reference plane and moving in the 

positive z-direction in Fig. 3.10, we encounter (1) a 2—1 dielectric interface, (2) 

a propagation delay of length L,, (3) a 1-2 dielectric interface, and (4) a 

propagation delay of length L,. At this point another 2-1 interface is 

encountered, marking the beginning the next period. The results of multiplying 

the first three of these matrices together has already been derived in Eqs. (3.24) 

to (3.27). To apply those equations to Fig. 3.10 we need to change notation 

slightly by setting r, =r, = —r,t, =t, =t and L = L,. Now, the associative 

property is maintained under matrix multiplication implying that 7,7, 7; 7, = 

(T,T, T;)T,. Thus, by multiplying the composite of three matrices by the fourth 

propagation delay matrix defined in Eq. (3.18), we obtain the single period 

T-matrix. 

Alternatively, we can group the T-matrices as follows: (7,7,)(737,), and 

identify each group as being equivalent to the third structure listed in 

Table 3.3. Multiplying two such matrices (using the appropriate refractive 

indices) also gives us the single period T-matrix. Either way, the general 

output 

FIGURE 3.11 Cascaded scattering junctions characterized by transmission matrices. The 

net transmission matrix of the cascade is T,. 
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forms, and corresponding forms for a lossless DBR at the Bragg frequency 

(right of arrow), become 

fone 1+7r? 
a bp ee md P= a 

Th = 12 [e? rve ] 2 2 5 

Po : 2r 
= Din ae —j¢ - p= aS 

Tapgaag ares 2r ‘ 
Uy Seal a Mee de ty? 

1 14+r? 
= a [e~ 4+ a re| aOR ae 

t 

where @4 = B,L, + B,L>, which becomes either z or 0 at the Bragg condition. 

For convenience, we define an average complex propagation constant of 

one grating period: BeA= B,L, + B,L,, where Bs. = Bs. —ja,/2. Setting 

N= b+ EL = 16/4n7, and Hi = j,/4n, (where J is the Bragg wavelength), 

we find that 

cies penne ny Ny + 1 2 (3.44) 

ees Sieh. apes Cen = Oi.» (ifiosa = Ota =), 
1/n, + 1/n, 

In the first line, f , 1s defined as the average propagation constant of the grating, 

B, while B_ is always zero regardless of the frequency. In the limit of small index 

differences, B ~ B, = B,. In the second line, the average loss reduces to that 

shown on the right only if the loss in each layer is the same. 

With these definitions we can write the phase terms in Eqs. (3.43) as 

jogs =jpA + a,A/2 and j6_ = «_A/2. Furthermore, at the Bragg frequency, 

the phase delay of each layer is 8,1, = B.L, = 1/2, and pp A = 6, L, + BL, = 

m. Defining a detuning parameter, 

6=B-— Bp, (3.45) 

the phase terms with no loss become simply 

og, =7+ 0A, G- = 0) (3.46) 

The detuning parameter can alternatively be expressed as 6A = 2(v — Vo)/Vo. 

' The arrows in Eqs. (3.43) indicate this no loss case at the Bragg frequency 

(6 > 0). i . 
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For a cascade of m such matrices for the m grating segments of length A, 
we have 

[hg adil 
it =| G | : (3.47) 

Dorel 

which can be simplified using a mathematical identity derived in Appendix 7. 
The only restriction for the form used here is that the system must be reciprocal 
such that 7,,75, — T,,T,, = 1. In other words, transmission through the 
dielectric stack must be equivalent for light incident from either side of the 
stack. For all T-matrices we have discussed so far, this condition is satisfied 

even with loss or gain in the layers. Using the additional subscript g for the 

T-parameters of the entire grating, and assuming reciprocity, we can write 

Thi: = C1 + jm, A) cosh mé, 

T. 
f 7 Mess + jA) cosh mé, 

Mt (3.48) 
iq 

112 —* mer (1 — jA) cosh mé, 
T5> 

where 

+€= In{5[T, + Th.) + Ry EO ot Ty] > Me 

fs iy ae Ti, 

A = j ———_., PFE SG pi (3.49) 

tanh mé 
Mig a 

“tt tanh é 

The equation +é = In{+} implies that the negative root {—} = 1/{+} or 
{—}{+}=1, which is easily verified. As will be discussed below, the three 
parameters, €, A, and m,,,, all have a physical significance and are important 

in the analysis of dielectric stacks. 

The first parameter is the discrete propagation constant, ¢. Its value is very 

dependent on the wavelength of the incident light, and is in general complex. 

It represents a discrete propagation constant because the fields (A;, B;) shown 

in Fig. 3.11 are multiplied by e** upon passing to the next period. (As shown 

more exactly in Appendix 7, the fields when decomposed into the two 

eigenvectors of the matrix are multiplied by the eigenvalues e** and e * upon 
passing to the next period.) For example, if ¢ is purely imaginary at some 

wavelength, the incident field will only encounter a phase shift of m¢ upon 

passing through m periods, suffering no attentuation and hence, providing 

perfect transmission through the stack. Wavelength regimes for which this 
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occurs are referred to as passbands of the dielectric stack. If € is purely real at 

some wavelength, the field will be attenuated by e*™ as it propagates through 
m periods, which can lead to very low transmission and hence, high reflection. 

These wavelength regimes are referred to as stopbands of the dielectric stack. 

Using Eqs. (3.43) at the Bragg frequency, it is shown below that € = jx + 2r, 

revealing that the field experiences a x phase shift through each period, and is 

attenuated by e 7". If r is high enough, and_ enough periods are used, the 

attentuation can be very high, leading to extremely low transmission and 

extremely high reflection of the field. 

The second parameter is defined as the generalized detuning parameter, A, 

and is a measure of how far away we are from the Bragg condition. For small 

reflectivities, using Eqs. (3.43) together with Eq. (3.46), we find A ~ tan dA = 6A. 

At the Bragg condition, 7,, = T,, in a lossless dielectric stack, and A =0 

exactly, from its definition in Eq. (3.49). 

The third parameter defines the effective number of periods, m,,;, seen by 

the incident field. For very weak attenuation (Re{é} « 1), and a small number 
of periods, the tanh functions reduce to their arguments and m,,, = m. For 

large attenuation, m,,, as a function of m saturates at a value of m,,, = 1/tanh ¢ 

which when multiplied by A, determines the penetration depth of the field into 

the dielectric stack to be discussed later. 

As an example in evaluating the above three parameters, we examine the 

special case of when the wavelength satisfies the Bragg condition, and there is 

no loss or gain. From Eqs. (3.43), we observe that at the Bragg frequency, 

T,, = Th, and T,, = T,,. The reciprocity condition for this case reduces to 
T7, — T3, = 1. Using these relations in the first equation of (3.49), we obtain 

e*$ = T,, + Ty, which allows us to set tanh € = T/T. The three parameters 
defined in Eq. (3.49) then reduce to 

C=yr + In(— 14, — 1s 

=: 
(3.50) 

T, 
ie = aa tanh[m In(—T,, — T);)]. 

2A 

In the first equality, the identity: In(— 1) = jz, was used to introduce a minus 

sign into the argument of the In function. Inserting Eqs. (3.43), we have 

Re{c} = n( ai " f 2r, 
=r 

1+Pr? 1+ 1 
Mer = re tan m n(; ) ~] af tanh(2mr), 

a 

(3.51) 

where the latter relations are obtained by neglecting second- and higher-order 
terms in r (in the In function expansion, the second-order terms actually cancel 
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making it an excellent approximation). Thus, at the Bragg wavelength, the 
attenuating portion of the discrete propagation constant is roughly equal to 
the sum of the reflectivities encountered within one period, as one might 
intuitively expect. The effective number of periods is also inversely related to 
2r. In other words, as r increases, fewer and fewer periods are effectively seen 
by the field, which also agrees with intuition. Note that as m increases toward 
infinity, m,,, saturates at 1/2r. 

The desired reflectivity of the overall stack in the general case is given by 

yg = So11 = Ty21/Tj11. With Eqs. (3.48), the reflectivity becomes 

it 1+jA Pa aera a beara (3.52) 
Ty 1+ jm.yrA 

At the Bragg frequency with no loss or gain, the second term disappears using 

Eqs. (3.50) and the reflectivity reduces to 

ee tanh m n( Z ‘| ~tanh(2mr), (A =0) (3.53) 

where the approximation is good to second order in r. Expressing r in terms 

of the refractive indices, the reflectivity at the Bragg frequency can also be 

written as 

= 1 nr 
= : x (0) 54 

ede (n,/n,)™ re, 

It is shown in Appendix 7 that Eq. (3.54) can more generally be applied to 

dielectric stacks with different values of index (for example at the input or 

output of the stack) by replacing (n,/n,)’” with the product of the low-to-high 

index ratios of every interface in the stack. 

Figure 3.12 shows example plots of the magnitude and phase of r, from Eq. 

(3.52) for several values of 2mr. For low reflection magnitudes it approaches a 

sin(L,)/(oL,) function, while for high reflection magnitudes, the top flattens out 

(saturating at a value of unity) and the stopband broadens. In the phase 

spectrum, increasing 2mr has the effect of suppressing the phase slope over the 

range of the stopband. We also see that the phase jumps by z every time the 

reflectivity passes through a null. A phasor diagram of the reflectivity would 

reveal that as dL, approaches a zero crossing, the reflectivity phasor aligns itself 

with the negative real axis, shrinks to zero, and then increases again, pointing 

along the positive real axis. 
In the low reflection limit the peak net reflection should intuitively approach 

2mr, since there are two discontinuities per grating period, and multiple 

reflections should be negligible. Also from Fourier transform theory, the net 
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FIGURE 3.12 (a) Magnitude and (b) phase of the grating reflection coefficient 

vs. the normalized frequency deviation from the Bragg condition for different 

values of the reflection parameter, kL, = 2mr. For small r and large m, the 

reflection spectrum plotted above is only dependent on the product 2mr. 

However, for larger values of r and/or smaller values of m, there is some 

dependence on the individual values of r and m. For example, r = 0.01 and 

m = 100 would be roughly equivalent to r = 0.1 and m = 10. However, some 

changes in the spectrum would occur with r = 0.2 and m = 5, even though the 

2mr product is equivalent in all three cases. The above plots use r = 0.1, 

0.025, 0.01 with m = 20 for all cases. In the phase plot, the 2mr = 1 case is very 

‘ similar to the 0.4 case and hence is not plotted. Here 6 = B — By where f is the 

average propagation constant of the grating. \ 



GRATINGS 93 

reflection from m elements, equally spaced by half a wavelength, and each 
causing a reflection of 2r, should produce the following spectral response: 

sin(oL 
|r| © 2mr = a) (mr < 0.2) (3.55) 

g 

where 6 is the deviation of the average propagation constant from the Bragg 

frequency. The qualifier reminds us that Eq. (3.55) is only valid in the weak 

reflection limit. Practical lasers usually require mirror power reflectivities of 

greater than 15% where multiple reflections cannot be ignored. Thus, Eq. (3.55) 

is of limited utility for diode laser work unless a relatively low reflectivity mirror 
is desired. 

Historically, researchers working with long grating reflectors in in-plane 

lasers have chosen to use a different dimensionless parameter to quantify the 

net grating reflection rather than 2mr, which is the reflection per grating 

segment, 2r, times the number of segments, m. The parameter of choice is the 

reflection per unit length, x, times the grating length, L,. Thus, for the square 

wave grating, we see that the coupling constant, k, is given by 

Nigar ae ee (=). (3.56) 
n Aon 

where An = |n, —n,| and 7 = (n, + n,)/2. For small index differences, A = 

(Ao/4)(1/n, + 1/2) © Ap/2n which gives x = 2An/A,. Later in Chapter 6 when 

we introduce coupled mode theory, we shall see that this form also naturally 

results (however, for the sinusoidal gratings analyzed there, x is reduced by 

7/4). Therefore, the approximation for the grating reflection in Eq. (3.53) can 

also be written as, r, + tanh(«L,). However, for very short gratings, such as in 

VCSELs, our original 2mr form seems more natural. 

3.5.3 Effective Mirror Model for Gratings 

From Fig. 3.12 we note that the phase varies relatively linearly near the 

reflection maximum. Such a reflection can be well approximated by a discrete 

mirror reflection equal to the magnitude of the grating’s reflection, |r,|, but 

placed a distance L,,, away as shown in Fig. 3.13. 
From Eggs. (3.15) and the associated discussion in Section 3.3.2 above, we 

know that the incident and reflected wave amplitudes each experience a phase 

shift of — BL,,, in traversing the distance to the effective mirror and back. Thus, 
knowing that the reflection phase is zero at the Bragg frequency, we can express 

I, as 

r & ele ero ee: (\6L,| « 7) G57) 
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Effective Mirrer 
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FIGURE 3.13 Definition of an effective mirror for a grating reflector. 

\ 

Expanding the true DBR reflection phase i in a Taylor series about the Bragg 

frequency: jd © jfy + j(B — Bo) (0b/0B) + +--+, and equating the linear (6 — Bo) 

coefficient with the exponent in uae (3. 57), we find that the effective length is 

given by 

1a¢ | ee ; 3.58 

which is the same result we found earlier in Eq. (3.38) by different means. From 

Fig. 3.12(b), it is clear that as 2mr increases, L,,, decreases over the range of 

the stopband. Using Eqs. (3.52) and (3.43), it can be shown (after a bit of math) 

that if third- and higher-order terms in r are neglected, the effective length 
becomes 

1 
Lory = 5 tanh(KL,) (\6L,| « x) (3.59) 

where kL, = 2mr as given by Eq. (3.56); the exact expression for L,,, is given 

in Appendix 7. For weakly reflecting gratings (tanh KL, — xL,), the effective 

mirror plane is at the center of the grating, and for strongly reflecting gratings 

(tanh KL, > 1), Lope > A/(4r) © Ao/4An. 
Although L,,, was defined to give the proper mirror phase, and thus, can 

be used to locate cavity modes, it also gives the approximate optical energy 

penetration depth into the grating mirror. As mentioned earlier, m,,, gives the 

effective number of periods seen by the incident field. The optical power is the 

square of the field and hence it penetrates half as far into the mirror. Therefore, 

the energy penetration depth is given by L,,, = Am, ,/2 (see Appendix 7 for 

more details). Substituting Eq. (3.51) for m,,, and setting 2r= «A, this 

, definition reduces to the one given in Eq. (3.59) and hence L,,,, ~ L, Sf 

Therefore, the total energy stored in the mirror is app Ue equal to the 
energy density at its input multiplied by L,,,. 
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A small propagation loss can be approximately added back into a lossless 
calculation of r, by multiplying it by a factor e~*/7, In this case we 
are still using the effective mirror approximation, but B has been replaced 
by its complex form f, in Eq. (3.57). This perturbation technique is not 
valid for significant levels of loss or gain, because if such levels exist, the rate 

of decay of energy into the grating will be significantly affected. In this case, is 

should be recalculated using the transmission matrix method incorporating 
complex propagation constants, 2, throughout. But, for many practical cases 

of interest we find that it is possible to model the grating near its reflection 
maximum by using the effective mirror concept, for which we need only know 

(1) the lossless reflection magnitude at the Bragg frequency, |rg|max; (2) the 

effective mirror location, given by L,,,; and (3) the propagation loss over the 

entire grating length, given by a; in the grating.! 

In the general case, r, = T).1/Ty11 = Bm/Amlio=0) (Or in terms of the 

S-parameters, rz = S441 = Dm/Gm|(ag=0))» Which can be calculated numerically by 

performing the operations indicated in Fig. 3.11. The numerical procedure 

proceeds from the output of the grating backwards, after first assuming some 

value for Ag, such as unity. The intermediate A;s and B,s are evaluated by 

matrix multiplication moving to the left toward the beginning of the grating. 

Using this technique each segment in principle could be different, and the loss 

or gain can be naturally included in the 7;;’s, by using the appropriate complex 

propagation constants in Eqs. (3.24) to (3.27). 

3.6 DBR LASERS 

3.6.1 Introduction 

A distributed Bragg reflector (DBR) laser can be formed by replacing one or 

both of the discrete laser mirrors with a passive grating reflector. Figure 3.14 

shows schematics of both in-plane and VCSEL configurations with one grating 

mirror. 
By definition, the grating reflectors are formed along a passive waveguide 

section, so one of the issues is how to make the transition between the active 

and passive waveguides without introducing an unwanted discontinuity. This 

is of little concern in the VCSEL case, since the axial direction is the growth 

direction, and switching materials is always done several times during growth. 

‘ If the propagation loss is not distributed evenly throughout the grating (as is often the case with 

VCSEL mirrors), we must use an effective propagation loss: 

1 Lg 

Serf = | a(z)e 7/Fer1(1 + cos 2Bz) dz. 
; Ler 10) 

The upper (lower) sign in the standing wave term is for a DBR with 0 (z) reflection phase at the 

Bragg wavelength. For a constant loss, «,(z) = a9, and the equation reduces to ; err = io for 

Ly > Legs > 4/4nn. 
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FIGURE 3.14 (a) Vertical-cavity surface-emitting laser schematic illustrating 

various lengths and reference planes. (b) In-plane laser schematic illustrating 

various lengths and reference planes. 

Thus, forming the mirrors only requires growing more uniform layers. However, 

for coherence along the axial direction these layers must be very accurately 
controlled in thickness. 

In the in-plane laser case making a DBR laser is relatively complex, since a 

lot of structure must be created along the surface of the wafer. This generally 

includes a joint between the active and passive regions as well as grating 

patterning and regrowth. For this reason in-plane DBR lasers are only formed 

when their unique properties are required. Besides the single-frequency property 

_ provided by the frequency-selective grating mirrors, these attributes can include 

wide tunability, if the effective index is varied electro-optically in the several 

sections by separate electrodes. 
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3.6.2 Threshold Gain and Power Out 

The threshold gain of a DBR laser is the same as we have already calculated 
elsewhere, but we must interpret the parameters properly and consistently. This 
interpretation, however, can vary depending upon how we choose to model the 
DBR. If we treat the grating reflector as a separate element characterized by 
reflection and transmission scattering parameters, Case (a), we logically choose 

the cavity length to be L, + L,. However, if we use the effective mirror model 

outlined in Fig. 3.14, Case (b), we would choose the cavity length to be Lygr, 

and include the grating passive losses in the penetration depth, Lers, tather 

than the reflection coefficient. Fortunately, these approaches lead to the same 

result near the Bragg frequency, provided the losses are not too large. In practice 

we find that the approximate Case (b) is most useful for design where a 

minimum of computation is desired. Of course, Case (a) is more exact for 

detailed analysis. 

With reference to the single grating mirror configuration in Fig. 3.14, the 

threshold gain given by Eq. (2.23) becomes 

Case (a) 

1 1 
Vin = (4:> + nf | (3.60) 

Lit JE ry Ir,| 

where I and <«;> average over the active and passive sections of the cavity 

only (any losses encountered in the DBR section are contained in |r,|, the 

magnitude of the DBR reflectivity given by Eq. (3.52)). Using the effective mirror 

model, 

Case (b) 

1 1 
Vin = <4 + n| | (3.61) 

Lose ri IT 

where I and <a;> average over the entire effective cavity length, Lypgr = 
L,+L,+ Lr, and losses encountered in the DBR section are treated as 

propagation losses in L,,;. The prime on r, denotes the use of its lossless value. 

In either case, the mode spacing is determined using Eq. (3.39) with the optical 

length set equal to n,,L, + NgpLy + NgpgrLers- 

For VCSELs, the confinement factor I must generally be calculated by Eq. 

(A5.10). Even for uniform gain within the active region Eq. (A5.14) must be 

used for I’,. If two grating mirrors are used in a DBR laser, r; in Eq. (3.60) 

must be replaced by |r,,| for the other grating reflection, and the mode spacing 

needs to include the effective lengths of both DBRs. 

Since the distributed mirrors are lossy in general, we must use Eqs. (3.31) 

and (3.32) for the differential quantum efficiency and the power out, respectively. 

However, we need to use the proper value for «,,, and we must replace r, and 
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t, by the relevant grating S-parameters. Again, we have different expressions 

to be consistent with the two different models considered. That is, with a single 

Bragg mirror at end 2 and a discrete mirror at end 1 of the laser, Eq. (3.60) gives 

Case (a) 

1 1 
Ge nf | (3.62) 

Dieta, r, |r| 

and for the effective mirror model, 

= Lai i In eile 
Lope eit 

For the fractional power out of each end in Case (a), we plug the grating 

S-parameters into Eq. (3.30). Setting, = S,,, =1,andt, = S,., = t,, we obtain 

Case (b) 

Case (a) 

t?. 
Pe : 

Ca ayaa pes 
"y 

[é,|7 and Fes . (3.63) 
(= py +7 oo 72) 

For the effective mirror model, 

Case (b) 
12 

F, a : 5) 

r 
(1 — 77) + —— (1 = |r) 

Ir, | 
4 

and FF, = I 

(he = ral?) + 7" He 72) 

In this case, 7, is replaced by its lossless value rj, and |t,| is po by the 

power onion exclusively en ae the erectye mirror, |t/,|?, which is found 
by ‘setting 26 9-" |p S. 57 | 

For both Case (a) and (b), it is useful to determine |So2al? for a lossy DBR. 

It can be shown using Eqs. (3.43)—(3.49) for a small uniform loss, «;, at the 
Bragg condition that A x —ja;A/2 and 

[Saale UAT p ala rs eyes caters (3.64) 
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Hence, we reach the unintuitive conclusion that the transmitted power is 
oe **efs just like the reflected power. As a result, the transmission through 
the effective mirror becomes |t)|? = (1 —|r)|?)e~*“«//, which unfortunately 
does not correspond to the lossless transmission through the DBR (as one 
might have hoped). 

With Eq. (3.64), we can show that the ratio of powers out of the two ends, 

F,/F,, is preserved in Case (a) and (b). Furthermore, we can show that F, and 

F, are both larger in Case (b). This increase in F, and F, compensates for the 

smaller mirror loss of Case (b), such that 7, is also approximately preserved in 

Case (a) and (b) (the effective mirror model does tend to overestimate n,, but 

not significantly for «;L.,, < 0.1, or for larger losses if the grating reflectivity 
is high). 

For a second general lossy mirror at end 1, its S-parameters should also be 

used for r, and ¢t, in Eqs. (3.62) and (3.63). In Case (b), the same additional 

substitutions are made. Finally, as mentioned above, the power out of each end 

can be obtained from Eq. (3.32). 

3.6.3 Mode Selection and Tunability 

Figure 3.15 illustrates two plots similar to those shown in Fig. 3.8 for the DBR 

case. One is for cavity lengths common to in-plane lasers, the other is for 

VCSELs. As compared to the coupled-cavity cases, the key difference with 

grating mirrors is that there is only a single loss minimum. 

For in-plane lasers, the relatively rapid roll-up in a,, leads to good loss 

margins at the adjacent axial mode wavelength. As indicated in Fig. 3.15, the 

net loss margin at the adjacent axial mode is the sum of the roll-off in the net 

modal gain, AIg, and the roll-up of the mirror loss, Aw,,. In a later section, we 

shall show that this net loss can be used to derive an expression for the 

steady-state mode suppression ratio (MSR) which predicts how much unwanted 

modes are suppressed. 

In the VCSEL case, both the mode spacing and the width of the loss 

minimum are much larger, since the lengths of the cavity and grating, 

respectively, are much shorter. Thus, if we scale the wavelength axis to make 

them look comparable to the in-plane case, the primary effect is to make the 

gain look much more narrow relative to the mode spacing and mirror loss 

width. In fact, the roll-off in gain tends to be more important than the roll-up 

in loss for the VCSEL. That is, the primary cause of single-axial mode operation 

is just the short cavity. 
The potential tunability of DBR lasers is one of the main reasons they are 

of great importance. As indicated in Fig. 3.14, there are usually three sections 

to a DBR, one active, one passive, and one passive grating. For the in-plane 

DBR it is convenient to place three separate control electrodes over these 

regions as shown in Fig. 3.16. One section provides gain, one allows independent 

mode phase control, and one can shift the mode-selective grating filter, 

respectively. By applying a control current or voltage to the grating section, its 
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FIGURE 3.15 Schematic illustration of how a single axial mode is selected in an in-plane 

or vertical-cavity DBR laser. The VCSEL wavelength axis covers a five times larger 

range, i.e., the gain curve has the same width in both plots. 

index, Apgr, changes, and the center wavelength of the grating, 4,, moves 
according to Ad,/A, = Anpgr/Npgr- Alternate axial modes can be selected as 

the mirror loss curve, «,,(A), moves relative to the gain and modes. This is 

referred to as mode hop tuning. Also, the modes will move slightly in wavelength, 

since part of the net cavity length (L,,,) is in the grating. 

By applying a current or voltage to the phase control electrode, the index 

of the passive cavity section, n,, changes, shifting the axial modes of the cavity. 

Thus, by applying a combination of control signals to the grating and phase 

control sections, a broad range of wavelengths are accessible. Since the carrier 

density is clamped in the active region, changes in current there only have a 

‘second-order effect on its index, 7,, and only small changes in mode wavelength 

result. We can see more explicitly.how the continuous mode shift occurs by 
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FIGURE 3.16 Illustration of a tunable single-frequency three-section DBR laser. 

solving for the relative shift, Ad,,/A,,, from Eq. (2.25): 

AA, An, L, + An,L, + AfipgrLess (3.65) 

rh nee nee noel. 

From Eq. (2.26) we can see how the indices are shifted by carrier injection. 

For example, with a transverse confinement factor, T’,, = 10%, the effective 

index shifts by An/n ~ —0.1% for AN = 10'8 cm 3. This can occur in the phase 
control and grating regions above threshold. Since these lengths typically 

account for about half of Lpzp in an in-plane laser, the wavelength would be 

continuously tuned by ~0.05%, or ~8nm at 1.55 um. The injected carrier 

density in the passive regions can be calculated from Eq. (2.15) with g = 0 and 

dN/dt = 0. Thus, the effective index change in the jth section can be written as 

_ On ntl; 

7 ON Gy, 
(3.66) 

where [0n/0N] ~ —T,,10~ 7° cm’®. 
A reverse bias voltage can also change the index of refraction via linear and 

quadratic electro-optic effects. Effective index shifts of ~0.1% are possible, but 

this is a little lower than possible with high injection currents. However, this 

reverse biased effect can have a much faster response time than current injection, 

since the carrier lifetime limits changes in the carrier density to a few hundred 

megahertz, similar to LEDs. Also, current injection leads to local heating which 
can change the index with time constants in the tens of microseconds range. 

Reverse bias also is more practical in the multisection VCSEL case. 

More complex structures than the basic three-section DBR are possible, and 

some of these will be discussed in Chapter 8 on photonic integrated circuits. 
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3.7 DFB LASERS 

A distributed feedback laser (DFB) also uses grating mirrors, but gain is 

included in the gratings. Thus, it is possible to make a laser from a single 

grating, although it is desirable to have at least a fraction of a wavelength shift 

near the center to facilitate lasing at the Bragg frequency. Historically, the DFB 

laser preceded the DBR, primarily because of its simplicity and relative ease of 

fabrication. Figure 3.17 gives a schematic of in-plane versions. Vertical cavity 

versions are also possible, but there is no advantage over the DBR and the 

fabrication is not any easier. 

The basic characteristic equation is still the same as for other lasers, 1.e., Eq. 

(2.20), but the gain is now in the complex mirror reflectivities, r, and r,. Also, 

to avoid the troublesome active—passive transitions there is no passive cavity 

(L, = 0) and the additional active cavity length (L,) is typically only a fraction 

of a wavelength. The complex mirror reflectivities are given by Eq. (3.52) if 

antireflection (AR) coatings are used at the ends. If no AR coatings are used, 

one more T-matrix must be multiplied by that of ed. (3.47) before calculating 

the grating’s S,,. 

For no shift in the gratings,the cavity can be taken to be anywhere within 

the DFB, since all periods look the same. The active length is then a 

quarter-wavelength long, since we have chosen mirror reference planes to fall 

at a downstep in index looking both to the left and right. (As discussed earlier, 

this yields a zero grating reflection phase at the Bragg frequency.) Thus, at the 

Bragg frequency, we can see that this DFB is antiresonant. Since the cavity is 

ee Iby, — A/4 
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FIGURE 3.17 Standard and quarter-wave shifted DFB lasers. The entire length is filled 
with active material embossed with a grating. \ 
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so short, we can neglect any phase change in it over the reflection band of the 
mirrors. Thus, inserting L, = 4/4 in Eq. (2.20) and assuming uniform pumping, 
the threshold condition becomes, 

r41(Bn)'92(Bin) = —1.  (unshifted) (3.67) 

Since there is no solution at the Bragg frequency, the wavelength must be 

scanned for each gain until Eq. (3.67) is satisfied. 

The exception to this case is the gain-coupled DFB, in which the deviations 

in refractive index are purely imaginary, as for the case of added gain or loss. 

For example, the grating could consist of alternate sections of index n, and 

index n, =n, + jn;; (by definition, n; = gA/(4x) for added gain). Then, the 

reflection at each discontinuity, r = jn;/(2n,), and the net grating reflection, r,, 

at the Bragg frequency would be purely imaginary (reflection phase of 7/2) for 

the selected reference planes indicated in Fig. 3.10. Thus, the fundamental 

solutions to (3.67) do occur at the Bragg frequency in this case. 

If we again consider only real index perturbations and the cavity is half a 

wavelength long, we can see that the device is resonant at the Bragg frequency 

where the reflection phase is zero. Actually, as can be seen in Fig. 3.17, a 

half-wavelength mirror spacing corresponds to a quarter-wave shift between 

the two gratings. Thus, this configuration is usually referred to as a quarter-wave 

shifted DFB. In this case we use L, = 4/2 in Eq. (2.20), and the threshold 

condition for uniform pumping becomes 

ra(Bia jo ben) = 1. (quarter-wave shifted) (3.68) 

The threshold gain and wavelength solutions to the quarter-wave shifted case 

are a little easier, since we know they occur near the Bragg condition. In both 

cases, if the pumping is different on the two sides of the cavity, the complex 

propagation constants, B,» will be different in each grating section. In such 

cases, there will be pairs of threshold gains (one in each section) that satisfy 

the threshold condition. 
Figure 3.18 shows calculated threshold gain results for DFB lasers with and 

without the quarter-wave shift in the center of the cavity. Antireflection (AR) 

coatings are assumed. 

For the unshifted DFB, it should be realized that two modes equally spaced 

on each side of the Bragg wavelength reach threshold simultaneously, if there 

exist no additional perturbing reflections, such as from uncoated cleaves at the 

end. This simplest of DFBs must rely upon such additional reflections to destroy 

the unwanted degeneracy. In practice, at least one cleaved mirror will do the 

job if the gratings are not too strong (KL, < 1) so the net reflection phase from 

one end is shifted from that of the grating alone. However, there is still a yield 

problem, since the reflection from the cleave will have a random relative phase, 

but optimally it should be in quadrature to shift the net phase from that laser 

end by the maximum amount. One more T-matrix must be multiplied by that 



104 MIRRORS AND RESONATORS FOR DIODE LASERS 

8 (a) Standard 
7 DFB 

a ; 
eS 5 

| 4 

& 3 

= 42 

1 

0 
-15 

8 (b) 2/4 Shifted 
DFB 

A 

6 
So 

> 5 
| 4 

& 3 

= 

1 

0 

-15 -10 -5 0 S, ORS: 

6L 

FIGURE 3.18 Normalized plots of threshold modal gain and threshold wavelength for 

different modes of standard and quarter-wave shifted DFB lasers with kL, (=2mr) 

ranging from 5 to 0.5 in 0.5 increments. Here 6 = Bf — By, where f is the average 

propagation constant of the grating. i 

of Eq. (3.47) to obtain the net grating S,, in this case, Figure 3.19 replots the 

threshold gain and wavelength for a DFB laser with an AR coating on one end 

and a cleave at the other, assuming the cleave is in quadrature phase (i.e., 

cleaved exactly between two interfaces in the grating). 

The threshold gain and wavelength can also be calculated by observing the 

net transfer function, S,,(@) = 1/7, ,(@), through the DFB laser (or any other 

laser) as the gain is increased, rather than solving Eq. (3.67) or (3.68). The poles 

of one of the S-parameters (or zeros of the T,, parameter) for the entire system 

give another form of the characteristic equation. From Eq. (3.48), the character- 
istic equation of a DFB with AR coated facets can be written as 

MerpA =j, \ (3.69) 
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FIGURE 3.19 Normalized plot of threshold modal gain and threshold wavelength for 
different modes of a standard DFB laser with «L, (=2mr) ranging from 5 to 0.5 in 0.5 

increments. One end of the laser is AR coated and the other end is cleaved such that 

the facet reflection (with a field magnitude of 0.565) is 90° out of phase with the small 

grating reflections (as illustrated in the lower right corner). Here 6 = 6 — By, where 

is the average propagation constant of the grating. 

where the effective number of mirror periods, m,,,;, and the detuning parameter, 
A, are defined in Eq. (3.49). 

In a numerical calculation, as the gain is increased, the transmission spectrum 

of the device under study will develop a strong maximum. The gain required 

for this maximum to reach some large value and its wavelength are the desired 

threshold values. This technique is particularly useful to determine the threshold 

gain margin for spurious modes, since even after one mode reaches threshold, 

the gain can still be increased to look for the next mode to blow up at another 

wavelength. In Figs. 3.18 and 3.19 the threshold gain and wavelength for the 

first few modes are shown. 

The corrugations of the grating can also cause significant periodic loss 

and gain variations. That is, r,; (and x) may be complex (have a nonzero 

phase angle) even with the reference planes chosen above, which makes r, 

real for real index variations. In the extreme of pure gain modulation and 

no index variation, Eqs. (3.42) through (3.52) show that r, would have an 

angle of ¢ = 7/4 at the Bragg wavelength. Thus, as already discussed, the 
unshifted DFB laser characterized by Eq. (3.67) provides a mode at the 

Bragg wavelength of the gratings. It performs as the quarter-wave shifted 

DFB with real index variations. For these reasons and other potential benefits 

of this gain-coupled DFB, there has been continued active research in this 

direction. 



106 MIRRORS AND RESONATORS FOR DIODE LASERS 

3.8 MODE SUPPRESSION RATIO IN SINGLE-FREQUENCY LASERS 

As mentioned above, a primary reason that people are interested in coupled- 

cavity, DBR, and DFB lasers is their potential for single-frequency operation. 

But, we must realize that “single-frequency” is a relative term. In this section 

we wish to discuss a measure of single-frequency purity, the mode suppression 

ratio (MSR). It is simply the ratio of the output power in the primary laser 

mode to that in the next strongest mode from one end of the laser: 

_ Po) MSR = 
P(A,) 

(3.70) 

where we have dropped the subscripts from the output power as given by Eq. 

(3.32) and labeled the primary mode as the one at A). More fundamentally, the 

output power from one end of the laser at the nth mode is given by Eq. (2.33) 

multiplied by the fraction out one end, F,(/,,) as given by Eq. (3.30). That is, 

POA,) = FyAy)0g%mlAn)Np(A, hv Vy. (3.71) 

From Eq. (2.16) we can express the steady-state (dP/dt = 0) photon density as 

N,(An) = PBspRsp(4n) (3.72) 
Lig g(An) = Tv,g(/,) 

Note that in Chapter 2, we used Eq. (2.15) to solve for N, in terms of the 

terminal current, but here we are interested in expressing it for the various 

modes in terms of the net gain margin, the denominator of Eq. (3.72). In this 

form we can see how the noise injected into a particular mode, I'B,,R,,(A,), is 

amplified to a large steady-state value as the denominator approaches zero. 

(But it never actually goes to zero for any finite power out.) 

Now, we can plug Eq. (3.72) into Eq. (3.71) and form the ratio given in Eq. 

(3.70) for the desired pair of modes. That is, 

fis FyAo)&m(Ao) Lai + %m(A1) — P91) 
MSR = > 

Fy(Ay)Om(A1) Lo: + %m(Ao) — Tgo)] 
(3.73) 

where we have assumed that the spontaneous emission is coupled equally into 

both modes, and that the modes are similar in frequency, volume, and velocity. 

We have also used Eq. (2.24) for the cavity lifetime, i.e. 1/t,(A,) = v,(%; + &m)- 

Before trying to simplify this any further, we wish to review a generic schematic 

of loss and gain vs. wavelength shown in Fig. 3.20, similar to Figs. 3.8, 3.15, 

_ and indirectly 3.18 for different types of lasers. 

Finally, by reference to the figure we can simplify Eq. (3.73) by calling the 

denominator bracket, which is the separation between the mirror loss and the 
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FIGURE 3.20 Definition of gain and loss margins for use in MSR calculations. 

net modal gain for the main mode, 6g = «,,(A9) — [T'g(Ao) — a], the loss 

margin, Aw = «,,(2,) — %&,(Ao), and the modal gain margin, Ag = Tg(A,) — 

Ig(4,). Furthermore, if the back mirror provides the frequency-dependent loss, 

then the fraction of light coupled out of the front mirror will be reduced as the 

mirror loss is increased. As a result, the coupling fraction ratio out of the front 
mirror times the mirror loss ratio is ~ 1. We are then left with 

Aa + Ag 
MSR & aD (3.74) 

G 

More commonly, the MSR is expressed in terms of decibels (dB) of optical 

power: 

eA MSR(dB) ~ 10 gio] n i. (3.75) 
G 

If the spectrum is observed by direct detection, the photodiode current is directly 

proportional to the optical power, while the electrical power is proportional to 

its square. Thus, if electrical power is displayed in decibels on a spectrum 

analyzer, the observed MSR will appear twice as large as (3.75) would predict. 

The value of 5, can be calculated in terms of cavity parameters and the drive 

current by combining a number of existing equations. First, we solve Eqs. (3.71) 

and (3.72) for dg at Apo, 

F,&mhvVT BspRsp (3.76) 
Poy 

Og = 
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Then, using Eqs. (2.5) and (2.6) for R,,, and Eqs. (3.30) to (3.32) for Po,, we 

get an expression valid for I > I,,, 

Lin 6. = (a -+ ee 317 G (a; Om )B pl (I cs its) ( ) 

and the spontaneous emission factor, £,,, is given by Eq. (A4.10). For typical 

values of the parameters 6g ~ 107 7J,,/U1 — I,,) em™*. n 
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PROBLEMS 

These problems include material from Appendix 7. 

3.1 (a) Write the S and T matrices between two ports bounding a section of 

transmission line and a dielectric interface as shown in Fig. 3.21. 

(b) For n, = lin=— 3:5) 2, —=10 iim, and 2 x= pm; plot's ,-and 5.5. vs: 

wavelength for 900 < 4 < 1000 nm. 

3.2 Verify Eqs. (3.24) to (3.27) by solving for the appropriate ratios of 

scattering amplitudes with the appropriate boundary conditions. 

3.3. Verify Eq. (3.30) by showing that F, + F, = 1 and that F,/F, = P),/Po>. 

3.4 Write the characteristic equation for a three-mirror laser using only 

its mirror reflectivities and dimensions (i.¢., no r,,, in the answer). 

3.5 Plot the effective mirror reflectivity, r.,,, vs. wavelength near 1.3 pm over 

two full cycles of oscillation for an external cavity laser of the form 

illustrated in Fig. 3.7. Assume the external cavity medium has an index of 

1.6, a loss of 5cm™~’, a length L, = 200 um, and that the mirrors, 

r; = —0.9, r, = 0.5, t, = 0.3 (mode mismatch loss). 

3.6 In Problem 3.5, if we tune the index of the external cavity by 1%, by how 
many nanometers do the maxima of r,,, shift? 

3.7 Ina four-mirror coupled-cavity laser, it is desired to have the maxima of 

rer be narrower in wavelength than the minima for best mode selectivity. 
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FIGURE 3.21 Two-port scattering junction consisting of a section of transmission 

line and a section of dielectric. 

A device is fabricated by etching a deep and narrow groove across 

1.55 ym InGaAsP/InP DH material to form two active sections. Assume 

the minimum accurately controlled groove width is 1.2 um. 

(a) Find the minimum groove width to accomplish the desired goal. 

(b) Assuming a diffraction power loss of 50% per pass in coupling from 

one section to the other, what are the values of S,,,, R’, o, and 

repr Eq. (3.41) for this case? 

(c) Plot r.¢, vs. wavelength over two periods for this case. 

Verify Eqs. (3.43). 

Show that Eq. (3.52) reduces to Eq. (3.55) in the low reflection limit. 

A VCSEL mirror consists of three grating periods backed by a metallic 

reflector. The position of the metallic reflector is adjusted so that 
its reflection adds in-phase with the grating’s. Assume the amplitude 

reflection at each discontinuity of the grating is 0.1, and the metallic layer 

has an amplitude reflection of 0.95. 

(a) What is the net amplitude reflectivity at the Bragg frequency? 

(b) What is the effective penetration depth measured in wavelengths? Be 

sure to define a reference plane. 

An Ino ,Gayg gAs/AlGaAs VCSEL as in Fig. 3.14 has the following 

parameters: 

L, = 0.02 um GaAs DH active region placed at standing wave peak. 

L, + L, = 1 wavelength in the medium. 

Two DBR mirrors: AlAs/GaAs quarter-wave stacks 18 periods each; 

top (rear) mirror metalized to give a net mirror reflectivity of 99.9%. 

Average internal loss, <«;> = 20cm *. 

(a) What is the bottom (front) mirror reflectivity? 

(b) What is the effective penetration depth into each mirror? 

(c) What is the threshold modal gain? 

( d) What is the differential efficiency, assuming 7; = 100%? 
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3.12 

3.13 

3.14 

3.15 

3.16 

3.17 

MIRRORS AND RESONATORS FOR DIODE LASERS 

Consider the bottom (front) DBR mirror of Problem 3.11. 

(a) Plot its power reflectivity vs. wavelength relative to the Bragg value. 

Show two minima on each side of the central maximum. 

(b) Plot In(1/R) for this grating vs. wavelength. 

A tunable three-section DBR as in Fig. 3.16 is constructed to operate 

near 1.55 um from InGaAsP/InP materials. Above threshold, the wave- 

length is tuned by changing the effective.indices in the phase and DBR 

passive sections by injecting current. For no current injection, the 

operating wavelength is 1.57 pm, the effective index in all sections is 3.4, 

on/ON = 10° 1° cm~3, n; = 70%, and the carrier lieftime is independent 

of carrier density and equals 3 ns in all sections. The waveguide cross 

section in all regions is 0.2 x 3 um; the gain, phase shift, and grating 

regions are each 200 pm long, and the grating has a reflectivity per unit 

length of 100 cm~!. The other mirror is a cleaved facet. 

Plot the wavelength vs. current to the grating. 

(a) Assume no current is applied to the phase shift region and show at 

least three axial mode jumps. 

(b) Repeat for a phase shift current sufficient to maintain operation at 

the grating’s Bragg wavelength. 

In (b) also plot the required phase shift current on the opposite axis. 

Stop plots when any current reaches 50 mA. 

A 1.55 um InGaAsP DBR laser consists of an active section 500 um long 

butted to a passive grating section 500 um long. The coupling constant— 

length product, cL, = 1 for the grating. The active section is terminated 

with a cleaved facet on the opposite end. The active section internal 

efficiency is 70°, and the average internal modal losses are 20 cm~! 

throughout both sections. What are yj, and 4? 

For the problem of 3.14, what is the MSR out of each end of the laser? 

If the grating is now made stronger such that xL, = 2, what are the 

differential efficiencies and MSRs out of both ends? 

A quarter-wave shifted DFB laser has an internal quantum efficiency of 

60°%, a modal loss of 10 cm~!, AR coated facets, and a KL, = 1. 

(a) What is the threshold modal gain? 

(b) For operation at twice threshold with B,, = 10~*, what is the MSR? 

(c) What is the differential efficiency from each end? 

(d) What KL, gives the best MSR, and what is it? 

Standard DFBs with internal modal losses of 10 cm~! and various KL,’s 

are fabricated with one end AR coated and one end cleaved. Assume that 

the cleave provides a reflection in quadrature with that of the grating 

and that the output is from the AR coated end. 

(a) What «L, gives the best MSR, and what is 7,, in this case? 

(b) What xL, gives the worst MSR, and what is y,, in this case? 
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Gain and Current Relations 

4.1 INTRODUCTION 

In Chapter 1, various transitions responsible for the generation and recombina- 

tion of carriers within the semiconductor were introduced. In Chapter 2, the 

rates at which these transitions occur were shown to provide the fundamental 
description of LED and laser operation through the development of the rate 

equations. The optical gain, for example, was defined in terms of the difference 

between the stimulated emission and absorption rates. Radiative efficiency was 

defined in terms of the spontaneous and nonradiative recombination rates. 

Simple relationships between these rates and the carrier density were assumed 

in Chapter 2 to provide a feel for how semiconductor lasers generally behave. 

In the present chapter, we would like to delve a little deeper into the 

fundamentals of these transitions. 

We will first develop a quantitative description of radiative transitions, from 

which we will be able to determine both the optical gain and the corresponding 

radiative current density as a function of injection level. Then, we will consider 

nonradiative transitions and see how they compare to the radiative transition 

rates in different material systems. Finally we will provide a set of example gain 
calculations for common materials in order to quantify the various relationships 

between the gain, carrier density, and current density. 

In Appendix 6, an alternative description of radiative transitions traditionally 

applied to discrete energy level lasers is adapted for use in semiconductors. The 

reader is encouraged to examine this appendix, for not only does the analysis 

bridge the gap between Einstein’s approach and the treatment provided here, 

but it is also hoped that by covering the same material from a different 

perspective, the reader will gain a deeper understanding of radiative processes 

in semiconductors. 
More in-depth discussions of many of the relations used in this chapter can 

be found in Appendices 8 through 11. These discussions are presented at a 

higher level and are not required for the basic understanding of material 

111 
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presented in this chapter. In brief, the envelope function approximation and 

the calculation of the valence subband structure in quantum wells with 

and without strain can be found in Appendix 8. Fermi’s Golden Rule, a key 

relation for estimating gain in semiconductors, is derived from first principles 

in Appendix 9. The resulting transition matrix element and polarization- 

dependent effects related to it are considered in Appendix 10. Finally, the effects 

of strain on the bandgap of semiconductors are.discussed in Appendix 11. The 

latter part of Appendix 8 and Appendix 11 are recommendedreading for anyone 

particularly interested in strained materials. 

4.2 RADIATIVE TRANSITIONS 

4.2.1. Basic Definitions and Fundamental Relationships 

In Chapter 1, many types of transitions were discussed in reference to Fig. 1.3. 

Here we would like to concentrate on the radiative transitions. Specifically, 
there are three types of radiative transitions between the conduction and valence 

bands which are important in modern semiconductor lasers. These band-to-band 

radiative transitions are sketched in Fig. 4.1. 

In the first diagram, the energy of the photon is transferred to an electron, 

elevating it from some state 1 in the valence band to some state 2 in the 

conduction band. Such stimulated absorption events generate new carriers and 

are also responsible for the disappearance of photons. In the second diagram, 

the incoming photon stimulates the electron to liberate energy in the form of 

a new photon, lowering it from state 2 in the conduction band to state 1 in the 

valence band. Such stimulated emission events proyide a recombination path 

for carriers and are more importantly the source of new photons. The third 

diagram is really no different from the second diagram except that the field 

which stimulates the electron to emit a photon and make a downward transition 

is not a real field, but a vacuum-field (as it is commonly referred to in the 

quantum world). Because vacuum-field-induced transitions can occur with no 

classical field stimulation, we refer to them as spontaneous emission events. In 

the absence of classical fields, spontaneous emission serves as one of the 

02 @2 e2 
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FIGURE 4.1 Band-to-band radiative transitions: stimulated absorption, stimulated 
emission, and spontaneous emission. (All rates are defined per unit\volume.) 



RADIATIVE TRANSITIONS 113 

dominant recombination paths of carriers in direct bandgap semiconductors, 
and is by far the most common source of photons provided by nature. 

The rates at which the three radiative processes in Fig. 4.1 occur depend on 
a number of factors. Two primary factors are the density of photons and the 
density of available state pairs. As we will find later, the dependence on the 
photon density enters through the local electric field strength, |&|*. Thus, R,>, 

Ry, <|&|? and Ri, « |&’S|?, where |&’|? is the vacuum-field strength. We 
will have more to say about vacuum-fields and how to evaluate |@’/|? in 
Section 4.4. 

The dependence of the transition rates on the density of available state pairs 

can be broken down into two components: one which is strictly material 
dependent, and the other which depends on the injection levels. The first 

component is the density of total state pairs, which is found by taking the 

appropriate average between the density of states in the conduction and valence 

bands. We will learn how to evaluate this reduced density of states function, p,, 

a little later. The second component is the fraction of state pairs available to 
participate in the transition. For upward transitions, this fraction is maximized 

when all carriers are placed in the valence band. For downward transitions, 

this fraction is maximized when all carriers are placed in the conduction band. 

The former population of carriers occurs naturally, while the latter inverted 

population can only be achieved by providing energy which pumps the carriers 

into the conduction band (for example, by current injection into the center 

of a pn junction). The fraction of available state pairs will be quantified 

below. 
Now let’s consider the electromagnetic field a little more carefully. First of 

all, it is important to appreciate that downward transitions not only create a 

new photon but they create a new photon into the same optical mode as the 

stimulating photon (whether it is a real or vacuum-field photon). For this reason, 

it is important to distinguish photons in one optical mode from photons in 
another (see Appendices 3 and 4 for a discussion of optical modes). By 

associating |&|* with the field strength of one optical mode, we can interpret 

the transition rates in Fig. 4.1 as single-mode transition rates (in fact, the prime 

on Rj, is used to distinguish this single-mode spontaneous emission rate from 

the total band-to-band spontaneous emission rate, R,,). The total transition 

rates are then found by summing over all optical modes. 

Another interesting feature of downward transitions is that in addition to 

appearing in the same optical mode, the newly created photon also contributes 

to the existing field constructively. This feature allows the optical mode to build 

up a very coherent field. Unfortunately, the vacuum-field phase is not correlated 

with the phase of the real fields in the optical mode. As a result, new photons 

introduced into the mode through spontaneous emission have random phases 

relative to the coherent fields created through stimulated emission. And although 

the number of photons introduced into the mode through spontaneous emission 

can be made small relative to the photons introduced through stimulated 

emission, they can never be removed completely, implying that perfect coherence 
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FIGURE 4.2 State pairs which interact with photons at E,,. Energy and momentum 

conservation reduce the set of state pairs to the annulus shown in the plot of energy vs. 

momentum in two dimensions. The occupation probabilities, f, and f,, reduce this set 

even further. 

in a laser can never be achieved. Chapter 5 considers the implications of 

spontaneous emission as a phase noise source in more detail. 

So far we have not specified the electron states 1 and 2 in any detail. As will 

be shown below, photons with energy hv induce upward and downward 

transitions only between those electron state pairs which conserve both energy 

and momentum in the course of the transition. In other words, we must have 

E, — E, = E,, = hv and k, = k,. These conservation laws reduce the inter- 

action to a very particular region of the E—k diagram of the semiconductor, as 

illustrated in Fig. 4.2 for two dimensions of k-space. Furthermore, within this 

region only vertical transitions are allowed. 

Now electrons typically only spend about 0.1 ps in any given state due to 

collisions with phonons and other electrons. As a result, their energy is 

uncertain, making the annulus shown in Fig. 4.2 appear fuzzy. To properly 

account for this, the total transition rates should include an integration over 

the energy uncertainty. In Appendix 6, this integration is included right from 

the start. However, because the integral tends to clutter the math, we will defer 

this procedure to the very end, where a more thorough discussion will be 
included. 

Another restriction we must consider is that transitions occur only between 

filled initial states and empty final states. Figure 4.2 illustrates the fraction of 

state pairs which satisfy this criterion for both upward and downward 

transitions. Writing out the Fermi factors explicitly, the three radiative transition 
rates become 

Ry, =R,° fi — fo), 

Rx, =R,-f2 — fi), (4.1) 

Rep Re fo (aa): ‘ 
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In these equations, R, represents the radiative transition rate that would exist 
if all state pairs were available to participate in the transition. For the 
spontaneous emission rate, we must use R°’Y = R, with |&|* > |E’"|*. We 
will derive an explicit expression for R, later, but from the above discussions 
we already know that R, is proportional to the field strength and the reduced 
density of states function. 

Because R,, and R,, are competing effects in that one generates new photons 

and the other takes them away, we would also like to know the net generation 
rate of photons in the semiconductor, or 

Ry = Ro, — Riz = KR, - (fo — fi). (4.2) 

We will show in Section 4.3 as we have by a more phenomenological route in 

Chapter 2, that the net stimulated emission rate, R,,, is directly proportional to 

the optical gain in the material. 

The occupation probabilities in Eqs. (4.1) and (4.2) can usually be described 

using Fermi statistics even under nonequilibrium conditions by using a separate 

Fermi level for the conduction and valence bands: 

1 1 
ee eEi—ErdkT 4 4 Eee eE2—ErokT 4 4’ a) 

where E,, and E,, are the conduction and valence band quasi-Fermi levels. 

Under nonequilibrium forward bias conditions, E,, and E,, are separated by 

slightly less than the applied voltage to the junction. 
Simple relations between the transition rates are easily derived by substituting 

Eq. (4.3) for the occupation probabilities: 

R3; eb ed fi) ba etAEr ~ Eas y/kT (4.4) 

Ry f,d am fr) 

Rep _ 16°71? A — fi) _ 16? ae 
Ree Sira i yy a lel eT st 

The first ratio (4.4) reveals that the stimulated emission rate will be larger than 

the absorption rate only when 

Ene — Ep, = AE > Ep. (4.6) 

Stated another way, the net stimulated emission rate (and hence the optical 

gain) will become positive only when the quasi-Fermi level separation is greater 

than the photon energy of interest. And because the photon energy must at the 

very least be equal to the bandgap energy, we conclude that to achieve gain in 

the semiconductor, we must have 

AE; > Ey. (4.7) 
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This condition demands that the voltage across a pn junction must be greater 

than the bandgap to achieve gain in the active region. 

The second ratio (4.5) reveals a fundamental relationship between the 

single-mode spontaneous emission rate and the net stimulated emission rate. 
This relation will be developed further in Section 4.4. We will find there that 

the ratio of field strengths is just equal to the reciprocal of the number of 

photons in the optical mode. 

x 
4.2.2 Fundamental Description of the Radiative Transition Rate 

To fully quantify all three radiative transition rates, we need only evaluate 

the one transition rate, R,, appearing in Eq. (4.1). The treatment in 

Appendix 6 also concludes that Einstein’s stimulated rate constant, B,,, 

is all that is necessary to determine the three radiative transition rates. 

However, Einstein’s approach does not prowde a means of determining B,, 

in semiconductors. Fortunately, the transition rate, R, can be estimated using 

a relation known as Fermi’s Golden Rule, derived in Appendix 9. To evaluate 

Fermi’s Golden Rule, we need to provide an accurate description of the 

interaction which occurs between the electron in the crystal and the electro- 

magnetic field. 

To describe the electron fully we must provide a model for the electron’s 

wavefunction in both states 1 and 2. To be rigorous, Wy, and w, must be found 

by solving the Schrodinger equation with the appropriate crystal potential. Such 

an exact solution, however, would be difficult to find and inconvenient to work 

with. Fortunately, a useful approximation can be made which decomposes the 

crystal potential into (1) a complex atomic-scale potential which is periodic 

with the crystal lattice, and (2) a macroscopic potential which follows the spatial 

dependence of the conduction or valence band edge (created by either doping 

or material composition variations) as illustrated in Fig. 4.3. Appendix 8 shows 
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FIGURE 4.3 Illustration of a quantum-well potential and the corresponding lowest 
energy electron wavefunction. . \ 
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that the corresponding electron wavefunctions can then be written as the 
product of two functions: 

Wi =Fir)u(r) and = f= F(r)-u,(r). (4.8) 

The envelope function, F(r), is a slowly varying function satisfying Schrédinger’s 
equation using the macroscopic potential and an appropriate effective mass. 
The Bloch function, u(r), is a complex periodic function which satisfies 
Schrédinger’s equation using the atomic-scale potential. Each energy band in 

the crystal has its own Bloch function. Fortunately, one never really needs to 

determine u(r) precisely. Only the symmetry properties of these functions are 

necessary for most calculations, as discussed in Appendix 8. Thus we can 
concentrate our attention on the simpler envelope function. 

In uniformly doped bulk material, the flat energy bands imply a constant 

macroscopic potential which leads to simple plane wave solutions for the 
envelope functions. In a quantum-well potential, plane wave solutions exist 

along directions within the plane of the weil. However, along the confinement 

direction, F(r) takes on either a cosine or sine wave distribution inside the well 

and decays exponentially outside the well. The bulk, quantum-well, and (by 

extension) quantum-wire envelope functions therefore take the following form: 

F(r) = e~*"/,/Y, (bulk) (4.9) 

F(t) = F(z):e7*"/,/A, (quantum well) (4.10) 

F(r) = F(x, y)-e H#/./T, (quantum wire) (4.11) 

where V (A, L) is the volume (area, length) of the crystal, and appears for 

normalization purposes. For the quantum well, the position vector r, is parallel 

to the quantum-well plane, and F(z) is the simple one-dimensional solution to 

the quantum-well potential considered in Appendix 1. For the quantum wire, 

the length of the wire runs along z, and F(x, y) is the two-dimensional solution 

within the quantization plane. The overall quantum-well electron wavefunction 

illustrating both envelope and Bloch function components is superimposed over 

the crystal potential in Fig. 4.3. Because we often need only the envelope 

function of the electron for many calculations, it is common to associate 

F(r) with the complete wavefunction of the electron, y. This association is 

oftentimes harmless, however, in the present case it is necessary to emphasize 

that it represents only the slowly varying envelope of the complete electron 

wavefunction. 
With the electron wavefunctions defined, we can move on to describing the 

interaction between the electron and the electromagnetic wave. The wave’s 
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interaction with the electron enters into Schrédinger’s equation through the 

vector potential: 

A(r, t) = € Re{ A(r)ei"} = 5A (rei + A*(r)e/”], (4.12) 

where é is the unit polarization vector in the direction of A, and @ (ha) is the 

angular frequency (energy) of the photon. The vector potential is related to the 

electric field via & = —0A/0dt. The kinetic energy term of Schrodinger’s equation 

describing the electron in the crystal (given by (A8.1)) is now modified by the 

substitution 

p’ > (p + qA)* © p* + 2qA:p, (4.13) 

where q is the magnitude of the electron charge: This modification accounts for 

the electromagnetic field’s ability to accelerate and/or decelerate charged 

particles (and hence modify the electron’s kinetic energy). In expanding the 

square, we can neglect the squared vector potential term since it does not affect 

our final results (orthogonality of the wavefunctions ensures us that the 

operator A? does not perturb the system, assuming we can neglect the spatial 

variation of A within one unit cell of the crystal). Substituting (4.13) into (A8.1), 

we can write the new Hamiltonian as 

H=H)+(H' We +hel, HW =—-w@e-p. (4.14) 
2Mo 

The h.c. stands for Hermitian conjugate, and simply means that we take the 

complex conjugate of all terms except the Hermitian momentum operator p. 

The term in brackets can be viewed as a time-dependent perturbation to the 
original Hamiltonian, Hy. This perturbation term is the driving force for 

transitions between the conduction and valence bands. 
By studying the time evolution of some electron wavefunction initially in a 

valence band state, for example, as it makes an upward transition to the 

conduction band in the presence of the time-harmonic perturbation, it is 

possible to determine the rate at which such transitions will occur. This 

procedure is carried out in Appendix 9. The resulting transition rate per unit 

volume of active material is given (in units of s_' cm~ 3) by 

20 
R, =~ | Hi1\*ps(Eai)le21=ho» (4.15) 

Ay, = W2lA'OlW> = | WFH' Wy, ar. (4.16) 
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Equation (4.15) is known as Fermi’s Golden Rule. It reveals that the number 
of transitions per unit active volume; V, occurring per second is dependent on 
(1) the density of final states, p ,(E,,), (in units of energy”! cm~ 3) available to 
the electron, and (2) the spatial overlap of the initial and final electron 
wavefunctions with the harmonic perturbation defined in (4.14)—the integral 

being defined as H4, (in units of energy). It is important to appreciate that the 

field will only invoke a response from electrons which exist in states which have 

possible final states separated by E,, ~ hw. That is, the two electron states 
must be in resonance with the oscillating field. As a result, p,(E,,) and H}, in 

(4.15) must be evaluated at E,, = haw. This resonance condition derived in 
Appendix 9 is a statement of energy conservation. 

Using (4.15), the job of determining R, is reduced to providing explicit 

relations for both the density of final states and the overlap integral (or matrix 

element as it is commonly called). The next two subsections tackle this 
chore. 

4.2.3. Transition Matrix Element 

The matrix element |H4,|? determines the strength of interaction between two 

states. This interaction can be strong, negligible, or identically zero, all 

depending on the wavefunctions describing the two electron states. For example, 

in a quantum well only transitions between subbands with the same quantum 

number are allowed, all others are forbidden. The wavefunction overlap also 
leads to the k-selection rule, which dictates that transitions between plane wave 

states are forbidden unless the k-vectors of the two states are equal (the two 

electron states must propagate along the same direction). In addition to these 

considerations, the interaction strength can also depend on the polarization of 

the incident light, if the material has some preferential axis of symmetry. For 

example, the interaction strength between conduction and heavy-hole states in 

a quantum well is much stronger for electric fields in the plane of the well than 

perpendicular to the well. 

To derive an expression for |H4,|7, we insert the definition of H’(r) in Eq. 

(4.14) into the definition of |H4,|* given by Eq. (4.16). We can reduce Eq. (4.16) 

by expressing the electron and hole wavefunctions in terms of the envelope/Bloch 

function formalism using Eq. (4.8). Because the momentum operator when 

operating on a product can be written as pAB = BpA + ApB, the overlap 

integral can be expressed as the sum of two terms 

Hy, =—2- | Fhuk(o/(é-p)Fyu, dr 
2M Jv 

=| | utu, FH(L(e)8-p)F, dr + | (FESO R ute pad | (4.17) 
2M LJv ve 
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In transitions from the conduction band to the valence band, the first integral 

within the brackets vanishes’ due to the orthogonality condition expressed in 

Eq. (A8.5) and due to the fact that the other terms in the integrand are, to a 

good approximation, constant in any one unit cell. To evaluate the second 

integral, we breakup the integration over the crystal volume into a sum of 

integrations over each unit cell. The terms collected in brackets in the second 

integral can again be taken as constant over the dimensions of a unit cell, and 

we can write % 

—_ ou [F3.A(0)F,1,=.,; | uxé: pu, d°r, (4.18) 
unit cell i 

where j sums over all units cells in the crystal, and r; is a position vector to 

the jth cell. Because the Bloch functions, u, repeat themselves in each unit cell, 

the integral can be pulled out of the summatidn to obtain 

1 
A, vont use pay de [SCPE ADF De 

2M V, unit oe uc 

== —— ¢u,|é-p|u, »f F3.A(0)F, dr, -. (4.19) 
Mo 

where, by assuming the volume of a unit cell to be very small, we have converted 

the summation back into an integral. We have also used Dirac notation to 

express the Bloch function overlap integral. 

The envelope function overlap integral in (4.19) can be further simplified by 

recognizing that the spatial variation of (r) is typically much slower than that 

of the envelope functions allowing us to pull it out of the integration. Assuming 

A(t) to be a plane wave of the form se“, and ignoring the spatial 

dependence (i.e., the exponential term), we obtain 

| FA (t)F, Pr © Ap | FSF, Br = AF) |F,). (4.20) 
\% V 

We will consider this integral in more detail a little later in Eqs. (4.22) through 
(4.24). Substituting (4.20) into (4.19), we finally obtain 

; qh 
|\H5,|? = (2) |Mr|*, where |M,|? =|<u,|é-plu,>|7|<F|F,>/?. 

10) 

(4.21) 

‘For transitions within the same energy band, the Bloch function overlap is equal to unity and 
the first integral may or may not be zero, depending on the envelope function overlap. 
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The prefactor in the first equality comes directly from the perturbation 
Hamiltonian (4.14). The second term, |M,|’, is referred to as the transition 
matrix element and is given special attention in Appendix 10. The first 
component, |<u,|€-p|u,>|*, contains the polarization dependence of the inter- 

action which will depend on the particular symmetries of the conduction and 
valence band Bloch functions. Aside from the polarization dependence (which 
can be a function of photon energy), we can consider this momentum matrix 

element to be a constant, |M|?, for a given material. 

As shown in Appendix 8, the constant |M|? can be determined experimentally. 

Table 4.1 tabulates the most accurately reported values for several important 

materials systems. (Note that 2|M|?/m, has units of energy.) Appendix 10 shows 

how |M;|? can be expressed in terms of |M|?. This involves expanding the dot 

product as well as considering the overlap of the envelope functions in |M,|? 

given by Eq. (4.21). Table 4.2 summarizes the results for bulk and quantum-well 

materials for either transverse electric (TE: electric field in the quantum-well 

plane) or transverse magnetic (TM: electric field perpendicular to quantum-well 

plane) polarizations. Due to band mixing effects, the values for quantum wells 

are only valid for small transverse k-vectors, k,. Figure A10.5 gives values of 

|M,|?/|M|? as k, is varied. 
In addition to creating a polarization sensitivity, the transition matrix 

element also restricts the types of states which can interact. For transitions 

between two plane wave states in a “bulk” active medium (1.e. V > o0), we can 

use Eq. (4.9) to set 

ville Loree (F,|F,) = >| erro Bit dr = 5, (4.22) 
V 

where the Kronecker delta, 6,, ,,, 18 zero unless k, = k,, in which case it equals 

one. This spatial phase-matching condition, known as the k-selection rule, is a 

statement of momentum conservation. Thus, only states propagating along the 

same direction in the crystal can interact. If the spatial dependence of the field 

were not ignored in deriving Eq. (4.21), then an additional plane wave term, 

e /*" would appear in Eq. (4.22), and the k-selection rule for upward transitions 

TABLE 4.1 Magnitude of |M|? for Various Material Systems. 

2 

Material system ee (in eV) Reference 
0 

GaAs 28.8 + 0.15 1-82 

Al,Ga,_,As (x < 0.3) 29.83 + 2.85x 3 

In, Ga,_,As 28.8 — 6.6x Jad 

InP 19.7 + 0.6 ie 

In, _,Ga,As, P, _, (x =0.47y) 19.7 + 5.6y 2,4 
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\ TABLE 4.2 Magnitude of |M,|*/|M|? for Different Transitions and 

Polarizations. : 

Quantum-well 

Bulk (k, ~ 0) 

Polarization C—HH C-LH C-HH C-LH 

TE 1/3 1/3 1/2 1/6 

™ 1/3 1/3 0 v 2/3 

would become: k, = k, + «. However, the wavevector of the field, x, is typically 

orders of magnitude smaller than the electron wavevector, and can usually be 

ignored (justifying our earlier simplifying step in Eq. (4.20)). 

In a quantum well, the envelope functions are given by Eq. (4.10). Transitions 

between two such quantum-well states are governed by the following overlap: 

Fo al FE@e Ri @exi a'r 
Vv 

a | F4(2)F,(2) dz. (with ky = k,) (4.23) 

Thus, we can assume k-selection in the plane of the quantum well, but we 

still need to evaluate |<F,|F,>|* perpendicular to the plane, where again F, 

and F, are simply the particle-in-a-box envelope functions found for the 

quantized energy levels of the quantum well in both conduction and valence 

bands. - 

Due to orthogonality between the quantum-well wavefunction solutions, 

the overlap integral in Eq. (4.23) reduces to the following rule for subband 
transitions: ; 

V ICFaIFL>I? © Span: (4.24) 
This means that transitions can only occur between quantum-well subbands 

which have the same quantum number, n,=n,. These are referred to as 

allowed transitions. Transitions between subbands with dissimilar quantum 

numbers are forbidden transitions. Both are illustrated in Fig. 4.4. The allowed 

transitions are usually referred to as the n = 1 transition, the n = 2 transition, 

etc. The “nearly equal to” sign is used in (4.24) because the different effective 

mass and barrier height in the conduction and valence bands means that the 

wavefunctions of the two bands are not completely orthogonal to each other. 

Nevertheless, allowed transition overlaps are usually (but not always) close to 

unity (0.9-1) and forbidden transition overlaps are usually very small (0-0.1). 

__ The above considerations can be extended to quantum wires which have 

potential barriers in two dimensions. For example, in a quantum wire, F, and 

F, are functions of both quantized directions, such that |<F|F,>|? represents 
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KAIA)P = 0 
9) Baa = NS eee 

forbidden 

FIGURE 4.4 Allowed and forbidden transitions in a quantum well. The most important 

“n = 1” transition is highlighted in bold. 

an integration over the “quantization plane” (see Eq. (4.11)). In this case, 

k-selection is obeyed only along the length of the wire. 

In heavily doped materials, electron states which are bound to charged 

donors or acceptors can exist. If the concentrations are high enough, it is 

conceivable that many transitions near the band edge will be either band-to- 

bound or bound-to-bound transitions. In these cases, the k-selection rule cannot 

be assumed in any direction and |<F,|F,>|* must be evaluated explicitly for 

the envelope functions which correspond to these bound states. In early 

treatments [5], such band-to-bound transitions were given considerable atten- 

tion. However, these analyses were provided when most active regions were 

heavily doped. More recently, heavily doped active regions have faded in 

popularity in favor of undoped quantum-well active regions (or sometimes 

modulation doped quantum wells, where the doping ions are physically separated 

from the quantum wells). As a result, most current semiconductor lasers operate 

on the physics of band-to-band transitions. The rest of this chapter will 

concentrate on transitions occurring between plane wave states such that the 

k-selection rule can be assumed. 
With |H,,|? given by (4.21) and the k-selection rule established, we now 

need to define the final density of states more carefully. 

4.2.4 Reduced Density of States 

The derivation of Fermi’s Golden Rule in Appendix 9 assumes the electron 

initially occupies a single state which makes a transition to one of a large 

number of final states. In a semiconductor, both final and initial states of the 

electron are immersed within a large number of nearby states, as illustrated in 

Fig. 4.5. For this case, the final density of states appearing in (4.15) should 
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SE, FF 

#states/volume = p(E)6E 

FIGURE 4.5 Relationship between the energy ranges in the conduction and valence 

bands for a given dk in k-space, assuming k-selection applies. 

actually be interpreted as the density of transition pairs per unit transition energy, 

OE,,. This density of transition. pairs is referred to as the reduced density of 

states function, p,(E,,). One specific form for p,(E,,) is derived in Appendix 6, 

however, here we would like to determine the general form. 

If we assume the k-selection rule applies, then only states with identical 
k-vectors can form a transition pair, and only vertical transitions in k-space 

can occur. Because of this restriction, the number of transition pairs within 6k 

is equal to the number of states in either the conduction or valence band, and 

p,0E,, = p,0E, = p,6E,. This allows us to set dE, = (p,/p,)dE,, and dE, = 

(p,/0,)0E,,. Summing these relations and setting 6E,, = dE, + dE,, we im- 

mediately obtain 

=f. (4.25) 

This is the more general form for the final density of states to be used in Fermi’s 

Golden Rule. Note that as p, > 00, we have p, — p,. This is the case we solved 

in Appendix 9, with p, interpreted as the final density of states. For a finite 

density of states in the valence band, such as p, = p,, p, is reduced from p, to 

p,/2 (hence the name reduced density of states). In typical semiconductors, 

Py = 5p,, or (5/6)p, < p, < p,. Thus, p, is generally very close to p,. However, 

in strained materials, p, can be reduced significantly, as shown in Appendix 8, 

bringing p, closer to p,/2. 

For general use, it turns out that Eq. (4.25) is not that practical. An alternate 

definition of p,(E,,) can be found by relating it to the density of states in 

k-space. From Fig. 4.5, we can set p,(E,,)dE,, = p(k)ok. Rearranging, we find 

lie oA dEn@ie } [=e 210)] 

P(E2:) p(k) dk» ~~ p(k) dk dk. J 
(4.26) 
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TABLE 4.3 Density of States for Bulk (3D), 
Quantum-Well (2D), and Quantum-Wire (1D) Structures 

(Including Spin). 

Dimension p(k) p(E) 

ee 3/2 

3 — VE | 2m 
n? 2 Ah 

2 i reve | 
nd, mh*d,) 

1 2 p(k) [ 2m |*/2 

nd,d, JELLY 

This definition allows p,(E,,) to be evaluated at any given point in k-space 

once the derivatives of the electron and hole energies with respect to k are 

known at that point. This definition is especially useful when E,(k) and E,(k) 

are not parabolic functions (see Figs. A8.4 and A8.6 for examples of non- 

parabolic subbands in QWs). The density of states in k-space, p(k), for various 

dimensional structures is summarized in Table 4.3. (Note that the z-direction 

is taken as the narrow dimension of the quantum well and the axis of the 

quantum wire to be consistent with Appendices 8 and 10.) 

If both bands involved in the transition are parabolic, an even more 
straightforward definition of p,(E,,) can be used. We can generally state that 

the transition energy is equal to the bandgap energy E, = E, — E, plus the 

kinetic energies of the electron and hole. If the electrons and holes follow 

parabolic dispersion curves, we have 

h2k? h2k? hk? 

= t= Et ‘ where + 
1 1 
oe —. (4.27) 

2m, 2m: 2m, my Umasims 

In other words, the dispersion of E,, with k also follows a parabolic curve with 

a curvature characterized by a reduced mass, m,. As a result, the density of 

transition states along E,, is entirely analogous to the density of states function 

in either the conduction or valence band, with the following associations: 

PlE21) > p(E2), plE1) 

ia? by es Lp ae (parabolic bands) (4.28) 

m, <7, m,, mM, 

The derivation of p,(E,,) provided in Appendix 6 for bulk material confirms 

these associations. More generally, the density of states per unit energy given in 

Appendix 1 and summarized in Table 4.3 for various dimensional structures 
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can be applied directly to p,(E,,) using (4.28) and (4.27) as long as the energy 

bands are parabolic. 
Finally, in order to evaluate the Fermi occupation probabilities in Eq. (4.3), 

we need the individual electron and hole energies. With parabolic bands and 
assuming k-selection, the individual electron and hole energies in terms of the 

transition energy can be found using (4.27): 

m, m, 

E,=E,+(Ex— 2), Ey = Ey (En Eee: (4.29) 

When the bands are not parabolic, we must in general use E,(k) and E,(k) 

evaluated at the k-vector which yields the desired transition energy, E,,. 

4.2.5 Correspondence with Einstein’s Stimulated Rate Constant 

Einstein’s original description of radiative transitions outlined in Appendix 

6 defines the downward transition rate in terms of a stimulated rate constant, 

B,,, weighted by the radiation spectral density, W(v), and the differential 

number of state pairs available for downward transitions, dN,. This rate 

constant can be related to R,, allowing us to quantify B,, using Fermi’s Golden 

Rule. 

Assuming the lineshape broadening function to be a delta function, the 

stimulated emission rate in Eq. (A6.11) becomes dR,, = B,,W(v) dN,. This 

differential transition rate must still be integrated over all transition pairs 

affected by W(v). Using Eq. (A6.8) for dN,, setting W(v) > hvN,6(v — vo), and 

integrating over the transition energy, the stimulated emission rate becomes 

Roi = By hvoN,hp, fal — fi). (4.30) 

Comparing this to Eq. (4.1), we conclude that 

r 3 1 | HI? 

P21 Naha wane a WE 0 pp, Vo p 

(4.31) 

The second equality uses Fermi’s Golden Rule (4.15) to expand R,. With this 

and Eq. (4.36) defined below, B,, and all relations dependent on B,, in 
Appendix 6 can be quantified. 

4.3. OPTICAL GAIN 

4.3.1 General Expression for Gain 

The explicit relation between the net stimulated emission rate and the optical 
gain was derived in Chapter 2. For reference, we repeat that derivation here in 
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a slightly different way. As discussed in Chapter 2, we can define the material 
gain per unit length as the proportional growth of the photon density as it 
propagates along some direction in the crystal. This definition can be related 
to the transition rates as follows: 

Jeti C ie SRMGN, a 1 oR a 
N, dz v,N, dt Pri NC ie ee ee) 

9° P 

The second equality uses the group velocity, v,, to transform the spatial growth 

rate to the growth rate in time. The growth rate in time is then linked to the 

net generation rate of photons per unit volume. Finally, using Eq. (4.2) we 
obtain 

Rg, 
Vg N, v 

g= aaa (4.33) 
aN, 

Using Fermi’s Golden Rule (4.15) for R,, we have 

“ pAE 21) (f2 — Si). (4.34) 
Taee 

The electromagnetic perturbation is proportional to the field strength. Thus, 

to evaluate the ratio, |H’,|*/N,, we need to relate the field strength to the 

photon density. The energy density in terms of the photon density is hwN,. The 

energy density in terms of the electric field strength is 4n7e9|&|?. If the material 

is dispersive, this becomes 3nn,é |&|?. The electric field is related to the vector 
potential through a time derivative. For time-harmonic fields, we can set 

|&|? = w?|.d|?. By equating the two versions of the energy density, we obtain 

the desired relation: 

2h 

NN, &9@ 
N ZNN, EO" |p|? — hoN, = | |? = Dp: (4.35) 

Using this relation and the definition of the matrix element (4.21), we can set? 

H’ pA 1 A, 2 2h [Aa/? _ (: 3 |Mp|? = 2" | Mrl?. (4.36) N, N, \2mo 2nn,&moo 

2 The transition matrix element in the expression for gain is occasionally written instead as the 

dipole moment matrix element, q?|x|*, where |x|? = |<u,|é-x|u, >|7|¢F,|F:>|7, and x is the position 

operator. The relationship between the two is given by q7|M;|* = mjw7q’|x|?. Thus, Eq. (4.36) 
can alternatively be written as 

|H5,|? _ ho 

N, p 

24 2 bse 
2nN, Eo 

This ratio can then be used to define the gain using (4.34), however, we will not make use of this 

alternate expression for gain in this chapter. 
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The material gain per unit length (4.34) then becomes 

Obi as ImaxlE 21) °(f2 a fi) 

where (4.37) 

nmg7h 1 
jE, Sees |M;(E21)|2p,(E2)). 

Fegcms hy, 

The maximum gain, max, iS a property of the material, while the Fermi factor, 

fo — fi, is dependent on the injection level. In GaAs 80-100A quantum wells, 

the maximum gain of each subband transition is gma, ~ 10* cm ~' (or 1 pm~'). 

In reduced-dimensional structures such as a quantum well, p, corresponds 

to the reduced density of states between two quantized subbands. The total 

gain at E,, is found by summing over all possible subband pairs: 

Y gn = VY g(r. n,). (Quantum well) (4.38) 
Nc Ny 

The double sum indicates that all subband combinations should be considered. 
In practice however, the selection rules arising from the envelope function 

overlap expressed in Eq. (4.24) and illustrated in Fig. 4.4 suggest that the gain 

from n, = n, subband pairs will dominate the gain spectrum. In particular, the 

n=1 gain is usually the largest, and hence most important transition in 

quantum-well lasers. We will use the following example to demonstrate this 

point as well as to highlight many other basic considerations involved with 

determining the gain for a given injection level in a quantum well. 

The left side of Fig. 4.6 illustrates the lowest two energy subbands of a 

quantum well in both conduction and valence bands (neglecting the light-hole 

subbands and assuming parabolic subbands for simplicity). Under strong 

forward-bias conditions, the equilibrium Fermi level is separated into two 

quasi-Fermi levels, one for all conduction subbands and one for all valence 

subbands (the quasi-Fermi functions are indicated by the dashed curves). The 

separation of the quasi-Fermi levels is constrained by the requirement that 

charge neutrality be maintained within the quantum well (if there were a charge 

imbalance, band-bending would occur in the diode junction in such a way as 

to neutralize the imbalance). Thus, we must have N(E,;,) = P(E,,) in the 

quantum well (see Eq. (A6.20) for a more explicit version of this relation). 

Because the valence band typically has many more states per unit energy, the 

valence quasi-Fermi function does not have to penetrate nearly as deeply as 

the conduction quasi-Fermi function to obtain the same overall carrier density. 

As a result, the quasi-Fermi levels separate asymmetrically as indicated in the 
figure. 

The right side of Fig. 4.6 shows the constant density of states functions of 

each subband which when added together produce a staircase density of states 

‘in each band. When p(E) is multiplied by the fraction of filled (empty) states 

in the band we obtain the electron (hole) distribution as a function of energy 
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C subbands 

FIGURE 4.6 QW subbands and corresponding density of states illustrating the relation- 

ships between the carrier populations, the quasi-Fermi levels, and the gain at the subband 
edges. 

(the contributions from the n = 1 and n = 2 subbands are indicated separately 

in the figure). The shaded area under the carrier distribution curves then yields 

the total carrier density. Since charge neutrality requires that N = P, we 

conclude that the total shaded area must be the same in the conduction and 

valence bands for any injection level. Thus, the quasi-Fermi levels must always 
adjust themselves to ensure that this requirement is met (with the larger step 

heights in the valence band, this again explains why the valence quasi-Fermi 

function does not have to penetrate as deeply). 

With the relationship between the quasi-Fermi levels and the carrier density 
qualitatively defined, we can now proceed to analyze the gain of the quantum 

well. Many optical properties of the quantum well depicted in Fig. 4.6 can be 

qualitatively determined by simple inspection. For example, from Eq. (4.6) we 

immediately know that at the injection level indicated, the quantum well 

provides gain at the lowest subband edge, simply because Ey, — Ep, > E., — E,}. 
Thus, in spite of the fact that the electron density at E,, is slightly larger than 

the electron density at E,,, a population inversion at the band edge has in fact 

been achieved. This is because a “population inversion” requires f, > f;, not 

P-f2 > py f; (as the name might lead one to conclude). Furthermore, the fact 
that we have gain at the band edge even though E,, > E,, reinforces the concept 

that it is the relative difference and not the absolute positions of E,, and Ep, 
that determines the gain (i.e., it is not a requirement to have both E,, > E,, 

and E,, < E,, to achieve gain). 
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We can take the analysis a step further by using Eq. (4.37) to estimate the 

gain at the band edge. Evaluating terms at the appropriate energies, we find 

the band edge gain to be Gmaxi(Eg1)*(f2(Ec1) — fi(Ev1)), Where Ymax1 uses the 

envelope function overlap and reduced density of states between the two n = 1 

subbands. Estimating from the figure that f,(E,,) — f,(E,,) ¥ 0.8 — 0.6 = 0.2, 

we conclude that the band edge gain is roughly 20% of its maximum possible 

value. If we assume Imaxi(E 41) ~ 10*cm~! (a typical number), then the band 

edge gain in the figure is roughly 2000 cm~?. 
As we move to higher photon energies, the population inversion clearly 

declines, implying that the gain from n = 1 transitions is largest at the band 

edge. However, at high enough photon energies a second population of carriers 

starts contributing to the transition process. In principle, this added supply of 

carriers could increase the gain significantly. However in this case, at photon 

energies close to the second subband edge, we know the quantum well is 

absorbing because E,, — Ep, < E-2 — E,2. The absorption comes from two 

contributions: the carrier populations in the n = 1 subbands and the carrier 
populations in the n = 2 subbands, as the summation in Eq. (4.38) implies. 

Estimating from the figure that f,(E,,) — f,(E,2) + 0.3 — 0.8 = —0.5, we find 

that the absorption (i.e., gain) from the n = 1 subband transitions is 0.5 Imax1( E42) 

and from the n = 2 subband transitions is 0.5 gjq.2(E,2). The overall absorption 

at the second subband edge is therefore 0.5(Gmaxi(E92) + Ymax2(Eg2)) (cross- 

population transitions such as gygx12 ANd Ymax2, also exist but as mentioned 

earlier, their contributions are typically small). So we find that the absorption 

at E,, has not yet been converted into gain but has at least been reduced to 

half its maximum absorption value with the application of a forward bias. To 

achieve gain at the n = 2 subband edge, the forward bias must be increased to 

the point where E,, — Ey, > E,,. To surpass the n= 1 subband edge gain, the 

forward bias must be even stronger such that 

(Gmax1(Eg2) ap Imax2(E 42))(f2(E.2) i? fi (E,2)) = maxi (Eg1) fo(Ec1) =~ fi (E,1)). 

So for all but very strong forward-bias conditions, the n = 1 gain dominates. 

To summarize, by invoking charge neutrality to link both quasi-Fermi levels 

to a given carrier density, evaluating the quasi-Fermi functions at the appro- 

priate energies, and summing over all subband transition pairs, we can 

determine the gain at any given photon energy relative to the maximum value. 

In Section 4.3.3, we will return to a more general discussion of the gain spectrum 

and its properties in bulk and quantum well materials. 

4.3.2 Lineshape Broadening 

Equation (A6.24) in Appendix 6 expresses the gain in terms of B,,. Replacing 
Bay with (4.31) and using (4.36), we find that (A6.24) is indeed equivalent to 
(4.37) derived here. However, the gain more generally defined in Eq. (A6.23) 
has an additional integration which takes into account the energy uncertainty 
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FIGURE 4.7. Three (of many) transition pairs which contribute to gain at hyo. 

of the electron states. This energy broadening of electron states ultimately limits 

the resolution of features we can observe in the gain spectrum and is therefore 

particularly important to consider in reduced dimensional structures where the 

reduced density of states function contains very sharp features. To recover Eq. 

(A6.23) from Eq. (4.37), we need to consider how the broadening of electron 

states affects the gain. 

Figure 4.7 reveals that when the energy states are broadened, many different 

transition pairs contribute to gain at a particular photon energy. These 

transition pairs are primarily clustered within the energy uncertainty width of 

the lineshape function describing the probable energy distribution of each 

transition pair. To determine the total gain at hvy, we must integrate g,, 

over all transition energies weighted by the appropriate lineshape function, 

L (hvy — Ey;).° The gain including lineshape broadening therefore takes the 

form: 

g(hvo) = | ex.2th — E,,) dE. (4.39) 

In Eq. (4.37), hv,, should be set equal to hvo, while all other terms dependent on 

E,, should be considered variables of the integration. This expression for the 

gain now agrees with Eq. (A6.23) derived in Appendix 6. 

The specific form for the lineshape function to be used in Eq. (4.39) can be 

determined by attempting to study the time evolution of an electron state, taking 

into account its interaction with phonons and other electrons. In a first-order 

3 This lineshape function is actually a combination of the individual electron and hole lineshapes 

comprising the transition pair: 

L(hvy — E21) = [se — E,)¥Z,((E — hvo) — E,) dE. 
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approximation, we might assume that the probability of finding the electron in 

a given state decays exponentially, as we found for the electron’s interaction 

with photons in Appendix 9. This simplistic time dependence when Fourier 

transformed to the energy domain immediately leads to a Lorentzian lineshape 

function: 
1 Al Tin 

GEE, 4) = > ate 
T (h/Tin)” + (E — E;) 

\ 
The intraband relaxation time, t;,, is the time constant associated with the 

exponential decay of the electron. The energy full-width is related to 1;, 

via AE,, = 2h/t,, (compare (4.40) to (A6.27)).* Early investigations which 

attempted curve fits of gain and spontaneous emission spectra to measurements 

in bulk material lead to values of 1; ~ 0.1 ps [6]. However, the gain and 

emission spectra did not match very well, particularly on the low-energy side 

of the spectrum near the band edge, where the details of the lineshape function 

are most apparent. Thus, other more sophisticated theoretical methods of 

determining the lineshape function have since been employed. 

Using a quantum mechanical density matrix approach, Yamanishi and Lee 

[7] have suggested that the electron state decays initially as a Gaussian but 

then takes on exponential behavior for larger times. This leads to less energy 

in the tails of the lineshape function than the Lorentzian. function, which is 

more in line with experimental observations. Asada [8] has also performed a 

detailed analysis of intraband scattering in quantum wells, arriving at an 

asymmetrical lineshape function which falls off much faster than a Lorentzian 

on the low-energy side of the transition, similar to the findings of Yamanishi 

and Lee. Kucharska and Robbins [9] have kept with a Lorentzian lineshape, 

but have theoretically derived an energy-dependent lifetime, arguing that the 

scattering rate out of a state is dependent on where the state is in the band, 
and on how full the band is. 

In an attempt to keep the lineshape function as simple as possible while 

maintaining some degree of accuracy, Chinn et al. [10] approximated the 

numerical lineshape function derived by Yamanishi and Lee with a simple curve 

fit which describes the time dependence of the electron state. This time 

dependence is given by 

(4.40) 

By 

where 

logio UtLps]) = 2 + 1.5 logy) t — 0.5./(2 + logi9 )? +036. (4.41) 

For long times, [(t) > t, reproducing the exponential decay. For short times, 

l(t) > t? implying that the state initially decays as a Gaussian. The most 

“In Appendix 9, it is shown that if a state decays exponentially with a time constant, t(=1/W), 

. then the energy uncertainty of the state is AEpwyy = h/t. The combined energy uncertainty of 

states 1 and 2 is AE, = h(1/t, + 1/t,). With t1,, defined as the average time constant: 1/t;, = 

3(1/t. + 1/t,), we end up with AE,, = 2h/s,,. \ 
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efficient way to make use of the Chinn lineshape function is to inverse fast 

Fourier transform (inverse FFT) the gain spectrum, multiply it by Eq. (4.41), 

and FFT back to the energy domain. This proves to be the fastest method of 

evaluating the convolution contained in Eq. (4.39). We will make use of this 

simplified Chinn lineshape function in later calculations. 

Some example lineshape functions are shown in Fig. 4.8. The Chinn lineshape 

has less energy in the tails than the Lorentzian lineshape. However, the 

Gaussian lineshape which has been included for comparison has significantly 

less energy in the tails than either of the other two. The effects of convolving 

these lineshapes with a typical quantum-well gain spectrum are shown in the 

lower part of Fig. 4.8. The dramatic smoothing of the sharp features of the gain 

spectrum can reduce the peak gain substantially. However at higher gains, the 

reduction is not as significant. Note that due to the energy in the tails, the 

Lorentzian lineshape function creates absorption of almost 100 cm“! below the 
band edge. The other two lineshapes do not suffer this problem. Of the 

three, the Chinn lineshape is perhaps closest to representing the actual 
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complex lineshape function of the semiconductor. However, in reality the 

lineshape function is a complex function of both transition energy and injection 

level. 

4.3.3. General Features of the Gain Spectrum 

From the general gain equation (4.37), it is clear that the gain/absorption 

spectrum is bounded to a maximum value of [g,,,.|. With no carrier injection, 
the material is strongly absorbing with an absorption ‘spectrum equal to 

—Gmax(E,). With carrier injection, we can invert the carrier population near 

the band edge and change the Fermi factor, f, — f,, from —1 toward +1, 

converting the absorption into gain. As considered earlier in relation to Fig. 

4.6, the carrier inversion is highly concentrated near the band edge. Therefore, 

as the photon energy increases away from.the band edge, f, — /,; must steadily 

reduce back to —1, and the gain spectrum mtust reduce back to the unpumped 

absorption spectrum. This conversion of absorption into gain is depicted in 

Fig. 4.9 for both bulk and quantum-well material. 
In both bulk and quantum-well cases, the material is transparent below the 

bandgap. Just above the bandgap, a region of positive gain exists. Beyond this, 

the material becomes strongly absorbing. The crossing point from positive gain 

to absorption occurs when f, = f, and was considered earlier in discussions 

related to Eqs. (4.4) through (4.7). There it was found that the stimulated 

emission and absorption rates exactly cancel (making the material transparent) 

when hv = AE,. Thus the region of positive gain extends between the bandgap 

and the quasi-Fermi level separation: 

E, < hv < AEy. (positive gain) (4.42) 

In other words, gain is achieved in the material only when the carrier injection 

is high enough to create a quasi-Fermi level separation exceeding the bandgap. 

Also, the larger the quasi-Fermi level separation we can create, the wider 

the gain bandwidth we can achieve in the material. 

The shape of the bounding limits in Fig. 4.9 representing g,,,, ANd —Gimax iS 

primarily governed by the reduced density of states function® from Eq. (4.37). 

Hence in bulk material, g,,,, follows a square root dependence, while in 

quantum-well material, g,,,, follows a step-like dependence where each step 

corresponds to the addition of a new subband transition pair. As a result, the 

bulk gain spectrum is quite smooth whereas the quantum-well gain spectrum 

is rather jagged. However in the latter case, lineshape broadening tends to 

smooth out the discontinuous features into rounded “bumps,” one for each 
subband transition pair. 

° There are other energy-dependent terms comprising gmq,(E). For example, the 1/hm dependence 

modifies the shape of gnqx(E) slightly, but not noticeably. In reduced-dimensional structures, the 

matrix element also has an energy dependence, however, we will ignore this dependence for the 
present discussion. \ 
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FIGURE 4.9 Gain spectra in bulk and quantum-well materials. The thin smoothed 

curves indicate the effect of lineshape broadening. 

In bulk material, the peak of the gain spectrum increases and shifts to higher 

photon energies with increasing AE,. In contrast, the peak of the quantum-well 

gain spectrum remains fixed at the n = 1 gain peak near the band edge under 

most conditions. With increased carrier injection, the n = 1 gain saturates at 

Jmax1 2S the states in the first subband reach complete inversion, while the n = 2 

gain continues to increase to a value twice as high as the n = 1 gain (twice as 

high because it contains contributions from both n= 1 and n= 2 subband 

transition pairs). Thus, under very high carrier injection, the overall peak gain 

can jump to the n = 2 gain peak as discussed in relation to Fig. 4.6. Experiments 

on quantum-well lasers do in fact show a discrete jump in the lasing wavelength 

from the n = 1 to the n = 2 peak as the cavity length is reduced (i.e., as the 

threshold gain is increased). 

In drawing the quantum-well gain spectrum in Fig. 4.9, a few features have 

been idealized. First of all, an additional set of steps spaced differently from the 
ones shown should be included to account for both conduction-to-heavy hole 

(C—HH) and conduction-to-light hole (C-LH) subband transitions. In other 

words, there should be an n= 1 step for both types of transitions, etc. In 

practice, for the more common situation where the electric field lies in the plane 

of the quantum well, the matrix element for C-HH transitions is three times 

larger than the matrix element for C—LH transitions, implying that the steps 

related to C—LH transitions are much smaller and not as important. We have 

also neglected steps due to forbidden transitions. Inclusion of these transitions 
introduces small peaks in between the major peaks due to the small but finite 

overlap of forbidden transitions. However, in practice such small peaks are not 

usually observed. 
Another simplification we have made in Fig. 4.9 is that all steps comprising 

have been drawn with equal height. In actuality, the overlap integral 
Imax 
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defining the matrix element is typically smaller for higher subband transitions, 

implying that the n = 1 step height is usually the largest (sometimes by as much 

as a factor of 2, depending on the barrier height). Finally, we have completely 

neglected the energy dependence of the matrix element. This energy dependence 

is illustrated in Appendix 10. Generally for polarizations of interest, the matrix 

element is a maximum at the band edge and decays to less than half of its peak 

value at higher energies. Thus, the flat plateaus in between the steps Of Gmax 

should actually slope toward zero, modifying the gain spectrum accordingly 

(the 1/hw dependence will also contribute to this sloping toward zero). Gain 

calculations using practical material systems presented at the end of this chapter 

will reveal these more subtle features in the spectrum. 

4.3.4 Many-Body Effects 

The above theory of gain involving Fermi’s Golden Rule considers each electron 

in isolation as it interacts with the electromagnetic field. In other words, we 

have used a single-particle theory to obtain the gain spectrum. In reality, there 

is a large density of both electrons and holes present in our system. The mutual 

interactions between these particles are generally referred to as many-body 

effects. We have already considered one consequence of such many-body effects 
in our discussion of lineshape broadening which is related to collisions between 

particles and/or phonons in the crystal. In addition to this important effect, 

there are two other significant consequences of many-body effects: exciton states 

and bandgap shrinkage. Exciton states exist primarily at low carrier densities 

and low temperatures, while bandgap shrinkage becomes noticeable at high 

carrier densities. 

Under conditions of low carrier density and low temperature it is possible 

for an electron and hole to orbit each other for an extended period of time (in 

analogy with a hydrogen atom), forming what is referred to as an excition pair. 

Such excition paris have a binding energy associated with them that is equal to 

the energy required to separate the electron and hole. As a result, electrons 

which are elevated from the valence band to one of these exciton states will 

absorb radiation at energies equal to the bandgap less the binding energy (the 

bandgap will appear to be red-shifted). More significantly however, the overlap 

integral (and hence the matrix element) of these two-particle states can be quite 
large. As a result, band-to-exciton transitions tend to dominate the absorption 

spectrum. However, exciton states are limited to states near k = 0, and hence 

band-to-exciton transitions are clustered at the band edge (or subband edge). 

The overall effect is the appearance of very strong absorption peaks near the 

subband edges in quantum-well material, and near the band edge in bulk 
material. 

Exciton absorption peaks are clearly visible in quantum wells at room 

_ temperature, as seen in Fig. 4.10 for a typical GaAs QW. The first two steps 
in the “staircase” absorption spectrum predicted from the density of states (see 
Fig. 4.9) can be seen, with each step contributing about 10* cm~' absorption. 
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FIGURE 4.10 Absorption spectrum of a GaAs/Al) ;Gaj.7zAs 100A QW at room 

temperature. 

However, the exciton peaks riding on top of the steps, particularly the n = 1 

peaks, dominate the absorption spectrum. Each observed exciton peak cor- 

responds to one of the subband transitions illustrated earlier in Fig. 4.4. The 
allowed transitions (n, = n,) are clearly dominant, however, traces of absorption 

can also be seen from forbidden transitions (n, ¥ n,). 

At room temperature, exciton absorption peaks are not nearly as dramatic 

in bulk material. The reason is that reduced-dimensional structures confine and 

hold the electron and hole more closely together, producing a higher binding 

energy. However, the larger QW binding energy is still only on the order of a 

few meV. Hence exciton states even in QW material are somewhat “fragile,” 

and collisions with phonons and carriers can easily break the exciton apart. 

For this reason, exciton absorption peaks are strongest and sharpest at low 

temperatures and low carrier densities. As the temperature and/or carrier 

density increases, the exciton lifetime diminishes and the exciton absorption 

peak broadens. Eventually at high enough temperatures and/or carrier densities, 

the exciton peak disappears altogether. At carrier densities required to achieve 

gain in the material, exciton states completely vanish and the absorption/ 

emission spectrum becomes dominated by band-to-band transitions. Thus, 

excitons have little effect on the gain spectrum of the material. 

The second many-body effect occurs at high carrier densities, where the 

charges actually screen out the atomic attractive forces. With a weaker effective 

atomic potential, the single-atom electron wavefunctions of interest become less 
localized and the nearest-neighbor electron overlap becomes higher. From 

discussions in Appendix 1, the larger overlap increases the width of the energy 

bands (AE is larger in Fig. A1.7), reducing the gap between bands. While this 

description is only qualitative, it does reveal that the bandgap should shrink 

with increasing carrier density. 

It can also be argued theoretically that the bandgap shrinkage is inversely 
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related to the average spacing between carriers, or AEg xc —1/r, (the closer the 

carriers are, the more their own Coulomb potentials screen out the atomic 

potential). In bulk material, the average volume occupied by one carrier is 

inversely related to the carrier density, and hence Voc 1/N ocr3. As a result, 

we conclude that AE, oc —N'/? [5]. In a quantum well, the average area 
occupied by one carrier in ane quantum-well plane is inversely related to the 

sheet density, or A oc 1/N oc r2. So in a quantum well, we might expect that 

AE, « —N'? [11]. However, naltiar into account the finite thickness of the 
quantum well in determining the electron Coulomb potential, the theoretical 

power dependence on carrier density has been estimated at closer to the 

one-third power law [12]. 

Experimental measurements of the power dependence of the bandgap 

shrinkage on carrier density yield numbers between 0.32 and 0.38 [5, 11, 12] 

for both bulk and quantum well material. As for the absolute shift, at a density 

of 10'8 cm~? in bulk or 10! cm~? in a quantum well, the bandgap is reduced 
by anywhere from 22-32 meV [5, 11, 12], assuming N = P (for measurements 

on p-doped material, the shift has been doubled assuming electrons would 

contribute equally to the shift in a laser where N = P). In light of the spread 

in measured data, it is common practice to simply assume the bandgap shrinks 

with the one-third power of carrier density in both bulk and quantum well 

material, or . 

Ab = envi, (4.43) 

where N can be either the two- or three-dimensional carrier density. A 

common value used for the bandgap shrinkage constant in bulk material 

(assuming N = P), which also falls within the measured range for quantum well 

material, is . 

c © 32 meV/(10'? cm7 °)1/3, (bulk GaAs) (4.44) 

¢ & 32 meV/(10!? cm 7). (GaAs/AlGaAs QW) (4.45) 

Equations (4.43)—(4.45) are not entirely accurate since there is some experi- 

mental uncertainty in both the one-third power law and the value of c. However, 

they do provide a simple and reasonable estimate of the extent of bandgap 

shrinkage. Less data exists for other material systems, so it is common to assume 

the same values in the InGaAsP system for example. 

The net effect of bandgap shrinkage is that as carrier density increases, the 

entire gain spectrum redshifts by a noticeable amount. In principle, the shift 

is accompanied by a slight distortion (i.e., reshaping and enhancement) of the 

spectrum. However, to first order we can neglect the distortion and simply 

assume that high carrier densities produce a rigid shift of the entire gain 

_ Spectrum to longer wavelengths. This phenomenon is observable in quantum- 

well lasers where the high threshold carrier density shifts the lasing wavelength 

beyond the known band edge wavelength of the quantum well. Bandgap 
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shrinkage is a particularly important factor in situations where there is some 
critical alignment between a desired cavity mode of the laser and the gain 
spectrum (as in a short-cavity VCSEL, for example). 

4.4 SPONTANEOUS EMISSION 

4.4.1 Single-Mode Spontaneous Emission Rate 

As we inject a high enough carrier density to achieve gain in the material, we 

also inevitably increase the spontaneous emission rate. The spontaneous 

emission rate is important to consider because for every spontaneous photon 

emitted, a new carrier must be injected into the active region, as discussed 

in Chapter 2. In short-wavelength materials, this carrier recombination 

mechanism represents the largest component of the current we must inject into 
the active region. 

To determine the spontaneous emission rate per unit active volume into one 

optical mode, Rj,, we return to Eq. (4.5) which relates the single-mode 

spontaneous and stimulated emission rates: 

pare [e747 

‘Speen “él? Ngp Ksy- (4.46) 

The first term replaces the field strength with the vacuum-field strength of the 

mode, |&’/|?. The second term adjusts the Fermi factor. The last term, R,,, 
can be related to the gain through (4.33). The population inversion factor, n 

discussed in Appendix 6 is defined as 
sp? 

er ee a m2 
S— te ies a 1 — e(E21 ~ AEP kT © 

Its value is typically between 1 and 2 at gain thresholds commonly encountered 

in lasers. Figure 4.11 displays the dependence of n,, on gain for various active 

materials. 
To evaluate |&’/|?, we turn to a quantum mechanical description of the 

optical mode. Without going into the details, it can be shown that an 

optical mode can be described quantum mechanically using the mathematical 

formalism developed for harmonic oscillators. One of the basic properties of 

harmonic oscillators is that the probability of elevating the state n ton + 1 (via 

the creation operator) is proportional to n + 1. In describing the optical mode, 

n refers to the number of photons in the mode. Thus, the probability of adding 
a new photon to the mode is proportional to the number of photons in the 

mode plus one—as if an imaginary photon were present in the mode. In terms 

of transition rates, it is the field strength of this imaginary photon which induces 

“spontaneous” downward transition events. Thus, the vacuum-field strength of 
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FIGURE 4.11 The theoretical population inversion factor vs. gain for several relevant 

materials. GaAs based: strained InGaAs/GaAs 80A QW and unstrained GaAs/AlGaAs 

80A QW. InP based: compressively strained InGaAs/InP 30A QW and unstrained 

InGaAs/InP 60A QW. See Section 4.6 for more details on these structures. In each case, 

n,, and g are evaluated at a fixed energy slightly larger (11 meV) than the band gap. 

the mode is equivalent to the field strength generated by one photon in the 

mode: |&” ‘|? =|&,|*. This conclusion is consistent with Einstein’s approach 
which establishes that the equivalent spectral density inducing spontaneous 

emission is equal to one photon per optical mode (see Appendix 6). 

We can express the classical field strength as: ||? = N,V,|&,|*, where V, is 
the mode volume (i.e. N,V, is the number of photons in the mode). Thus, in 

Eq. (4.46) we can set 

|e"F |? =|8,|?, 
3 : (4.48) 

|E|* = N,V, |E,|°. 

Then using Eq. (4.33) to set R,, = v,gN,, Eq. (4.46) becomes 

ee ee ee (4.49) 

Setting 1/V, =I/V in the second equality, we conclude that the spontaneous 

emission rate into the mode is fundamentally related to the modal gain. 

4.4.2 Total Spontaneous Emission Rate 

To find the total amount of spontaneous emission occurring in the active region, 

we must sum the single-mode rate (4.49) over all optical modes. Let’s denote 
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the total spontaneous emission occurring within the energy range dhy, as 
R;, dhv, where R2) represents the total spontaneous emission rate per unit 
energy per unit active volume. Equating this with a sum over modes near hy,, 
within dhv, we have 

v R21 dhyv= Yo R,=n,, Y 2924. (4.50) 
modes modes V, 
in dhy in dhy 

Because n,, only depends on hy, it has been pulled out of the sum and evaluated 

at hv,,. However, the remaining three terms depend on the specifics of each 

mode (either through modal dispersion, polarization dependence, or mode 

volume). If we define average values for the three terms, the sum reduces to 

VgJ21 _ UgG21 HEE MLELS enw 4.51 
modes Ye V, s ( ) Pp 

where N,,oaes 18 the number of modes within dhy. Defining individual average 

values for each term is justified as long as the variations of each term in the 

sum are not correlated, and there is no reason to believe otherwise. 

Considering that the average is over modes going in all directions, it is 

probably safe to say that the average group velocity, v,, is somewhere close to 

the material group velocity of the active region, v,. The dependence of the 

quantum-well gain is through the polarization state of the mode (in bulk 

material there is no dependence and g,, = g>,). Assuming the polarization 

states are isotropically distributed over the two in-plane TE and one per- 

pendicular TM polarizations, the average material gain in a quantum well 

becomes 

G21 = $[293f + gai I. (4.52) 

To handle 1/V, (or equivalently, the average confinement factor, I’), we need 
to evaluate N,,,a-;- In large cavities, Njodes 1s most easily found using the mode 

density concept. If we assume the cavity is a large rectangular metal box of 

volume, V,,,, the density of optical modes per unit frequency per unit volume 

can be derived. The procedure is outlined in Appendix 4 and the result is given 

by Eq. (A4.5). We repeat it here for reference: 

8 
Po(v) dv = “s n’n,v? dv. (4.53) 

The density of modes per unit energy is equal to po(v) dv/dE = po(v)/h. With 

this definition, the total number of modes within dhv becomes 

Weasdes = Po(v)/h : Vos dhy. (4.54) 
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Inserting this into Eq. (4.51), we are left with the volume ratio V,,,/ Ve If the 

laser cavity were a large metal box then the mode volume would be equivalent 

to the volume of the box (aside from standing wave effects, which should average 

out over the spontaneous emission bandwidth), and we could simply set 

Vyox/V, = 1. (4.55) 

Of course, laser cavities are typically much more complex than a simple metal 

box, and V, is potentially different for every optical mode. Thus, there is no 

guarantee that (4.55) holds in real laser cavities, or that we can even define a 

mode density as given in Eq. (4.53). 
Fortunately, if the cavity is much larger than the wavelength of bandgap 

radiation in the active region, or more specifically if V,,, > A°, it turns out that 

a more rigorous treatment usually averages out to the simple metal box 

treatment [13] (especially when the emission’ bandwidth is large relative to 

Bee bances in the cavity). To get a feel for the numbers, a typical 0.2 x 4 x 

200 pm? GaAs in-plane laser has V.,,, ~ 10,000A*. Thus, the simple metal box 

assumption contained in Eqs. (4. » through (4.55) is expected to work well in 

this case. 

In a VCSEL, the simple box asshanbuon is more questionable. Bowerel eh 

volume of a typical GaAs VCSEL with dimensions of 1 x 10 x 10 pm, 

smaller than a typical in-plane laser by only a factor of two, and V,,,, ~ 500042 
Thus, for VCSELs of this size, the simple box assumption should still hold. 

However, when the lateral dimensions of the VCSEL are reduced below 1 pm, 

significant deviations from the simple box assumption are expected to occur. 

Under these circumstances, the mode density concept must be abandoned and 

more sophisticated mode-counting techniques must be used to estimate the 

total spontaneous emission rate. In addition to mode counting, the average 

value for 1/V, (or equivalently I) is also required. Numerous researchers 

interested in microcavity lasers have investigated such numerical exercises for 

a number of cavity geometries [13, 14]. 

Combining Eqs. (4.50) through (4.55) assuming-the simple box assumption 

holds, the total spontaneous emission rate per unit energy per unit active 
volume (in units of s- + cm~? eV!) becomes 

— 

Re = fe (V2.1) UgNsp921- (4.56) 

This result is identical to Eq. (A6.32) derived in Appendix 6, with the exception 

that the gain here is more correctly defined as an average over all polarizations. 

Using the explicit expression for gain (4.37) and mode density (4.53), the general 

expression for spontaneous emission becomes 

Annq? Pil 
Sen 2 hvz,|Mr(E21)|? PAE21)° fal — fi) (4.57) 
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where 

MEI? = 5 Semi eons 
all three 

polarizations 

The transition matrix element is the only factor dependent on polarization in 
the expression for gain. This is why the averaging over polarizations only needs 
to include |M,|?. 

The actual spontaneous emission spectrum will be affected by lineshape 

broadening in the same way the gain is affected. In analogy with Eq. (4.39), 

the spontaneous emission spectrum taking lineshape broadening into account 
is related to R3) through the following: 

R®(hy) = | R2! P(hy — Ey,) dEy,. (4.58) 

The spectrum is generally peaked just above the bandgap energy since the 

electrons and holes are concentrated at the band edges. The spectrum gradually 

decays to zero at higher energies. To determine the total emission rate, we must 

integrate over all photon energies. However, in practice integrating over a 

limited range near the bandgap energy is usually sufficient to account for all 

of the spontaneous emission. It is shown in Appendix 6 that the integration 
over R%*(hyv) is essentially the same as integrating over the simpler R?}. Thus, 
the total band-to-band spontaneous emission rate is given by 

I 
| = | Rx dE, =i", qV" (4.59) 

The second equality allows us to determine the radiative component of the 

current (excluding stimulated emission) required by the active region to obtain 

a given gain. Example calculations in different material systems will be given 

later in this chapter. 

4.4.3 Spontaneous Emission Factor 

With the above description of spontaneous emission we can derive a simple 

expression for the spontaneous emission factor used in the rate equations to 

express the fraction of total spontaneous emission which enters the mode of 

interest. Using Eq. (4.49) for the emission rate into one mode, and Eq. (4.59) 

for the total emission rate, we have 

= Rep _ 1 %9Msp B.. = (4.60) 
4 Rep WM, I/q 

where J as used here does not include stimulated emission current. 
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With Eq. (4.60), parameters readily accessible experimentally can be used to 

estimate B,,. For example, assume we have a laser with a threshold current of 

10 mA, a modal threshold gain of 50 cm™~’*, and an internal efficiency of 75%. 

If nonradiative recombination is minimal, then y, ~ 1. If we assume the group 

index is ~4 and the population inversion factor is ~1.5, we quickly find 
Bp © 1.2 x 107°, typical of experimental values measured with in-plane lasers. 

To get a better estimate of B,,, we need to determine c/v,, n,,, and 4, more 

accurately. However, c/v, is almost always in the range of 4—5, n,, is usually 

between 1.25 and 1.75 for gains commonly required in lasers,-and n, is typically 

between 50 and 80%, implying that simple estimates of c/v,, n,,, and n, will get 

us within a factor of 2 of the correct value of f,,. 

In a typical VCSEL, the percent gain per pass is in the range of 0.5—1% and 

the cavity length is ~1 pm. This gives a modal gain of 50-100 cm~’. Radiative 

threshold currents are in the range of 0.5—-2.0 mA for 10 pm diameter devices. 

If we assume a 1 mA radiative threshold current and 100 cm~* threshold modal 

gain, we find f,, ~ 1.8 x 10~* (assuming again that c/v, and n,, are equal to 

4 and 1.5). This is about an order of magnitude higher than f,, observed in 

typical in-plane lasers. The main difference lies in the reduction of the threshold 

current which is in turn predominantly due to the reduction in active-region 

volume possible with VCSEL structures. 

Equation (4.60) also reveals that f,, is not a constant, but is dependent on 

the injection level. As the injection level increases, the spontaneous emission 

into one mode saturates at a maximum value just as the gain saturates at g,,,,- 

Meanwhile the current and total spontaneous emission rate continue to increase 

as the spectrum broadens to include more modes in the emission process. The 

net effect is that B,, decreases with increasing injection level. In rate equation 

analyses, B,, is often approximated as a constant (see Chapters 2 and 5). This 

is justified for near- and above-threshold analyses, as long as the value assumed 

for f,, is the actual value that would exist near the threshold injection level. 

4.5 NONRADIATIVE TRANSITIONS 

With radiative processes defined, we now need to consider nonradiative 
transitions to determine their relative importance in the overall carrier 

recombination process. Three common types of nonradiative transitions are 

depicted in Fig. 4.12. These processes were briefly discussed in Chapter 1 in 

reference to Fig. 1.3. In the following sections we will provide a more detailed 
description of each process. 

4.5.1 Defect and Impurity Recombination 

‘The first type of nonradiative transition appearing in Fig. 4.12 depicts an energy 
level in the middle of the gap, which serves to trap an electron from the 
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FIGURE 4.12 Various types of nonradiative recombination paths. 

conduction band temporarily before releasing it to the valence band. Energy 

levels of this sort can arise from a variety of causes. Defects in the lattice 

structure are one source. For example, a void at an atomic site or an extra 

atom lodged in between the lattice structure can produce insufficient or extra 

orbitals, which leads to a mismatch in the covalent bonding pattern. Such 

localized dangling bonds give rise to discrete energy levels which can possibly 

appear in the middle of the bandgap. Another common source of midgap energy 

levels are impurities. Just as dopants create impurity levels near the band edge, 

other types of atoms can create impurity levels which are closer to the middle 

of the gap. Oxygen, for example, is a particularly insidious impurity because it 

is an abundant element and is known to create large recombination rates in 

aluminum-containing compounds. 

The defect or impurity recombination rate, Rae rect, OF Ry for short, was first 

analyzed four decades ago in a classic paper by Shockley and Read [15]. Hall 

simultaneously arrived at a similar result [16]. Thus it is known as the 

Shockley—Read—Hall recombination theory. The theory begins by writing down 

the four possible transition rates into and out of the trap (up and down from 

the conduction band, and up and down to the valence band). Setting the rates 
equal in thermal equilibrium to determine relationships between the up and 

down rates (similar to the derivation of radiative transition rates in Appendix 

6), an expression for the nonequilibrium recombination rate can be derived. 

Within the Boltzmann nondegenerate carrier density regime discussed in 

Appendix 2, the defect recombination rate takes the form 

- NP — N? 

 (N* + N)t, + (P* + P)t,” 
(4.61) Ry 

where N, is the intrinsic carrier concentration, tT, is the time required to capture 

an electron from the conduction band assuming all traps are empty, and t,, is 

the time required to capture a hole from the valence band assuming all traps 
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are full. As might be expected, the capture rate is proportional to the density 

of traps, 1/t,., oc N,, such that the higher the trap density, the shorter the capture 

times. N* and P* appearing in the denominator are the electron and hole 

densities that would exist if the Fermi level were aligned with the energy level 

of the trap. The important point here is that if the trap level is close to either 

band edge, then either N* or P* will become large, substantially reducing the 

recombination rate. Thus, the most effective recombination centers are those 

with energy levels close to the middle of the gap, so-called deep-level traps. 

Great care must be taken to avoid introducing such deep-level impurities (such 

as oxygen) into the crystal lattice. 
It is apparent that Eq. (4.61) has a nontrivial dependence on both electron 

and hole densities. However, for laser applications we are primarily interested 
in the high-level injection regime where P = N > N,, N*, P*. Under these 

conditions, Eq. (4.61) simplifies to 
\ 

N : 
R= . (high-level injection) (4.62) 

Ty, + Ue 

Thus, defect or impurity recombination follows a linear dependence on carrier 

density in the active region of lasers, and we can define the defect component 

of the linear recombination constant as: A, = 1/(t, + T,), using the notation of 

Chapter 2. 

In the low-level injection limit, the form of the recombination rate changes. 

If we have deep-level traps, then N* and P* are negligible (N* ~ P* = N,), and 

they can be removed from Eq. (4.61). With N =N)+ 6N and P=P,+06N 

(assuming equal numbers of excess electrons and Hehe and assuming ON is 

small, the recombination rate becomes 

J hin ciae sso 
Ry = ONG 2 (low-level injection) (4.63) 

Noth + Pote . 

The recombination rate is again linear in the excess carrier density, however, 

the rate depends on whether the material is doped n-type or p-type. For n-type 

material, A, = 1/t, (it is limited by the capture of holes), and for p-type material 

A, = 1/t, (it is limited by the capture of electrons). Thus, while the defect or 

impurity recombination rate is linear with the excess carrier density at either 

low or high injection levels, the lifetime does increase from either t, or t, to 
T, + T, as the carrier density is increased. 

Recombination via defects and impurities is primarily a problem for excess 

minority carriers or carriers injected into a region under nonequilibrium 

conditions. Majority carrier current flow in heavily doped materials is relatively 

unaffected by defects and impurities (aside from the possibility that defects and 

impurities can affect the ionization of doping species, which can affect the 

doping efficiency). In other words, material which contains a very high density 

of defects or impurities may not be a good choice for a laser’s active region, 
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but it still may carry majority carrier current just fine if doped heavily 
enough. 

With modern MBE and MOCVD growth technologies, the crystal quality 
of semiconductor devices is such that the defect density and the density of 
impurity atoms are at most 10'® cm~3, and are more often below 10!5 cm~?. 
With such low trap densities, the defect and impurity recombination rates are 

negligible in typical laser applications. However, there are instances where 

such recombination can become large and problematic. 

In the early stages of MBE growth technology (in the late 1970s), it was a 

common belief that growth temperatures should be kept below 580°C to retain 

good surface morphology. However, a puzzling concern among researchers was 

that GaAs/AlGaAs lasers grown by MBE invariably had much higher threshold 

current densities than equivalent structures grown by LPE. Finally, Tsang et 

al. [17] found that increasing the growth temperature to 650°C led to dramatic 

reductions in the threshold current density, lower than the best LPE material. 
Their explanation was that impurities (perhaps oxygen) were being incorporated 

into the AlGaAs cladding layers at densities high enough to significantly 

increase the threshold current density. At the higher growth temperatures, the 

incorporation of impurities was minimized and dramatic improvements in the 

threshold current were observed. More recently, the purity of aluminum 

sources used in MBE systems has significantly improved, allowing the growth 
temperature to be reduced back down to 600—620°C. However, unusually high 

threshold current densities in just-grown lasers which normally would yield low 

thresholds can often indicate that the MBE or MOCVD machine is introducing 

unwanted impurities, either through a leak in the system or corrupted material 

sources. 
An example of where defect recombination is important is in the aging 

of lasers. As lasers are used they inevitably go through dramatic thermal 

variations. Such repeated thermal cycles can cause stress to the crystal. This 

stress can cause small defects within the crystal lattice to spread and grow large, 

just as a small crack in the windshield of your car can propagate across your 

entire field of view. A particularly interesting example of this is the emergence 

of dark-line defects which tend to appear after lasers have been in use for 

thousands of hours. Such defects show up as dark lines when viewed from the 

surface due to the absence of carriers and hence spontaneous emission in regions 

where the “cracks” propagate. If the original quality of the crystal is high, such 

dark-line defects can be minimized. However, if they do become large with age, 

the threshold current of the laser will suffer over time and eventually the laser 

will die. 
Another common example of where defect recombination can become 

important is in the area of strained-layer research. This research is interested 
in growing epitaxial layers of materials which have a different “native” lattice 

constant than the substrate material. In a lattice-mismatched growth, the 

epitaxial layer will attempt to deform to the substrate lattice structure. However, 

as the layer becomes thicker, atomic forces building up within the epitaxial 
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lattice structure will at some critical thickness break discontinuously with the 

deformed lattice and begin to force the lattice back to its native form. Strained 

layers with thicknesses below the critical thickness can be of very high qualtity 

(and are indeed superior in many respects to their unstrained counterparts). 

However, strained layers with thicknesses much greater than the critical 

thickness will inevitably be laden with severe lattice defects. 

As the strained layer is grown thicker still, the lattice defects unfortunately 

tend to propagate along the growth direction. As a result, thick strained layers 

have very high defect recombination rates and are unusable for any type of 

carrier injection applications such as lasers. However, techniques do exist which 

can block defect propagation, allowing the upper portion of a thick epitaxial 

layer to provide a high-quality lattice structure with low defect densities and 

hence low defect recombination rates. For example, good-quality epitaxially 

grown GaAs/AlGaAs lasers have been successfully grown on silicon substrates 

using such techniques even though the lattice constants of the two semi- 

conductors are very different. Furthermore, high doping of the defect-laden 
transition region can allow high currents to pass across the interface, allowing 

for the integration and interconnection of silicon circuits with GaAs lasers. 

4.5.2 Surface and Interface Recombination E 
> 

The second type of nonradiative transition in Fig. 4.12 depicts electrons 

recombining via surface states of the crystal. The two-step recombination 

mechanism is analogous to the defect and impurity recombination mechanism. 

However, in this case the number of traps is characterized by a two-dimensional 

sheet density at an exposed surface of the crystal or at an interface between 

two materials. These surface states primarily arise from the termination of the 

lattice, which inevitably leaves a few unmatched bonds on one side of every 

exposed unit cell. Such dangling bonds occur in very high densities, forming a 

miniband as opposed to individual energy levels, as depicted in the figure. 

Surface recombination is most damaging when the exposed surface-to-volume 

ratio is large—in other words, when the device size is reduced. Interface 

recombination is damaging when the interface quality is poor. With modern 

growth technologies, interface recombination is minimal in common materials, 

but can be very detrimental in more experimental materials research efforts. In 

addition, devices which make use of regrowth technology (ie., devices which 

are put back into the growth chamber after etching or some other processing 

step is performed) can suffer from poor interfaces and hence high interface 

recombination. 

The description of surface recombination is accomplished via the Shockley— 

Read—Hall theory in analogous manner to defect and impurity recombination 

theory. However, instead of defining a caputre time, t, of carriers distributed 

_ throughout a volume of material, we define a capture rate of carriers located 
within some capture length of the surface: L,/t. A larger capture length allows 
surface states to capture more carriers per unit time and hence leads to a higher 
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FIGURE 4.13 Exposed surface area and surface-to-volume ratio in both pillar-type 

VCSEL and in-plane ridge laser geometries. 

capture rate. Because of the units, this capture rate is referred to as a velocity. 

The association with velocity does have a physical significance. For example, 

if the capture velocity of the trap is larger than the average thermal velocity of 

the carriers, then the capture rate will be limited by the thermal velocity. This 

maximum arrival rate of carriers at the surface sets an upper limit on the capture 

velocity of somewhere near 10’ cm/s. In most semiconductors, the capture 

velocity is at least an order of magnitude smaller than this. 

Redefining the electron and hole capture times as capture velocities (i.e., 

setting t, > 1/v, and t, > 1/v,), the analogous version of Eq. (4.61), neglecting 

N* and P*, for surface recombination becomes® 

a, NP—N? 
abies (4.64) 

V N/v, + P/v. 

The first term effectively distributes the exposed surface area, a,, over the volume 

of the active region, V, since we have defined R,, as the rate per unit active 

volume, not rate per unit surface area. This geometrical factor is shown 
in Fig. 4.13 for two common laser geometries. As can be seen, a,/V makes 

surface recombination important when the pillar diameter or stripe width is 

small. 
Under high-level injection in the active region, P = N > N,, and Eq. (4.64) 

reduces to 

R sr 2 = 0.N (high-level injection) (4.65) 

© A more rigorous version of Eq. (4.64) would integrate over all surface states within the miniband, 

with possibly energy-dependent capture velocities. However, for our purposes, we will assume a 

discrete energy level for the surface states. 
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with 

“i =—+-—. (4.66) 
Us Vp Ve 

The linear relationship to the carrier density allows us to define the surface 

recombination component of the linear recombination constant as A,, = 

(a,/V)v,. The surface recombination velocity, v,, which controls the surface 

recombination rate, is seen to be an average of the individual electron and hole 

capture velocities. The use of inverse velocities in (4.66) reflects the fact that if, 

for example, the electron capture velocity is very high, then surface recombina- 

tion will be limited by the capture rate of holes and v, ~ vj. 

Using (4.65), the surface recombination current and current density in the 

laser can be written as 
\> 

I, =qa,v,N and J,= an (* i). (4.67) 

To estimate J,,, it is important to realize that we need to know the carrier 

density which exists at the surface. As a first-order, upper-bound estimate of I,, 

or J,,, we can naively use the carrier density in the center of the active region 

(which can be roughly estimated from the threshold gain, if we know the gain 

as a function carrier density). However, in reality the heavy recombination at 

the surface will deplete the surface carrier density to some level which balances 

the recombination rate with the gradient-driven lateral diffusion current 

directed from the center to the surface of the active region (see Problem 4.6 for 

more details). To Se this carrier density requires solving the carrier 

diffusion equation.’ 

Under low-level injection conditions, the surface pee nenion rate changes 

just as (4.62) and (4.63) are different. For laser applications we are not 

particularly interested in this case. However, experimental measurements of the 

surface recombination velocity are often made under such conditions. Using 

Eq. (4.65) to define v,, we find that (4.64) evaluated under small carrier density 

perturbations away from the equilibrium values, No and Po, gives 

VRE EN, + Pe 

a; ON No/vp + Po/Ve 

v, = (low-level injection) (4.68) 

7 Such a procedure can take on various degrees of complexity. The simplest approach is to assume 

an ambipolar diffusion coefficient representing the effective diffusion of both electrons and holes 

(which within the model sets the carrier densities equal). The recombination then follows (4.65) 

using the surface recombination velocity given in (4.66), and a single carrier diffusion equation can 

be used. A more extensive model would allow the electron and hole densities to be different, each 

with their own diffusion constant. The recombination rate at the surface for both electrons and 

holes would then take on the form (4.64), where the individual electron and hole capture velocities 

, must be known or fitted. The solution would then have to satisfy the drift-diffusion equations for 

electrons and holes. To be complete, the drift-diffusion equations must then be coupled with 

Poisson’s equation taking into account the,charge distribution of the surface states [18]. 



NONRADIATIVE TRANSITIONS 151 

If the surface recombination velocity is measured under low-level injection 
conditions, then the measured value will be dependent on the doping present. 
For n-type material, v, = v, (it is limited by the capture rate of holes), and for 
p-type material, v, = v, (it is limited by the capture rate of electrons). Equation 
(4.68) also assumes that 6N = dP, which may not necessarily be true, yielding 
still different values for v,. The most reliable values for v, relevant for laser 
applications must be made under strong high-level injection conditions. For 
example, measuring the threshold current dependence on the laser geometry is 

the most direct method. However, geometry-dependent optical losses which 
change the threshold gain can skew these results as well. 

Surface recombination tends to be much more of a problem in the 

short-wavelength GaAs system than in the long-wavelength InGaAsP system. 

This is because v, is two orders of magnitude larger in GaAs. Values measured 

under low-level injection conditions on GaAs and GaAs/AlGaAs quantum wells 

give [19] 

v, © 4-6 x 10° cm/s. (GaAs, bulk and QW) (4.69) 

In n-type GaAs, values closer to 2-3 x 10° cm/s have been reported [20], 

suggesting that v, is greater than v, by close to an order of magnitude. 

Measurements on strained InGaAs/GaAs quantum-well lasers show a reason- 

able improvement over GaAs [21]: 

v, © 1-2 x 10° cm/s. (InGaAs/GaAs, QW) (4.70) 

In InGaAsP materials, surface recombination tends to be lower. Measured 

values on InP give [22] 

v, < 10* cm/s. (InP, bulk) (4.71) 

For quaternary InGaAsP, such low values are also expected. 

In GaAs/AlGaAs and InGaAs/GaAs lasers, surface recombination can be 

quite severe for small devices. To get a feeling for how small, Fig. 4.14 plots 
the threshold current density of a typical InGaAs QW VCSEL and an in-plane 

laser for different values of v, (using the gain as a function of carrier density 

and current density given later in the chapter). At v, = 1 x 10° cm/s, the VCSEL 

threshold current density doubles from ~500 A/cm? to ~ 1000 A/cm? when 
the pillar diameter is reduced to 10m. This characteristic is common for 

InGaAs QW VCSELs. If we were to use GaAs QWs with v, perhaps equal to 

5 x 10° cm/s, the threshold current density would double at 50 ym! In long- 

wavelength materials, v, < 10* cm/s and pillar diameters could be reduced to 

1m before the threshold current density would double. Similarly for the 

in-plane laser, problems become severe for stripe widths less than 10 ym using 

InGaAs QWs (with v, = 1 x 10° cm/s). However, it is important to realize that 

these estimates assume the carrier profile is flat across the active region. A more 
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FIGURE 4.14 Threshold current density vs. lateral device dimensions for different surface 

recombination velocities (assuming D,, = 00). Both lasers use Ing ,Gap gAs/GaAs 80A 

QWs and have a 1500cm™! threshold material gain (Tables 4.4 and 4.5 are used to 

obtain N,, = 3.62 x 10'8cm~? and J,, = 166.4 A/cm? per QW). The length of the 
in-plane laser is assumed to be 250 um. 

realistic carrier profile will produce threshold current densities somewhat 

lower than indicated, particularly at the smaller dimensions (see Problem 4.6). 

Because there is much interest in reducing the active volume well below the 

limits imposed in Fig. 4.14, much attention has focused on ways to reduce or 

eliminate surface recombination. One obvious method would be to define the 

stripe or pillar without etching through the active region. However, one must 

now contend with lateral outdiffusion of carriers at the stripe or pillar 

edges. In Problem 4.6, it is shown that the ambipolar diffusion of carriers 

out of the active region is equivalent to a surface recombination velocity 
of magnitude 

D D D Z 
ty = Se lee cms “P ua (4.72) 

Ds cys maly 20 em?/s Ky, 
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D,, and L,, are the ambipolar diffusion constant and related diffusion length, 
and ,,, is the average carrier lifetime. The last equality evaluates v,, for common 
values, revealing that carrier outdiffusion “velocities” and surface recombination 
velocities are unfortunately of similar magnitude. To minimize carrier out- 
diffusion, we must bury the active region in a higher-bandgap material which 
provides a lateral potential barrier to carriers. However, such regrowth 

technologies, while popular and effective in long-wavelength systems, have 

remained problematic in AlGaAs-containing compounds. 

Other techniques for reducing the effects of surface recombination are 

also being considered. One interesting method involves surface passivation. 

As might be expected, the density and character of surface states is very 

dependent on the surface chemistry. For example, an oxidized surface provides 
a different recombination velocity than a freshly etched surface. If a GaAs 

surface is soaked for a while in a water solution containing Na,S, (NH,),S, or 

any one of various salts that yield aqueous sulfur species, it has been 

demonstrated that the surface recombination velocity can be reduced dram- 

atically, yielding v, + 10% cm/s under high-level injection conditions [23]! 

Unfortunately, the sulfur-containing compounds which tie up and passivate the 

dangling bonds are somewhat volatile and the surface passivation effect can 

fade within an hour or two of exposure to air. Thus, efforts are under way to 

make the passivation more permanent by placing an oxide or nitride cap over 

the surface immediately after it has been passivated to lock-in and retain the 

passivating layer. 

4.5.3 Auger Recombination 

The last type of transition in Fig. 4.12 depicts what is essentially a collision 

between two electrons which knocks one electron down to the valence 
band and the other to a higher energy state in the conduction band. The 

high-energy electron eventually thermalizes back down to the bottom of the 

conduction band, releasing the excess energy as heat to the crystal lattice. An 

analogous collision can occur between two holes in the heavy hole (HH) band; 

in this case, the hole which is knocked deeper into the valence band is 

transferred to either the split-off (SO) or light hole (LH) band. In all, there 

are three types of transitions, collectively referred to as Auger processes, 

which are relevant in III-V semiconductors. These are shown in Fig. 4.15. 

For quantum-well material, additional types of subband-to-subband and 

bound-to-unbound transitions can be defined, but they still fall into these three 

general categories. 
Because Auger processes depend on carriers colliding with one another, 

the Auger recombination rate, R,, should increase rapidly as carrier 

density increases. The CCCH process involves three electron states and 

one heavy-hole state, and hence is expected to become important when 

the electron density is high. The CHHS and CHHL processes involve one 

electron state, two heavy-hole states, and one split-off or light-hole state. Thus, 
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FIGURE 4.15 Auger processes in III-V semiconductors. 
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they are expected to become important when the hole density is high. In lasers, 

the electron and hole densities in the active region are equal (if the active 

region is not heavily doped) implying that all three processes are potentially 

important. f 

The Auger recombination rate, like the radiative transition rates, is de- 

pendent on the probability of finding the various states occupied or empty, as 

the case may be. For the Auger processes in Fig. 4.15, the relevant Fermi 

factors are 

Pis3 = fer fool — fos)\(l — fea), (CCCH) (4.73a) 
Pea Ol Jes (L— foo) ies paa ak ACHES. and GHELee(3p) 

The subscript on the probability, P, indicates the significant electron recombina- 

tion path. The additional c and v subscripts on the Fermi functions identify the 

quasi-Fermi level to be used in each case: E,, or Ep,. 

To obtain simple indicators of how these Fermi factors vary with carrier 

density, we use the Boltzmann approximation (which is strictly valid only for 

low carrier densities). From Table A2.1 we have 

N ani P poe ee Een MA nn nae Rie eee et (4.74) 
Cc v 

which hold as long as E,, « E, and E;,, > E,. Under these conditions, the 1 in 

the denominator of the Fermi functions defined in (4.3) can be neglected, 
and 

N 
fe we (E-Erd/kT eo (E-Ec)kT 

b) 

c 
N. 

(4.75) 
1 — f, © e7 Ere BAT — dl Geman. 

N, v 
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With these relations, the transition probabilities can be approximated by 

N?7P — (AE; + AE2 + AE3)/kT Bee ea CGC) (4.76a) 

NPS — (AE; + AE2+AE3)/kT Pray & ge ei tabtazsieT, — (CHHS and CHHL) —_(4.76b) 

where AE; = E; — E, for conduction band states, and AE; = E,, — E; for valence 

band states. The fourth, high-energy state is assumed to be completely 

empty (CCCH) or completely full (CHHS and CHHL). These probability 

factors suggest that CCCH processes are ocN*P while CHHS and CHHL 

processes are oc NP. Furthermore, for a given electron and hole density, the 

probability of Auger recombination increases exponentially with temperature. 

The strong dependence on both carrier density and temperature makes Auger 

recombination a potentially devastating recombination path for carriers in laser 
applications. 

The Auger recombination rate is also strongly dependent on the bandgap 

of the material. To understand why this is so, we need to examine the 

consequences of energy and momentum conservation. With Auger transi- 

tions, as with radiative transitions, the initial energy and momentum of 

the system must be conserved. This constrains Auger transitions to specific 

regions of the bands. In particular, the lowest possible energy configura- 

tion does not occur right at the band edge, as it does with radiative transitions, 

but at a slightly higher energy. This “lowest energy” configuration for the 

CCCH process is depicted in Fig. 4.16 for two different bandgaps. The 

shading illustrates the location of electrons assuming a zero temperature 

distribution. The presence of holes at state 3 is greatly enhanced for the 

smaller bandgap material; this allows for a much higher Auger transition 

rate for the same overall carrier density. In fact at zero temperature, such 

lowest-energy Auger transitions would not occur in the higher-bandgap 

material since state 3 would be fully occupied. The two initial electron states, 

1 and 2, are also closer to the band edge in the smaller-bandgap material, further 

enhancing the Auger transition rate, since at finite temperatures more electrons 

can be found there. 
To gain a more quantitative feel for how the bandgap affects the Auger 

transition rate, we need to estimate how the transition probabilities in Eq. (4.76) 

are affected by the bandgap. Figure 4.16 demonstrates how states 1, 2, and 3 

move closer to the band edge as the bandgap is reduced. In mathematical terms, 

the sum of energy offsets from the band edge, AE, + AE, + AEz, is reduced 

as the bandgap is reduced. This sum can be described more conveniently in 

terms of AE, using energy conservation. Setting the initial energy equal to the 

final energy for the CCCH process in Fig. 4.15 or 4.16, we must have 

AE, + AE, = —(E, + AE3) + AEg, (4.77) 
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HH Band HH Band 

FIGURE 4.16 Lowest-energy CCCH Auger transition for two different bandgaps. The 

four states are drawn roughly to scale, with u = mc/my ~ 5S. 

where E, is used as the energy reference. Rearranging,.we obtain 

AEG Abo AEs = Ana Ey. (4.78) 

-Thus, the probabilities in Eq. (4.76) are maximized when AE, is minimized. 

This minimum value for AE, is referred to as the threshold energy, E,, of the 

Auger process. The lowest-energy CCCH configuration in Fig. 4.16 corresponds 

to this threshold energy process and is therefore the most probable configuration 

for CCCH Auger transitions. 

Appendix 12 details the math involved with minimizing (4.78) subject to 

momentum conservation. This exercise provides expressions for all energies and 

k-vectors associated with the threshold Auger. process. In particular, the 

threshold energy for all three Auger processes in Fig. 4.15 are found to be 

2 pe eats Sa eGCH) (4.79) 
Mc + My 

ore 
je a En eh eaten (GUIEIG) (4.80) 

2my + Mc — Ms 

2my + 
ws Biel C only hat CHET) (4.81) 

2My + Mc — Mm, 

For the CHHS process, E; is measured from the SO band edge. The effective 
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mass prefactors typically fall in the range of 1.11.2. The important point to 
notice is that the threshold energy is proportional to the bandgap. Using Eq. 
(4.78) in Eq. (4.76), the maximum probability for CCCH Auger transitions 
becomes 

N?P 

NEN, 
Pi.3% e-Er-EgkT = (CCCH) (4.82) 

and similarly for the other two processes. With E; oc E,, it is clear that the 
maximum probability for Auger transitions increases exponentially as the 

bandgap is decreased. For example, if we were to reduce the bandgap of a given 

material by a factor of two, the probability for CCCH Auger recombination 
would increase by 

P(E, /2) e (1/2)(Er— Eg)/kT 

P(E,;) © oe (Er— Eg)/kT 

i EhiZ eB sik Ts (4.83) 

where 

a=E,/E, — 1 (~0.1-0.2). (4.84) 

In GaAs, a = 0.15 for the CCCH process, giving an increase of e*'!* = 63 at 
room temperature, if the bandgap were reduced by a factor of 2. With a = 0.2, 

this factor would be e*°? ~ 250, indicating a strong dependence on E/E, — 1. 
This example, while not quantitatively accurate (in that it only considers the 

transition probability of one set of states, and assumes the Boltzmann approxi- 

mation), nevertheless serves to illustrate the severity of the problem for 

long-wavelength lasers, which must deal with Auger recombination rates much 

larger than in short-wavelength lasers. 

A type of Auger transition we have not yet considered involves an additional 

particle, a phonon of the crystal lattice which can absorb much of the 

momentum in the transition. Such phonon-assisted transitions are familiar from 

indirect gap materials such as silicon where strong phonon-assisted absorption 

across the indirect gap can occur, even though the electron’s momentum 

changes dramatically (it is transferred from the phonon). With phonon-assisted 

Auger processes, the final momentum of the two electrons does not have to 
equal the initial momentum (but the overall momentum including the phonon 

is still conserved). In reference to Fig. 4.16, this implies that states 1, 2, and 3 

are free to move closer to the band edge than allowed with momentum 

conservation. Thus, they become more probable and less sensitive to the 

bandgap and temperature, since a threshold energy (which depends on bandgap) 

no longer exists. However, phonon-assisted Auger processes do involve an 

additional particle and hence are less likely to occur overall. 

In general, phonon-assisted Auger transitions become important in 

8 For GaAs (0.87 um): | (CCCH, CHHS, CHHL) = (1.15, 1.22, 1.12). 
For InGaAsP (1.3 pm): (CCCH, CHHS, CHHL) = (1.12, 1.13, 1.07). 
For InGaAsP (1.55 pm): (CCCH, CHHS, CHHL) = (1.11, 1.11, 1.06). 
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situations where normal Auger recombination is minimal: that is, in large- 

bandgap materials and/or at low temperatures. For example, Auger recombina- 

tion in GaAs is dominated by phonon-assisted processes, whereas InGaAsP 

long-wavelength materials are dominated by normal Auger processes at room 

temperature. However, at low temperatures below 100—150°C, normal Auger 

processes are suppressed, and the less temperature sensitive, phonon-assisted 

processes begin to dominate even in long-wavelength materials. 

To quantify the total Auger recombination rate, one would in principle use 

Fermi’s Golden Rule to estimate the transition rate for a piven set of states. 

This would involve evaluating the overlap integral of the four states with a 

coulombic potential perturbation, in addition to evaluating the Fermi factors 

defined in Eq. (4.73). With Fermi’s Golden Rule known for each set of four 

states, one would then have to sum over all possible sets of states which 

obey energy and momentum conservation. With four states involved in the 

transition, this would involve summing independently over four k-vectors. 

However, energy and momentum conservation constrain the sums to two 
independent k-vectors. 

Theoretical models attempting the above procedure were first considered 

by Beattie and Landsberg in their pioneering 1959 paper on Auger recombina- 

tion [24]. Since that time researchers have applied more refined versions of 

the theory to various material systems. Dutta and Nelson [25] analyzed the 

InGasP system, while Takeshima [26] also analyzed AlGaAs and other 

systems. Taylor et al. [27] as well as others have attempted to extend the 

theory to quantum wells and quantum-wire material. Unfortunately, the 

difficulty with theories of Auger recombination is that information of the band 

structure at more than a bandgap away from the band edge must be 

known accurately. Overlap intergrals of “k-space distant” Bloch functions must 

also be known. Such experimental information is sparse, and theories are 

inevitably led to making very simplifying assumptions. In contrast, the spon- 

taneous emission rate considered in Section 4.4 can be obtained from the 

band edge Bloch function overlap and band edge curvatures, data which is 

experimentally abundant. Hence, spontaneous emission rate calculations can 
be quite accurate. 

In general, theories can predict the Auger rate to within an order of 

magnitude. That is not to say they are not important. On the contrary, they 

remain valuable for predicting trends in the Auger recombination rate, such 

as the temperature and bandgap dependence. Also, the relative effects of 

material composition variations and of reduced dimensionality can be estimated 

theoretically. In addition, the relative importance of the three Auger processes 

can be determined. Most Auger theories predict that the CHHS process 

dominates in common III—V semiconductors, with the CCCH process almost 

an order of magnitude smaller (however, some theories estimate comparable 

magnitudes for these two processes). The CHHL process is orders of mag- 

‘ nitude smaller than either the CHHS or CCCH process and its contributions 
are negligible. 

\ 
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Continued refinements in the theory can hopefully produce more accurate 
predictions. For example, Takeshima [28] has enhanced the accuracy of his 
Auger theory by using realistic band structures. His model extends deep into 
both conduction and valence bands, accounting for the nonparabolicity in all 

bands. In addition the band model includes the anisotropy of the band 

structure (the change in the band curvature along different directions of 

the crystal), which he considers a very important factor. His predictions 

include phonon-assisted Auger processes implicitly, which he finds also to be 

important in InGaAsP material, contrary to the results of other researchers. 

His predictions, in particular, appear to match well with experimentally 

obtained results on InGaAsP material. 

In light of the above theoretical challenges, the most common method of 

estimating Auger recombination is to use experimentally obtained Auger 

coefficients in combination with the calculated or experimentally measured 

carrier density, assuming a recombination rate per unit volume of the 
form: 

R, = C,N?P + C,NP?, (4.85) 

where the first term is due to the CCCH Auger process and the second term 
is due to the CHHS process. These dependencies are strictly valid only under 

nondegenerate conditions where Eq. (4.76) can be used. For degenerate 

carrier densities (>10'8 cm ~ 3), this functionality overestimates the Auger 
recombination rate somewhat. However, use of Eq. (4.85) is widespread and 

convenient. 
In laser applications with lightly doped active regions, N = P at high 

injection levels and the Auger recombination rate simplifies to 

I 
R,= CN? = ap (4.86) 

where C is a generic experimentally determined Auger coefficient which lumps 

together CCCH, CHHS, and phonon-assisted Auger processes. In long- 

wavelength InGaAsP materials, various carrier lifetime measurements that can 

extract the cubic dependence on carrier density place C anywhere from 

10~2° cm®/s to 10778 cm®/s at room temperature, depending on the particular 
method of measurement and the material used. Representative values at room 

temperature are [29, 30]: 

C x 2-3 x 10°79 cm®/s, — (bulk 1.3 pm InGaAsP) (4.87) 

Gad 1057?.cm/s:. (bulk 1.55 um InGaAsP) (4.88) 

Equation (4.87) agrees well with the predictions of Takeshima [28]. For GaAs, 



160 GAIN AND CURRENT RELATIONS 

less data exists. Experimental data from Takeshima [31] gives an Auger 

coefficient that is about an order of magnitude less than in long-wavelength 

systems at room temperature: 

Cm 459410842 em/s: (bulk GaAs) (4.89) 

S 
For other material systems, the Auger recombination rate is not well char- 

acterized, but is expected to be similar to the values given in Eqs. (4.87) through 

(4.89), depending on the bandgap of the material. 

In quantum wells, the band structure is converted into subbands and 

it is expected that the Auger rate is modified. Discussions by Smith et al. 

[32] and Taylor et al. [33] predict that the Auger coefficient should be reduced 

by ~./kT/aE, in quantum-well material, where a is defined in Eq. (4.84), for 

aE, > kT. For long-wavelength materials, this factor is on the order of 1.5—2.0. 

Experiments by Hausser et al. [34] indicate a reduction of about 3 in the Auger 

coefficient when comparing measurements of quantum-well and bulk material. 

Thus, reduced dimensionality appears to help with Auger recombination, but 

does not completely solve the problem. 

Another possible method of minimizing Auger ‘recombination involves 

using strain, which it has been suggested should reduce the Auger coefficient 

(see Problem 4.7). Strained quantum-well lasers in long-wavelength material 

systems in fact have approached threshold current densities comparable to 

larger-bandgap quantum-well lasers, suggesting that the Auger recombination 

is much lower in these devices. 

4.6 ACTIVE MATERIALS AND THEIR CHARACTERISTICS 

In this last section, we are going to run through a number of example 

calculations in bulk and quantum-well material in the two most popular 

material systems, GaAs/AlGaAs and InGaAs/InP. The examples will serve to 

quantitatively illustrate the various dependencies between the gain, current, 

and carrier density in different materials. The order of presentation will 

proceed as follows. We will first look at various gain spectra for different 

carrier densities. The peak gain and differential gain will then be determined 

as a function of carrier density. The spontaneous emission spectrum and its 

relation to carrier density will then be explored. From this, the current as a 

function of carrier density and ultimately the gain as a function of current 

density will be obtained. Experimental comparisons will then be made to 

estimate the accuracy of the model. Finally, we will explore the parameter 

space by varying the width of the quantum well, the doping, and the 
temperature. 
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4.6.1 Strained Materials and Doped Materials 

Before getting started with the examples, we need to briefly consider the 

concept of strained QWs, because a number of the examples considered 

include them. Strained QWs use a material which has a different native latice 

constant than the surrounding barrier material. If the QWs native lattice 

constant is larger than the surrounding lattice constant, the QW lattice will 

compress in the plane, and the lattice is said to be under compressive strain. If 

the opposite is true, the QW is under tensile strain. In the GaAs system, adding 

a little indium to GaAs to form InGaAs can increase the native lattice constant, 

allowing for the construction of InGaAs/GaAs compressively strained QWs. 

In the InP system, the InGaAs ternary (or InGaAsP quaternary) can be either 

smaller or larger than the lattice constant of InP. Thus, both tensile and 

compressive strain can be achieved with InGaAs/InP QWs. However, in any 

lattice-mismatched system, it is important to realize that there is a critical 
thickness beyond which the strained lattice will begin to revert back to its 

native state, causing high densities of lattice defects. For typical applications, 

this critical thickness is on the order of a few hundred angstroms, thus limiting 

the thickness of strained active layers to a few QWs. 

The effects of strain on the bandgaps are considered in detail in Appendix 

11. The corresponding effects on the band curvature are discussed in the latter 

part of Appendix 8. Essentially strain of either type increases the curvature of 

the valence band structure, greatly reducing the effective mass. However, 

compressive strain is better at doing this. In relation to the gain, the implications 
are many. For example, Fig. 4.17 shows a typical band structure in the center. 

Due to charge neutrality under high-injection conditions, and the asymmetry 

in the effective masses, the quasi-Fermi levels separate more toward the 

conduction band, as discussed in relation to Fig. 4.6. Strain can reduce the 

valence band effective mass allowing the quasi-Fermi levels to separate more 

symmetrically, as shown to the left. 
The advantage of the left plot can be seen in the following. Concentrating 

: No Strain 
Strain No Doping 

P-type Doping 

FIGURE 4.17. Illustration of how the quasi-Fermi levels are affected by strain and 

p-type modulation doping. 
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on the conduction band, it is clear that for a given quasi-Fermi level separation, 

the electron density is always lower in the left plot than in the center plot. 

Thus, at transparency when the quasi-Fermi levels are separated by the 

bandgap in both cases, the left plot inevitably has a lower carrier density. In 

other words, the transparency carrier density, N,,, can be reduced substantially 
in strained materials. In addition, since the current goes roughly as N’, the 

transparency current, J,,, can also be reduced. In practical structures, the 

reduction can be as much as a factor of 2! i 

An additional advantage of the arrangement on the left in Fig. 4.17 is that 

the differential gain is also enhanced. So not only does the material reach 

transparency faster, but the gain also increases faster with carrier density. To 

understand this, it is important to realize that the differential gain, dg/dN, 

depends on how quickly the band edge carrier density changes in response to 

movements in the quasi-Fermi levels. Because the slope of the Fermi occupa- 

tion probability function with energy is maximized at the location of the 

quasi-Fermi level, the band edge carrier density will be affected most when 

the quasi-Fermi level is aligned with the band edge. Thus, for increased 

differential gain, it is critical to bring both quasi-Fermi levels as close to the 

band edges as possible. The left plot clearly accomplishes this task (particularly 

near transparency). The improvement in differential gain in strained materials 

can be as much as a factor of 2. pe 

Another way to improve the differential gain is by p-type doping of the 

active region. As shown in the plot on the right in Fig. 4.17, the addition of 

doping can pull the quasi-Fermi levels down to a more symmetrical position 

just as strain does. Similarly, because of the alignment of the quasi-Fermi 

levels with the band edges, the differential gain can again be improved. 

However, in this case, while the electron density can-be reduced at transparency 

for similar reasons as with the strained example, the hole density is increased. 

Now because the electron density is degenerate while the hole density is 

nondegenerate, the downward shift in quasi-Fermi levels increases the hole 

density faster than it decreases the electron density (P increases approximately 

exponentially while N decreases approximately linearly). Thus, the NP product 

actually increases in this case, resulting in a higher transparency current 

density. So unlike strained materials, where both transparency and differential 

gain are improved, p-type doping increases the differential gain at the expense 

of increased transparency current densities. Later we will examine this relation- 
ship more quantitatively. 

4.6.2 Gain Spectra of Common Active Materials 

The following gain spectra were calculated using Eqs. (4.37) and (4.38) with 
the reduced density of states functions derived in Appendix 8. Lineshape 

_ broadening which smooths the spectral features has been included using Eq. 
(4.39) with Eq. (4.41) as the lineshape function. The two quasi-Fermi levels 
defining the gain have been connected by assuming charge neutrality in the 
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QW region including filling of barrier states directly above the QW states. 
The carrier density therefore refers to all carriers within the QW region. Also 
for the QWs, the polarization is assumed to be in the plane of the well (TE 
polarization), since the matrix element is much larger for this polarization. 
And unless otherwise specified, all active materials are undoped. 

Figure 4.18 shows gain spectra for three common active materials in the 

GaAs system: (1) bulk GaAs, (2) an unstrained GaAs/Al, ,>Gay gAs 80A QW, 

and (3) a compressively strained Ing ,Gay gAs/GaAs 80A QW. Figure 4.19 

shows gain spectra for three common active materials in the InP system: (1) 

lattice-matched bulk Ing 53Gao.47As, (2) an unstrained Ing ,3Gay 47As/(Q1.08) 

60A QW, and (3) a compressively strained Ing 6gGao.32As/(Q1.08) 30A QW. 

The strained QW has a +1% lattice mismatch to InP. Both QWs have 

bandgap wavelengths of 1.5m. The (Q1.08) notation implies quaternary 
InGaAsP with 1.08 pm bandgap wavelength. 

The bulk gain spectra in both Figs. 4.18 and 4.19 are much smoother than 

the staircase QW gain spectra. However, the QW gain spectra tend to provide 

higher gain near the band edge. In comparing the QW gain spectra, the 

unstrained QWs have a higher maximum gain, g,,,,, due to the larger density 

of states in the valence band available to participate in transitions. However, it 

takes more carriers to reach near complete inversion in the unstrained QWs. 

Other features in the QW gain spectra include various subband transitions. 

These features are to be compared with the idealized version in Fig. 4.9. At 

shorter wavelengths in the GaAs based QWs, a bulk contribution from the 

100A AlGaAs or GaAs barrier layers on either side of the QW appears. In fact, 

the barriers also become inverted for very high carrier densities, particularly in 

the InGaAs/GaAs QW. In the InP based QWs, the bulk contributions are not 

within the wavelength range shown. The sheet carrier density (NL,) required 

to achieve gain in all cases appears to be slightly less than 2 x 10'* cm~*. 

4.6.3 Gain vs. Carrier Density 

To get a better feel for how the gain varies with carrier density, the peak of the 

gain spectrum is plotted as a function of carrier density in Fig. 4.20. The upper 

plot includes the GaAs based active materials. Generally, N,, is clustered near 
2 x 10!2 cm~ 2. However, the strained QW has the lowest N,, and increases the 
fastest with N, as expected from earlier discussions in Section 4.6.1. Curiously, 

the bulk GaAs and the GaAs QW have similar characteristics. In other words, 

it would appear that an 80A bulk GaAs layer would behave similarly to an 

80A GaAs QW, and that the major improvement to be gained from QWs is 

simply a volume effect rather than a “quantum size” effect. 

The lower plot in Fig. 4.20 includes the InP based active materials with the 

addition of two strained QWs: (1) a —0.37% tensile strained Ing 4gGao,5As/ 

(Q1.08) 120A QW, and (2) a —1% tensile strained Ing, 33Gao,62As/(Q1.08) 150A 

QW, both with bandgap wavelengths close to 1.5 um. For these QWs, the 

C-LH transition (which provides higher gain for polarizations perpendicular 
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FIGURE 4.18 TE gain spectrum vs. carrier density in GaAs based materials. Indicated 

values are the sheet carrier densities: x 10'? cm? (the bulk “sheet” density assumes 

an 80A width). 
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FIGURE 4.19 TE gain spectrum vs. carrier density in InP based materials. Indicated 

values are the sheet carrier densities: x 10'* cm~? (the bulk “sheet” density assumes a 
60A width). The material gain in the 30A QW is divided by 2 to account for the smaller 

optical confinement in comparison to the 60A QW. 
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FIGURE 4.20 Peak TE gain vs. sheet carrier density in GaAs (upper) and InP (lower) 

based materials (bulk “sheet” densities assume an 80A width for GaAs and a 60A width 

for Ing 53Gao.47As). In the lower plot, the strained QWs have 1.5 um bandgaps where: 

1% = (330A, xing = 0.68), 0% = (60A, Xing = 0.53), —0.37% = (120A, x;,4 = 0.48), and 

—1% = (150A, xing = 0.38). Also in the lower plot, the dashed curves are TM gain and 

the “adjusted” material gain is the material gain multiplied by L,/60A to account for 

the difference in confinement for QWs of different width. 

to the well plane—TM polarization) is dominant, and hence for these two cases, 

the peak TM gain is plotted. In this system, N,, for the unstrained and 
compressive materials is clustered closer to 1 x 101* cm~*. Again, the +1% 

strained QW increases the quickest with carrier density. However, it saturates 

faster than the tensile strained QWs. Bulk Ino 53Gao.47As has the lowest N,, 

_ and remains comparable to the unstrained QW performance. The two tensile 

strained QWs have a higher N,,, but do not saturate nearly as quickly, allowing 

for lower threshold carrier densities at high threshold gains. 
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TABLE 4.4 Three- and Two-Parameter Gain vs. Carrier Density Curve Fits. 
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N+N. 
9 = 9oln N, +N, 9 = Jo In[N/N,,] 

Active Material Ny N, Jo Nr Jo 

Bulk GaAs 1.85 6 4200 1.85 1500 
GaAs/Aly »Gao gAs 80A QW 2.6 | #4 3000 2.6 2400 
Iny.»Gay.gAs/GaAs 80A QW 1.8 —0.4 1800 1.8 2100 

Bulk Ing, 53Gag_47As ra 5 3000 al 1000 
InGaAs 30A QW (+1%) 33 —0.8 3400 216) 4000 
InGaAs 60A QW (0%) Pp 5 2400 pap! 1800 

InGaAs 120A QW (—0.37%) 1.85 0.6 2100 1.85 1800 
InGaAs 150A QW (—1%) 17 0.6 2900 1.7 2300 

Inverse Relation Differential Gain 

Ni (N,, N,)e/” = N, — = 

Na] = O28 cme (iei|i—icminc. 

Curve fits have been applied to all gain curves in Fig. 4.20. The results appear 

in Table 4.4. The two-parameter (N,,, 9.) logarithmic functionality works 

reasonably well. However, for more linear gain curves (such as the bulk gain 

curves), the fit is not so good. To correct for this, a third linearity parameter, 

N,, has been added. For this three-parameter model, the logarithmic functionality 

converts to linear functionality as N, > oo and g,/N, > constant. Thus, the 

larger N, is in the table, the more linear the curve is, and the worse the 

two-parameter fit. In general, the strained materials follow much closer to a 

pure logarithmic functionality. Both two- and the more accurate three- 

parameter fits appear in the table. All carrier densities in the table have 

been converted to volume carrier densities, and all material gains are for 

each particular well width (“adjusted” material gains as used in Fig. 4.20 are 

not used here). 

The differential gain, dg/dN, is an important parameter in high-speed laser 

applications. This is primarily because the relaxation resonance frequency of 

the laser depends on the square root of the differential gain as we learned in 

Chapter 2 and will discuss more fully in Chapter 5. Thus, higher differential 
gains can ideally improve the modulation response of the laser (in practice, 

however, other damping factors are just as important in determining the 

overall modulation bandwidth). Figure 4.21 plots dg/dN for the gain curves 

in Fig. 4.20, dramatically revealing the importance of working close to 

transparency when designing high-speed lasers. In general, numbers in the 

mid- 10~1° cm? are expected and this is what is generally observed in QW 



168 GAIN AND CURRENT RELATIONS 

lasers (however, there can be a large variation in the measured differential 

gain depending on the threshold carrier density of the laser). In both material 

systems, the strained QWs yield a ~50% improvement over unstrained QWs. 

The bulk values in both cases are the lowest, coming in at-below 5 x 10° *° cm’. 

In the InP system, dg/dN is highest at both extremes of strain and dips 

by about one-third in between these extremes. The secondary peak on the GaAs 

QW dg/dN curve corresponds to the peak gain switching to the C—LH (11) 

transition which rides on top of the C-HH (11) transition at slightly shorter 

wavelengths (see Fig. 4.18). 

InGaAs 80A QW 

E ., GaAs 80A QW 

Bulk Me eee 

0 4 6 8 10 
ora Carrier Density (10'2 cm-?) 

Differential Gain (10-'® cm?) 

InGaAs/(Q1.08) QWs 

(A = 1.5 um) 

-1% 

Differential Gain (10-16 cm?) 

0 2 4 6 8 10 

Sheet Carrier Density (1012 cm) 

FIGURE 4.21 Peak differential gain, dg/dN, vs. sheet carrier density in GaAs (upper) 

. and InP (lower) based materials (bulk “sheet” densities assume an 80A width for GaAs 

and a 60A width for Ing ,3Gay 47As). The compositions of the ei QWs in the 
lower plot can be found in the caption of Fig. 4.20. 
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4.6.4 Spontaneous Emission Spectra and Current vs. Carrier Density 

Having determined the gain as a function of carrier density, we now need to 

understand how the spontaneous emission spectrum which generates radiative 

recombination varies with carrier density. The spontaneous emission spectrum 
is found using Eqs. (4.57) and (4.58). An example spectrum is shown in Fig. 

4.22 for a strained InGaAs/GaAs QW for different sheet carrier densities. The 

staircase spectrum can be observed and the saturation of the n = 1 transition 

at very high carrier densities is noticeable. However, the second step is much 

smaller than the first step. The reason is that the second electron state in 

the QW is barely confined, leading to a poor overlap between the C2 state and 
the strongly confined HH2 state (this is also visible in the gain spectrum in 

Fig. 4.18). The result is a smaller matrix element and hence smaller step height. 

The third step indicated by the dashed curves in the spectrum of Fig. 4.22 

is actually spontaneous emission occurring in the GaAs barrier layers. Such 

barrier contributions to the radiative current density are particularly large in 

this active material. In all other QWs considered, barrier recombination is 

minimal. The reason is that in this material, the QW valence band states allow 

E,, to penetrate deeper than normal due to the strained light band structure. 

As a result, both N and P in the barrier regions can become large, as 

opposed to other QWs where P in the barriers usually remains very small. 

The NP product in the barriers can therefore become large leading to a high 

recombination there. The barrier heights are also relatively small, allowing the 

barrier regions to populate quickly as carrier density increases. The barrier 

recombination could be reduced by increasing the GaAs barriers to AlGaAs, 

Strained InGaAs 80A QW 

barrier  ---, 
contributions ° 

N = 8 x 1012 cm-? 

q R,, L, x dE/da (A/cm?/nm) 

ioe) 

hee seaoniero: Ni 
800 850 900 950 1000 

Wavelength (nm) 

FIGURE 4.22 Spontaneous emission spectrum (per unit wavelength) vs. sheet carrier 

density in a strained Ing ,Gay gAs/GaAs 80A QW. The dashed curves include spon- 

taneous emission from the 100A thick GaAs barrier layers on either side of the well 

(total of 200A). The emission is normalized such that peak x bandwidth (in nm) yields 

the spontaneous current density in A/cm?. 
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however, materials growth issues of InGaAs grown directly on AlGaAs make 

InGaAs/AlGaAs QWs difficult to grow. 

The area under the spontaneous emission spectrum in Fig. 4.22 represents 

the total spontaneous emission rate. For example at 4 x 10’? cm~’, the peak 
is ~2 and the bandwidth is ~100nm. The (peak) x (bandwidth) therefore 

yields a spontaneous current density of ~ 200 A/cm? based on the units of the 
vertical axis. Performing a more exact integration of the area under the curve 

via Eq. (4.59), we can determine the spontaneous current density as a function 

of carrier density. This relationship is plotted in Fig. 4.23 for the 80A GaAs 

based materials and the 60A InP based materials. 

For low carrier densities in Fig. 4.23, bulk GaAs roughly follows a BN? law 

(aL,) BN? 45 
Jsp: 

Bulk GaAs 

GaAs 80A QW 

InGaAs 80A QW 

Current Density (A/cm?) 

0 2 4 6 8 10 

(qL,) CNS 
5e-29 

Isp: 

Bulk 

IN 53G.p 47AS 

InGaAs/(Q1.08),’ 
60A QW 

Current Density (A/cm?) 

0 2 4 6 8 10 

Carrier Density (1018 cm-%) 

FIGURE 4.23 Spontaneous recombination current density vs. carrier density in GaAs 
. (upper) and InP (lower) based materials (bulk currents per unit area assume an 80A 

width for GaAs and a 60A width for Ing,53Gao,47As). Indicated values for B have units 
of 10~'° cm/s, and values for C have units of cm®/s. \ 
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with B= 1.2 x 10°'° cm/s. For bulk Ing 53Gay 47As, B is closer to 0.7 x 
10° *° cm?/s. These values are in good agreement with measured values for 
these two materials. The smaller coefficient in the latter case is the result 
of a lower optical mode density at longer wavelengths (less modes, less 
spontaneous emission). For higher carrier densities, the BN? law overestimates 
the recombination rate. This is because the square law is strictly valid only 
within the Boltzmann approximation. As the injection level becomes highly 
degenerate, the recombination rate does not increase as rapidly as N*. To 

account for this, the bimolecular recombination rate is occasionally written as 

ByN?* — B,N. This trend is observed in all cases plotted in Fig. 4.23. Inter- 

estingly, the QWs have lower B coefficients than their bulk counterparts. 
The Auger recombination current is also plotted in Fig. 4.23 assuming 

typical values for the two material systems. In GaAs, Auger recombination 

compared to radiative recombination is small for normal carrier densities 

(2-4 x 10'® cm~ 3). Thus, the radiative efficiency in GaAs based materials is 
quite high and can approach unity at low carrier densities. In the InP system, 

the Auger current dominates for N > 2 x 10!® cm~ 3. Thus, in most InP based 
lasers, the radiative efficiency is below 50% and can often be much lower than 

this. In this system, where the optical mode density is low enough to yield very 

low radiative currents, it is unfortunate that another mechanism such as Auger 

recombination has to turn on and ruin everything. 

4.6.5 Gain vs. Current Density 

With the current known, we can now proceed to determine the peak gain as a 

function of current density as shown in Fig. 4.24. The upper plot shows the 

GaAs based materials with and without the current contributions from Auger 

recombination and barrier recombination (assuming C = 3.5 x 10° 3° cm®/s). 
These latter currents can degrade the active material performance for material 

gains larger than 2000 cm~!. Plotted vs. current density, it is clear that the 

InGaAs/GaAs QW provides much better gain performance, particularly at 

currents below 300-400 A/cm?. The transparency current density for the 

strained QW is near 50 A/cm”, in good agreement with experimentally measured 

values. The unstrained GaAs QW has a transparency current density slightly 

higher than 100 A/cm’. And in general for a given gain, the strained QW 

requires roughly half the current required by the unstrained QW! Thus, strained 

InGaAs QWs are the active region of choice in GaAs based materials (as long 

as the application can tolerate the 0.98 1m wavelength). In comparing bulk 

GaAs to the GaAs QW, we see somewhat better performance out of the QW, 

however, the “quantum size” effects are not that significant. In fact, the bulk 

GaAs 80A well has a lower transparency current density. 

In the InP system, only the radiative currents are included in Fig. 4.24. The 

trends are generally similar to those seen with the gain vs. carrier density. 

However in this case, the unstrained QW clearly outperforms the bulk 

Ino. 53Gapo.47As. For the compressively strained and unstrained materials, 
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FIGURE 4.24 Peak TE gain vs. current density in GaAs (upper) and InP (lower) based 

materials (bulk currents per unit area assume an 80A width for GaAs and a 60A width 
for Ing ;3Gao.47As). The effects of Auger and barrier recombination are included in the 

upper plot only. Other comments regarding the lower plot can be found in the caption 

of Fig. 4.20. 

transparency radiative current densities are near 10-15 A/cm”. For the tensile 

strained QWs, these values are closer to 30-35 A/cm’. Unfortunately, Auger 

recombination prevents such low threshold current densities from being realized 
in lasers. 

Curve fits analogous to the gain vs. carrier density fits are listed in Table 

4.5. For GaAs based active materials, curve fits are provided for both radiative 

(spontaneous) current as well as the current including barrier and Auger 

recombination (assuming 100A barrier widths on either side of the QW and 

' C = 3.5 x 103° cm®/s). For InP based active materials, only radiative current 
is fitted (the Auger current can be included by using the carrier density curve 



ACTIVE MATERIALS AND THEIR CHARACTERISTICS 173 

TABLE 4.5  Three- and Two-Parameter Gain vs. Current Density Curve Fits. 

i nf acess tld /Fe] = => n Jo is 9=J9o tr 

Active Material Be J Gs J, Jo 

Jsp a Soar ae Jang 

Bulk GaAs 80 140 1400 80 700 
GaAs/Al) ,Gay gAs 80A QW 110 50 1600 110 1300 

Ing »>Gap gAs/GaAs 80A QW 50 —10 1100 50 1200 

Jsp 
Bulk GaAs 75 200 1800 75 800 

GaAs/Al,) ,Gay gAs 80A QW 105 70 2000 105 1500 

Ing. »Gay gAs/GaAs 80A QW 50 0 1440 50 1440 

Isp 
Bulk Ing 53Gag 47As 11 30 1000 11 500 

InGaAs 30A QW (+1%) 13 2 2800 13 2600 

InGaAs 60A QW (0%) 17 11 1500 17 1200 

InGaAs 120A QW (—0.37%) 32 18 1400 32 1100 

InGaAs 150A QW (—1%) 35 10 1700 35 1500 

Inverse Relation Differential Gain 

J = (J, + Je! — J, dg L, = Jo ia 

dJ Ifa He 

[J] = A/em?, [g] = cm™’ 

fits along with an appropriate value for C). Again, all gains are not “adjusted” 

material gains, but actual material gains that can be used directly in optical 

mode overlap integrals to determine the modal gain. 

In Chapter 2, the current was empirically related to the carrier density 

through a polynomial fit (ie., J oc AN + BN? + CN?). Combining Tables 4.4 

and 4.5, we have an alternative description of this relationship: 

Hf 
N N. 9on/Gos 

ate | a (4.90) 
Ni + N, 

J= (I, + 1) 
tr Ss 

Here goy and go, refer to the fitting parameter gy used with N and J, 

respectively. While this is a more complex six-parameter fit, it does also provide 

the gain vs. carrier and current density relations. The fit is most useful in 

converting theoretical gain calculations into practical working models. We will 

make use of it in the next chapter. It should however be noted that in using 

Eq. (4.90) below transparency, it is better to use the two-parameter curve fits 
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(i.e., N, = J, = 0) in Tables 4.4 and 4.5 to insure that J goes to zero when N 

does. Note also that in the two-parameter limit, J = J,,[N/N,,]%"%, and 

hence the power relation is governed by the ratio goy/goy. Thus for a simple 

BN? relation we would expect goy to be twice as large as go,. In comparing the 

two-parameter fits in Tables 4.4 and 4.5, we see that this is true to an extent. 

4.6.6 Experimental Gain Curves 

With the gain vs. current density known, we can examine how well the theory 

works by comparing it to measurements made on in-plane lasers. By measuring 

the threshold and differential efficiency variations with cavity length, it is 

possible to extract the internal loss, the internal injection efficiency, and the 

gain as a function of injected current density. Results of this type of measure- 

ment are shown in Fig. 4.25. \ 

The theoretical curves in Fig. 4.25 are found to match quite well in both 

material systems. The value for C which best matches the InP data also agrees 

well with other measured values (Eqs. (4.87) and (4.88)). While it is true that in 

the InP system, the choice of C makes the theory more of a curve-fitting 

procedure, the theory for the InGaAs/GaAs QW involves very few fitting 

parameters, and hence represents very good agreement with experiment within 

the uncertainties involved with the Auger and barrier recombination rates. 

Figure 2.14 also reveals excellent agreement between the InGaAs/GaAs QW 

theory and experiment. 

4.6.7 Dependence on Well Width, Doping, and Temperature 

In addition to picking the best active material, there.are other choices to make 

in designing a laser. For a QW active region, an obvious decision is the well 

width. Aside from having a preference for a particular lasing wavelength, it is 

useful to have some guidelines in deciding on the optimum well width. Because 

each subband of a QW is inherently two-dimensional in nature, we should 

expect that the performance of the n = 1 transition has little dependence on 

the width of the well. However, in practice it is the spacing between subbands 
which interferes and causes problems. 

For example, the current required to reach transparency and 30 cm ' modal 

gain in an Ing ,Gay gAs/GaAs QW is plotted as a function of well width on 

the left in Fig. 4.26. For midrange values between 50-100A, there is indeed 

little change in the QW performance. However, at wider well widths the 

subband spacing becomes smaller (see inset). As a result, other subbands 

become populated at typical injection levels, degrading the QW performance. 

In fact, the current starts to become linear with well width as you would expect 

in bulk material. At narrower well widths, the quantized state is squeezed to 

the top of the QW, very close to the barrier states (see inset). As a result, the 

‘barriers begin to populate significantly at typical injection levels, and again the 
QW performance is compromised. Thus, there is a window of optimum 



ACTIVE MATERIALS AND THEIR CHARACTERISTICS 175 

(C = 3.5e-30) 

Iny xGay ,As/GaAs 80A QW 
(A = 0.98 um) 

Material Gain (cm-') 

0 50 100 o150 200° *250 300 

Current Density per QW (A/cm?) 

@ 1 QW active 

O 4 QW active 

Jp + Sia 

(C = 6e-29) 

Material Gain (cm-') INo.53GAq.47AS/(Q1.25) 70A QW 
(A = 1.55 um) 

0 200 400 600 800 1000 1200 

Current Density per QW (A/cm?) 

FIGURE 4.25 Experimental material gain vs. injected current curves for Ing ,Gay gAs/ 

GaAs 1 and 2 80A QW active region 0.98 ym lasers [21] (upper), and Ing ;3Gao 47As/ 

(Q1.25) 1 and 4 70A QW active region 1.55 ym lasers [35] (lower). Theoretical curves 

are superimposed on the plots. The gain in the lower plot is well represented by the 

two-parameter expression, g = 583 In(J/81) cm ', where J is given in A/cm?. 

performance, however, for the current density, the window is fairly broad. For 

the differential gain on the other hand, the functionality is more sharply peaked 

near 60A. Away from this peak, the wider well widths reduce the subband 

spacing, while the narrower widths bring the QW state too close to the barrier 

states. 
Another design consideration involves the doping of the active region. Now 

doping within the active material itself can alter the band structure near the 
band edges, degrading the performance. However, by placing the doping in the 

barrier regions (modulation doping), the charge neutrality condition can be 
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FIGURE 4.26 Radiative current density and diffetential gain vs. well width in an 

Ing »Gap gAs/GaAs QW (the GaAs barrier on either side of the QW is 100A thick). The 

curves are for the values at transparency and 30cm _‘ modal gain (assuming an optical 

mode width of 2500A as given by some SCH structure). 

ss 

altered. In this case, the quasi-Fermi levels are connected through the following 

equation: 
NING =P Nes (4.91) 

where in quantum wells, the acceptor and donor densities are most easily 

defined as sheet densities. 

The basic effects of p-type doping were discussed in Section 4.6.1. Figure 

4.27 provides a more quantitative description by plotting the gain and 
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FIGURE 4.27 Peak TE gain and differential gain vs. current density for three different 

doping levels in a GaAs/Aly ,Gap gAs 80A QW. The donor and acceptor sheet densities 

are in units of 10'7cm ?. : \ 
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differential gain vs. current density for a GaAs/AlGaAs 80A QW for n-type, 

p-type, and undoped material. The downward shift of the quasi-Fermi levels 

for p-type doping increases the NP product (since N is degenerate and P is 

nondegenerate at transparency), while the upward shift of the quasi-Fermi levels 

for n-type doping reduces the NP product. Thus, J,, is increased for p-type 

doping and is reduced for n-type doping. However, due to the alignment of the 

quasi-Fermi levels with respect to the band edges, p-type doping increases the 

differential gain dramatically, while n-type doping reduces the differential gain. 

Thus, depending on the application (ultrahigh-speed laser, or ultralow threshold 

current), p-type and n-type doping can add interesting variations to the gain 

curve. Although neither is as interesting as strain, which can simultaneously 

reduce J,, and increase dg/dN. 

Another parameter which affects the active material performance is an 

external parameter, the operating temperature. Figure 4.28 illustrates the effects 

temperature has on the gain vs. current density in both unstrained GaAs QWs 

and unstrained InGaAs/InP QWs including Auger recombination. In general, 

the current required to reach a given gain increases with increasing temperature. 

The dominant cause of this is the broadening of the Fermi occupation 

probability function which spreads the carriers over a larger energy range for 

a given overall carrier density. The result is a lower spectral concentration of 

inverted carriers, which leads to a broadening and flattening of the gain 

spectrum. 
In in-plane semiconductor lasers, the threshold current generally increases 

exponentially with temperature. As discussed in Chapter 2, this dependence is 

commonly characterized by 

in(I,/I,)’ 

Wf & = 
Ln ~e °> I= (4.92) 
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FIGURE 4.28 Peak TE gain vs. current density for different temperatures in a 

GaAs/Aly >Gao.gAs 80A QW (left) and an Ing .53Gao.47As/(Q1.08) 60A QW (right, with 

C=5x 10-7? cm®/s). 
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where Jy is a parameter which characterizes the thermal behavior of the 

threshold current of the laser. The second equation allows one to estimate 

Ty from two threshold measurements at two different temperatures. By 

comparing the two sets of gain curves in Fig. 4.28, it is evident that InP based 

materials are affected by temperature more than GaAs based materials. 

Measurements yield a value of J) ~ 50-100 K for InP based in-plane lasers 

and a value of 7, ~ 100-150 K for GaAs based in-plane lasers. These values 
are smaller than the theoretical curves in Fig. 4.28 would suggest. However, 

there are other temperature-dependent effects. For example, the Auger 

coefficient itself is temperature-dependent, and as the latter part of Appendix 

2 reveals, carrier leakage out of the active region is also very sensitive to 

temperature. 
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PROBLEMS 

4.1 The reduced density of states function determines the total density of 

state pairs available as a function of photon energy, and is therefore 

critical in determining the shape of the gain spectrum. Thus, it is 

worthwhile getting a feel for this function: 

(a) Plot p,(E) for bulk GaAs from the GaAs bandgap energy to the 
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— 

Alo.2Gao.gAs bandgap energy. Be sure to include both C—HH and 

C-—LH transitions. 

Plot p,(E) for a fictitious 100A GaAs QW with infinitely high barriers, 

assuming parabolic subbands and including all allowed C-HH and 

C-LH subband pairs between the GaAs and Alp ,GaygAs_ bulk 

bandgaps. Overlay the bulk GaAs p,(E) on top of this curve. Discuss 

any correspondence you observe between these curves. 

Now plot the QW p,(E£) in (b) for C-HH transitions only and overlay 

the C-HH component of the bulk GaAs p,(E) on top of this curve. 

Make a similar comparison for C—LH transitions. Discuss any cor- 

respondence you observe between these curves. 

Mathematically derive the reasons why the comparisons in (c) work 
the way they do. Hint: Begin by expressing the step edges of the QW 

pE) in terms of the quantum mumbers, and then (after some 

substitutions) compare with the bulk p,(E)). 

Now plot a realistic QW p,(E) assuming a 100A GaAs QW with 

Al, »Gap gAs barriers (assume that 60% of the band discontinuity 

occurs in the conduction band). In your plot, assume parabolic 

subbands and include all allowed C-HH and C-—LH transitions 

between the GaAs and Aly ,Gay.gAs bulk bandgaps. Also, add to this 

plot the contributions to p,(E) from the Alp Gag gAs bulk barriers by 

extending the energy range another 50%. Overlay the bulk GaAs p,(E) 

on top of this curve. In comparing the bulk GaAs to the GaAs QW, 

do you qualitatively find much difference in the total density of state 

pairs existing within the energy range plotted? 

The measured absorption curve of a GaAs/Aly ,>Gay gAs 100A QW (with 

excitonic effects removed) reveals that the C1—HH1 absorption step has 

a magnitude of 10* cm~? for light with polarization such that the electric 
field lies in the plane of the QW (TE polarization). * 

(a) Determine the differential lifetime, t2;, for this transition. sp? 

(b) With the TE absorption known, we can estimate the TE gain 

SS 

spectrum for different pumping levels. Plot the expected gain spectrum 

from the QW band edge to the bulk Al) ,Gay gAs bandgap energy, 

for two different injection levels: (1) Er, > E,, (ie. Ep, > 00) and 

Ery = Enns, and (2) Ep, > E,, and E,, = E,,.. Neglect forbidden 

transitions, C-LH transitions, and bulk barrier transitions in your 

plot. Also assume that the density of state pairs and the overlap 

integral is the same for all subband transition pairs. Further assume 

that the transition matrix element is not a function of energy. Neglect 
lineshape broadening in your calculation. 

What is the maximum possible spontaneous emission rate per unit 

energy at the Cl-HH1 subband edge of this QW, assuming the rate 

is the same for light polarized in any direction? ° 
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(d) Considering only C-HH subband transition pairs, what are the 

radiative currents required to support the two gain spectra plotted 

in (b), assuming a single QW active region with lateral dimensions 

of 2 um x 200 um? In your estimation, assume that the optical mode 
density and g,,,, are constants evaluated at the Cl-HHI1 subband 

edge. Also assume the emission rate is the same for light polarized 

in any direction. Be sure to include spontaneous transitions over all 

energies by letting E,;, > oo. 

(e) Can you explain why the quasi-Fermi level positions given in (b) are 

unrealistic? 

The previous problem was simplified by allowing E,, — 00, while E,, 

remained finite. For this situation, the electron density would be much 

higher than the hole density. In reality, charge neutrality in the active 

region under high injection conditions requires that the electron and hole 

densities be equal, making the previous problem unrealistic (but useful 

for academic purposes). A different, more realistic simplification which 
includes charge neutrality can be made by neglecting all but the lowest 

C1—HH1 subband transition pair in our analysis. 

In this problem, we will make use of this approximation to explore 

the effect of the effective mass asymmetry between the conduction and 

heavy-hole band. Defining D = m,,,/m., show that charge neutrality leads 

to the following relationship between the Fermi functions at the Cl and 

HH1 subband edges (neglecting all other subband and bulk transitions 

pairs): 

Fi(Enss) = to(Bes)) a (4.93) 

Using Eq. (4.93), plot the following quantities as a function of the fraction 

of filled states at the C1 subband edge (from 0 to 1), for symmetric (D = 1) 

and asymmetric (D = 5) bands (assume m, is the same in both cases): 

(a) The fraction of empty states at the HH1 subband edge. 

(b) The stimulated absorption and stimulated emission Fermi factors. 

(c) The subband edge gain normalized to the maximum possible gain in 

each case. 

(d) The carrier density normalized to the density at f,(E,,) = 0.5. 

These plots reveal fundamental differences between the symmetric and 

asymmetric band structures in the way they behave under nonequilibrium 

conditions. 

(e) Which of the two band structures reaches transparency first as a 

function of the fraction of filled C1 subband edge states? What is the 

main cause of this? 

(f) Does the symmetric or the asymmetric band structure have the lowest 

transparency carrier density (the carrier density at which g = 0)? 

What are the values for the normalized carrier density in each case? 



182 

4.4 

4.5 

4.6 

GAIN AND CURRENT RELATIONS 

Assuming the radiative current density roughly follows a BN?’ de- 

pendence, how different do you expect the transparency current 

densities to be? 

Derive an expression for the differential gain, dg/dN, explicitly in- 
cluding the dependence of g,,, on D and m, (neglect line- 

shape broadening) (it may be helpful to begin by setting dg/dN = 

(dg/df,(E,,))/(dN/df,(E,,))). Does the symmetric or asymmetric band 

structure provide a higher differential gain at transparency? By how 

much? Can you explain this behavior qualitatively? 

(h) The application of strain in the plane of the QW is known to reduce 

the in-plane heavy-hole effective mass dramatically. From the above 

considerations, and what you know about the effective mass asym- 

metry of unstrained GaAs QWs, can you predict qualitatively what 

changes in performance in strained QWs can be expected? Should we 

be using strained QWs in the active regions of lasers? What benefits 

do you foresee? 

— (g 

Assume we have a strained QW which has a completely symmetric 

subband structure in the conduction and valence bands including subband 

curvatures and subband spacings (also assume that only heavy-hole 

subbands exist). Now, the modal absorption loss (w/o excitonic effects) of 

the lowest subband transition is measured to be 400 cm~' in an unpumped 

laser. If we want to insure that the n=1 gain is always larger than 

the n = 2 gain for modal gains < 200 cm“ ', what is the minimum subband 

spacing between the two lowest conduction band states that we can 

tolerate? Assume g,,,, 18 constant and of equal magnitude for each 

subband transition, and also neglect lineshape broadening effects. 

Comparing Appendix 6 to Chapter 4, what is t3) in terms of |M,|7? 

The surface recombination velocity can be estimated using the simple 

“broad-area” (1.¢., infinite stripe width) threshold carrier density, how- 

ever, in reality the carrier density profile will vary over the cross section 

of the active region, particularly when the active width is narrow. In this 

problem, the effects of a finite diffusion constant for carriers in the active 
region will be examined. 

Assume that the carrier densities in the active region are high enough 

that any differences in the diffusion profiles of electrons and holes will 

set up an electric field which will pull the two densities to nearly the 

same profile. In this ambipolar diffusion limit, the hole diffusion rate is 

enhanced by a factor of ~2 by the forward pull of the electrons, and the 

electron diffusion rate is limited to approximately twice the normal hole 

diffusion rate by the backward pull of the holes. The overall effect is that 

we can assume the electron and hole densities are equal everywhere in 

the active region and are characterized by a single ambipolar diffusion 
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constant, D,,,. The lateral profile of carriers is then governed by the simple 
diffusion equation: 

2 rapa ley if) a I(x) ul Ne 

dx qV T 
(4.94) 

np 

The carrier lifetime is in general a function of N, however, to obtain 

analytic solutions, we can evaluate the lifetime at the broad-area threshold 

value, Taplin = qu.Nin/Sth- 

The problem we wish to solve is the carrier density profile across the 

width of the active region in the in-plane laser depicted in Fig. 4.13. For 

this case, we can define two distinct regions: one beneath the contact 
within w where we assume a uniform current injection profile, and the 

region outside of w where there is no current injection. Mathematically, 

with x = 0 defined as the center of the stripe, we have I(x) = I, for 

x < w/2, and I(x) = 0 for x > w/2. In fabricating the laser we can either 

leave the active region in place outside of the stripe, or we can remove 

it by etching through the active region outside of the contact area. The 

first case leads to carrier outdiffusion, while the second case leads to 

surface recombination. We would like to compare these two cases. 

(i) With the active region in place away from the contact, carriers are 

free to diffuse outside the stripe width. Draw a sketch of this 

configuration and solve Eq. (4.94) for N(x) in and out of the stripe 

assuming the carrier density and its derivative (i.e., the diffusion 

current) are constant across the x = w/2 boundary. Qualitatively 

sketch N(x). 

(ii) With the active region etched away, the carriers recombine at the 

surface. Draw a sketch of this configuration and solve Eq. (4.94) for 

N(x) under the stripe assuming the diffusion current (defined by the 

slope of the carrier density) is equal to the surface recombination 

current, D,,dN/dx = —v,N, at the x = w/2 boundary. Place your 

result in terms of the diffusion equivalent surface recombination 

velocity, Usp = \/Dpyp/Tap- Qualitatively sketch N(x). In comparing 

N(x) in (ii) to N(x) in (i), what is the significance of v,)? Show that 

Eq. (4.65) is recovered in the limit of D,, > ©. 

Assuming an injection current of 166.4 A/cm? (corresponding to the 

broad-area threshold in Fig. 4.14) and a stripe width of 2 um, plot N(x) 

on the same graph for four different cases: (1) N(x) found in (i), (2) N(x) 

found in (ii) with v, = 1 x 10* cm/s, (3) v, = 1 x 10° cm/s, and (4) v, = 
5 x 10° cm/s. Assume D,,, = 20 cm?/s for all cases. Produce similar plots 

for stripe widths of 10 um and 20 pm. 
The single quantum-well in-plane laser defined in Fig. 4.14 is expected 

to lase with the above injected current density. However, the finite stripe 

width reduces N, which reduces the gain, preventing the onset of lasing 

at 166.4 A/cm”. Assuming that the injection current must establish a 
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carrier density in the center of the stripe which is equal to the broad-area 

threshold carrier density in order to lase, calculate and tabulate the new 

threshold current density for all twelve cases considered above. Compare 

the threshold current densities for (2) through (4) to the values found using 

the simple techniques discussed in relation to Eq. (4.67). Answer the 

following questions: 

(a) How does the inclusion of carrier diffusion affect the estimated 

magnitude of the surface recombination current? — 

(b) When is carrier diffusion important to consider? 

(c) How does the threshold current density with carrier outdiffusion 

(profile (1)) compare to the three different recombination velocity 

profiles? Can you use v,y to understand this comparison? 

(d) For InGaAs QW active regions, is it better to etch through the active 

region? \ 

(e) For GaAs QW active regions, is it better to etch through the active 

region? 

In reality, the threshold lasing condition will be more complex than 

simply setting N(0) = N,, because the material gain will be relaxed near 

the stripe edges, reducing the overall modal gain. 

(f) Qualitatively discuss how the above-threshold*current densities would 

be modified by the inclusion of this effect. 

Discuss the effects of strain on the threshold energy for the CCCH Auger 

process by constructing a diagram analogous to Fig. 4.16. Assume D = 5 

in one case and D = 1 in the other (see Problem 4.3 for the definition of 

D). You may find Appendix 13 helpful in quantifying the exact positions 

of the four states in each case (use bulk GaAs values for m, and E,). How 

would you expect this difference in the threshold energy to affect the Auger 

transition rate for a given electron and hole density? 
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Dynamic Effects 

5.1 INTRODUCTION 

In Chapter 2, the rate equations for both the carrier density in the active region 

and the photon density of a given optical mode were developed from simple 

intuitive arguments. The below-threshold and above-threshold limits to the 

steady-state solutions of the rate equations were considered in order to give a 

feel for the operating characteristics of the laser. We also took a first look at 

the small-signal intensity modulation response of the laser. In this chapter we 

wish to expand upon these simplified discussions considerably, drawing upon 

the results of Chapter 4 for the evaluation of the various generation and 
recombination rates. 

We will first summarize many of the results obtained in Chapter 2. This 

review will serve as a convenient reference to the relevant formulas. We will 

then move on to dynamic effects, starting with a differential analysis of the rate 
equations. We will derive the small-signal intensity and frequency modulation 

response of the laser as well as the small-signal transient response. We then 

consider large-signal solutions to the rate equations. The turn-on delay of the 

laser and the general relationship between frequency chirping and the modulated 

output power will also be treated here. Next we consider laser noise. Using the 

Langevin method, we will determine the laser’s relative intensity noise (RIN) 

and the frequency fluctuations of the laser’s output from which we can estimate 

the spectral linewidth of the laser. We will also discuss the role of the injection 

current noise in determining the RIN at high power and examine the conditions 

necessary for noise-free laser operation. 

In the final two sections we consider dynamic effects in specific types of 

lasers. The first section considers carrier transport limitations in separate- 

confinement heterostructure (SCH) quantum-well lasers. The second deals with 

the effects of weak external feedback in extended cavity lasers. 

185 
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5.2 REVIEW OF CHAPTER 2 

Figure 5.1 summarizes the reservoir model used to develop the rate equations 

in Chapter 2. To insure particle conservation, each arrow in the flowchart 

represents the number of particles flowing per unit time. This is why the rates 

per unit volume and the densities are multiplied by the active-region volume 

V of the carrier reservoir or the mode volume V, of the photon reservoir. Before 

deriving the rate equations, we will briefly follow the flowchart from input to 

output. 
Starting with the carrier reservoir, we have the rate of carrier injection into 

the laser I/g. Of these carriers only y;I/q reach the active region, where n; is 

the injection or internal efficiency of the laser introduced in Chapter 2. The rest 

recombine elsewhere in the device (this includes all carriers recombining at rates 

not directly tied to the carrier density in the.active region). Once in the carrier 

reservoir, the carriers have a number of options. Some recombine via non- 

radiative recombination at the rate R,,V. Others recombine spontaneously at 

the rate R,, V, of which a certain fraction emit photons into the mode of interest 

at the rate R{,V (or B,,R,,V where B,, is the spontaneous emission factor). 

Other carriers recombine via stimulated emission into the mode of interest at 

the rate R,,V. While photons in other modes can also induce stimulated 
recombination of carriers, we limit ourselves initially to-a single mode. Finally, 

photons in the photon reservoir can be absorbed, serving as an additional 

source of carriers which are generated at the rate R,,V. In Chapter 2, we also 

considered carriers which might leak out of the active region via lateral diffusion 

1/q > 

heat & 
light 

n; 1/4 

NV 

carrier reservoir 

aa} | 
: : N_V 

NY, 

heat 

photon reservoir 

NY, 
(1-1) E 

heat & light 

FIGURE 5.1 Model used in the rate equation analysis of semiconductor lasers. 
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and/or thermionic emission at the rate R,V. However, since R,V is often 

negligible and furthermore plays a role identical to R,, V in the rate equations, 

we will not include it explicitly in this chapter (if we wish to include carrier 
leakage at any time, we can set R,, > R,, + R;). 

In the photon reservoir, the stimulated and spontaneous emission rates into 

the mode provide the necessary generation of photons at the rate R,,V + Rj, V. 

Stimulated absorption in the active region depletes photons at the rate R,,V. 

All other photons leave the cavity at the rate N,V,/t,. Of those leaving the 

cavity, only 7) N, V,/t, leave through the desired mirror to be collected as useful 

output power, Pj, where np is the optical efficiency of the laser to be defined 

below. The rest of the photons exit the cavity through a different mirror or 

disappear through: (1) free carrier absorption in the active region (which does 

not increase the carrier density), (2) absorption in materials outside the active 

region, and/or (3) scattering at rough surfaces. 

5.2.1 The Rate Equations 

By setting the time rate of change of the carriers and photons equal to the sum 

of rates into, minus the sum of rates out of the respective reservoirs, we 

immediately arrive at the carrier and photon number rate equations: 

aN al 
Yee SE SRI (RORY: (5.1) 

dt q 

dN, N_V. 

a? (Rapa art RV. (5.2) 
t Gi 

Pp 

Setting R,, — R,, = v,gN, using Eq. (4.32), dividing out the volumes, and using 

T = V/V, (by definition of V,), we obtain the density rate equations derived in 

Chapter 2 in slightly more general form: 

dN nil 
= fe 2(R2 RD GN (5.3) 

dN 1 aN, [ro . | N, + TR’. (5.4) 
Pp 

It is a matter of preference to use either the density or the number rate 

equations in the analysis of lasers.’ Throughout this book we choose to 

use the density versions. This choice forces us to do a little more book- 

1 It is important to note that the gain term in the density versions has a I in the photon density 

rate equation, but not in the carrier density rate equation. While in the number rate equations, 

the gain term is symmetric. This asymmetry in the density rate equations is often overlooked in 

the literature. 
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keeping by explicitly including V and V, in various places (as we will see 

in Section 5.5) but in the end places results in terms of the more familiar 

carrier density and related terms (e.g., the differential gain, the A, B, and C 

coefficients, etc.). 

To complete the description, the output power of the mode and total 

spontaneous power from all modes are given by 

NV, “S 
Py = nghv and P,, = hvR,, V, (555) 

Tp 

where 

a 
my eee a EE, 5.6 No rr (5.6) 

\ 

The optical efficiency defined here times the injection efficiency yields the 

differential quantum efficiency defined in Chapters 2 and 3, yy; =n; 9. The 

prefactor F in (5.6) is the fraction of power not reflected back into the cavity 

which escapes as useful output from the output coupling mirror as derived in 

Chapter 3. The mirror loss can usually be defined as «,, = (1/L) in(1/r,r.), and 

<a;> is the spatial average over any internal losses present in the cavity. The 

photon lifetime is given by 

Ma = Vg(%m 2% <a; >) = a (5.7) 
T Q Pp 

where v, is the group velocity of the mode of interest including both material 
and waveguide dispersion. The more general definition of t, in terms of the 

cavity Q is useful in complex multisection lasers where «,,°can prove difficult 

to define (see the latter part of Appendix 5). In.such cases, we can use the 

definition: Q = @ (energy stored in cavity)/(total power lost). 

We can use Eq. (4.49) to set Ri, = Dv,gn,,/V in Eq. (5.4). However, a useful 

approximation to Rj, is found by setting Rj, > B,,R,, and evaluating £,, at 

its threshold value: 

n aed | 2 | : (5.8) 
th Ines NiNy Ath 

where Eq. (4.60) was used to define f,, and n, = R,,/(Rs, + Rny,). The latter 

equality makes use of Eq. (5.11). The term in brackets at threshold is typically 

between 1.5 and 2 in short-wavelength materials, while it can be as large as 

10 in long-wavelength materials due to low radiative efficiencies (high Auger 
recombination). . \ 

s Dv,gnsp 

th = Nin, L/q 
Bs x Bs 
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5.2.2 Steady-State Solutions 

The steady-state solutions of Eqs. (5.3) and (5.4) are found by setting the time 
derivatives to zero. Solving Eq. (5.4) for the steady-state photon density and 
Eq. (5.3) for the de current, we have 

TRAN) 
NN) = P AN) Wage Tog). (5.9) 

I(N) = = (Ry(N) + Rup(N) + v,9(N)N,(N)). (5.10) 

As the functionality implies, it is useful to think of N as the independent 

parameter of the system which we can adjust to determine different values of 

both current and photon density. Solving for v,gN, in Eq. (5.9), and using 

Eq. (5.11) below to define g,,, Eq. (5.10) can alternatively be written as 

KON) pe 7 (RN) — Rg(N) + Rar(N) + Vg9inNp(N ))- (5.10") 
L 

In this form, the right-hand side more clearly identifies where the current 

eventually goes. In fact, (5.10’) can be derived by simply drawing a box around 

the entire carrier—photon system in Fig. 5.1 and equating the inward flow with 

the sum of all outward flows (as opposed to (5.10) which is derived by drawing 

a box only around the carrier reservoir). 

To gain more understanding of how (5.9) and (5.10) behave, we will first 

consider the limiting forms (below and above threshold) and then we will plot 

the equations over the entire range. The threshold gain and carrier density as 

defined in Chapter 2 are 

1 
D0, 9 = — and g(Nu) = Gen: (5.11) 

Pp 

The first two cases below summarize (1) what happens when the gain and 

carrier density are much smaller than (5.11) and (2) what happens as they 

approach their threshold values. 

5.2.2.1 Case (i): Well Below Threshold For N « N,, and Tv,g « 1/t,, we can 

neglect I'v,g in the denominator of (5.9) and the steady-state solutions become 

N,(N) =TR‘,(N)t, © 0, (5.12) 

1(N) = 1 (R,,(N) + Ry(N)), (5.13) 
Ni 

L 
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and 

Pym 0. (WPandi= =P) sey, cek: (5.14) 
q 

With negligible power in the mode, the injection current only needs to resupply 

carriers lost to spontaneous and nonradiative recombination. The output power 

is close to zero and the spontaneous power.increases approximately linearly 

with injected current (if Auger recombination is significant,.the increase will be 

sublinear since 4, decreases). These solutions were also derived in Eqs. (2.5) 

and (2.7). As we approach threshold, the denominator of (5.9) becomes small 

and the power in the mode starts to build up. 

5.2.2.2 Case (ii): Above Threshold As N > N,, and Tv,g > 1/t,, we can 

evaluate all terms in (5.9) and (5.10) at Nin except for the denominator of (5.9) 

which contains the difference between the threshold gain and the actual gain: 

N,(N) = Rse Neda (5.15) 

Gth — g(N) 

V qV 
I(N) = = (Rag(Na) + Rur(N)) + tan Np(N) (5.16) 

and 

hy hy 
Po = 1iNo - (dy) candy P= 77 n; ms ie (5.17) 

The output power in (5.17) was found by rearranging (5.16) and recognizing 

that Vo,g.,N, = Po/(nohv). The threshold current of the laser is defined as 

V 
ly = — (Rag(Nan) + RN) (5.18) 

L 

In this above-threshold limit, the output power increases linearly with current 

and the spontaneous power saturates at the level found at threshold. From 

(5.15), it is clear that N and g never actually reach N,, and g,, for finite output 

powers (and finite current). They remain ever so slightly below their “threshold” 

values. These solutions were also derived in Eqs. (2.30) and (2.36). 

In lasers where £,, is relatively large, we need to revise our derivation slightly. 

For example, comparing Eq. (5.16) to Eq. (5.10’) reveals that we have 

inadvertently dropped a factor, — R{,(N,,), in arriving at Eq. (5.16) (it happened 

when we set g > g,,). The more exact threshold current is found by setting 
N, — 0 in Eq. (5.10). Equation (5.18) is then revised to 

V 

In = = (1 — Bop(Nu)) Rop(Nox) + Rye (Ni,))- (5.18’) 



REVIEW OF CHAPTER 2 191 

The threshold current as defined here represents the offset in the LI curve at 
output power levels generated by carrier densities close to N,,. If nonradiative 
recombination is negligible, then as B,,(N,,) > 1, the threshold current reduces 
to zero. In such a “thresholdless” laser, all injected current is funneled into the 
lasing mode. For typical lasers, Bsy(Nin) « 1 and (5.18’) reduces to (5.18). 

Using Eq. (5.17), the current above threshold can be written as 

P JAA ps es Say (5.19) 
hy nino 

Appendix 17 considers methods of minimizing this equation for a given output 
power. 

5.2.2.3 Case (tii): Below and Above Threshold To observe the transition 

between below threshold and above, it is useful to plot (5.9) as a function of 

(5.10). Parameterized light—current (L—J) curves found by varying N from 0 to 

N,», are shown in Fig. 5.2 for a typical in-plane laser and three VCSELs. The 
details of the VCSEL and in-plane structures are given later in Table 5.1. The 

plots use Table 4.4 for g(N) and the combination of Tables 4.4 and 4.5 for 

R,,(N) + Ry(N) (see Eq. (4.90)). We can find R{,(N) directly from gain 

calculations’ (solid curves in upper plot) or we can approximate R sp(N ) using 

Eq. (5.8) to define the threshold value of £,, (dashed curves in upper plot). For 

these examples, f,, actually decreases by about 30% as the current increases to 

threshold. As a result, the approximate dashed curves underestimate the power 

level by about 30% at very low currents. Above threshold the output power 

becomes independent of the value of f,,, as Eq. (5.17) verifies. 

Each of the “idealized” L—I curves* in the upper plot of Fig. 5.2 displays a 

sudden ~ 30 dB increase in output power (or ~ 20 dB for the smaller VCSELs). 

This dramatic change of course corresponds to the lasing threshold of the laser 

and reveals that the transition to lasing is quite sharp. Below the lasing 

threshold, the power in the mode comes primarily from the spontaneous 

emission rate, 'R{,. This power is typically well under 1 pW and is larger for 

smaller devices since the fraction of spontaneous emission into the lasing mode 

increases with decreasing mode volume (see Eq. (4.49)). As the current increases, 

the gain approaches the loss and the stimulated emission rate increases 
dramatically. For the largest VCSEL and the in-plane laser this occurs at 

? Setting R{,(N) = Tv,gn,,/V, the gain calculations can be used to find both g and n,, as a function 

of N. For the InGaAs/GaAs 80A QW considered in Section 4.6, the calculated gain—population 

inversion factor product can be modeled very well (for g < 2500 cm~*) by gn,, = (850 cm™') x 

In{1 + N?/2] where N is in units of 10'* cm”? (if desired we can combine this with the curve fit 

for g to estimate n,, for g > 0). 

3 The L—I curves are ideal in the sense that surface recombination and heating at high injection 

levels have been neglected. In realistic devices, surface recombination will require additional current 

to reach threshold (particularly in the smaller devices) and heating will limit the maximum output 

power of the devices. 
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FIGURE 5.2 Upper plot: light vs. current in two different lateral-size 3-QW VCSELs 

and in a single QW in-plane laser (IPL) (all lasers use InGaAs/Gas 80A QWs). Lower 

plot: Light vs. current on a linear scale for the same in-plane laser. Plot also shows 

carrier density and material gain vs. current. 

~0.7mA and ~1.1_mA, while for the smaller VCSELs only ~0.2 mA and 

~30 pA are required due to the smaller active volumes. Above the lasing 

threshold all curves approach a unity slope which on a log-log plot implies a 

linear relationship between power and current. 

The linear L—I relationship above threshold for the in-plane laser is more 

clearly illustrated in the lower plot in Fig. 5.2. The L—I curve near threshold 

which was approximated in Chapter 2 as a discontinuous change in the L—I 

Slope is more accurately a knee in the curve. This knee becomes softer for smaller 
devices due to the higher spontaneous emission rate into the mode. However, 

when measured experimentally, the light collected into a detector often captures 
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spontaneous emission from more than just the lasing mode, and this can also 
give the appearance of a softer transition to lasing. 

The lower plot in Fig. 5.2 also displays the carrier density and material gain 

as a function of current. Below threshold, the approximately quadratic carrier 

density—current relationship and the logarithmic gain—current relationship can 

be observed. For this example, transparency in the active material occurs at 

about one-third of the way toward threshold. At threshold, both the carrier 

density and gain become clamped near their threshold values. Beyond threshold, 

the carrier density and gain continue to increase, however, the increase is in 

the fractions of a percent range. Thus for all practical purposes, above threshold 

we can set N=N,, and g = g,, as we did in Chapter 2. The only time we 

cannot use this approximation is when we need the difference N,,— N or 

Jun — 9- 

The carrier clamping mechanism illustrated so dramatically in Fig. 5.2 is 

perhaps best understood by defining a stimulated carrier lifetime t,, and writing 

the total carrier recombination rate as 

N geeNy akiN 
OA i ea poe te (5.20) 

Tsp Tor T st 

where 

1 it,’ “Raver 
iat Ma EE 2 (5.21) 

Cone Cae N 

N Ni ois 
— a (5.22) 

v,9N, Ug9ih Np 

The inverse dependence of the stimulated carrier lifetime on photon density 

sets up a negative feedback loop which prevents N from increasing beyond its 

threshold value. For example, as the current increases and the clamped carrier 

density increases closer to N,,, the gain moves incrementally closer to g,,, 

which increases the output power through Eq. (5.15). This increase in output 

power reduces 7,, just enough to prevent any further increase in N. Carrier 

clamping is therefore maintained via the photon density’s control over the 

stimulated carrier lifetime. As a result of this interplay, all injected current 

above threshold n;(I — I,,) is simply eaten up by the self-adjusting N/t,,. For 

this reason, ;(J — I,,) is referred to as the stimulated emission current. Note 

that when 1/t,, = 1/t,, + 1/t,, (ie, when n;(I — Iy,) = nity), we are at twice 

threshold. 

5.2.3 Steady-State Multimode Solutions 

As discussed in Chapter 3, if the laser cavity is not carefully designed, it is 

inevitable that a number of different resonant modes of the cavity (either axial 

or lateral) will require similar amounts of gain to reach threshold. To make 
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matters worse, the gain spectrum in semiconductor materials is very broad and 

can typically provide almost uniform gain across at least a few mode spacings. 

In such cases, the gain difference g,,, — g in Eq. (5.15) can be similar for different 

modes of the cavity at a given injection level. As a result, the photon density 

can build up in more than one mode. 

In such multimode situations, the steady-state solution for the photon density 

in each mode remains the same as before, however, the steady-state current 

must include contributions from all m modes: 
b* 

Tee Re Nee mA spm (5.23) 
Wig | 

V \ 

[= es (x,, a5 Ry + yy °mtn Non) (5.24) 

Figure 5.3 plots the steady-state photon density (5.23) for three modes of 

the in-plane laser considered earlier, assuming the threshold modal gains for 

mode 0, 1, and 2 are 50, 60, and 70 cm “', respectively. From earlier discussions 

we know the carrier density cannot increase beyond N,,9 for finite current levels. 

As a result, the power in modes 1 and 2 cannot increase beyond the levels 

indicated in the figure. Thus the power in the side modes saturates just as the 
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FIGURE 5.3 Light vs. carrier density for three different modes in an SQW in-plane laser. 
The threshold modal gains for modes.0, 1, and 2 are 50, 60, and 70 cm™', respectively. 
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spontaneous power saturates at threshold.* However, the closer N,,; and N,,> 
are to Nj,o, the higher this maximum saturated power level will be. The mode 

suppression ratio (defined as the ratio of power in the main mode to the power 

in either of the side modes) can be determined from Eq. (5.23) as worked out 

in Chapter 3. Note that due to the clamping of power in the side modes, the 

MSR increases linearly with the power in the main mode. 

5.3. DIFFERENTIAL ANALYSIS OF THE RATE EQUATIONS 

When we want to observe how lasers behave dynamically in response to some 

perturbation to the system such as a modulation of the current, we must analyze 

Eqs. (5.3) and (5.4) with the time derivatives included. Unfortunately, exact 

analytical solutions to the full rate equations cannot be obtained. Therefore if 

analytical solutions are desired we must make some approximations. In this 

section we analyze the rate equations by assuming that dynamic changes in the 

carrier and photon densities away from their steady-state values are small. Such 

small-signal responses of one variable in terms of a perturbation to another can 

be accommodated by taking the differential of both rate equations. Considering 

I, N, N,, and g as dynamic variables, the differentials of Eqs. (5.3) and (5.4) 

become 

. 1 | | = “i a1 — — aN — v,g dN, — N,v, dg, (5.25) 
dt qV TAN 

N 1 r || = [Tea a | dN, + N,v, dg + — dN, (5.26) 
dt Tp TAN 

where 

Lhe | Be a ENON, (5.27) 
Tan aN dN 

1 Re 2 2p, BN + Pe BN? (5.28) 
tan aN dN 

The differential carrier lifetime t,y depends on the local slope dR/dN whereas 

the total carrier lifetime t depends on the overall slope R/N. Due to the mixed 

quadratic and cubic dependence of R on N, Tay is typically a factor of 2—3 

smaller than t. The differential lifetime of carriers which radiate photons into 

4 Actually, gain compression created by high photon densities can force N to increase in order to 

maintain go ~ gyno- AS a result, with increasing power in the main mode, N can increase slightly 

beyond N,,9 and the side mode power can to some degree increase beyond the levels indicated in 

Fig. 5.3. 
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the lasing mode ty is typically in the tens of microseconds range and is 

negligible in most cases.° 
Equations (5.25) and (5.26) can also be found by performing an expansion 

about the steady-state of the form x(t) = x9 + dx(t) for all dynamic variables. 

Neglecting product terms involving two or more small-signal terms and 

canceling out the steady-state solutions we would obtain a set of approximate 

rate equations for dN(t) and dN,(t) identical to Eqs. (5.25) and (5.26). This 

procedure was in fact carried out in Chapter 2. The differential approach simply 

provides a more direct path to the desired equations. 

The gain variation dg can be further expanded by assuming it is affected by 

both carrier and photon density variations: 

dg =adN —a,4dN,. (5.29) 

\ 

The sign convention reflects the fact that gain increases with increasing carrier 

density while it decreases or is compressed with increasing photon density. In 

Chapter 4 it was shown that the gain vs. carrier density could be well 

approximated by a logarithmic function. The gain is also known to be inversely 

proportional to (1 + eN,), where ¢ is a constant known as the gain compression 

factor. Thus, we can approximate the gain by 
S 

Jo N+N, 
IN, NL) = In : 5.30 

a ?) 1 +e6N. (= =e x) Cay 
Pp 

With this expression the gain derivatives become 

a pee ae Jo ieee a (5.31) 
ON (N+N)(+eN,) (1 +eN,) 

; 
cS a (5.32) a = é 

4 ON, (1+€N,) 

In Eq. (5.31), ao is defined as the nominal differential gain—the value of a with 

zero photon density (with no gain compression). Also note that neither a nor 

a, are constants—both tend to get smaller at higher densities. 

Replacing dg with Eq. (5.29), collecting like terms and defining a set of rate 

° A maximum limit can be placed on 1/t,y by defining it as follows: 

1 Ugnsp dg [ " g “2 e Unites Es 

GAN V, dN Nsy Ag V, dN 

The second term within brackets goes from —1 at transparency to 0 at infinite pumping levels. 
Thus, the latter inequality defines the largest possible value for 1/ty at positive gains. 
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coefficients, the differential rate equations become 

d Ni 

d 
a (dN,) = Ypy AN — ypp aN,, (5.34) 

where 

1 1 Re 
=—+0,aN,, =e See N,, YNN se ga, YNP em we Ug4_ Np 

: (5.35) 
| ae rR 

Yen=——+Tv,aN,, ypp =——" + Tv, a,N,. 
TAN N, 

We have replaced g in these definitions using the steady-state relation: 

1/t, —Tv,g = VR;,/N, (see Eq. (5.9)). To interpret the subscripts of the rate 

coefficients, it is helpful to remember “effect precedes cause.” For example, y yp 

defines the effect on N caused by changes in P (ie., N,). This mnemonic aid 

allows us to quickly associate yyy with the differential carrier lifetime, ypp with 

the effective photon lifetime, yyp with the gain, and yp, with the differential 

lifetime of carriers which radiate into the mode. The change in gain (5.29) also 

adds a differential gain term oca to the rates caused by N, yyy and ypy, and 

a gain compression term oca, to the rates caused by N,, ypp and yyp. Aside 

from the small-signal assumptions, these rate coefficients contain no approxima- 

tions. Well above threshold, N, is large enough that a few terms can be dropped 

and the rate coefficients simplify to 

Ywn = 1/tay + 0,AN,, Ywp = 1/['t, — v,a,N,, (above threshold) (5.36) 
Yen = Iv, aN,; Yep = Tv,a,N,- 

Table 5.1 gives values of these and related parameters for two specific laser 

structures (the values assume N = N,,|,- 9 at and above threshold). 

The rate coefficients have been introduced to allow us to conveniently 

describe the differential rate equations in a compact matrix form: 

— — dN . | dl 

dt |_dN, Vpn —Ypp_ILaN, qVLO 

In this form, the current is seen as the driving term or forcing function. Later 

when we treat noise in semiconductor lasers, the current forcing function will 

be replaced by noise sources. If necessary, we could also choose any other 

parameter to be the forcing function. For example, if we could somehow 

modulate the mirror loss, then the analysis would proceed by replacing the 
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TABLE 5.1 List of Common Parameters for Two Laser Structures. 

Parameter In-Plane Laser VCSEL 

d 80 A 10 pm 

w 2 um 10 um 

ie 250 um 3x 80A 
L 250 pm 1.15 pm 

ey 0.032 1 

In 1 1.83 x 0.0209 = 0.0382 

V 4 x 10°‘? cm? 2.4 x 10° 1? cm? 

V, 1257x110" em? 0.628 x 10° '° cm? 

R,R, 0.32 0.995 

Ohm 45.6cm ! 43.6cm~' 
0; 5em 1 20 cm~! 

F, 0.5 ee 0.9 

Nay = NiNo 0.8 x 0.45 = 0.36 : 0.8 x 0.617 = 0.494 
oy 1580 cm~* 1665 cm“! 
ty 2.77 ps 2.20 ps 

At Threshold: 

Nh 
Jin 
Tih 

YNN 

Ypp 

Fr (Eq. (5.49)) 
~Sr (Eq. (5-51) 
i 

Yo 
K 

(Av) sr 
‘ RIN peak 

371 10**cm 
178.3/0.8 = 223 A/cm? 

1.11 mA 

0.840 

5.34 x 10° 1° cm? 
237-= 10° ** cm2 

2.71 ns 

1.57 ns 

44.3 as 
SUS} 

1:02, 107? cme7/s 
0.869 x 1074 

3.31 mA 

2.43 x 1014 cm? 
12561103, 654 

AOE Se NO 

S636 10? a=" 

LB se 1? g-" 

2.907 GHz 

2.904 GHz 

DSS lOmsme 

0.651, x 10° s-! 
0.265 ns 

1.07 MHz 

—112 dB/Hz 

3.93 x 10!° cm=? 
SSA gs == TAY) A/cm? 

0.719 mA 

0.829 

510 < 10°>° cm" 
250° 1082 cnr 

2.63 ns 

152s 

23.0 ps 
Labi 

2.09 x 1073 em ?/s 
1.69 x 10°* 

2.32 mA 

2.80 x 10!4 cm 3 
Piles se TOE 

3.88 x 10757! 
Lor C10 se 
LSS 10: sa 
3.423 GHz 

3.418 GHz 

3.60 x 10° s7! 
0.686 x 10°s~! 

0.250 ns 

2.27 MHz 

—111 dB/Hz 

‘ Continued 
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TABLE 5.1. (Continued) 

Material Parameters For Both Lasers 

Active Material (Ing. ,Gay sAs/GaAs 80A QWs @ 980 nm) 

Curve fits (from Chapter 4): 

N.s No Gon Ls <0" cm. — 0.4 x10"? cm *.1800'cem = 
Jondes Gay 50 A/cm”, —10 A/cm?, 1100 cm™! 
Jirs Jes Jos (Iep Only) 50 A/cm?, 0, 1440 cm™! 
gn,» 850 cm~! x In[1 + (N/10!8 cm~ 3)?/2] 

Uy 3/4.2 x 10° cm/s 
Ni 0.8 

& S710 44 cm 
A assumed negligible 

B ~0.8 x 10> 1° cm3/s (see Fig. 4.23) 
Cc 35a 10s ] vemc) Ss 

: ; 0 
last term in (5.37) with al i The rate coefficients would remain 

unchanged. = G0 
For multimode small-signal analysis, we can extend Eq. (5.37) in a natural 

way: 

dN SUNNG ENP H, Veer I NPR dN dl 

d| aN, —y 0 0 dN ; 
ae ee? pe rey PP1 ; pi i nits i (5.38) 

dt) : , 0 ae pela 

ANom YPNm 0 0 —VPPm ANom 0 

The three rate coefficients ypp, ypy, and yyp for each mode m are still given by 

Eq. (5.36) with N, replaced by N,,,. However, N, in the rate coefficient yyy is 

replaced by a sum over all photon densities. The solution of Eq. (5.38) for two 

modes is considered in one of the problems at the end of the chapter. The zeros 

in the interaction matrix of Eq. (5.38) imply zero interaction or zero coupling 

between modes. In reality the gain compression of one mode might affect the 

gain experienced by another mode. Such coupling could be included by 

replacing the zeros with some intermodal gain compression term. 

5.3.1 Small-Signal Frequency Response 

To obtain the small-signal responses dN(t) and dN,(t) to a sinusoidal current 

modulation dI(t), we assume solutions of the form 

dI(t) = I,e3, 
dN(t) = Nye, (5.39) 
dN, (iiNet 
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Setting d/dt > jm and rearranging Eq. (5.37), we obtain 

ee + jo YNP Ie | me! nil, Va (5.40) 

— VPN Ypp + J@ Noi qV (0 

The determinant of the matrix is given by 

ne Yun +jJ@ YNP | i 

— Vpn Ypp + Jo 

= (Yyn + j@)(Ypp + J@) + Yup?pn 

= YwpYpn + Ywn?pp — ©” + j@(ywn + Yep). (5.41) 

With this, we can apply Cramer’s rule to obtain the small-signal carrier and 

photon densities in terms of the modulation current: 

1 
m= Ye | (5.42) 

GV A\O ypp+jo 

a4 oe it pe ag (5.43) 
qV A| —ypy 0 

Expanding the determinants, the small-signal solutions can be written as 

yi 
mae laly re EF), (5.44) 

qV OR 

nil, Yen yee aN oN 5.45 pi qV we ( ) , ( ) 

where the modulation response is conveniently described in terms of the 

following two-parameter modulation transfer function: 

2 
OR 

H(@) = = : 
2 A o2-—@? + joy 

OR (5.46) 

We define wa as the relaxation resonance frequency and y as the damping factor. 

The physical significance of these parameters was discussed in Chapter 2. 

Comparing (5.46) to (5.41), the following associations can be made: 

OR = ween + YnnYpp> (5.47) 

? = Ywn + Ypp- \ (5.48) 
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log |H())? op = @% [1-5 (7/oR)] 2 

2 wf 2 4 4 343 = Op + Op + Wp 

40 dB/decade 

ea 
bandwidth 

log @ 

FIGURE 5.4 Sketch of the modulation transfer function for increasing values of relaxa- 

tion resonance frequency and damping factor, including relationships between the peak 

frequency, wp, the resonance frequency, wp, and the 3 dB down cutoff frequency, @3 gz. 

The densities N, and N,, both follow the frequency response of the 

modulation transfer function, however, the carrier density has an additional 

zero in the complex frequency plane at w = jypp. The general behavior of H(@) 

is shown in Fig. 5.4. It is essentially a second-order low-pass filter with a damped 

resonance appearing near the cutoff frequency. The intensity modulation can 

follow the current modulation up to frequencies near Wp, with an enhancement 

in the response existing at the relaxation resonance. Beyond the resonance, the 

response drops off dramatically. The actual peak frequency of the resonance, 

Wp, is slightly less than wp depending on the damping. The frequency at which 

the electrical power response drops to half its de value, 3 gg, 1s somewhat 

higher than wp, for small damping. The relations for both wp and @3 gg are 
included in the figure. To understand how we can maximize the modulation 

bandwidth, or 3 gn, we need to evaluate Eqs. (5.47) and (5.48). 

The relaxation resonance frequency and the damping factor which char- 

acterize H(w) can be expanded using Eqs. (5.35): 

erie v,aN, | Peete - ihe I: fat " s (5.49) 

Tp TAN NpTAN TAN Tantp 

Ta PEPER 
vies o,aN + | + + “ (5.50) 

a TAN N, 

In practice, the expression for wz can be simplified dramatically. For example, 

the last term is small compared to the first for N,V, > n,, (see footnote 5), and 



202 DYNAMIC EFFECTS 

hence can be ignored above threshold where n,, ~ 1-2 and N,V, > 1. Of the 

remaining terms, two are <N,, and one is oc1/N,. The former will dominate 
at some point above threshold as the photon density increases. For typical 

numbers (see Table 5.1), this crossover occurs very close to threshold. Hence, 

we can also neglect the 1/N, term. Comparing the coefficients of the two terms 

ocN,, with tyy >t, and a ~ Ia,, we conclude that a/t, > Ta,/tay. Thus, the 

first term dominates over all other terms and wz reduces to 

x 

Te ee ahaedtiestoids (5.51) 

This is the same result we found in Chapter 2 with the exception that in this 
case a = ay/(1 + €N,). As mentioned in Section 2.7, wg can be enhanced by 

increasing the photon density or output power. This increase continues until 

the photon density approaches 1/e, at which point the differential gain falls off 

appreciably due to gain compression. For photon densities well beyond 1/e, wR 

becomes independent of output power, saturating at v,d)/t,é (however, in 

practice such high photon densities are not typically encountered, and, further- 

more, it is not clear that the form assumed here for gain compression is even 

valid at such high photon densities). 
Since we will be concentrating on the laser performance above threshold, we 

will specifically define mp using (5.51) unless otherwise stated. This simplified 

definition of pz can be used to rewrite the damping factor as 

y= Kf2 +40. (5.52) 
where 

ir 1 TR’ 
= ane | + =] and Gh Sin eas ee ee (5.53) 

a TAN N, 

For large resonance frequencies, the K-factor describes the damping of the 

response, and as such is an important parameter in the, characterization of 

high-speed lasers. The damping factor offset y) is important at low powers 

where the relaxation resonance frequency is small. In practice, K and y 9 are 

used as fitting parameters to be extracted from the laser modulation response. 

Because the damping increases in proportion to m2, as we attempt to drive 

the laser harder to increase wa, the response flattens out as illustrated in Fig. 

5.4. At some point, the damping becomes large enough that the response drops 

below the 3dB cutoff at frequencies less than wp. As a result, there is a 

maximum bandwidth which can be achieved. Using the formulas in Fig. 5.4 

combined with the definition of y (neglecting 9), we can determine the modula- 

tion bandwidth for low damping as well as the maximum possible bandwidth: 

Saas ~ frV/1 + f = 1.55fr, (y/Op « 1) (5.54) 

paalsimnests 5 = (y/og = /2) (5.55) 
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The modulation bandwidth increases linearly with the relaxation resonance 
frequency and remains about 50% larger than f, until damping becomes strong. 
With strong damping the bandwidth is compromised and eventually decreases 

with further increases in @p and y. The optimum damping and maximum 
bandwidth occur when wp = 0 and pz = 3 gp as defined in Fig. 5.4. This point 
is determined by the K-factor, which in turn is determined by the photon lifetime 

of the cavity. The K-factor therefore defines the intrinsic modulation bandwidth 
capabilities of the laser. 

Returning to the ac photon density modulation response (5.45), we can use 

the explicit definition of wz to simplify the relation. With the above-threshold 

version of ypy in Eq. (5.36), we can set ypy © T'v,aN, = wRt,. We then obtain 

N 
Pt — Tt Pe Ho). (5.56) 
I, qVv 

Using Eq. (5.5) to set t, = nohvN, 1 V,/P;, the ac output power modulation 
response finally becomes 

iP hy 
—— NiNo — H(@). (5.57) 
I, | 

This result was also found in Eq. (2.54). The electrical power received 

which is of more fundamental interest is given by the absolute square of Eq. 

(5.57). In decibels, the frequency response is therefore oc 10log,)|H(q)|? or 

20 log,,|H(@)|. The phase shift of the modulation is given by Z H(a). 

Figure 5.5 gives an example of experimental modulation responses of an 

InGaAs/GaAs VCSEL at different biases. The resonance peak which occurs at 

~ Wr is Clearly visible in each curve. Note that the resonance shifts to higher 

frequencies with increasing bias current. This is because the output power and 

photon density increase with increasing current above threshold which increases 

Wp via Eq. (5.51). We can write this relationship more directly by plugging 

Eqs. (5.5) and(5.17) into Eq. (5.51) to obtain 

we = nl = Ia). (5.58) 
qV, 

Pp 

For high photon densities, it is important to appreciate that a = a)/(1 + éN,), 

and hence gain compression can affect the resonance frequency. However, for 

practical situations its effect is minimal. The curves in Fig. 5.5 also reveal that 

the resonance peak flattens and broadens out with increasing bias. This is due 

to the increase in damping present through y which goes as wR from Eq. (5.53). 

And unlike the resonance frequency, the K-factor is enhanced by ~2 due to 

gain compression, independent of the magnitude of the photon density. 
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Response (dB) 

Frequency (GHz) 

FIGURE 5.5 Small-signal intensity modulation of a mesa-etched intracavity-contacted 

7um diameter 3-quantum-well InGaAs/GaAs VCSEL at the dc biases indicated. Its 

threshold current is 0.75 mA, the powers out are 0.2, 0.4, 0.9 and 1.4 mW, respectively, 

and the MSR is greater than 30 dB over the entire range [1]. Experimental curves are 

dashed and curve fits are solid. 

5.3.2 Small-Signal Transient Response 

To find the transient response to the linearized system characterized by Eq. 

(5.37), it is useful to rewrite the double-pole modulation transfer function as 

the product of two single-pole transfer functions: 

~ 

OR OR H(w) = (5.59) 
OR- @7 + joy (jo + s)(jo + s2) 

The roots s, , in the complex frequency plane are given by 

Sie zy BEI sca Dosc = Orv Lh (y/2@p)?. (5.60) 

Note from Fig. 5.4 that w2,. = 3(wp + @z). From linear systems theory, these 
complex roots suggest solutions of the following form: 

e M2 (eiPonct SE e Josct), (5.61) 

plus any additional constants required to satisfy initial and final conditions. 

In general we can say that in response to an abrupt change in the system 

(e.g., a step increase in current, a reduction in the photon lifetime, etc.), the 

_ transient carrier and photon densities will oscillate sinusoidally or “ring” at 

the rate w,,. before eventually decaying to new steady-state values, the decay 

being characterized by the damping factor (hence the name). When the system 
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is underdamped, i.e., when y/2m z « 1, the oscillations are characterized by the 
relaxation resonance frequency wp from Eq. (5.60).° However, y oc w2 so that 
aS Wp increases with increasing output power, the system approaches critical 

damping, or y/2z > 1 and w,,. > 0. Under these conditions, the densities will 

simply rise/fall exponentially to their new steady-state values. At even larger 

output powers the system becomes overdamped, y/2, > 1, and the oscillation 

frequency becomes imaginary, @,,. > jY9;-. Which slows the system down, 
increasing the rise and fall times of the transient solutions. The maximum 

modulation bandwidth of the laser is obtained when y/2wz = Wo (which is 

slightly underdamped), yielding w,,. = Opi a/2 (and wp = 0). Thus, for practical 

applications the laser is always underdamped and oscillations toward steady- 
state are expected. 

Now let us consider a specific example. We want to know the effect of 

suddenly increasing the current by dIJ. If we define the transient responses as 

dN(t) and dN,(t), then Eq. (5.61) can be used to obtain their general forms (i.e., 

damped sines or damped cosines), and Eq. (5.37) can be used to find the initial 

and final conditions. Initially, the system is at steady-state and we can set 

dN(0) = dN, (0) = 0. At t = 0*, the current has abruptly increased but no time 

has elapsed so no change in carrier density is observed. Since the photon density 

can only increase as a result of an increase in gain, which in turn follows the 

carrier density increase, it also must still be at its initial value. From this we 

conclude that dN(0*) = dN,(0*) = 0. Equation (5.37) at t=0* therefore 
becomes 

o| vo el | (t = 0+) (5.62) 
dt |dN,(t) qV\_0 

This gives us our set of initial conditions: the initial slope of dN(t) is finite and 

proportional to the current step, while the initial slope of dN,(t) is zero (the 

carrier density must rise before the gain can begin to make a change in the 

photon density). 

Due to the clamping of the carrier density above threshold, we know that 

the final value of dN(t) must be approximately zero after the transient has 

damped out. This fact, together with the initial condition on the slope suggests 

that dN(t) is a damped sine wave of the form: 

aN(t) = dNoe~™!? sin w,,.t. (5.63) 

© In some treatments, Wp is by definition set equal to w,,., and the damping factor is set equal to 

y/2 to comply with the natural roots of the transfer function. The problem with setting @g = @,.. 

is that «,,. goes to zero at high output powers. The more standard definition of wz (as defined in 

this chapter) allows us to use Eq. (5.51) for all but very small output powers. As for the damping 

factor, the alternate definition causes no harm, and in fact would perhaps be the better way to 

define it. However, in the literature, the damping factor is usually defined such that the decay rate 

is y/2, as we have it here. A word of warning: while either set of definitions can be used, one must 

be careful not to mix and match results found using either set (an error commonly made in the 

literature). 
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From Eq. (5.62), we find dNo = n; dI/(qV@,5c). 
For the photon density, we know the initial slope is zero. This suggests a 

damped cosine solution. However, since the current has increased, the steady- 

state output power must also increase. In other words, the final value of dN,(t) 

must have a finite positive value. Hence, the solution is more likely equal to 

the final value less a damped cosine of the same initial value: 

“\ 

dN,(t) = dN,(0o)[1 — e~”? cos Wysct]. (5.64) 

Upon closer examination, we find that the initial slope of the term in brackets 

is not zero but is equal to y/2. For small damping we can neglect this. However 

for the more general case, we need to add another term which is zero initially 

but has an initial slope —7/2. A damped sine wave with the appropriate 

prefactor can be used to give 

dN,(t) = ano] 1 PLN MECN AG la DESI oa (5.65) 
Dose 

This function now has zero initial slope and reaches dN,(0c) in the steady state. 

To determine dN,(00), we know that as t — oo, the time derivatives must go 

to zero in Eq. (5.37) allowing us to write 

NN ee alee kant (t = 00) (5.66) 
—Vpn_ pp dN,() qVLO 

~ 

Using Cramer’s rule to solve for the steady-state values, we obtain 

; aI ; aI Ni YpP aS Ni ee ty e (5.67) 

i) GVa@e. Cav wea 

ni dl Ypy Ln 

p00) GV Oe Gy 
ies (5.68) 

The photon density transient is now completely specified. However, we find 

that our initial assumption that dN(t) must return to zero in the steady state 

is not quite right. Two factors affect the final carrier density. First of all, to 

increase the photon density, the gain must be brought closer to threshold as 

suggested in Fig. 5.3. As a result, the carrier density must increase slightly. In 

addition, gain compression reduces the gain at a given carrier density as the 

photon density is increased. Thus to maintain a given gain, the carrier density 

. Must again increase with increasing photon density. Both of these factors are 

included in ypp, however, for reasonable photon densities, the gain compression 

term dominates, leading to the approximation given in Eq. (5.67). 
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The question now is how to include a finite final value for dN(t). We need 
a function which has zero slope initially and a finite final value, just like the 
photon density. In fact, noting that dN(0o) = (ypp/ypy) dN,(0o) motivates us to 
write the new improved version of the carrier density transient as 

dN(t) = dNoe~”!? sin @yqet + PP dN,(t), (5.69) 
PN 

where again dNo = n; dI/(qVa,,.) and ypp/py © a,/a. 

While we have used rather ad hoc methods, one can easily verify that Eqs. 

(5.65) and (5.69) satisfy the differential rate equations (5.37), which themselves 

are valid as long as the transients are small compared to the steady-state carrier 

and photon densities. We could have alternatively derived these solutions 

through a more rigorous linear systems approach (Laplace transform of 

H(q@) — impulse response — step function response). 

Figure 5.6 gives two examples of responses to step function current transients, 

using both Eqs. (5.65) and (5.69) and an exact numerical solution of the rate 

equations. The first pair is for a small current step which gives excellent 

agreement, and the second is for an order of magnitude larger step, both starting 

from a bias point of twice threshold. For larger bias points proportionally larger 

transients can be approximated by Eqs. (5.65) and (5.69). However for the best 

fit, the analytic solutions should use the final photon and carrier density values 

to estimate the rate coefficients (note that both wp and y are larger in 

Fig. 5.6b). 
For small-signal data that involve a square-wave-like current waveform, 

time-shifted versions of Eqs. (5.65) and (5.69) can be superimposed to give the 

net time response of the photon and carrier density, respectively. From a linear 

systems point of view, a square wave input can be described as one positive 

step function plus a second time-delayed negative step function. The linearity 

of the system then guarantees that the overall solution is simply the sum of the 

responses created by each individual step function input. 

5.3.3. Small-Signal FM Response or Frequency Chirping 

As we saw in the previous sections, current modulation of the active region 

results in a modulation of both the photon density and the carrier density. 

The modulation of the carrier density modulates the gain, however, it also 

modulates the index of the active region n,. As a result, the optical length 

of the cavity is modulated by the current, causing the resonant mode to shift 

back and forth in frequency. This frequency modulation (FM) of the laser 

may be desirable if we wish to dynamically tune the laser. However for 

intensity modulation (IM) applications, FM or frequency chirping broadens the 

modulated spectrum of the laser, hindering its effectiveness in optical fiber 

communications. 
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FIGURE 5.6 Comparison of exact numerical calculation (—) with analytical approxima- 

tions (——) for a small-signal step transient. An in-plane laser with parameters given in 

Table 5.1 is biased at twice threshold initially. Threshold gain, 'g,, = 50.6 cm” '; initial 

carrier density, N = 3.77 x 10'§ cm”; initial photon density, N, = 1.23 x 10'* cm7?. 
(a) Transient from 2.0 to 2.1 I,,; (b) transient from 2.0 to 3.0 I,,. 

To derive the general relationship between Av and An,, we write the 

frequency of mode m including a passive section as 

v[n,L, + n,L,] = me/2. (5.70) 

To find the frequency deviation, we take the differential of this equation and 

include the possibility of the active index changing with carrier density. The 
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first differential term is 

di, di,, di at Ay an | = Avi, + v 
dN dN 

A(vn,) = Avi, + | 7 AN. (5.71) 
Vv 

For the passive section, we simply have A(va,) = Ava,,. In both cases, the g 
subscript denotes group index: n, = n + v dn/dyv. Setting the differential of the 

RHS of Eq. (5.70) to zero and solving for Av, we obtain 

N, (Gr2) 

where T’, = n,,L,/(AgqLl, + 1,,L,) and v, is the group velocity in the active 

section. In cases where L, « A, it can be shown that standing wave effects as 

considered in Appendix 5 would also appear in I, (to derive this, one would 

need to take into account the index discontinuities and resulting reflections 

between the active and passive sections). 

In Chapter 6, we will find that the change in effective propagation index can 

be related to the change in active material index through An =T,,An (see 

Eqs. (6.12) and (A5.13)), allowing us to set dn/dN =I, dn/dN. With this 
substitution and with I’,,0, =I (=V/V,), we obtain 

Ayiien: Gecsiate WN, (5.73) 

The complex index is given by i = n + jn,;, and the power gain is related to 

the imaginary index through: g = 2k yn; = 42n,/A. The relationship between 

how the real and imaginary indices are affected by the carrier density is 

described using what is referred to as the linewidth enhancement factor: 

dn/dN 4a dn/dN__—s 4 dn 

dn,/dN —-A_dg/dN ha dN’ 
(5.74) 

where a is again used to define the differential gain. With this definition, the 

frequency shift in response to changes in carrier density becomes 

Av = — Tv, aAN. (5.75) 
4n 

The amount of frequency modulation is proportional to the linewidth enhance- 

ment factor which is typically between 4—6 but can be as low as 2 in some 

active materials. 
Using Eq. (5.44) for the ac carrier density modulation response, we 
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oe d Sh gery be TLE 4 yey (5.76) 
I, 4a qV OR ase 

Figure 5.7 compares the qualitative frequency response of this FM and the IM 

derived in Section 5.3.1. Both FM and IM exhibit a resonance peak, however, 

the FM response falls off at low frequencies at 20 dB/decade before leveling out 

below ypp/2z. Also, the peak of w?|H(@)|* occurs directly at wr. 
Dividing Eq. (5.76) by Eq. (5.56) and setting w= v,aN,/t,, we obtain the 

simple result: 

Noa a 
P 

od . 
Vv; = — (Ypp + jo) (5.77) 

4n 

So we discover that the frequency chirping of the lasing spectrum increases 

linearly with the intensity modulation depth (since N,,/N, = P,/P). This effect 
is dramatically illustrated in Fig. 5.8 which displays the lasing spectrum under 

different degrees of intensity modulation for a constant modulation frequency. 

The peaks at both extremes of the modulated spectrum result from the time 

averaging of the sinusoidal modulation signal (i.e., the lasing frequency spends 

more time on average at the extremes of the sine wave). 

If we define the FM modulation index as M = v,/f and the IM modulation 

index as m = P,/Po, then using the absolute magnitude of Eq. (5.77), the ratio 

of the FM-to-IM modulation index becomes 

Z 

(""") Sil | (5.78) 
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FIGURE 5.8 Time-averaged power spectra of a 1.3 um InGaAsP laser under sinusoidal 

modulation at 100 MHz. The spectrum broadens with an increase in the modulation 

current due to frequency chirping. The horizontal scale is 0.5A per division. After [2]. 

(Reprinted, by permission, from Journal of Applied Physics). 

From Eq. (5.36), ypp © 'v,a,N,. For typical numbers, this term can be in the 

hundreds of MHz to few GHz range depending on the output power level. For 

modulation frequencies beyond this (i.e., @ > ypp), M/m — «/2, providing us 

with a simple and very direct method of measuring «. For lower modulation 

frequencies, M/m becomes inversely proportional to the modulation frequency. 

By measuring M/m as a function of m, one can then determine ypp, and 

ultimately determine the gain compression factor ¢ (via a,) if curves are taken 

at different output power levels. Such a measurement is shown in Fig. 5.9. From 

these curves it is clear that for this laser, ypp varies from 1—3 GHz, and @ is just 

over 6. 

So far we have only considered changes in the index created by the 

modulation of the carrier density. However, at low modulation frequencies the 

temperature of the laser is also modulated when we apply current modulation. 

Since the index varies with temperature, we should expect the frequency 

modulation to be affected by thermal effects as well. The total FM of the laser 

may therefore be written as the sum of two contributions: 

Vy i (7) n (i) (5.79) 
I, Al carrier AE rai 
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FIGURE 5.9 FM-to-IM modulation index ratio as a function of frequency for different 

output power levels [3], where np = M and n, = m. (Reproduced, by permission, from 

Electronics Letters). 

where 

Ay “x ON; 

AI a *( jo H(o), 
Caen 

4n qv 1 + EN, ( uy /Ypp) ( ) 

(F] a (1 aa Hep) VinZr dv/dT 

Al thermal (1 + j@tr) 

In the first equation we have again set ypp > Iv,a,N,, expanded a, using Eq. 

(5.32), and set 1/t, = I'v,g which is a good approximation above threshold. In 

the second equation, 7,,, is the wall-plug efficiency of the output power P,,,./Pin, 

Z, is the thermal impedance of the laser structure discussed in Chapter 2, and 

V,, is the threshold voltage of the laser which is assumed roughly constant 

above threshold. Also t7 is the thermal time constant which is typically in the 

few microseconds range, yielding thermal cutoff frequencies in the few hundred 

kilohertz range. Finally, dv/dT = —(c/A*) da/dT is the shift in the mode 

frequency with temperature. For 1 sm emission lasers, dA/dT ~ 0.06—0.08 nm/K, 

which translates into dv/dT ~ —20 GHz/K. 

For a thermal impedance of 0.1 K/mW, the temperature tuning below the 
_ thermal cutoff frequency is ~ —2 GHz/mA (assuming (1 — n,,,)V;, © 1 V). For 

a VCSEL the thermal impedance is closer to 1 K/mW implying an order of 

magnitude larger temperature tuning than with in-plane Jasers. The carrier 
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FIGURE 5.10 Sketch of the frequency tuning characteristics as a function of modulation 

frequency including both temperature and carrier effects (numbers indicated are for a 

typical in-plane laser). Since the temperature and carrier effects are opposite in sign at 

low modulation frequencies, one might expect a null in the combined tuning curve at 

the crossing point. This does not occur because the modulation phase of the temperature 

tuning shifts by 90° beyond the thermal cutoff frequency. 

tuning below ypp/27 is closer to ~300 MHz/mA for numbers given in Table 

5.1, and is opposite in sign to temperature tuning. Figure 5.10 sketches the 

important characteristics of the combined frequency tuning as a function of 

modulation frequency. For modulation frequencies between 1/t; < w < pp 

(i.e. ~1 MHz < f < ~1 GHz), the response is flat with a value typically in 

the range of a few hundred MHz/mA. 

5.4 LARGE-SIGNAL ANALYSIS 

For deviations from the steady-state which are comparable to the steady-state 

values themselves, our previous differential analysis of the rate equations fails 

to provide accurate solutions as evidenced by Fig. 5.6(b). To determine the 

dynamic response of the laser for large-signal inputs, we must therefore return 

to the general rate equations (5.3) and (5.4). These equations are valid for large 

signal modulation provided the nonlinear changes in gain with the carrier and 

photon densities are included. Furthermore, they hold continuously below 

threshold and above threshold. Of course if the laser is always kept above 

threshold, the carrier density does not change by a large amount due to carrier 

clamping, even during large transients. The problem we face here is that these 

equations cannot be solved analytically. Therefore, to proceed we must use 

numerical techniques. Such numerical solutions to the rate equations are in 

principle found by iterating from one rate equation to the other using a small 
increment of time At in place of dt. As always, the power out can be calculated 
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from N,, and the frequency chirping can be obtained from the deviations of N 

from some reference value’ using Eq. (5.75). 

5.4.1 Large-Signal Modulation: Numerical Analysis of the Multimode 

Rate Equations 

In this section we consider numerical solutions to the multimode rate equations 

to give a feeling for the large-signal dynamic properties of multimode lasers. 

As mentioned in Section 5.2, the single-mode rate equations as given by Eqs. 

(5.3) and (5.4) give a good description of the dynamics of operation in 

single-frequency lasers. Generally, however, several different modes with different 

resonant wavelengths exist. In well-designed in-plane lasers these are generally 

due to different axial modes, while in VCSELs these are usually associated with 

different lateral modes. Each mode will have a different cavity loss and a 
different gain because of their different wavelength. These differences will be 

accentuated in lasers with frequency-dependent losses. Since all modes interact 

with a common reservoir of carriers, they are indirectly coupled even though 

they are orthogonal solutions to the electromagnetic wave equation. 

Writing a separate photon density for each mode indexed by the integer m, 

Egs. (5.3) and (5.4) become 

dN 1,1 — 
an = qV ae (RS Fe Ry) = » pod he fae (5.80) 

ANym 1 : 
ia = a = ay Nom + Py Roms (5.81) 

pm 

and g,, is given by Eq. (5.30) with a photon density N,,,. For numerical analysis, 

we replace dN, dN,,,, and dt by AN, AN,,,, and At, respectively, then multiply 

through by At. This time increment is set to some sufficiently small value so 

that the derivatives are accurately estimated. Since we can expect the response 

will involve oscillations near Wp, we should set At « 1/wpz. The equations are 

then successively iterated to increment the carrier density and photon density 

for each mode from the initial values. Thus, after the ith iteration (t = iAt), the 

carrier density is given by N(i) = N(i— 1) + AN, etc. In practice, numerical tech- 

niques such as the fourth-order Runge—Kutta method can be used to reduce the 

calculation time, since much larger time steps can be used for the same accuracy 
in the solutions (the simple iteration scheme requires extremely small time steps 

in order to successfully determine the solution without introducing large errors). 

To model the spectral roll-off of the gain near the gain peak, we can often 

approximate the gain spectrum by a Lorentzian, as illustrated in Fig. 5.11. The 

gain experienced by each mode m can then be described by 

I Jo N+N 
g(N, N,,m) = . nf ) SRD 

‘ (1 + (Am/M*)) 14+) &amNon \Ni +N, 222) 



LARGE-SIGNAL ANALYSIS 215 

Am = 

-3-2-1 0+] +2 +3 Cavity Modes 

Lorentzian Model 

True Gain Spectrum 

FIGURE 5.11 Simple Lorentzian model of the gain spectrum convenient for analyzing 
multimode lasers. 

where Am is the mode number measured away from the central mode (Am = 0), 

which is assumed to be aligned with the gain peak, and M is the mode number 

where the gain has fallen to half of its peak value. In practice, M is adjusted 

to match the curvature of the gain spectrum near the gain peak, where the 

details of the spectrum are most relevant. The sum in the denominator accounts 
for intermodal gain compression.’ 

Figure 5.12 gives numerical plots of the carrier density and photon density 

for the various modes of an InGaAs/GaAs Fabry-Perot laser. No wavelength- 

dependent losses are assumed. The current at t = 0 increases from zero to 

I* = 2I,,. As shown, the carrier density initially increases as the active-region 

reservoir is filled. Little photon density exists until the carrier density reaches 

its threshold value. At this point, stimulated recombination begins to limit a 
further increase in carrier density as the photon density increases. This delay 

before the photon density “turns on” is called the turn-on delay of the laser. 

The Fabry—Perot laser considered in Fig. 5.12 is obviously not a very good 

single-mode laser. Initially many modes turn on, and in the steady-state two 

strong side modes (Am = +1) persist. So we discover that the dynamic mode 

suppression ratio (MSR) is quite a bit different (worse) than the steady-state 

MSR considered at the end of Chapter 3. The challenge for state-of-the-art 

single-frequency lasers is to maintain a dynamic MSR of greater than 30 dB 

throughout such a turn-on transient. 

Figure 5.13 illustrates the predicted turn-on characteristics of a VCSEL in 

7 If neighboring modes have no effect on each other’s gain then only diagonal terms of ¢,,, are 

NONZETO (Em = & Enm = 0 for n £m) and the sum can be replaced by éN,,,. On the other extreme, 

if all modes are affected equally by any photons present, then all terms of ¢,,,, are NONZETO (E,», = &) 

and the sum can be replaced by éN,. Spectral and spatial hole burning of the carrier population 

will typically lead to gain compression which is somewhere in between these extremes. 
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FIGURE 5.12 Large-signal modulation of an SQW InGaAs/GaAs in-plane laser using 

parameters given in Table 5.1. The relative gain width is set to M = 25 as might be 

appropriate for an in-plane laser. Twenty-five: modes (Am = +12) are included in the 

calculation. The sum of gain compression terms is assumed to be éNpn.- 
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FIGURE 5.13 Large-signal modulation of a short-cavity laser using the VCSEL param- 

eters given in Table 5.1. M = 3 is assumed. 
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which the axial mode spacing is much larger. Everything else is assumed to be 

the same. Here we observe the desired single-frequency behavior. In practice, 

such single-axial mode operation in VCSELs is compensated for by multi- 
lateral mode operation not considered in this calculation. One challenge in 

VCSEL design is to eliminate such lateral modes from appearing in the lasing 

spectrum. Such single axial mode operation can also be achieved with in-plane 

lasers by using frequency-dependent losses as discussed in Chapter 3 (for 

example, a DFB or DBR can be employed). 

5.4.2 Turn-On Delay 

The numerical simulations in Figs. 5.12 and 5.13 clearly illustrate that time is 

required for the carrier density to build up to the threshold value before light 

is emitted. This turn-on delay, defined as tz, can be detrimental in high-speed 

data links, however it can be useful for measuring the carrier lifetime. As a first 

approximation to estimating t,, we can simply calculate the initial slope of the 

carrier density and draw a straight line up to the threshold value N,,. To 

determine the initial slope, we use the carrier density rate equation, assuming 

no appreciable photon buildup: 

dN nl BoB oe (Red GRA) (5.83) 
dt qV 

If we start with some initial current J; then the term in parentheses under 

steady-state conditions can be set equal to ;1;/qV. Now we change the current 

instantaneously to I,. The initial slope then becomes 

any 
AN oll (I, —1,) hi Moe (5.84) 
At |;=0 GV tq 

Solving for the turn-on delay, we find 

ty © qV Na — Ni (5.85) 

Ni Late 

Replacing N with J using the carrier lifetime or differential carrier lifetime (both 

evaluated at threshold), the turn-on delay for the two extreme initial bias limits 

becomes 

I 
Fie (I; = 0) (5.86) 

I; 

In Hi 
pw ages men I, © In) (5.87) 

I,-1; 
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where 1/t,, * A + BN, + CN3Z, and 1/tay 1, A + 2BN,, + 3CNj,. For small 
initial biases, the turn-on delay is proportional to the total carrier lifetime 

(~3-4 ns), while for initial biases approaching threshold, the turn-on delay 

becomes proportional to the differential carrier lifetime (~ 1—2 ns). If we know 

all currents involved, it is a simple matter to estimate both total and differential 
carrier lifetimes from measured turn-on delays. In practical applications we 

want to avoid a large turn-on delay. This is accomplished by (1) increasing I, 

as much as possible above threshold, or (2) adjusting the hias level I; close to 

threshold. In fact for I; larger than threshold, the turn-on delay becomes very 

small and can be estimated using the methods discussed in Section 5.3.2. 

The first-order estimates of t, in Eqs. (5.86) and (5.87) neglect the fact that 

as the carrier density increases, so does the recombination term in Eq. (5.83). 

This increase in recombination reduces the rate of increase of N from linear to 

sublinear as illustrated in Fig. 5.14. Thus, while Eqs. (5.86) and (5.87) yield a 

reasonable first approximation to t,, they tend to underestimate the value 

somewhat. 

For a constant carrier lifetime (i.¢., R,, + R,, = N/to), Eq. (5.83) yields an 

exponential saturation of the carrier density at N,: 

N(@t) = N, + (N; — N)(1 — e7**°). (5.88) 

Of course, N will never reach N, due to stimulated emission which clamps N at 

Ny» as Fig. 5.14 suggests. The time required for N to reach N,, defines the 

turn-on delay and we can set N(t,) = N,,. Solving for the turn-on delay we 
obtain 

I,-I; 
i, = tp ine : (ct =o t(N)) (5.89) 

\ a Lin 

N(t) simple realistic | 
linear increase sublinear saturation 

first-order estimate 

FIGURE 5.14 Carrier density as a function of time. The dashed curves show the carrier 
density increase without carrier clamping at threshold. \ 
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where the constant carrier lifetime has been multiplied through to convert all 

N > Tol. Note from Fig. 5.14 that our initial linear approximation (5.85) is 

expected to work well when N, > N, (or equivalently, when I, > I;), as a Taylor 

expansion of Eq. (5.89) for large (I, — 1;) verifies. 

For short-wavelength lasers, the carrier lifetime is not a constant but is 

dominated by bimolecular recombination (i.e., BN* > AN + CN?°). For this 

case, the exponential saturation at N |; becomes a tanh function saturation, and 

the solution of Eq. (5.83) is given by 

N(t) = N, tanh[BN,;t + tanh” *(N,/N,)]. (5.90) 

Again setting N(t,) = N,, and solving for t,, we find 

1 if 
fete tanh ye" tape j=. (BN > AN + CN) (5.91) 

a I I al i 

where t, = 1/BN, = \/qV/n,I,.B, and we have set all N > ,/n;I/qVB. 

In long-wavelength lasers, Auger recombination dominates and we can 

assume CN? > AN + BN?. Unfortunately, no closed-form expression for N(t) 

can be obtained for this case. However, a solution can still be obtained from 

the more general definition of t,;, which is found by directly integrating 

Eq. (5.83) and solving for t,: 

i I My ; (5.92) 
ni Ny/te — N/t(N) 

where t, = t(N,). It is easily shown that both Eqs. (5.89) and (5.91) can be 

found from (5.92) by setting t(N) = Ty and 1/t(N) = BN, respectively. 

With 1/t(N) = CN?, the resulting expression for the turn-on delay is rather 

lengthy, but is important to include for long-wavelength laser applications. 

Expressing t, as two components (where the first is typically much larger than 

the second), we have 

f= Veh tp (CN? » AN + BN?) (5.93) 

rp—17;\? re —1 

ta = ty bal (=) ae : 

1 1+2 _, 1 + 2r;,/r 
tami el iy Lehnert tt ale A 3 WE 

He ratios are rp = N,/N, and r; = N;/Ny, OF equivalently a =1,/I,, and 

r? = I,/I,,. In addition, t, = 1/CN} where N, is defined by CN} = (ni/QV) I. 

where 
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FIGURE 5.15 Normalized turn-on delay for different initial and final currents relative 

to threshold for the three types of recombination. 

The turn-on delay for the case where AN + BN* > CN? can also be 
found. ‘ 

Figure 5.15 shows t,/t, for various initial-to-threshold and final-to-threshold 

current ratios using the three different expressions for the turn-on delay (5.89), 

(5.91), and (5.93). With no prebias (J; = 0), the turn-on delay is generally on 

the order of the would-be carrier lifetime. In contrast, with a prebias and a final 

current level that is well above threshold, the turn-on delay can be reduced to 

just a fraction of the final carrier lifetime. . 

5.4.3 Large-Signal Frequency Chirping 

Here we shall briefly introduce a useful analytic formula to calculate the 

frequency chirp from the known intensity modulation waveform which holds 

even under large-signal modulation. Taking the photon density rate equation 

and solving for the difference between the gain and loss, we obtain 

1 LvdNor SIcR:. 
Tv,g = ———— 

TS on Ns. At N 
Pp Pp 

(5.94) 

Because of carrier and gain clamping above threshold, a first-order expansion 

of the gain around its threshold value remains a good approximation even for 
large signals, allowing us to set 

J = 9, + a(N — N,,) — a,N,. : (5.95) 
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Substituting this into (5.94), recognizing that 'v,g,, = 1 /t,, and using Eq. (5.75) 
to express the carrier density deviation as a frequency deviation, we obtain 

Ne eG SR oy 5.96 
Gran ined: Nee eR ad Gu) 

Dp P 

With N, = Njo + N,,e/, the time-varying portion of the frequency chirp 

formula reduces to the small-signal result (5.77) derived earlier for Nyt « Nyo- 

If the modulated output power varies rapidly (on the order of a nanosecond 

or less), then the first term in brackets will usually dominate. Under these 

conditions and using the fact that N, oc Po, the frequency chirp Av(t) = v(t) — v,, 
reduces to the simple result 

a 1 dP,(t) A ee 
PASS ear 

(5.97) 

With this equation, the frequency chirp for large-signal modulation can be 

determined directly from the shape of the modulated signal (e.g., square-wave, 

sine-wave, Gaussian, etc.). If we are interested in minimizing the frequency chirp, 

Eq. (5.97) can be used to predict which output waveforms produce the lowest 

chirp. We can then tailor the current input signal accordingly. 

5.5 RELATIVE INTENSITY NOISE AND LINEWIDTH 

Up until now we have only considered intensity and frequency responses due 

to the deliberate modulation of the current or some other cavity parameter. In 

the steady state, it has been assumed that the carrier and photon densities are 

constant. However, in reality random carrier and photon recombination and 

generation events produce instantaneous time variations in the carrier and 

photon densities, even with no applied current modulation. The variations in 

photon density lead to variations in the magnitude of the output power, which 

provides a noise floor, and the variations in carrier density result in variations 

in the output wavelength, which creates a finite spectral linewidth for the lasing 

mode. Before launching into the specifics of how to deal with these random 
noise sources, it is worth considering the implications of intensity and frequency 

noise in practical laser applications for motivational purposes. 

5.5.1. General Definition of RIN and the Spectral Density Function 

Figure 5.16 illustrates a noisy laser output for both analog and digital signal 

transmission. For analog applications, the noise is quantified using the electrical 

signal-to-noise ratio (SNR). For the laser output defined in Fig. 5.16, the SNR 

can be written as 

our — <8? _ Pisin od?) _m? PG 
KEIM) PREPEY 380) 52K SPO?>’ yak 
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P(t) = Py + Psin wt + 6P(t) 

P(t) 

(SP(t)’) noise spike 

(potential false reading) 

FIGURE 5.16 Noise in modulated laser signals for both analog and digital applications. 

where the IM modulation index is given by m = P,/P). The < > denote the time 

average. 
For digital applications, a decision level at the midpoint defines whether a 

‘0’ or ‘1’ is recorded. If the noise happens to exceed P,/2 in Fig. 5.16, then a 

false recording might be made. If the noise has a Gaussian distribution around 

the mean power level, then in order to reduce the probability of finding 

|SP(t)| > P,/2 to less than 1 in 10° (ic., a bit-error rate < 10° °), we require 
that [4] 

2 

Po 2 =§ FFE (11.89)?,. (for BER < 107°) (5.99) 

where <dP(t)”» is the mean-square of the assumed Gaussian noise distribution. 

For either of the above two applications, we find it useful to quantify the 

relative intensity noise (RIN) of the laser: 

RIN = OPO"? 
0 

(5.100) 

" The RIN is often described in decibels, or 10 log, (RIN). For analog applications, 

if a given electrical SNR is required, then Eq. (5.98) can be.used to determine 
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the maximum allowable RIN. For example, if we require the SNR > 50 dB with 
m = 1, then the laser must have a RIN < —53 dB. Alternatively, for a bit-error 

rate (BER) < 10°° in digital applications, Eq. (5.99) suggests that the laser 
must have a RIN < —21.5 dB. 

To quantify the output power fluctuations (and hence the RIN), it is more 

convenient to work in the frequency domain, making use of the Fourier 
transform pairs: 

+ 00 ; 

OPYS= =| dP(a) e!” da, (5.101) 
— oO 

dP(w) = | ” sP(t)e-#" dt, (5.102) 
= 

where 6P(@) is the component of the noise which fluctuates at the frequency, 

@. Now suppose we were to use a spectrum analyzer to measure the electrical 

power (1.e., the square of the optical power) associated with the noise. If the 

spectrum analyzer applies a narrowband filter to the signal with a passband 

described by F(m), then the measured mean-square time-averaged signal would 

be given by 

1 
(2m)? 

<6P(t)?) = | ie | vi <5P(w)5P(w')*) F(w) F(a')* ef@-® dem dav’. 

(5.103) 

For completely random noise, the magnitude of the noise at any given frequency 

is completely uncorrelated with the magnitude of the noise at any other 

frequency. As a result, when the product of two frequency components is 

averaged over time, there is a delta function correlation between them (see 

Appendix 13). The strength of the delta function correlation is defined as the 

spectral density, S;p(@), of dP(t) at w, and we can write 

<5P(w) 5P(w')*> = Ssp(@)-225(w — a’). (5.104) 

With this substitution, the measured mean-square power fluctuation reduces to 

1 + co 

GN AND ee =| Ssp(@)|F(@)|? da. (5.105) 
Tt be 2,2} 

If the measurement filter is centered at wy, and is narrowband relative to 

variations in the spectral density, then with F(@ >) = 1 we obtain 

6P(t)?> © Ssp(o) ° |F(@)|? df = Ssp(@o)24f- (5.106) 
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—@ Wo 

FIGURE 5.17 Measured noise using a narrowband filter. Because the noise spectral 

density is always an even function of frequency (Sjp(—@) = Ssp(@)), we can fold the 

spectrum in half, if desired, and define a single-sided spectrum existing only in the positive 

frequency domain that is a factor of two larger than the double-sided spectrum. 

This relation is graphically illustrated in Fig. 5.17 for an arbitrary noise 

spectrum. Note that the effective measurement bandwidth is 2Af since we must 

include both positive and negative frequencies. We could alternatively define 

the spectral density as “single-sided” existing only in the positive frequency 

domain as indicated by the dashed line in Fig. 5.17. In this case, the 

measurement bandwidth would simply be Af and the factor of two would be 

lumped into the single-sided spectral density. The choice of using a single-sided 

or double-sided spectral density is academic as long as we are consistent. In 

this chapter, the spectral density will always be defined as double-sided. Finally 

note that the spectral density has units of (seconds) x (fluctuating variable 

units). 
In terms of the spectral density of the noise accompanying the signal, we 

can redefine the relative intensity noise as 

RIN _ 2S,p(@) 

Af PS 
(5.107) 

where Af is the filter bandwidth of the measurement apparatus (if the 

spectral density is defined as single-sided, then the factor of 2 should be 

removed in (5.107)). Because the measurement bandwidth can vary from 

application to application, it is common to specify the quantity on the left as 

RIN in dB/Hz or RIN per unit bandwidth. The full RIN is then found by 

integrating the RIN per unit bandwidth over the (single-sided) detection 

bandwidth of the system of practical interest. In designing a communications 

system, the desired SNR or BER sets a maximum limit on the total RIN of the 
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laser. If the RIN spectrum is flat, then the requiréd RIN per unit bandwidth 
of the laser is found from 

RIN(dB/Hz) = RIN(dB) — 10 log, (Af [in Hz]). (5.108) 

For example, in a digital transmission link with a 2 Gbit/s (1 GHz) system 

bandwidth and a required BER < 107° (i.e., RIN < —21.5 dB), the laser must 

have an average RIN(dB/Hz) < —21.5 dB — 90 = —111.5 dB/Hz. If the system 

bandwidth is increased, the laser RIN per unit bandwidth must be decreased 
in order to maintain the same total RIN. 

5.5.2 The Schawlow—Townes Linewidth 

In addition to intensity noise, the laser also produces frequency noise which 

can adversely affect the lasing spectrum. In single-mode lasers, such as the DFB 

and DBR types introduced in Chapter 3, the spectral width of the laser’s output 

is reduced to that of a single mode, however, the linewidth of this single 

mode is still finite due to laser noise. Unless great care is taken, experiments 

typically show diode laser linewidths much greater than a megahertz. For many 

applications, such as sensor or communication systems using coherent detec- 

tion, it is desirable to have linewidths much less than a megahertz. Thus, an 

understanding of the inherent linewidth of diode lasers is of great practical 

importance. 

The linewidth of a diode laser results from phase fluctuations in its output. 

These arise from two basic sources: (1) spontaneous emission and (2) carrier 

density fluctuations. The first is inherent in all lasers, resulting simply from the 

random addition of spontaneously emitted photons to the quasi-coherent 

resonant cavity mode. The second is of significance only in diode lasers, and it 

results from the proportionality between AN and Av characterized by Eq. (5.75) 

[5]; the constant of proportionality contains the linewidth enhancement factor, 

a. This factor exists because both the gain and the index of refraction depend 

directly upon the carrier density. 

We will develop the full expression for the laser linewidth a little later, after 

the treatment of frequency noise. For now, we wish to consider a simplified 

derivation of the spontaneous emission component of the laser linewidth which, 

while not entirely correct for lasers above threshold, does provide the reader 

with an intuitive feel for the origin of a finite laser linewidth. 

In the derivation of the rate equations in Chapter 2, the cavity lifetime was 

introduced as the natural decay rate of photons in the resonant cavity in the 

absence of stimulated or spontaneous emission sources. Therefore, in the 

absence of sources, Eq. (5.4) has the solution 

N,(t) = N,oet?. (5.109) 
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The corresponding time dependence of the field is 

E(t) = Ege’%e **? ul), (5.110) 

where u(t) is a unit step function which turns on at time zero to indicate that 

the field is instantaneously created at t = 0 by a stimulated emission event, for 

example. The Fourier transform of this time domain response gives the 

frequency domain response of the laser cavity.\The Fourier transform of an 

exponential is a Lorentzian. This undriven result, sometimes called the cold 

cavity response, is given by 

|E(@o)|? 

1 + (@— @o)*(2t,)? 
|E(@)|? = (5.111) 

From this we can see that the full-width half-nvaximum (FWHM) linewidth of 

the cold cavity is Aw = 1/t,. This spectral width corresponds to the filter 

bandwidth of the Fabry—Perot resonator mode with no active material present 

(hence cold cavity response). The key point here is that the resonance width is 

linked with the photon decay rate. Now, if we add back the stimulated term 

which is responsible for gain in the cavity, we see from Eq. (5.4) that the same 

exponential solution in time is obtained, but it is now characterized by a new 

effective cavity lifetime: 

ae! MEE pei) (5.112) 

The effective cavity lifetime increases as the gain in the cavity compensates for 

cavity losses. Thus with gain, the FWHM linewidtlr becomes Aw = 1/t,,, and 

SO as tT), increases, the resonance width decreases. As illustrated in Section 5.2.2, 

Eq. (5.4) can be solved in the steady state for N,: 

PRS 
= —___., mye Me 

‘ 1 Wise ead Le ( ) 

Using (5.113) to replace [1/t, —Tv,g] in (5.112), we can express the driven 
FWHM linewidth as 

AV son = = = ——.- (spontaneous only) (5.114) 

Equation (5.114) is equivalent to the famous Schawlow—Townes linewidth 

formula [6]. One central conclusion of this formula is that the linewidth varies 

inversely with photon density (or output power). And because the photon 
‘density in a laser can grow very large, the linewidth can collapse into a very 
narrow spectral line—one of the defining characteristics of lasers. 
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Unfortunately, this intuitive derivation has some shortcomings. Equation 

(5.114) does correctly give the below-threshold linewidth and is therefore 

accurate for amplified spontaneous emission problems. However, above thres- 

hold, the nonlinear coupling between the rate equations suppresses one of the 

two quadrature components of the noise (the field amplitude fluctuations are 

stabilized above threshold), resulting in a factor of 2 reduction in the linewidth 

predicted here [7, 8]. With a correction factor of 1/2, Eq. (5.114) becomes the 

modified Schawlow—Townes linewidth formula: . 

TRS 

4nN, 
Pp 

(Av)s7 = (5.115) 

The modified Schawlow—Townes linewidth, however, still only considers 

spontaneous emission noise and does not include carrier noise. To describe 

carrier noise, we will need to develop the Langevin rate equation approach to 

laser noise. 

5.5.3 The Langevin Approach 

To determine the laser RIN and the carrier noise, we must find the spectral 
density of the output power and carrier noise fluctuations. For this purpose, 

we introduce Langevin noise sources Fy(t) and F,(t) as the ac driving sources 

for the carrier and photon densities, respectively. These sources are assumed to 

be white noise (see Appendix 13), and are assumed small enough that we can 

make use of the differential rate equations. For a constant drive current (dI = 0), 

Egs. (5.33) and (5.34) become 

d 
Fs (dN) = —ywn 4N — yp AN, + Fry(t), (5.116) 

d 
= (dN,) = Ypy AN — ypp AN, + F(t). (5.117) 

The rate coefficients are defined by Eqs. (5.35) as always. To solve these 

equations it is again convenient to place them in matrix form: 

- — t bed i | YNN Hae fi & My (5.118) 

dt _dN, Yen —Ypp_ILaN, F(t) 

To determine the spectral densities we must first transform to the frequency 

domain. Replacing all time-dependent variables with equivalent versions of Eq. 

(5.101), we obtain for each frequency component: 

as + jo YNP ‘loos | 17 Eaal (5.119) 

— Vpn Ypp + J@ Nyi(@) Fp(@) 
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where N,, N,1, Fy, and Fp represent the components of the noise which fluctuate 

at frequency w. This result is analogous to the small-signal result obtained in 

Section 5.3.1. Using Cramer’s rule and the definitions in Section 5.3.1, we 

immediately obtain 

N,(o) = H(@) | Fy() YNP | (5.120) 

' OR | Foo) ypp + jo 

SG eae oe sie . (5.121) 

Using Eq. (5.104) we can define the carrier and photon density spectral densities 

as 

Sy(@) = rs [menor da’, (5.122) 

Sy,(@) = = | <N,1(@)Ny(@')*> dav’. (5.123) 

Multiplying both sides of Eq. (5.120) by N,(w’)*, and both sides of Eq. (5.121) 

by N,,(@’)*, taking the time average, and integrating over w’, we finally obtain 
s 

2 

Sy(@) = bl [yip<FpFp> — 2yppynp<FpFy> + (yop + 0) Fy Fy Dibes (S124) 
R 

Sy, (00) = THO’ [2 + «9?)CFo Fe) + 2yun en FoFy) + ¥onCEyFuyhp (5.125) 
OR 

Ww 

where the Langevin noise source spectral densities are defined by 

a= ao (w’)*> da’. ~ (5.126) 

Because Fy and Fp are white noise sources, their noise spectral densities <F; F,) 

are uniformly distributed over all frequencies. Hence, the various <F,F can be 

regarded as constants in the frequency domain (see Appendix 13 for further 

details). Equations (5.124) and (5.125) therefore reveal that the carrier and 

photon density fluctuations follow a (a, + a,w*)|H(@)|? spectral dependence, 
peaking at the relaxation resonance frequency (we will quantify a, and a, 

below). This behavior is not surprising since the natural resonance of the 

carrier—photon system would be expected to accentuate and amplify any noise 

existing near that resonance. Furthermore, the inverse dependence on w% 

suggests that the fluctuations and corresponding noise decrease with increasing 

‘output power. To fully quantify these relationships, we need to expand 
the terms within square brackets. 

\ 
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5.5.4 Langevin Noise Spectral Densities and RIN 

Equations (5.124) and (5.125) reveal that with the Langevin method, the 

evaluation of the laser noise boils down to evaluating the spectral densities or 

noise correlation strengths (F,F;> between the various Langevin noise sources. 

Assuming N,V, > 1 above threshold, Appendix 13 shows that these terms 
reduce to the following: 

<Fp Fp) = 20 R1,N,, (5.127) 

(FyFy> = 2Ri,N,/T — 0,gN,/V + nil + Iyd/qv?, (5.128) 
<FpFy> = —2Ri,N, + v,gN,/V. (5.129) 

The various factors appearing in these equations are essentially the summation 

of the shot noise associated with the random generation and recombination/ 

escape of both photons and carriers in both reservoirs. The shot noise associated 

with the injected current (which gives rise to the n,I/qV? term appearing in 

Eq. (5.128)) can in principle be eliminated or at least reduced by careful 

design of the current drive circuitry [9]—a point we will return to later in this 

section. 

With Eggs. (5.127) through (5.129) the carrier (5.124) and photon (5.125) 

spectral density functions can be expanded. The desired output power spectral 

density function, S;p(@) needed in Eq. (5.107), can then be calculated. However, 

this calculation is complicated by an additional noise term in the output 

power due to the negative correlation between photons reflected and trans- 

mitted at the output mirror [10]. Thus, as shown in Appendix 13, S5p(@) is not 

simply related to Sy (@) by the expected factor (hvV,v,«,,, F )? or (nohvV,/t,)?. 

After first deriving Sy (@), Appendix 13 shows that for above-threshold 

conditions, the output power spectral density can be written as 

at 74 

Saye bony | eae |H(o)|? + | (5.130) 
R 

where 

ot. 82(Av)spPo 1 dee o| sree) =: 7 

‘ hy TAN Pig. st 

8n(Av) cP, r 
a,= see = Now? snd 

and (Av)s7 = 'Rj,/42N,, I = 4Po/nohv = ni — In). Also, Po defines the power 

out of the desired facet. 
If the emitted field is in a perfectly coherent state, the output power noise 

(double-sided) spectral density is limited to a minimum value of hvPo. This 

quantum noise floor of the coherent field is often referred to as the standard 

quantum limit, or the shot noise floor. The two contributions within the square 
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FIGURE 5.18 Calculated relative intensity noise at different output power levels for an 

InGaAs/GaAs in-plane laser with parameters given in Table 5.1 . 

brackets of (5.130) can therefore be thought of as the excess intensity noise and 

the inherent quantum noise of the laser. At low output powers, the excess noise 

dominates and is dramatically enhanced near the relaxation resonance frequency 

of the laser. At high powers, the laser generally quiets down to the standard 

quantum limit except near the resonance where the excess noise can persist 

even at very high output powers. Figure 5.18 illustrates these characteristics for 

the in-plane laser characterized in Table 5.1. c 

5.5.4.1 Characteristics of the RIN Spectrum The laser RIN plotted in Fig. 5.18 

is related to S;p(@) through Eq. (5.107) and can be written‘as 

RIN 2h : eye, E SoS Eto) eee | (5.131) 
Af Ps a) R 

The prefactor 2hv/Pp is the standard quantum limit for the minimum RIN of 

the laser. The frequency coefficients, a, and a, are as defined in Eq. (5.130). 

The first terms of both a, and a, are independent of power, while the latter 

terms depend on Pé and P,, respectively. At low powers, these latter terms can 
be neglected and the RIN reduces to 

RIN 1/t2y + @? 2h 
iran 16n(Av) 7 Bitantae |H(o) |? + = “(low power) (5.132) 

R > 10) \ 
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This form of the RIN is commonly used in laser applications, and in fact is a 
reasonable approximation at higher powers as well, as long as the laser current 
source is shot noise-limited. With Eq. (5.132), the measured RIN spectrum can 
be modeled using four fitting parameters: t,y, y, @g, and (Av)s7 [11]. 

When the excess noise term in Eq. (5.132) dominates, the RIN spectrum 
levels off to a constant value for w < 1/t,y, which is typically in the range of 

100 MHz, as shown in Fig. 5.18 for the 0.25 and 0.5mW curves. At higher 

powers, this range of constant RIN increases up to a few GHz, as the low 

frequency RIN saturates at the shot noise floor. Setting w = 0 in Eq. (5.131) 

and using a, as defined in Eq. (5.130), the low frequency RIN becomes 

RIN 16x(A 2h A 1 - TU Sts "| nid + th) 

Af —— @etan Pp I S vo (O<@,) (9.133) 
st 

The first term decreases as 1/P3 (since (Av),7 oc 1/P) and w% oc P?) and hence 
quickly drops below the shot noise floor with increasing power. The second 

term converges toward the shot noise 1/P) power dependence at high current 

levels where 4,1 + I,,)/I,, > 1. In Fig. 5.18, we can see this trend by examining 

the intervals between every doubling of power. At low frequencies, the steps 

change from 9 dB to 3 dB with increasing power as the power dependence 

changes from 1/P3 to 1/Pp. 
At the RIN peak, a,w? > a, in Eq. (5.131). Hence, the frequency dependence 

in this range is characterized by w?|H(w)|?. Using Eq. (5.46), it can be shown 
that the peak of this function occurs at Wp regardless of the extent of damping, 

in contrast to |H(@)|? which peaks right at wg only when »/@ z « 1 (see Fig. 

5.4). Setting |H(@p)|? = (@g/y)* in Eq. (5.131), and neglecting both the noise 
floor limit and the second term of a, in Eq. (5.130), we obtain the simple result 

RIN _ 16z(Av)s7 

NER wedi 

In general, the damping factor y= Kf% + yo from Eq. (5.52). However, at 

higher powers, y ~ Kf % « Py. Hence, the RIN peak converges toward a 1/P} 
power dependence, since (Av)s7 oc 1/P). In other words, the RIN peak drops 

by 9 dB with every doubling of power, as Fig. 5.18 indicates at the higher power 

levels. Beyond the resonance frequency, the RIN reduces to the standard 

quantum limit which drops by 3 dB with every doubling of power. 

At 1 mW of output power, the laser in Fig. 5.18 roughly has a Schawlow— 

Townes linewidth of 1 MHz and a damping factor of 3 x 10°/s, which gives a 

peak RIN = —112 dB/Hz. This peak level of noise barely satisfies the criterion 

for a 2 Gbit/s (1 GHz) digital transmission link (see the example following Eq. 

(5.108)). However, the peak occurs beyond the system bandwidth and will not 

add to the detected noise. When the 1mW RIN spectrum in Fig. 5.18 is 

integrated from 0 to 1 GHz, the average RIN per unit bandwidth is only 

—140 dB/Hz, easily satisfying the transmission link requirements. 

(@ = Mr) (5.134) 
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5.5.4.2 Noise-Free Operation The component of the laser noise which derives 
from the noise of the current source appears in the second term of a, in Eq. 

(5.130). This is one component of the noise we can modify externally, and ideally 

eliminate. In Eq. (5.131), a,w*|H(@)|? is responsible for the RIN peak at @a, 
and 2hv/P) dominates the spectrum beyond the RIN peak. Thus, a,|H (w)|? only 

significantly affects the low frequency RIN away from the RIN peak, or at 

W « Wp. Within the denominator of a,|H(@)|*.then, we can set (wg — ©”)? © WR 
without introducing much error in the total RIN spectrum (this works well as 

long as (y/Mg)? > 2/(1 + 2./t,) where r, is the RIN peak relative to the shot 

noise floor). With this modification, and also concentrating on moderate-to- 

high powers such that we can neglect the 1/P3 term of a,, Eq. (5.131) 

reduces to 

|H(a)|2, (5.135) 
RIN _ 2hv jun + Iy)/Tge + A — no) + oe | : 2hy ayo? 

Ngan bp, 1 + 2x"? Py ow 

where t” = y/wR © t,[1 + T'a,/a]. The first term provides the RIN noise floor, 

while the second term provides the RIN peak which rises above the noise floor 

near Wp. The various contributions to the noise floor originate from (in order of 

appearance in the first term): (1) injected current (J) and carrier recombination 

(1,,), (2) the random selection of output photons (partition noise), and (3) the 

random delay associated with photons escaping the cavity (only observable at 

frequencies comparable to or greater than 1/t/). 

The injected current contribution to the RIN noise floor can be reduced if 

a current source with sub-shot noise characteristics is used. Yamamoto has 

suggested and demonstrated along with others that if a high impedance source 

is used in driving the laser, then sub-shot noise current injection is possible [9, 

12]. To accommodate such cases, we can generalize Eq. (5.135) by setting 

I > S,/q, where S, is the double-sided spectral density of the injection current. 

For a perfectly quiet current source, S; = 0. Fora shot noise-limited current 

source, S, = qI. If we have a very efficient laser with yy — 1, and if we are far 

above threshold such that J > I, and I,, ~ ,J, then Eq. (5.135) (excluding the 

RIN peak contribution) reduces to 

RIN _ 2hv S,/qI + w?1%? 
Ape Dore? 

(noise floor) (5.136) 

This function is sketched in Fig. 5.19. For a shot noise-limited current source, 

S,/qI = 1, and the RIN noise floor reduces to a constant at the standard 

quantum limit, 2hv/Po, for all frequencies. At frequencies «1/2717, the noise of 

the laser comes from the current pumping source. Thus, if a noiseless pumping 

source is used (S; = 0), the output power noise can be reduced or potentially 

_ eliminated below f « 1/21). However, Eq. (5.135) shows that the current noise 

contribution is replaced by partition noise as 7) > 0. Hence it is essential to 

use an optically efficient laser. > \ 



RELATIVE INTENSITY NOISE AND LINEWIDTH 233 

RIN 

Af 
noise created by noise created by random delay of 

pumping source photons escaping the cavity 

decreasing 5; = gi 

pump noise 

—) 

Bay ac 
YW log @ 

FIGURE 5.19 The two components of the relative intensity noise floor, assuming a high 

optical efficiency laser. Low frequency noise can be reduced below the standard quantum 

limit if the pumping source is quiet. 

standard 
quantum limit 

Yamamoto and Machida [9] have shown that the current injection noise 

into a forward-biased PN junction is dominated by the thermal noise of the 

series resistor such that the double-sided spectral density is S, = 2kT/R,s. By 

using a large series resistance the pump noise can be reduced below the shot 

noise limit of qJ. In other words, we require that Ry > 2k7/qI. For a 1mA 

drive current at room temperature, this translates into R, > 50Q. By using a 

constant current source with very large series resistance, the current input noise 

can be reduced substantially below the shot noise limit. This is the strategy 

some researchers have employed to attain noise-free laser operation [9, 10, 12]. 

To be successful, such lasers must have a very high optical efficiency (yn) > 1) 

and must be operated well above threshold. 

Another caveat we must consider particularly with noiseless lasers is the 

transmission and detection process. Imagine an ideally quiet laser which emits 

a perfectly regular stream of photons. In the process of transmission and 

detection, some of these photons will be lost, randomly selected out of the 

uniform stream. These random vacancies in the otherwise perfectly regular 

photon stream produce partition noise in the detected signal. For high losses, 

the magnitude of this partition noise approaches the shot noise limit. Using 

the Langevin method detailed in Appendix 13 to include this partition noise 

(see Problem A13.1), we can derive the detected noise spectral density and 

corresponding RIN [12]: 

Sac) = Naer(G/hv)*Ssp(@) + (1 — Neer) Maer (5.137a) 

(RIN) cer a (RIN taser of d — Naet (RIN) shoes (5.137b) 
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where [je = Nae(G/hv)Py and (RIN) sho: = 2Qaer/IGer- Here, nae is the photon 
collection efficiency of the photodetector including coupling and transmission 

losses in getting from the laser to the detector (current leakage in the detector 

is not included in n,,,, since parallel current paths do not necessarily lead to 

partition noise—the same goes for n; at the laser end [12)). 

In Eq. (5.137a), the coefficient of the first term is the normal transfer function 

one would expect in converting the power noise to detector current noise. The 

second term is the standard (double-sided) shot noise term.¢ommonly attached 

to the detector current noise, which more correctly here includes a (1 — n4.,) 

factor. Equation (5.137b) gives the corresponding RIN of the detector current. 

Both of these equations reveal that to achieve sub-shot noise performance in 

an optical communications system, it is essential to keep the losses in going 

from the laser to the detector to a minimum. For example, if half of the light 

is lost before being converted to current,'then the best one can hope to do is 
drop 3 dB below the standard quantum limit, even if the laser is perfectly quiet. 

Note that the argument for high y,,, is no different from the argument 

demanding a high 7 in the laser. Essentially, a perfectly regular stream of 

electrons injected into the laser must have a one-to-one correspondence with 

electrons generated in the detector in order to replicate the perfect regularity. 

Any random division or loss of photons along the way introduces irregularities 

which show up as shot noise in the receiver current. ~ 

5.5.4.3 RIN in Multimode Lasers Since the derivation leading up to Eq. (5.131) 

used the single-mode rate equations, it is not surprising that Fig. 5.18 gives a 

good representation of what is experimentally observed in single-frequency 

lasers. However, it also is roughly valid for multimode lasers provided all modes 

are included in the received power. On the other-hand, if only one mode is 

filtered out from a multimode spectrum, it is typically found to contain a much 

larger noise level, especially at the lower frequencies. This is because of mode 

partitioning. The energy tends to switch back and forth randomly between the 

various modes observed in the time-averaged spectrum causing large power 

fluctuations in any one mode. If all modes are included, the net power tends 

to average out these fluctuations. There are numerous ways in which an optical 

link can provide the unwanted spectral filtering of a multimode laser’s output. 

For example, in multimode fiber the spatial modes will interfere differently for 

each frequency in the laser’s spectrum, providing a different transmission frac- 

tion for each. This is especially accentuated, if there is some incidental spatial 

filtering in the optical link, so that different spatial modes are coupled 
differently. 

It is also somewhat surprising how large the mode suppression ratio 

(MSR) for the unwanted modes must be before the laser behaves like a 

single-frequency laser. Experiments have verified that significant mode parti- 

tioning can occur even for MSRs ~30 dB, although this is roughly the level 
at which mode partitioning tends to disappear. Such single-frequency lasers 
also tend to be very sensitive to-spurious feedback from external reflections 
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in the optical path. This sensitivity will be the subject of later discussions in 
this chapter. 

5.5.5 Frequency Noise 

For frequency modulation applications, it is useful to determine the frequency 

jitter or noise. By an extension of Eq. (5.75), we can write 

< = 2nAvi(t) = : T'v,a[dN(t)] + Fy(t). (5.138) 

The first equality reminds us that the frequency deviation can be considered a 

rate equation for the field phase. The latter equation introduces a Langevin 

noise source for this rate equation which can be associated with the phase noise 

of the laser. Converting to the frequency domain, we obtain 

! 
vi(@) = = To,aN,(o) + = Fylo). (5.139) 

Appendix 13 shows that the correlation strengths for the phase noise source 

reduce to the following: 

TR! 

Pp 

Note that the phase noise source is uncorrelated with photon and carrier density 

noise sources. To determine the frequency noise spectral density, as before we 

multiply both sides of Eq. (5.139) by v,(@’)*, take the time average, and 

integrate over w’, to obtain 

20 

Soy (z ro,a) Sy(@) + CF,Fy). (5.141) 
Tl (2n)? 

The cross-term does not appear because there is no correlation between the 

carrier and phase noise. Thus, the frequency noise has two contributions: 

(1) the carrier noise which induces refractive index changes causing the lasing 

frequency to fluctuate, and (2) the inherent phase noise of the laser, originating 

from photons which are spontaneously emitted into the mode. For semi- 

conductor lasers, carrier noise dominates by typically more than an order of 

magnitude. 

We can use Eqs. (5.127) through (5.129) to evaluate the carrier noise spectral 

density in (5.124). Appendix 13 carries out this task revealing that the carrier 

density noise spectral density can be well approximated by 

8x E a 

(v,a)? | 4nN, 
Sy(@) = | -|H(o)|?. (5.142) 
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FIGURE 5.20 Frequency noise spectrum illustrating contributions from both carrier and 

spontaneous emission noise. \ 

With Eq. (5.142) for the carrier noise and (5.140) for the phase noise, the 

frequency noise spectral density (double-sided) becomes 

1 . 
S,(@) = ia (Av)s7°(1 + a?|H(a@)|*);> (5.143) 

T 

where again 

Jig hice 
A saa E. (Av) s7 Leas 

Pp 

The measured FM noise can be modeled using four fitting parameters: a, y, Wp, 

and (Av).7 [11]. A typical FM noise spectrum is sketched in Fig. 5.20. Beyond 

the relaxation resonance frequency, the carrier noise becomes negligible, 

reducing the FM noise to the white noise background provided by spontaneous 

emission phase noise. Additional thermal contributions from the noise on the 

pumping source can also contribute to the FM noise at low frequencies, as 
discussed in Section 5.3.3. 

5.5.6 Linewidth 

To relate the FM noise to the frequency spectrum of the laser, it is useful to 

introduce the coherence time of the laser light. Consider a measurement which 

mixes the emitted electric field, &(t), with a time-delayed version of itself, 

&(t — t). As long as the phases of the two fields are well correlated, the fields 

will add coherently. We can write the cross-term of the coherent addition, or 

the autocorrelation function of the field as 

CEU) E (2) ete heres S (5.144) 
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The first factor gives the expected interference fringes created by the coherent 
mixing. However, because the laser is not emitting a pure single frequency, with 
increasing time delay, t, the phases of the two fields become less and less 

correlated and the interference fringes gradually disappear to the point where 
the two fields add incoherently. The envelope of the fringe pattern given by the 

second factor characterizes this coherence decay. As the functionality suggests, 

the decay can often be described by an exponential with a decay constant. 
defined as the coherence time of the laser, t,,,,. However, more generally, t,,, 

may be a function of the time delay itself, t.,,(t), in which case the autocorrelation 
does not yield a simple decaying exponential. 

Figure 5.21(a) suggests one method of directly measuring the autocorrelation 

function, allowing us to experimentally extract t,,,(t). Using the measured 

fringe pattern in Fig. 5.21(a), we can write the envelope of the autocorrelation 

function as 

P, + P, Pas Dein (5.145) e7 |tl/teon == , 

Dv PP Lait Eats 

where P, oc <|E,(t)|?> and P, o <|E,(t — t)|*> are the individual powers in the 

two legs of the interferometer, and P,,,, oc <|E,(t) + E,(t — 1)|*> and P,,;, oc 
<|E,(t) — E,(t — t)|*?> are the maximum and minimum powers of the inter- 

ference fringes measured by the detector. The second ratio is often referred to 

as the fringe visibility. The first ratio normalizes the fringe visibility when 

P, # P,. Measuring the normalized fringe visibility as a function of the 

time delay between the two arms yields the envelope of the autocorrelation 

function. 
Once the autocorrelation is known, it can be related to the frequency 

spectrum of the mode, P)(w), through a Fourier transform (see Appendix 13): 

Pio)  F[XA(t)8(t — 1)*)]. (5.146) 

For example, if t,,, is a constant (ie., not a function of t) then the auto- 

correlation is a decaying exponential and the corresponding lasing spectrum is 

a Lorentzian. 

Experimentally, the lasing spectrum can be measured conveniently using the 

experimental setup illustrated in Fig. 5.21(b). The laser is coupled through an 

optical isolator into a fiber (the isolator is necessary to remove unwanted 

feedback which can affect the laser linewidth (see Section 5.7)). One leg of fiber 

is fed through an acousto-optic modulator which shifts the light frequency by 

typically 40 MHz. The other leg of fiber is much longer than the coherence 

length (Ln = VTcon) of the laser. When the two incoherent fields are recombined 

in the detector, they generate a difference-frequency signal current at 40 MHz 

which contains the combined FM field noise of both light sources. The square 

of this current is therefore equivalent to the combined optical power spectrum. 

In other words, this technique effectively converts the combined optical power 
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FIGURE 5.21 Schematics of two techniques to measure linewidth. (a) Coherence length 

measurement in which one branch of a Mach-Zehnder interferometer is increased in 

length until fringe visibility is reduced. A piezoelectrically driven mirror provides a small 

length variation to display interference fringes. (b) Self-heterodyne technique in which 

a long length of fiber (> coherence length) is used to mix the laser emission with an 

incoherent version of itself. The difference frequency signal replicates the combined line- 

shape of both signals at low frequencies and is easily observed using an RF spectrum 

analyzer [13]. e 

spectrum to an electrical power spectrum centered at 40 MHz which can easily 

be measured using a radio-frequency spectrum analyzer. However, because it 

contains the noise of both signals, the electrical power 3 dB-down full-width of 

the spectrum is twice as wide as the original laser linewidth (the factor of 2 is 

specific to the combination of two Lorentzian lineshapes [13]). 

Theoretically, the lasing spectrum is found by determining 1,,,(t) and 
applying Eq. (5.146). We can relate the coherence time to the FM noise and 

the measurement time delay as follows [14]: 

S,(@) | Vg gy Salento: (5.147) 
dese (wt/2)” 
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FIGURE 5.22 (a) Overlap between FM noise spectrum and sinc?(wt/2) function for 

increasing time delays. (b) Resultant functionality of t/t,,, vs. time delay. (c) Lasing 

spectrum with and without satellite peaks. 

The coherence time is related to the integrated frequency noise of the laser 

times a sinc?(wt/2) function.’ Because the first zero of sinc?(wt/2) occurs at 
@ = 2n/t, the entire function scales toward zero with increasing time delay. 

This effect is illustrated in Fig. 5.22(a). As the peaks and nulls of sinc*(@t/2) 

sweep by the resonance peak of the noise with increasing time delay, they 

produce periodic undulations in the overlap (since the resonance peak is either 

included or excluded from the overlap). The effect of this on 1/t,,,, is shown in 

Fig. 5.22(b) [14]. The decaying oscillations which appear in the otherwise linear 

T/Teo, are the direct result of the resonance peak in the noise. The oscillation 

8 This result comes about as follows. Assume the field is oce/e/* where (f(t) is a fluctuating 
phase created by frequency noise. The autocorrelation is then oc ¢e/4*) = exp[ —<A¢(t)*)/2] and 
we conclude that t/t,,, = <A¢(t)?>/2. Using the Fourier transform pair Ad(t) = o(t) — ¢(0) > 

$(w)(e4?* — 1) and Eq. (5.104), we can derive another Fourier transform pair <Adg(t)?) = 

2S,(@)(1 —cos wt) where S,(@) is the phase noise spectral density. Because phase and frequency 

are related by a time derivative we can set S,(w) > (27)?S,(@)/w?. This leads to <Ad(t)?> = 2t/Teoh > 

(4n)*S,(@) sin*(wt/2)/w?. Expressing the Fourier transform explicitly using Eq. (5.101) and 

rearranging we obtain Eq. (5.147). 
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frequency is equal to the peak frequency of the resonance (~@g), while the 

magnitude of the oscillations is governed by how sharp and strong the 

resonance is (~1/y). 
Eventually, t/t,,, relaxes back to a linear relationship. In fact, for t > 27/,z 

the sinc*(wt/2) function is peaked in the low-frequency portion of the FM noise 

spectrum, and we can approximate S,(@) ~ S,(0) inside the integral. This leads 

to the simple result: 

; ~ 

*© sin?(at/2) 1 

ce oan q 

dw = 2n?S,(0).  (t > 2n/wp) (5.148) 
coh 

The integral is equal to 27/t, canceling out the dependence on time delay. Thus, 

for time delays much greater than 1/fp, T,,j, 18 a constant, t/t,,,, increases linearly, 

and the autocorrelation reduces to a decayihg exponential. For shorter time 

delays, the decaying exponential contains some ripples. 

From a physical point of view, it is the relaxation oscillations occurring in 

response to random absorption/emission events which enhance the FM noise 

near the resonance frequency. And since these oscillations are created by noise 

events which occur earlier in time, we could argue that some component of the 

noise at any given time mirrors the noise which existed ~1/f, seconds ago. 

Thus, we might expect a higher correlation or coherence between fields which 

are delayed by time intervals of ~ 1/fg. This is exactly what Fig. 5.22(b) reveals. 

Taking the Fourier transform of e7~'*!*e» produces the power spectrum of 

the laser as shown in Fig. 5.22(c). Without ripples in t/t,,,, the spectrum is a 

Lorentzian. With ripples, the Lorentzian acquires a series of satellite peaks 

spaced by the resonance frequency. The magnitude of the satellite peaks 

depends on the damping factor of the laser (less damping => stronger peaks). 

However, the FWHM linewidth of the spectrum is essentially the same with or 

without these satellite peaks. 

Using the long time delay expression for t,,,, (5.148) to isolate the exponential 

component of the autocorrelation and then Fourier transforming, we obtain 

the dominant Lorentzian lineshape. In general, if the exponential decay constant 

is To, then the transformed Lorentzian FWHM is Aw = 2/ty. In the simpler 

treatment of linewidth leading to Eq. (5.114), tg corresponds to the field decay 

or 2t,, yielding Aw = 1/t,. Here, to corresponds to the coherence time 

such that 

AVew ESS = 2nS,(0). (5.149) 
coh 

Inserting Eq. (5.143) with |H(0)|* = 1, we obtain 

TR. 
Avpw = (Av)s7(1 + a7) = —? (1 + a”). (5.150) 

i 4nN, » 
P 
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Thus, the modified Schawlow—Townes expression for linewidth is enhanced by 
1 + a in semiconductor lasers (this is where « gets its name as the linewidth 
enhancement factor) [5, 14]. The 1 represents the spontaneous emission noise 
contribution, and the «* represents the carrier noise contribution. 

The above-threshold linewidth can be rewritten in terms of external param- 
eters by setting Rj, = Tv,gunn.,/V, N, = Po/hv Vi0g%mF, and a,,F = qoV Gs: 

oe (Tv, 9:n)No 

4nPo 

2 2) 
F 

— 38 MHz x (=) TG y(e2)(t2)( hv \( aN $a ) 
n,/ \50cem~*/ \0.4/\1.5/\1.5 eV P, NX: 

(5.151) 

n,,hv(1 + «) 

Typical numbers have been used to evaluate the linewidth (the value for 1 

refers to the single-facet efficiency, and hence Py refers to single-facet power). 

Generally speaking, powers in the milliwatts range in a typical semiconductor 

laser produce linewidths in the tens-of-megahertz range. Thus, to achieve 

sub-megahertz linewidths it is necessary to increase the power well above 

10 mW. Another approach to reducing the linewidth involves the use of external 

cavities, which we explore in Section 5.7. 

5.6 CARRIER TRANSPORT EFFECTS 

In the sections so far we have neglected any transport time for carriers to reach 

the active region. For cases where the intrinsic region of the pin diode and the 

active region are one and the same, such as for simple bulk DH structures, 

this assumption is generally good. However, for separate-confinement hetero- 

structures (SCHs) used with quantum-well active regions, it has been found 

that transport effects must be considered [15]. This structure was introduced 

in Fig. 1.5. Figure 5.23 gives a slightly more detailed SCH schematic for the 

present discussion. 
For a number of years during the 1980s there was a dilemma as to why 

quantum-well lasers were not providing the modulation bandwidths predicted 

by the calculations given above. From Eq. (5.51) and earlier versions, it was 

clear that the resonant frequency was directly proportional to the differential 

gain, which is much higher with quantum-well active regions. Thus, it was 

surprising when experiments showed quantum-well laser bandwidths about the 

same as for bulk DH structures. Once it was realized that carrier injection 
delays due to transport effects were significant, laser designs were modified, and 

bandwidths increased dramatically. In this section we shall review the relevant 

theory. 
With reference to Fig. 5.23 we construct a set of three rate equations for the 
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SCH design. The change is, that the carrier equation has been replaced by two 

new equations. The first is for the carrier density in the barrier regions, Nz, and 

the second is for the carrier density in the active region, N. Multiple quantum- 

well active regions can also be treated by lumping all the barrier regions 

together. The new rate equations are 

(5.152) 
dt qV oe Took. : 

dN N, 1 1 aot E + | — 0,9gN,, (5.153) 
qs e 

dN 1 : re s Ez = = |N, +TRj,, (5.154) 
Dp \ 

where , = V/Vscy is the fraction of the SCH region filled by the quantum-well 

active region, N,/t, is the loss rate of carriers from the SCH region to the 

quantum-well active region, N/t, is the loss rate of carriers from the quantum 
wells to the SCH region, and the other symbols are as defined before. In this 

simplified treatment, we ignore the fact that the holes come from one side of 
the junction and the electrons from the other. Fortunately, other more in-depth 

treatments which include holes and electrons separately yield essentially the 

same results as this simplified analysis. 

Limiting our attention to small-signal perturbations, we can linearize the 

rate equations as we did in Section 5.3 to obtain the differential rate equations. 
In matrix form, these become 

WN 

dNp — YBB YBN 0 dNp dl 
d DN: 
dt dN |= Yup —Yinn —Ynp || €N ey 0 |, G153) 

aN, 0 Ypn —YpptILAN, 

The rate coefficients of the upper left 2 x 2 submatrix are given by 

Yep = 1/Ts, Yan = ees 
(5.156) 

YnB >= PN Be acc Yinn = YNN Ft Lite: 

The other rate coefficients are as defined before in Eq. (5.35). Converting to the 

frequency domain and applying Cramer’s rule, we obtain 

Fatale Yap + j@ — YBN 1 
HA @ ; 

Np1(@) = aia A, —VnB-Ytnn + JO 0}, (5.157) 

0 — YPN 0 
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FIGURE 5.23 Schematic diagram of a single quantum-well laser with a separate- 

confinement heterostructure (SCH) used in the carrier transport model. 

where 

Yep t+ JO — YBN 0 

A, = —Yne Yinn + jJ@ YNP . (5.158) 

0 —Ypn  Ypp + J@ 

The only nonzero portions of A, are (1) the product of the upper-left element 

with the determinant of the lower right 2 x 2 submatrix and (2) the product 

YenYna(’pp + J@). Pulling out the factor (yg, + jm) in the denominator, setting 

YBnYne/ (pp + J) = Yen?ne/Yaxn —J@(x — 1), and recognizing that yyy = 

Yiwn — YenYne/ Yep, We Obtain 

i 1 en Gone Pynl(@) - ENEVEN _ it <p (5.159) 

QV Yap +j@ Opp — 0° + joy, 
where 

Orn = (YwpYpn + YunYep)/% (5.160) 

Ye = Ynw/X + Yep, (5.161) 

y=1t Yon ?nB/ V5 (5.162) 

Yep + JO 

The new term y is referred to as the transport factor. Using the definitions of 

the rate coefficients (5.35) and (5.156), and additionally setting ypy ~ Iv,aN, ~ 
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Ty@jpt, and t, = NohvN,,V,/P,, we obtain the small-signal output power 

modulation response: 

2 

Bey ton ae = (5.163) 
I,(@) q 1+jot, Op-— O° + joy, 

with 

Din = OR/X © V4(4/x)N,/Tps . (5.164) 

i LER’ 
= nal, ss “| + a (5.165) 

a/x TanX N, 

bate ) Ts 

er (5.166) 
(1+jot) 

The approximate expression for the relaxation resonance frequency ignores 

the last two terms in (5.49), and makes use of the fact that in most 

lasers, a/t, > Ta,/tay. The approximate expression for the transport factor 

neglects the frequency roll-off of the second term. For typical SCH-SQW 

lasers at room temperature, t, ~ 100-500 ps, t, ~ 20-100 ps, and the transport 

factor x ~ 1.2. 

Using the approximate expression for wg, the damping factor can be 

rewritten in terms of the K-factor: 

2 =K firt vo, (5.167) 

where 

lay. gene he? 
K,= ans, f ‘| and jo = eee LSi68) 

a/x TanX P 

In examining Eqs. (5.164) and (5.165), we conclude that transport across 

the SCH region effectively reduces the differential gain from a to a/y, and 

effectively increases the differential carrier lifetime from tyy to tayy. The gain 

compression factor remains unmodified in this model. The reduced differential 

gain decreases the relaxation resonance frequency and increases the K-factor. 

The increase in differential carrier lifetime reduces the damping factor offset, 

Y,0- In addition (and perhaps most significantly), there is a new prefactor which 

provides a low-pass filtering effect with a cutoff at m = 1/t,. This prefactor 

provides an insidious parasitic-like roll-off that is indistinguishable from an RC 
roll-off. 

Figure 5.24 gives examples of the effects of transport in SCH structures. Note 

that with the narrower SCH region, the low-pass filter effect is eliminated 

allowing for a much larger modulation bandwidth. ; 
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FIGURE 5.24 Modulation response for (a) a narrow SCH and (b) a wide SCH-SQW 

laser (the lasers are otherwise identical). The modulation response for the wide SCH 

laser, at comparable power levels, shows the detrimental effects of the low frequency 

roll-off due to carrier transport. After [15]. (© 1992 IEEE). 
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5.7 FEEDBACK EFFECTS 

In typical applications of diode lasers some light is unintentionally reflected 

back into the laser cavity. For example, the reflection from the front surface 

of a fiber is about 4%, and perhaps one-tenth of this may be coupled back into 

the laser cavity in a pigtailing arrangement. Surprisingly, even such small 

amounts of feedback can have dramatic effects on the laser’s linewidth and 

noise properties. This is especially true for single-frequency lasers. In fact, 0.4% 

(—24 dB) is considered to be a large feedback. Experiments have shown that 

even — 60 dB of feedback can be unacceptable with single-frequency lasers. 

To analyze the effects of feedback, we consider the three-mirror cavity results 
of Chapter 3. Figure 3.7 and Eq. (3.34) are our starting point. They describe 

an effective mirror concept which folds the effects of the external cavity back 

into the active laser diode section. From. this starting point we explore the 

effects of feedback on the laser’s output poWer and spectrum. After the static 

characteristics are quantified, we consider the dynamic effects on the laser’s 

linewidth and noise spectrum. 

5.7.1. Static Characteristics 

Equation (3.34) describes the vector addition of the ‘primary reflection at the 

laser facet, r,, with the feedback term. This is shown schematically in Fig. 5.25. 

For relatively weak feedback, the external cavity resonance can be neglected 

(i.e., we can ignore the denominator in Eq. (3.34)), so that the in-phase (ip) and 

quadrature (q) components of the feedback term, r,,,; — r, = Ar, become 

Arip a toy tox cos(2BL,), 
5.169 

Ar, = —t3\/ f2, sinQBL,), a 

where —2£L, is the round-trip phase of the external cavity. Also, the external 

feedback level, f.,,, represents the fraction of emitted power coupled back to the 

laser. It replaces rz in Eq. (3.34) to account for additional coupling and 

propagation losses encountered through one round-trip path of the external 
cavity. 

The in-phase component of the feedback, Ar,,, affects the laser by changing 

the magnitude of the effective reflectivity at mirror #2. This modifies the photon 

lifetime of the cavity, which in turn modifies the threshold gain, threshold carrier 

density, and threshold current of the laser. The perturbed photon lifetime is 
given by 

ei i. SAR 
a — = + Vg AG», = + 5) (5.170) 
ne Le ed ES 

where R=r,r, and AR =r,Ar;,. Expanding these terms and defining the 
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FIGURE 5.25 Polar plot (left) of effective reflection from output side of laser; Ar 

represents feedback which can change both the amplitude and phase of r,,,. Plots of 

the magnitude and phase of r,,, illustrate the quadrature relationship. 

round-trip time of the laser cavity as t, = 2L/v,, we can express the change in 

mirror loss as 

vyAG i= V Sexe cos(2BL,) = —2K, cos(2BL,). (5.171) 
“i TL 

The feedback rate «, = (t3 Nid bea) yea introduced here represents the fractional 

increase in the field reflected at mirror #2 per round-trip time of the cavity 

(i.e., per bounce). 

The change in mirror loss gives rise to a shift in the threshold modal gain, 

or A(Tg,;,) = Aa,,. For small changes, we can use the differential gain a = Ag/AN 

to determine the corresponding shift in threshold carrier density, and we can 

write 

2 
Ne es cos(2BL,), (5.172) 

1D) 
g 

2 
AN,, = — —£cos(2BL,). (5.173) 

Tv,a 

The perturbed threshold current can also be described as follows: 

Tin = In — |ATy,| cos(2BL,), (5.174) 

where AI, can be found by defining a differential gain per unit current density, 

a,, similar to Eq. (5.173). When the external reflection is in phase with the 
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reflection at mirror #2 (i.e. when 26L, = 22m), the threshold level decreases 

due to an increase in rr a When the external reflection is out of phase (i.e. 

when 28L, = 2mm + 7), the threshold level increases due to a decrease iN Tory: 

The change in mirror loss also affects the differential efficiency and output 

power. Expanding Eqs. (3.30) through (3.32) to first-order in Ar;,/r,, we can 

obtain new perturbed values for the total differential efficiency, n/,, the fraction 

of light emitted through each mirror, F4,,, and the corresponding power out, 

Po1.02- Using Eq. (5.174) and assuming both laser facets are lossless (i.e. 

t? = 1 — r’), the perturbed power out of mirrors #1 and #2 becomes 

Po1,02 = Por.o2ll — 1,2 cos(2BL,)], (5.175) 

where 

Ni eae r3 |AI,,| | 

Be? | a” )| oF era Aa t3 )| E = 

The upper sign is for 4, while the lower sign is for u,. As a reminder, |AI,,| 

represents half of the peak-to-peak change in threshold current. 

Equation (5.175) shows that if we vary the optical path length between the 

laser and the reflection causing the feedback, the output power will oscillate 

sinusoidally as the external reflection goes in and out of phase with the reflection 

at mirror #2. The oscillation is the combined result of (in.order of appearance 

in {, >): (1) the change in overall differential efficiency, (2) the change in the 

fraction of power emitted out of either facet, and (3) the shift in threshold 

current. The first two effects reinforce each other (upper sign) for light emitted 

out mirror #2, but work against each other (lower sign) for light emitted out 

mirror #1. Also, the first effect is enhanced for small n,, while the second 

effect is enhanced when the fraction of light emitted from the measured 

facet is small. The third effect is enhanced near threshold. At certain operating 
points all three effects can cancel each other out. However, for bias currents 

well above threshold, the third effect is negligible. By recording the peak-to- 

peak power variation as the feedback phase is scanned, we can directly measure 

1,2. This provides a method of estimating both x, and the feedback level f,,.,. 

However, the technique is limited to relatively large feedback levels, since the 

change in output power for very weak feedback is hard to detect. 

A good example of how feedback can affect the LI curve of a laser is shown 

in Fig. 5.26. As shown in the inset, the substrate—air interface of the substrate- 

emitting VCSEL provides a strong external reflection. The oscillations in output 

power in this case are not caused by changes in the external path length, but 

rather by a steady increase in the lasing wavelength with increasing current 

(which is equally effective at scanning the feedback phase, —4nn,L,/A, through 

multiples of 272). We can observe a cancellation between the differential 
efficiency change and the threshold shift effects at about 3 mA. We can also 

. observe that the oscillations are not entirely sinusoidal as Eq. (5.175) might 
suggest. This is due to mode pulling, where the feedback itself modifies B in 
often unpredictable ways (we will consider these effects next). To prevent such 
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FIGURE 5.26 Continuous-wave LI curve of a substrate-emitting VCSEL with strong 

feedback from the substrate—air interface. As the current increases, the temperature of 

the VCSEL increases. This increases both the index and optical path of the resonator 

cavity, leading to a steady increase in lasing wavelength (and shift in feedback phase) 

with increasing current. The peaks (valleys) in the output power occur when the feedback 

field subtracts from (adds to) the recirculating field in the VCSEL cavity (the opposite 

of what one might think). The rollover of the LJ curve beyond 8 mA is due to a variety 

of thermal effects. 

oscillations in output power, an antireflection coating is usually applied to the 

substrate of the VCSEL. 

While Ar;, affects the threshold level and power out, the quadrature 

component of the feedback, Ar, modifies the phase angle of the net reflection 

at mirror #2 from zero to $,,, = Ar,/r2, affecting the cavity’s resonant 

wavelength. With no feedback, the resonance condition is met when —2/,)L = 

2mm. With feedback, the accumulated round-trip phase must now satisfy: 

—2BL + bere = 20m = —2B L. In other words, f must adjust itself such that 

2(B — Bo) L = ders. In a dispersive medium, AB = Aw/v, allowing us to write 

the frequency shift due to the external feedback as 

Aw, = Dats ses}  sin(2BL,). (5.176) 
Ty 

If we specify the round-trip phase change as A¢,_, = —Awt,, we find that 

this equation is equivalent to —A¢,_,/t, = derr/t_, Which reduces to 

Ad,-, + Perr = 9. In other words, the round-trip phase change compensates 

for the altered phase of mirror #2. 

An additional round-trip phase change is created by the shift in threshold 

carrier density via the linewidth enhancement factor, «. This leads to an 

additional shift in the lasing frequency. Placing the threshold carrier density 
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shift (5.173) into Eq. (5. 12), the resulting carrier-induced frequency shift is 

given by 

A@y = —ak, cos(2BL,). (5.177) 

Adding Eqs. (5.176) and (5.177), and using the trigonometric identity: 

asin @ + bcos ¢ = ,/a* + b? sin[¢ + tan '(b/a)], the total frequency shift 
becomes 

\ 

Aw = —K,./1 + a? sin(2BL, + $,) Pell, (5.178) 
T L 

where #, = tan” ' « (which varies from 0 to 7/2 as « increases). By defining 

durr as the effective phase of mirror #2 factoring in the carrier-induced 

round-trip phase shift, Eq. (5.178) becomes equivalent to — Ad, _,/t, = Per s/t, 

which reduces to A¢,_, + bi, = 0. Note that « enhances ¢2,, and pulls the 

quadrature sin x dependence toward a cos x dependence more in sync with the 

threshold gain variation (5.172). 

Our goal is to determine the mode frequency shift, Am. We start by writing 

the feedback phase directly in terms of the frequency shift and the external 

cavity round-trip time t,,, = 2L,/v,p: : 

2BL, = A@Tex + 2BoL>- (5.179) 

2BoL, is the feedback phase that would exist at the laser’s unperturbed 

frequency. Substituting this into Eq. (5.178) leads to a transcendental equation 

that cannot be solved for Aw analytically. However, we can get a feel 

for the solutions by plotting the left- and right-hand sides individually and 

looking for frequencies which satisfy the equation. Such a graphical solution 

is shown in Fig. 5.27. The negative of the round-trip phase shift, —Ad,_, = 

Aqt, for three internal cavity modes and the effective phase of mirror #2, Oi, 

are all plotted as a function of frequency. A cavity mode appears wherever 

the phases cancel, —Ad,_, = 2,7, which means wherever the two curves 

intersect. 

For weak feedback, only one mode per original internal cavity mode exists. 

However, for strong feedback we find that multiple modes clustered near each 

original internal cavity mode become possible. The spacing between these 

external cavity modes is somewhat uneven for the case shown in the figure. 

However, as the feedback and oscillation amplitude increase, the external mode 

spacing evens out approaching Aw,, = 7/T,,, (one for every zero crossing). This 

is half the mode spacing one might expect. For example, the unperturbed 

internal cavity modes are spaced by Aw,, = 27/t,. The reason for the x phase 

interval instead of the normal 27 phase interval is that both in-phase and 

’ out-of-phase feedback reflection cases (which are spaced by 2) represent valid 

solutions (for « = 0, 26)L, = mm), since both cases leave the reflection phase 
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of mirror #2 unperturbed. The catch is that the out-of-phase solutions have a 

higher threshold gain (see Eq. (5.172)), and hence are not as prominent in a 

multimode lasing spectrum. 

In general, the solutions do not usually yield either pure in-phase or 

out-of-phase feedback modes (identified by alignment with the extremes in Ag,,). 

However, modes do show tendencies toward one or the other. For example, in 

Fig. 5.27, the first, third, and perhaps fifth external cavity modes originating 

from mode 0 might be classified as relatively in phase, while the second and 

clearly the fourth are closer to out-of-phase modes. Of the three relatively 

in-phase feedback modes, the one with the lowest threshold gain (i.e., the one 

with the most in-phase reflection) becomes the dominant mode in the spectrum, 

replacing what was the internal mode of the laser with no feedback. Note from 

the figure that the dominant cavity mode is not necessarily the external mode 

closest to the original internal mode. 

The transition from single to multiple mode solutions signifies a distinct 

change in the mode spectrum of the laser and is useful to quantify. From Fig. 

5.27, it is evident that multiple solutions cannot exist when the slope of the 
straight curve (—A@,_,) exceeds the maximum slope of the oscillatory curve 

($..,,). Using Eq. (5.178), the maximum slope of $2, 5/t, iS K pTexrs/ 1 + «7, while 

the slope of —A@,_,/t, is 1. Thus, multiple solutions cannot exist for 

C= Kyte J/1 +o? <1. (5.180) 

—2k , cos(A@T,,,) 

Tv, Agi 

strong A@t, — 21 Aaot, + 20 AQT, L Eeibdee 

mode —1 mode 0 mode +1 

FIGURE 5.27. Graphical solution of the laser cavity modes with external feedback. 

Cavity modes for both weak and strong feedback are found at the intersection of the 

straight and sinusoidal phase curves. The relative threshold gains of the external cavity 

modes clustered near mode 0 in the strong feedback case are indicated by the dashed 

lines (the curves assume 2f)L, = 22m). 
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The feedback coefficient, C, characterizes the level of feedback in relation to 

how it affects the mode structure of the laser (C = |ddi¢/d(@t,)|max)- From 

Fig. 5.27, it is obvious that rapid and/or large oscillations in ¢,,, can lead to 

multiple solutions. Equation (5.180) reflects this observation showing that both 

long external cavities and/or strong feedback can produce multiple external 

cavity modes. 

5.7.2 Dynamic Characteristics and Linewidth 

The static behavior of the laser discussed in the previous section considered 

the basic changes to the threshold, output power, and mode spectrum induced 

by feedback into the laser. However, such steady-state solutions may not always 

be stable against random fluctuations in ‘the carrier and photon density. In 

other words, the inherent noise of the laser ¢an induce dynamic instabilities 

which can literally run wild under certain feedback conditions. Two dominant 

factors are responsible for these instabilities. 

The first factor is related to the mode solutions depicted in Fig. 5.27. Under 

certain conditions, the two intersecting curves can run tangent to each other 

as demonstrated by mode +1 with weak feedback (at the zero crossing), or 

mode —1 with strong feedback (at the extreme of the sine wave). In such cases, 

the resonance condition is not well defined making the exact position of the 

mode extremely sensitive to carrier-induced fluctuations in the round-trip phase. 

The random positioning of the mode also affects the threshold gain, which can 

lead to sporadic mode hopping if other solutions have similar threshold gains. 

The second factor involves the external round-trip delay of the feedback field 

relative to the recirculating mode. This time-delayed reinjection of power and 

phase fluctuations can accentuate the instability of the laser considerably. The 

net result is that external feedback can affect the noise, linewidth, and dynamic 

properties of single-frequency lasers very dramatically. Certain levels of feedback 

and delay can result in self-pulsations, very large linewidths, or large enhance- 
ments in the low-frequency noise. 

Experimentally, five distinct regimes of laser performance under feedback 

have been identified [16]. These are indicated in Fig. 5.28. Let’s begin at the 

bottom of the plot in regime I. For weak feedback and relatively short external 

cavities, C < 1 and only one mode for each original internal laser mode exists. 

In this regime it has been observed that the laser linewidth is narrowed for 

certain feedback phases and broadened for others. A similar decrease and 

increase occurs in the RIN level. Figure 5.27 can be used to explain this 

behavior. As mentioned earlier, when the two intersecting curves run tangent 

to each other, the mode position can fluctuate leading to an increase in 

linewidth. For mode +1 with weak feedback, the phase slopes of —A@,_, and 

Pers are parallel and an instability is expected. However, when the phase 
slopes are crossed like at mode 0 with weak feedback, the mode position is 

actually stabilized by the feedback, narrowing the linewidth and quieting 
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V: stable, narrow single line (intentional feedback) 

IV: coherence collapse 
- side modes at +@, grow out of control 
- line broadens for all feedback phases 

III: single, narrow line for all feedback phases 

Sex (AB) 
II: multimode 

- sensitive to feedback phase 
- narrow or split, broadened line 
- mode-hopping 

I: single mode 
- sensitive to feedback phase 
- narrow or broadened. line 

5 10 20 40 80 160 320 640 

Distance to Reflection (cm) 

FIGURE 5.28 Sketch of the five feedback regimes. The regime boundaries plotted here 

were measured on one particular laser and will vary somewhat, depending on the laser 

structure and bias level. For example, the arrows indicate the movement of the 

boundaries with increasing output power. After Ref. [16]. 

the laser. A more rigorous analysis [17] reveals that the laser linewidth 

varies inversely with the difference between the phase slopes squared,’ or 

x[d(Ad,_, + b.,)/d(wt,)] *. Using Eq. (5.178) to evaluate the derivatives, 

we can write the linewidth with feedback relative to the unperturbed linewidth 

as 
Avo ne ; (5.181) 

[1 + Ccos(2BL, + $,)]° 

where again $, = tan‘ « and C is given by Eq. (5.180). 
When the feedback phase is adjusted to 2BL, = 2nm — @,, the phase slopes 

are crossed and the linewidth is narrowed to Avy/(1 + C)*. When 28L, = 

2nm + x — ¢,, the phase slopes are parallel and the linewidth is broadened to 

Ay,/(1 — C)?. In between these extremes (for example at mode —1), the 

feedback phase approaches zero slope and the linewidth > Avy. The crossed 

° This relation holds as long as T,.; < Teo,, Such that the feedback field interferes coherently with 

the recirculating field in the cavity. 
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phase slopes configuration of mode 0 is often referred to as having “in-phase” 

feedback even though this is only true for ¢, = 0. Likewise, the parallel phase 

slopes configuration of mode +1 is referred to as having “out-of-phase” 

feedback. For large a, both configurations are closer to having a quadrature 

feedback phase. We can tune the dominant mode of the laser (e.g., mode 0) to 

either of these configurations by adjusting 28) L,, which has the effect of shifting 

all sinusoidal curves in Fig. 5.27 to the left or right by as much as we desire. 

Every x change in 2B) L, alternates the phase slope alignment from crossed to 

parallel. In any case, regardless of the feedback phase, when C < 0.05, the 

feedback modifies the linewidth by <10% and the laser can be considered 

sufficiently isolated for many applications. As C > 1, the narrowing and 

broadening increase until eventually Eq. (5.181) predicts an infinite linewidth 

for the out-of-phase feedback configuration (i.e., when the two phase slopes 

are perfectly tangent to each other). In reality, the laser mode splits into 

two modes [16, 18] and this defines the boundary between regimes I and II. 

For long external cavities, even relatively weak feedback can lead to C > 1 

and we enter regime IJ as illustrated in Fig. 5.28. Regime II is characterized by 

the same feedback phase sensitivity described for regime I. However, in this 

regime multiple solutions are allowed. Experimentally, the in-phase feedback 

configuration of mode 0 continues to provide a narrowing single line as C 

increases. Apparently when the linewidth is stabilized by. the crossed phase 

slopes, the laser favors this mode even in the presence of other mode solutions. 

For the out-of-phase feedback configuration of mode +1, the one mode splits 

into three mode solutions as the extremes of the sine wave penetrate across the 

straight phase curve with increasing feedback. The three modes of mode +1 

can be observed in Fig. 5.27 for strong feedback. Of the three modes, the 

zero-crossing mode generally has a higher threshold gain and hence does not 

appear in the spectrum. The outer two mode solutions however can be tuned 

slightly via 26)L, until they have identical threshold gains. For this feedback 

phase, the laser line splits into two closely spaced modes. Thus, the out-of-phase 

feedback configuration in regime II is characterized by a double peaked 

lineshape. 

As the feedback increases, the separation between the two modes increases 

and eventually reaches 27/t,,., (one full cycle of the sine wave). Thus, the overall 

effective laser linewidth can increase to Av ~ 1/t,,, [18]. Furthermore, the laser 

does not exist in both modes at the same time. Rather, it jumps between the 

two modes at a rate in the few MHz range. This mode hopping creates 

low-frequency noise that can be undesirable in some applications. However, 

for both regimes I and II, one might argue that intentional feedback with the 

proper feedback phase can improve the laser performance. In practice, main- 

taining the proper feedback phase can prove challenging and it is generally 

best to either keep C < 0.05 or stay away from regimes I and II entirely. 

As the two modes of the out-of-phase feedback configuration (mode + 1) 

reach a separation close to 27/t,,, with increasing feedback, the rate of jumping 

decreases and eventually stops altogether marking the transition to regime III. 
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The laser then settles down to one of the two modés. It is interesting to point 

out that the two outer modes originating from mode +1 have now shifted on 

the sine wave over to a crossed phase slopes, and hence stable, narrow linewidth 

configuration. In fact they are approaching this level in Fig. 5.27. As a 

result, the linewidth is narrowed for both in-phase and out-of-phase feedback 

configurations, making regime III independent of feedback phase. The boundary 

between regimes II and III has been found experimentally to be independent _ 

of external cavity length (as have all other higher feedback regime boundaries 

indicated in Fig. 5.28). While regime III offers stable, low noise, narrow single- 

line laser operation, it unfortunately spans only a small range of feedback 

levels. The feedback regime opens up for higher output powers [16], but is 
still relatively small. Designing an intentional feedback system with tight 

tolerances to maintain the feedback level in regime III is possible but not very 
practical. 

As the feedback level is increased still further, the laser enters a new regime 

which is characterized by complex dynamic interactions between the many 

relatively strong multiple external mode solutions. Rate equation models of the 

field and phase including the time delay of the feedback field reveal unstable 

solutions and chaotic behavior at these high feedback levels [19]. Indeed, 

experiments reveal linewidths so large that the coherence length of the laser 

drops below | cm (as opposed to tens of meters). For this reason, regime IV is 

referred to as the coherence collapse regime. The collapse begins at the 

transition to regime IV, where the normally small satellite peaks created by 

noise-induced relaxation oscillations (depicted in Fig. 5.22) grow larger and 

larger, eventually becoming comparable to the central peak and broadening 

the linewidth dramatically. It has been suggested that the transition between 

regimes III and IV occurs when the feedback rate k; ~ Wz [16]. A more refined 
theoretical estimate of the critical level of feedback is given by [20] 

2 2 Tr l+a 
Sextlerit = 16C2 (Kfz + yo x I (5.182) 

where we define a laser coupling factor, C, = t3/2r, (for Fabry-Perot cavities). 

The K-factor and yg are given by Eq. (5.53). The critical feedback level is 

increased for larger output power (via f%), smaller «, longer cavity lengths, and 

smaller laser coupling factors. The maximum linewidth and RIN level within 

the coherence collapse regime have also been theoretically estimated and 

experimentally verified. They are given by [19] 

AVlmux = Ser/1 + «2 /in 4, (5.183) 

a (5.184) 
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FIGURE 5.29 Spectral linewidth versus the amount of external optical feedback [18]. 

The roman numerals I-IV denote the regimes given in Fig. 5.28. In this example the 

assumed parameters are: 1,,, = 5 ns, t, = 9 ps, R, = 0.32, a = 6, and 5mW/facet out 

for an InGaAsP/InP laser (R>,., = 3 fox). (Reprinted, by permission, from IEEE Journal 

of Quantum Electronics © IEEE 1990). 



REFERENCES 257 

For a resonance frequency of 5 GHz and « = 5, we obtain a maximum linewidth 
of 30 GHz! However, for a typical damping factor of 101° s~! at a few milliwatts 
of output power, we obtain a RIN of —100dB/Hz. This level of RIN is 

large but not extreme. Thus, simple systems may be able to function adequately 
in regime IV as long as the linewidth is not of critical importance. Figure 

5.29 summarizes the impact on laser linewidth due to feedback as it is 

scanned through regimes I through IV [21]. The envelope superimposed 

on the measurements reveals the linewidth variation created by the feedback 
phase. 

Finally, at very high feedback levels when the external mirror becomes 

comparable to the laser’s mirror feedback, a stable regime can be observed. 

Regime V is usually achieved only when the feedback is deliberate and well 

designed. For example, monolithic complex cavities considered in Chapter 3 

fall into this category. An external mirror with good coupling to the laser cavity 

via an antireflection coating on mirror #2 can also reach feedback levels in 

regime V. The mode solutions in this feedback regime are stable with very 

narrow linewidths. If the mirror #2 reflection is small, it is sufficient to 

treat the entire laser cavity as a solitary laser with mode spacing given by 

2n/(t, + Tex,). The effect on linewidth is then simply calculated by including a 

fill factor in the modal gain. The expression for linewidth derived earlier (5.151) 

depends on I’?. Thus, all else being equal, we can describe the line narrowing 

in regime V by 

Av = bv] ee | (5.185) 
iolark ete, 

This result is not entirely different from Eq. (5.181) evaluated at the in-phase 

condition, since C oc n,,L,/NjaL,. With typical numbers such as L, = 300 pm, 

L, = 5 cm, fiz, = 4.2, and n,, = 1, the line narrowing is ~ (1/40)?. The external 

cavity can therefore reduce a 100 MHz linewidth down to 62.5 kHz! Combined 

with a frequency-selective filter to attain single mode operation, such deliberate 

external cavity feedback can be quite useful for applications demanding 

highly coherent light. As for unintentional feedback, it is unfortunately very 

easy to fall into regime IV with small reflections such as given by fiber 

connectors from moderate distances. Optical isolators that provide greater than 

60 dB of isolation are therefore often required in optical communications 

systems. 
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PROBLEMS 

Sel 

5.2 

SES 

5.4 

pote! 

5.6 

Det. 

5.8 

a 

What is the current relative to threshold in Fig. 5.1? 

Derive H(w) and P, for a mirror-loss-modulated laser instead of a 

current-modulated laser (i.e., assume d/(t)=0 and da,,(t) = a,,,e/). 

What is the major distinction between the two types of modulation? 

Derive H(w) assuming there are two competing modes in the cavity and 

that intermodal gain compression can be neglected. Under what condi- 

tions does the modulation response of the total photon density resemble 

the modulation response of either of the two modes separately (in other 

words, under what conditions can we ignore the division of photons into 
separate modes)? 

Derive P,/I, for a laser which has a series resistance, R, and a parallel 

shunt capacitance, C, across the diode such that not all of the terminal 

current, J,, makes it to the active region. Express the result in terms of 

an overall transfer function, Hg-(w)H(q), which includes RC parasitics. 

For a series resistance of 10Q and a laser with negligible damping and 

a relaxation resonance frequency of 20 GHz, determine the capacitance 

which reduces the 3 dB bandwidth of the laser to 90% of its value with 

no parasitics. 

By solving for the poles of Eq. (5.59), show that Eq. (5.60) is correct. 

Using Table 5.1, evaluate all terms in Eq. (5.49), and thus, verify Eq. 

nob): 

Using the analytic approximations for a step function in current, plot 

the power out of one end of a 300 um long, 3 ym wide cleaved-facet 

InGaAs/GaAs 3-QW buried-heterostructure laser vs. time in response to 

a current which abruptly rises by 10% from an initial value of twice 

threshold. The laser emits at 0.98 pm and has an internal loss of 5cm™', 

an internal efficiency of 80%, gain and recombination parameters as 

in Table 5.1 for an 80A quantum-well, and a confinement factor 

of Gy; 

For the transient response given in the example of Fig. 5.6(a), plot the 

frequency chirping vs. time assuming a linewidth enhancement factor of 5. 

For the in-plane device described in Table 5.1 and Fig. 5.6, a small signal 

sinusoidal current of varying frequency is applied at a bias current of 

twice threshold. The frequency response peaks at some frequency and 

then falls off rapidly. What is this peak frequency? By how much is it 

different from the relaxation resonance frequency? 
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5.10 

5.11 

5.12 

5.13 

5.14 

5.15 

5.16 

5.17 

DYNAMIC EFFECTS 

A 1.55 um InGaAsP/InP laser with a linewidth enhancement factor of 5 

is modulated from 1.5 to 4.51,,, creating an output power variation of 

1-7 mW. Assuming a trapezoidal output at 1 Gb/s with 0.5 ns linear 

transitions and 0.5 ns constant power plateaus at each extrema, plot the 

chirping for two periods of a 10101... sequence. 

A 1.3 ym InGaAsP/InP laser with a threshold carrier lifetime of 3 ns is 

biased at 0.9],,. At time t = 0 the drive current is suddenly increased to 

2I,,, What is the turn-on delay? Make whatever assumptions are 

necessary. 

Consider the noise emitted from an InGaAs/GaAs VCSEL parameterized 

in Table 5.1, at 100 MHz. 

(a) What is the RIN level for J = 21,,?\(Can P, be assumed small?) 

(b) What is the RIN level at I = 5I,,,? (Can P) be assumed large?) 

What is the expected linewidth for the two cases of Problem 5.12, 

assuming a linewidth enhancement factor of 5? 

Estimate the 3 dB modulation bandwidth for the two cases of Problem 

SB 

(a) Neglect transport effects. 

(b) Include transport effects wherein the lifetime of carriers in the SCH 

region due to relaxation into the quantum wells is 50 ps and the 

leakage out of the well can be neglected. 

(c) Include transport wherein leakage out of the well to the SCH region 

is additionally characterized by a lifetime of 200 ps. 

Verify Eq. (5.145). If the normalized fringe visibility decays exponentially 

and is equal to 0.2 at a time delay of 3 ns, what is the linewidth of the 
laser? 

In Fig. 5.26, estimate uw, near 2.5mW of output power. From this 

determine the feedback level f,,, using the VCSEL parameters in Table 

5.1, assuming that all of the light is coupled out of mirror #2, and that 

we are well above threshold. Use a VCSEL cavity length and group 

index of 1 um and 4.2, respectively. Also express the feedback level in 
decibels. 

Estimate the substrate thickness of the VCSEL in Fig. 5.26, assuming a 

constant voltage of 3 volts above threshold, a thermal impedance of 

3°C/mW, a wavelength shift of 0.08 nm/°C, a substrate—air reflection of 

32%, and a substrate group index of 4.2. : 
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5.18 The intensity feedback from the end of a fiber is 4% and about 

one-quarter of this is coupled back into the lasing mode (excluding 

transmission through mirror #2) in a 300 um long cleaved-facet 1.55 um 

in-plane laser. 

(a) Plot the feedback parameter, C vs. L,, the fiber length (n,;,., = 1.45), 

for « = 0, 2, 4, 6, up to L, = 1 km. 

(b) Plot the linewidth narrowing and broadening factor applicable in 

regimes I through III vs. C for 0 < C < 10. Discuss what really 

happens near C ~ 1. 



CHAPTER SIX 

Perturbation and Coupled-Mode 

Theory 

6.1 INTRODUCTION 

This chapter is the first of three that focus more on the electromagnetic 

aspects of lightwave propagation, particularly as applied to diode lasers 

and related photonic integrated circuits. In this chapter we introduce 

the powerful perturbation and coupled-mode approaches to approximately 

solve very complex problems, which otherwise might only be addressed 

numerically. 

In order to use these approaches we generally must know at least some of 

the eigenmodes of a relatively simple waveguide configuration. Then, the trick 

is to express the solution to some perturbed or more complex configuration in 

terms of this original basis set of eigenmodes. As we shall see, by using the 

orthogonality relationships amongst the original basis set, it is possible to derive 

some general formulas that are helpful in solving specific problems. The 

usefulness of these formulas derives from the fact that they only involve physical 

dimensions and some of the original basis functions. 

To get started, we refer back to Chapter 2 to recall a convenient 

form for the electric field, &, of some waveguide eigenmode. For mode m, 

then, the electric field as a function of space and time, Eq. (2.18), can be 

written as 

BX V, Z, t) = bE om U n(x, yen” Pm), (6.1) 

where @; is the unit vector along the ith coordinate (giving the polarization 

direction), Eo,, gives the magnitude of the field, and U,, is the normalized 
‘transverse mode shape for mode m. For convenience, we can also combine the 

polarization into U,,, so that U,, = ¢,U,,. Thus, making use of the orthogonality 

262 
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between eigenmodes, we have 

| eA on, (6.2) 

where 6,,, is the Kronecker delta function, which equals unity for m = n and 

zero Otherwise. (For orthogonal polarizations the dot product also gives zero, 

even for m = n.) Orthogonal modes of a uniform waveguide do not interact. It 

is also worth mentioning that in the normal course of solving a waveguide 

problem, one finds that the eigenfunctions U,, provide a complete set. 

Given that the U,, form a complete set, we can express an arbitrary field in 

the vicinity of a waveguide by a normal-mode expansion of all of the waveguide 

eigenmodes (including unguided radiation modes). Thus, 

E(x, y, Z,t) = )) EX; Y, Z; 0), (6.3) 

where the amplitudes of the various terms in the summation are given by Eo, 

in Eq. (6.1). Both Eqs. (6.1) and (6.3) are solutions to the wave equation, 

V7E + &(x, y, z)ke& = 0, (6.4) 

where é(x, y,z) is the relative dielectric constant, and ky is the free-space 

propagation constant for the medium of interest. For a single mode of a 

waveguide, we can also use Eq. (6.1) in (6.4) to obtain a wave equation for the 

transverse mode profile, U: 

V2U + [e(x, y, 2)k2 — B2]U =0, (6.5) 

where we have used V*& = 07&/0z? + V7-é. 
Although the higher order modes of even a simple waveguide may be 

complicated, it is fortunate that we need only know the details of at most two 

modes for all of the discussion to follow in this chapter. In fact, only one mode 

must be characterized for many problems. 

6.2 PERTURBATION THEORY 

6.2.1 Uniform Dielectric Perturbations 

Many real waveguide structures involve a slight perturbation from a mathe- 

matically more simple structure, for which the eigenmode shapes, U,,, and 

propagation constants, f,,, are known. The perturbation can usually be 

expressed in terms of a change in relative dielectric constant, Ae, which for 

generality can be complex and/or periodic along z. 
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If we replace ¢ by ¢ + Ae in Eq. (6.4), we most generally must assume that 

Eq. (6.3) must be used to'represent the perturbed field. However, first we 

consider sufficiently weak perturbations where scattering to other modes can 

be neglected. This might occur most easily in a single-mode guide. Also, we 

assume Ae is uniform along z for this first example. Thus, in response to 

e>e+ Az, let B ~ B + AB, and U > U + AU in Eq. (6.5). That is, 

Vi(U + AU) + [(e + Ae)kj — (B + AB)*](U + AU) = 0. (6.6) 

Multiplying this out, and dropping the unperturbed transverse wave equation, 

which equals zero, and the second-order perturbation terms, we are left with 

V2AU + ek2AU + Ack2U — 2BABU — BAU = 0. (6.7) 

Now, we introduce a technique that we shall use again and again in this 

chapter to simplify complex expressions: 

Multiply by the complex conjugate of the transverse mode and integrate over the 

cross section. 

In later cases, modal orthogonality will help to remove many of the unwanted 

terms. In this case, we obtain 

apap | IU? dA = | ackgiur? a4 

eh | [(V2AU)U* + ek2AUU* — B2AUU*] dA. (6.8) 

As shown in Appendix 14, the second term on the right is negligible, provided 

that both AU and U vanish at infinity and that the unperturbed ¢ and B are 

mostly real. This indicates that the small change in the transverse mode shape, 

AU, due to Ae will have no effect on the propagation constant to first order. 

Thus, we fortunately do not have to worry about how the changing mode shape 

will change the averaging, at least for this first-order approximation, and we 

only need know the original unperturbed transverse mode. 

Then, solving for Af, we have the desired perturbation formula 

[ aetaio aa 
Ap = (6.9) 

2p for dA 

" If U is normalized according to Eq. (6.2), the denominator integral is just unity. 

Usually, the index perturbation is,limited in lateral extent, and it may even be 
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constant over some range. In these cases the integration is easily performed. It 

is important to keep in mind that all quantities, except for the actual 

perturbation, Ag, are for the original unperturbed problem. Below we consider 

the example of adding a quantum-well active region to a simple three-layer slab 

waveguide to form a more complex SCH-QW laser. 

6.2.2 Quantum-Well Laser Modal Gain and Index Perturbation: an Example 

The addition of a quantum well to a simple three-layer slab guide is an example 

of a relatively easy problem to solve using this perturbation theory. This 

approach gives a quick and familiar result for a relatively complex, and certainly 

technologically important, problem. 

Figure 6.1 schematically shows the problem at hand. Again, Eq. (6.9) requires 

only the unperturbed transverse eigenmode, U(x, y), and propagation constant, 

f, in addition to the actual perturbation, Aé = Ae, + jAe;, which in this case is 

complex. The integration is limited to the area of the active region, A, since Ae 

is zero elsewhere. Expanding Af in terms of the real effective index and modal 

gain perturbations, and expanding Aé in terms of its real index and gain 

components in the active region, 

A ; ,2n, | (ans+i7#4)iur? a4 
2nAn kay {Gs ko 4n 

A 2 2p ivieaa 
AB (6.10) 

Solving for the modal gain and effective index perturbations separately, then 

“ada |U|2. dA 
A es, 

= ere 

fur dA 
(Ixy = (6.11) 

NWA 
SCH 

Waveguide ae ee 

WX 

FIGURE 6.1 Quantum-well laser schematic wherein the active layer is considered to be 

the perturbation. 
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and 

=T,,An,, (6.12) 

fier dA 

where we have assumed that the gain and index perturbations are constant 

over the active region at g, and An,, respectively. Again, if U is properly 

normalized, the integral in the denominator equals one. 
With reference to Appendix 5 and Chapter 2, we see that Eqs. (6.11) and 

(6.12) are the same expressions as derived there for the modal gain and effective 

index increase for such a waveguide configuration. 

\ 

6.3  COUPLED-MODE THEORY: TWO-MODE COUPLING 

By introducing index and loss perturbations along a waveguide it is possible 

to facilitate a coupling between_basis modes, which, of course, are orthogonal 

without any such perturbation. Considering the basis set of an isolated uniform 

waveguide, the perturbation usually has to have some periodicity along the 

propagation direction to cause such a coupling, since the propagation constants 

of the two uncoupled modes are different. An important practical example is a 

grating which has a period such that scattering from one waveguide mode 

couples coherently to another counterpropagating mode. 

On the other hand, if two identical uniform guides are brought together so 

that their unperturbed degenerate modes overlap, the existence of the index of 

one guide will perturb the mode of the other such that coherent coupling results. 

This is called a directional coupler, since only modes traveling in the same 

direction with about the same velocity can couple. More generally, periodic 

index perturbations can be added to coupled waveguides to provide more 

complex couplers. In what follows, we shall first consider simple gratings in a 

single waveguide, then the coupling of uniform waveguides, and finally, the 

so-called grating-assisted coupling between two waveguides. 

6.3.1 Contradirectional Coupling: Gratings 

6.3.1.1 General Theory Initially, we consider the coupling of two identical 

modes of the same waveguide propagating in opposite directions. Such coupling 

is obviously important in reflecting a particular mode within a laser cavity, for 

example. With this assumption and limiting the discussion to index-guided 

structures where the phase fronts are perpendicular to the axis of the guide, we 

can express the net field as the sum of the two identical counterpropagating 
‘ modes. That is, using Eqs. (6.1) and (6.3) 

E(x, y, 2, t) = U(x, y)[Epet" ™ + EyeXor* 7, (6.13) 
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where E, and E, give the amplitudes of the two counterpropagating modes. 
Now, we plug Eq. (6.13) into the wave equation (6.4) with an assumed 

perturbation, ¢ — ¢ + Ae(z). We let Ae be z-dependent, since we suspect that 

this will be necessary to provide the desired coupling. If there is coupling, 

then the amplitudes E, and E, will vary with z, so the full wave equation 

(6.4) is needed. However, if we assume that the coupling will be weak, the 

amplitudes should vary relatively slowly. That is, we will be able to drop. 

terms containing their second derivatives in the expansion of the wave 

equation if the coefficients are not large. Also, for generality we allow a small 

AU, although we suspect that it will not show up in the final result, in 

analogy with the perturbation result of Section 6.2.2. 

Observing that the unperturbed ¢ and U will generate terms which satisfy 

the unperturbed wave equation and dropping the second-order terms in the 
perturbations as well as the second derivatives, we are left with 

—2jp(U + au) Ef gaits + 2jp(U + au) elt 

= pty + (ekg — B?)AU] ee + E,e#?] 

— Ac(z)k§ ULE ,e ? + E,e*7]. (6.14) 

We now dot multiply by U* and integrate over the cross section. Then, we 

see that the first term on the right is zero according to Appendix 14, as was 

the case in Eq. (6.8) above. Next, we recognize that the terms containing 

AU(dE;/dz) are really second-order terms and are negligible in comparison to 

the others. Finally, we divide by —2jf | |U|? dA, to get 

Ae(z)|U|* dA dE; ye aE | 
dz dz 

2 

b oibz a8 [E,e" 7°? + E,e**] (6.15) 
fivraa 

Note that if Ae(z) were uniform along z, we would be left simply with the 

perturbation formulas for both forward and backward travelling waves inde- 

pendent of each other, since dE,/dz = —jABE,, and dE,/dz =jABE,, in 

that case. Any dc component in Aé(z) has exactly the predicted effect of 

uniformly changing the propagation constants by Af. However, to couple 

forward to backward waves and vice versa, it can be seen that Ae(z) must 

contain factors exp(+2jfz). 
More generally, we allow Aé(z) be a complex spatially periodic function 

with possibly a nonuniform cross section. Thus, Fourier analysis can be 

applied to give 
Ne pret Ae (xeyje 2, (6.16) 

1#0 
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where 27//A are the various space harmonics of the arbitrary periodic 

perturbation of fundamental period A. Using this in Eq. (6.15), and looking for 

possible solutions that couple forward to backward waves and vice versa, we 

identify terms which could provide similar exponential factors on each side of 

the equation for all z. That is, 

} Aes (x, y)[Ul? dA 
dE Cm —j ko F pipet ass F (6.17) 

dz 2p | \Ul2dA 

and the comparable equation for dE,/dz from the remaining terms, 

Ag_ (x, y)|U|? dA 2 I 

Ss ery D Fore ser ae | (6.18) 
2 

de | |U|2 dA 

From both Eqs. (6.17) and (6.18) we see that the condition, 

2n 4nn 
I— a 2Bp= ; 6.19 ry B 1 (6.19) 

must be met for dE,/dz or dE,/dz to have the same sign over some distance, 

or put another way, for coherent phasing of the coupling. All other terms can 

be neglected, since we are only interested in the net effect on E y and E, over 

a distance of several wavelengths or more. That is, the differential equations 

(6.17) and (6.18) would not provide for any net change in E, and E, vs. z 

unless Eq. (6.19) is satisfied. Equation (6.19) indicates that for a good reflective 

grating, the period of the index perturbation, A, should be some multiple, /, 

of A/2n. This is called the Bragg condition. Figure 6.2 illustrates a waveguide 

containing an index grating for forward to backward wave coupling. 

Before continuing to find solutions to Eqs. (6.17) and (6.18), it is convenient 

to make some substitutions. As already suggested, the propagation constant at 

the Bragg condition is given by Eq. (6.19) with = replacing ~. More specifically, 

we let By =/x/A which also defines the Bragg wavelength, A)/f = 2A/I (note 

that higher orders of | allow us to use a longer grating period for the same /,). 
In addition, we let 

y | Aeaion pli? ad 
ko 

se [iviraa 
(6.20) Kit >= 



COUPLED-MODE THEORY: TWO-MODE COUPLING 269 

Se) NW se 
E(x, y, Z) 

v 

FIGURE 6.2 Waveguide containing index grating for contradirectional coupling. The 

relative dielectric constant (square of index of refraction) varies periodically along z 

about some average value, é, so that reflected components add in phase. 

As before, if U is normalized according to Eq. (6.2), the denominator drops 

out. It is also important to remember that Ae,, are Fourier coefficients as 

given by Eq. (6.16), not the actual amplitude of the index perturbation. For 

example, with a perturbation of de cos(2mz/A — @) two terms would result 

from Eq. (6.16) for 1 = +1, each with a magnitude, Aeg,_ ,, = de/2. That is, 

we can expand the cosine to find 

Ae(x, y, z) = —ey p-ibpitaninyz 4 285 Y) 5i65-i2Kin)z 

= Ag_ (x, yer" + As, (x, ye 2: (6.21) 

Thus, we can use Eq. (6.21) and de(x, y) = 2n,6n,(x, y) in Eq. (6.20) to write 

the coupling coefficient for the cosinusoidal dielectric perturbation with an 

arbitrary phase relative to z = 0. That is, 

“Tyy,(n,)e*, (6.22) 

where for the second equality, we have assumed a uniform grating perturbation 

over some lateral portion of the waveguide, for which I’,,, is the lateral grating 

region confinement factor, dn, is the magnitude of the assumed cosinusoidal 

index perturbation (half the peak-to-peak variation), and n, is the average index 

in the grating region. 

Finally, we let the detuning parameter 6 = 6 — Bo, so that Eqs. (6.17) and 

(6.18) become 

Z 

and 
a“ = jn yE,(ze” 7%. 

(6.24) 

Z 
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Equations (6.23) and (6.24) are relatively clear statements of the coupling 

between the forward- and backward-going lightwaves. They both indicate 

that the change in amplitude of one wave is directly proportional to the 

amplitude of the other, and that the proportionality involves a coupling 

constant, «,,, which depends upon the overlap of a periodic index perturbation 

and the modes’ energy density, as well as a dephasing factor which deviates 

from unity if the Bragg condition is not met. It is also worth noting from Eq. 

(6.20) or Eq. (6.22) that k_, = x for a real Ae(z) and f, and that this condition 

is still approximately true for waveguides with small gains or losses, i.e., B 

predominately real, as is usually the case. 

So now all we need to do is solve the coupled equations (6.23) and (6.24). 

Unfortunately, these equations are still not in a very convenient form for 

mathematical solution. The solution for the net electric field along the guide 

is given by Eq. (6.13) as a linear superposition of the forward and backward 

fields. We also can express this net field ‘in terms of two new z-varying 

factors, A(z) = E,(z)e~/**, and B(z) = E,(z)e!*”, so that we have, 

&(x, y, 2) = ULE/(z)e#* + E,(z)ei#?] = ULA(z)e~ 7 + B(z)ei7]. (6.25) 

The latter form combines both coupling and dephasing effects within the 

z-varying coefficients, A and B, since $B, = 2l/A is a constant for a given 

grating. 

Expressing E,(z) and E,(z) in Eqs. (6.23) and (6.24) in terms of A(z) and 

B(z), we obtain 

dA 
— = —jk,B — joA, (6.26) 
dz ¢ 

and 

Dae 
— = jK_,A + joB. (6.27) 
dz . 

These coupled differential equations can now be straightforwardly solved in 

the usual way by letting 

A = A,e "+ A,e”, (6.28) 

and 

B— Bien" + Boe (6.29) 

Plugging Eqs. (6.28) and (6.29) into Eqs. (6.26) and (6.27), and separately 

equating the coefficients of e’* and e °% (since the intermediate expressions 

must be true for all z) leads to relationships between A, and B,, and A, and 
Be, ee: 

Bae jK-1A, 
and Y 3 Fp : ‘ 6.30 

—o — jo, a —jo oe 
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as well as a solution for o given by 

Oi — Kya OF = Ko = 0". (6.31) 

where for the last equality we have made use of Eq. (6.22). 

For waveguides which contain gain or loss, B is complex, and therefore, so 
is the deturing parameter, 5. Thus, following previous nomenclature, we also” 

have 

6 = Ki —0-, (6.32) 

where 

4 Poe Oh; ml = = B— Bo= = 5 n (6.33) 

In cases where Aé(z) is complex, ie., where there is a significant periodic 

gain or loss, « is complex, and x_, 4 x7. However, Eq. (6.32) is still valid 

since this condition has not been used in its derivation. For simultaneous 

cosinusoidal index and gain perturbations over some region of the waveguide 

cross section, the derivation of Eq. (6.22) yields 

= 
kK = 

g 4/50) 

a ko 

where 0g, is the magnitude of the cosinusoidal gain perturbation in the 

grating region. Thus, Eq. (6.34) can be used in Eq. (6.32) and elsewhere for 

this case. 

Using Eqs. (6.28) and (6.29) with o = j,/6? — x? in the expression for the 
propagating electric field, Eq. (6.25), we observe four combinations of phase 

factors, one for each of the A and B coefficients: 

jbf= "LI Bo LAO =x): (6.35) 

The propagation constant of the grating, f,, therefore has four possible 

solutions at any given frequency, w, or equivalently, 6 = B — By = (@ — @p)/V,. 
Far away from the Bragg frequency (|6| > x), these solutions are +f and 

+(B — 2B ), which as shown in Fig. 6.3, are (a) the unperturbed forward and 

backward wave propagation constants, +f, and (b) grating-induced replicas 

of these propagation constants displaced by + 2z/A (for | = 1). Away from the 

Bragg condition, the two sets of solutions do not interact and the latter solutions 

never contain much energy (A, B, ~ 0). 

At the Bragg frequency (6 =0,@, = (c/n)(n/A)), the solutions are 

+(B + jx). That is, all field solutions propagate at + fo, but grow or decay at 

the rate x as they travel due to the coherent transfer of energy from one solution 
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@ = @)+0,6 

backward wave 

Stopband 

backward wave 

STeplicammumsd ~< So teplica:’ 
Ne’ B= 2n/A —B+2n/A*s 

— 2n/A ie ve By an/AB. 
\ 

FIGURE 6.3 An w—f diagram for the coupled f,-solutions to contradirectional coupling 

in a grating, with the uncoupled solutions denoted by thinner straight lines. Each of the 

grating-generated replica solutions (dashed) and ordinary forward and backward wave 

solutions (solid) correspond to one of the A or B coefficients indicated. The extent 

of the stopband in both w and‘ directions is also shown (where v, is the group 

velocity of the unperturbed mode). However, the complex B,-solutions which exist 

throughout the stopband are not shown. Finally, the scale of the stopband has been 

exaggerated somewhat, considering that x « z/A in order to satisfy the weak coupling 

criterion. 

forward wave 

to the other. In this case, the solutions interact heavily and all four A and B 

coefficients can have significant amplitude. Detuning to |6|=K, or @= 

Wo + v,k, the propagation constants become purely real and equal to + fo, or 

+n/A. Detuning further, the solutions split and approach their uncoupled 

values asymptotically. Thus, as illustrated in the figure, the coupling between 

the solutions creates a “stopband” for |6|<x«. Within this stopband, the 

solutions have complex propagation constants, the real parts remaining fixed 

at + . It is in this regime where an incident field can decay in the grating 

and eventually be reflected back out (hence the name stopband). 

6.3.1.2 Finite-Length Gratings with no Back Reflections Now, we are finally 

ready to look at some practical characteristics of a real physical problem. For 

example, consider the grating of finite length, L,, in Fig. 6.4. We assume a 

forward (+z-traveling) wave incident from the left that enters the grating 

at z=0, and divides into a net reflected backward (—z-traveling) wave 

emerging at z=0, as well as a transmitted forward wave at z=L,. Of 

course, if the grating contains gain or loss the sum of the transmitted and 

reflected powers will not equal the incident power. Within the grating the 

forward wave decays as more and more energy is coupled to the backward 

wave. The backward wave grows as it propagates to the left. We also assume 
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& 

o cosh o(L, — z) + j6 sinh o(L, - z) 

—jk_, sinh o(L, — 2) 

FIGURE 6.4 Grating of finite length. The forward wave decays as the backward wave 

grows. The backward wave is zero at z= L,, and a portion of the forward wave is 

transmitted. The functionality of A(z) and B(z) within the grating is also shown. The 

shaded areas indicate regions of lower index. 

no reflections beyond the grating, so the backward wave has no amplitude at 
Z= 1, 

g 

For this case of no reflection from the right side of the grating, we have the 

boundary condition, E,(z = L,) = 0, which requires that B(z = L,) = 0. The 

ratio of the amplitudes of the net reflected wave to the incident wave is defined 

as the grating reflection coefficient, 

hot E,0) _ BO) _ By + B, 

’ EO) AQ) A,+ A, 
(6.36) 

From the right-hand boundary condition at z=L, and Eq. (6.29), B, = 

—B,e 7s, Using this and Eq. (6.30), we obtain 

Spee K_,tanh éL, (6.37) 

1 + jd tanh Cin 

The tildas have been added to explicitly indicate that the coupling constant, x, 

detuning parameter, 6, and decay constant, o, can be complex. The reflectivity 

from the other side of the grating is given by Eq. (6.37) times e */o9, with kK, 
replacing K_, (the phase factor arises from the definitions of A and B in 

Eq. (6.25)). 
Implicit in the derivation is the assumption of a reference plane at z = 0. 

If the grating is unshifted (i.e., @ = 0 in Eq. (6.22)) and the index perturbation 

is real then, «_, is real, and we have a maximum positive deviation at 

z = 0, ie., a cosinusoidal space harmonic in Ae. (In this case, the grating has 
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FIGURE 6.5 Illustration of reference planes used to define z=0 and z=JL, in a 

finite-length grating. The coupled-mode equations assume the index profile has a Fourier 

component that varies as cos(2B9z — #). The first set of reference planes are drawn for 

¢ = —1/2 which aligns the z = 0 plane with an index down step of a square wave grating 

(these are the reference planes assumed in Chapter 3). The second set shifts the planes 

to the left for a more symmetric placement by setting @ = 0. 

real, positive, and symmetrical Fourier coefficients.) Equation (6.37) shows that 

at the Bragg frequency, the reflection coefficient has a phase of — 72/2 referenced 

to this plane. Figure 6.5 illustrates this choice of reference planes and its 

correspondence to a square wave index grating, for which the reflection phase 

is more obvious. That is, at the Bragg frequency, where all reflection com- 

ponents add in phase, we know that the reflection phase from a square wave 

grating must be zero referenced to an index down step. The first Fourier 

component of this grating has a zero crossing at this point and is a maximum 

one quarter-wave back. Thus, for a reference plane placed at this maximum of 

the first Fourier component, the grating phase would be — BA/2 = —72/2. 

More generally, the reflection phase, ¢,, of waves incident from the left is 

determined by —jx_, « —je~/* at the z = 0 plane, for a lossless grating at the 
Bragg frequency. For waves incident from the right, ¢, is determined by 

—jr,e” Poke oc —je*e™ Joke at the z = L, plane. These reflection phases are 
shown in Fig. 6.5 for two different choices of the grating phase, ¢, and a 

grating with L, = mA. When combining a grating with other elements, the 

symmetric reference planes are a convenient choice. To use them, we adjust the 

input plane to a cosine peak by setting ¢ = 0. However if L, 4 mA, the output 

plane will not coincide with a cosine peak if it is placed at L,. To retain the 

symmetry, we must shift the output plane slightly to create a reference plane 

separation of L,=mA. This is accomplished by adding a phase delay, 

e */8tr~Ts), to the reflection phase from the right. The total reflection phase 
from the right then becomes —je/*e~ 7/bofre~ 2J%lr—Ls) ~ _ joi where the 
approximation holds for L, ~ L,, or 6 = 0. In practice then, for any grating 

length, the reflection phase at the Bragg frequency can be set to —x/2 from 
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both sides of the grating. Away from the Bragg frequency and/or with gain or 

loss, the reflection phases remain symmetric (for L, ~ L,), but are no longer 
exactly equal to — 7/2. 

While our choice of reference planes is arbitrary, it is important to realize 

that our choice of L, is not, since it determines the reflectivity magnitude. 

Typically with in-plane lasers, L, corresponds to the physical length of the 

grating (i.e. where the uniform index stops to where the uniform index begins 

again). However, this may not always be the case. For example, in Figs. 6.4 

and 6.5 (and the gratings analyzed in Chapter 3), L, is A/2 longer than the 

physical length of the grating. The reason for this has to do with how the index 

outside the grating compares with the average index inside the grating. If there 

is a mismatch, additional reflections are created at the boundaries that can 

either enhance or reduce the overall grating reflectivity. In coupled-mode 

theory, this is approximately taken into account by modifying L,. In Fig. 6.5, 

each A/4 segment contributes a An/2 step. Thus, adding a mismatch of An/2 at 

a physical boundary should be roughly equivalent to increasing L, by A/4, as 

long as the mismatch reflection adds in phase with the grating reflections. In 

Figs. 6.4 and 6.5, the index on either side of the grating is An/2 larger than the 

average grating index. The two An/2 mismatches therefore effectively increase 

L, by A/2. In the case of long gratings and small mismatches typically 

encountered with in-plane lasers, such subtle modifications to L, are not 

important to consider. 

The power reflection spectrum of the grating, given by the absolute square 

of Eq. (6.37), is plotted on the left in Fig. 6.6 for different values of kL,. The 

curves have similar characteristics to those of Fig. 3.12, with a sin x/x spectrum 

for small xL, and the development of a well-defined transmission stopband for 
large «L,. The dashed curve tracks the |6| = x transition. Outside this transition 

point, (ie., for |d| >), the reflectivity drops off dramatically. Thus, the 

transmission stopband (or reflection bandwidth) of the grating can be char- 

acterized by ~2x. From the definition of the grating penetration depth given 

in Chapter 3, we observe that the reflection bandwidth is roughly the reciprocal 

of the penetration depth (L.,, ~ 1/2x). 
It may seem surprising that the coupled-mode formula given by Eq. (6.37), 

which has little resemblence to Eq. (3.52) derived from transmission matrix 

theory, leads to a nearly identical reflection spectrum (as revealed by the right 

plot in Fig. 6.6). It turns out that there is a correspondence. It is just obscured 

by the math. For the interested reader, Appendix 7 reveals this hidden 

correspondence between the two formulas. 
As in Chapter 3, the reflection parameter of interest is kL,. This can be 

realized in the present case by evaluating Eq. (6.37) at the Bragg frequency by 

using Eq. (6.32), 

7, = —jtanhxL,, (6 = 0) (6.38) 

and noting that for small KL,, |r,| > KL,. That is, x can be interpreted as the 

reflection per unit length, just as in Chapter 3. However, unlike the result of 
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FIGURE 6.6 The left plot shows the power ‘reflection spectrum of the grating for 

four different values of kL, vs. the detuning parameter, 6 = B — By = (@ — @o)/Mo° 

(x/A)(",/n), where A = A/2n. Exact and coupled-mode results are indistinguishable on 

this scale. The right plot shows the percent error in transmission at resonance calculated 

using the coupled-mode formula. For example, if the exact result predicts R, = 99%, 

then a 10% transmission error would correspond to a coupled-mode prediction of 

R, = 98.9%. 

Chapter 3 discussed in the caption of Fig. 3.12, the coupled-mode prediction 

is characterized only by the product «L,, independent of whether x is small or 

large. In fact, for large perturbations (large x, and more significantly, large 

reflection per half-period, 2r, using the jargon of Chapter 3), the coupled-mode 

result begins to break down even for small «L,. However, even for interface 

field reflectivities (1.e., An/2n) as high as 18% and KL, = 4, Fig. 6.6 reveals that 

the error in transmission at the center of the stopband is still less than 10%. 

Figure 6.6 also shows that the range of interface reflectivities and KL, used in 

typical VCSEL semiconductor DBRs would lead to transmission errors of + 1% 

if the coupled-mode formula (6.37) were used. Thus, coupled-mode theory still 

works surprisingly well even in this regime. However, in practice the termina- 

tions used with VCSEL mirrors are far from the average index of the DBRs, 

and this ultimately makes the coupled-mode formula impractical for such 

applications. In such cases where the terminations have a very different 

index (a DBR terminating in air, for example), the analysis at the end of 

Appendix 7 can be used to determine the peak reflectivity; however, the 

reflectivity spectrum must be calculated numerically using the transmission 

matrix techniques introduced in Chapter 3. 

Other important grating relationships useful for DBR and DFB lasers may 

also be found in Chapter 3. For example, the reflection for small KL, is given 

‘ by Eq. (3.55), and the grating effective reflection plane spacing (or penetration 
depth), L.,,, is given by Eq. (3.59). 

\ 
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The transmission through the grating in Fig. 6.4 is given by 

t, = E (L,) e ible — A(L,) e Bolg (6.39) 
E (0) A(0) 

The phase factors arise from how E, and A are defined relative to the full. 

electric field in Eq. (6.25). Using Eq. (6.28) for A(L,), the boundary condition 

Biz = L,) = 0, and Eq. (6.30) to relate the A;’s to the B,’s, we obtain 

sek 6 sech 6L, 

*  & + jé tanh GL, 
oe Bole, (6.40) 

The tildas have again been added to indicate the possibility of complex factors. 

Note that the prefactor for transmission is & instead of K_, as it was for 

reflection. This has to be the case because the transmission should not go to 

zero when the coupling goes to zero. In fact, for a lossless grating with x = 0, 

we see that o — jd and t, > e~/*"*, which is the simple expected transmission 
delay between the two reference planes. Also note that because the transmission 

only depends on the coupling through K,K_,, the phase of the grating relative 

to the reference planes, ¢, drops out (from Eq. (6.22)). So unlike the reflection 

phase, the transmission phase does not depend on the specific placement of the 

reference planes, only on the separation between. For example, at the Bragg 

frequency, the transmission phase is —xL,/A, which for L, = mA, reduces to 

—mmn, regardless of where we place the reference planes relative to the grating. 

However, if we separate the reference planes by L, # L,, then the phase factor 

in Eq. (6.40) should be replaced with e7 Pobre i%lr— Ls) ~ e~ Bolr (the approxi- 
mation is good for L, ~ L,). Finally, it should be noted that the transmission 

from the other side of the grating is identical to Eq. (6.40). 

6.3.2 DFB Lasers 

6.3.2.1 No Facet Reflections A DFB laser without any end reflections consists 

of a finite-length grating with gain. At threshold, the gain is sufficient to 

overcome internal and transmission losses and provide an output with no input. 

In terms of the previous section, the characteristic equation for such a laser 

can be obtained from the poles of r, or t,, and these can be obtained 

by setting the denominator of the grating reflection or transmission coefficient, 

Eqs. (6.37) or (6.40), respectively, to zero. Thus, the characteristic equation, 

which determines the threshold gain and wavelength, is 

G, = —joy, tanh 6,,L,. (6.41) 
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The symbols have been already defined, but for clarity we repeat at threshold, 

a2 4 $2 
OS Tm Oths 

Sen = Ber =F Bo, 

: Cer (6.42) 

Bs, = 2mn/ Ap and iy SS! ml/A. y 

Again, the fundamental quantities we are usually after are the threshold modal 

gain, <g)xy,,, and wavelength, 4,,. Thus, solutions such as those plotted in Fig. 

3.18 can be obtained numerically by plugging these definitions into Eq. (6.41). 

The coupling constant x is calculated from Eq. (6.20) for the specific dielectric 

grating perturbation involved. In practical DFB lasers a number of different 

configurations are used. Figure 6.7 shows a popular waveguide cross section, 

along with calculated values for x over a range of corrugation depths. 

Since the thickness of some layer is usually varied in typical semiconductor 

waveguide gratings rather than.the index over the layer as assumed in the above 

calculations, it is generally most convenient to first calculate the effective index 

as a function of z over a period of the perturbation..This is accomplished by 

using Eq. (6.9) repeatedly over the perturbation period. Then, this effective index 

variation is used as if the index perturbation were uniform across the waveguide 

cross section. Finally, Fourier analysis is used to obtain the space harmonic of 
interest. Having obtained the magnitude of this space harmonic, 6n, we can 

replace on, in Eq. (6.22) by én with T,,, = 1 and n, =n to obtain 

Ke, = —6n-et)#, (6.43) 

For a square wave corrugation pattern, the effective index alternates abruptly 

between n, and nz, implying that n(z) is also a square wave with peak-to-peak 

variation An = n, —n,. The fundamental cosine component of this square 

wave varies from peak-to-peak by (4/z)An which we can set equal to 26n, 

yielding dn = (4/n)(An/2) (see Fig. 6.5). Thus, for a square wave corrugation, 

k = 2An/A, which is the same result we found in Chapter 3 (see discussion 

following Eq. (3.56)). For other corrugation patterns, n(z) and dn must generally 

be calculated numerically, making this approach to determining the coupling 
constant less than ideal. 

The coupling constant has also been derived from a different standpoint. 

Instead of developing a coupling of waves, the mode is defined in terms of rays 

bouncing down the guide at some angle and with some effective width which 

takes into account the penetration into the cladding layers (see Chapter 7). The 

number of bounces per unit length can easily be determined from this. Next 

the grating perturbation is considered to be a diffraction grating with a plane 
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wave incident at some angle, which at every bounce diffracts some energy 

backward at the same angle as the incident ray. The amount of energy diffracted 

per bounce is characterized by the diffraction efficiency of the grating. The 

advantage to this approach is that a closed-form expression for the coupling 

constant can be derived which is in complete agreement with the numerical 

procedure outlined above. The expression for a three-layer guide is given by [1] 

2 Pd 
ng—n 1 1 ; 

, Where’ d.,,-=d+—+—. (6.44) 
aH | Yx3 

K = Gkya — 
2nd. rs 

The decay rates into cladding regions i=1 and 3 are defined as y,; = 

k)./n* — n2, and d is the width of the guiding region. The guide and cladding 
indices are, n, and n,,, n,3. The total height of the grating is 2a, and ky = 2n/A. 
Finally, G is related to the spatial Fourier coefficient of the grating pattern: (1) 

G = 1 for a sinusoidal variation, (2) G = 4/x for a square wave pattern, (3) 

G = 8/n? for a triangular sawtooth pattern, and (4) G = (4/z) sin x/x for a 

graded square wave, where x = 0 for no grading (perfect square wave) and 

x = 7/2 for complete grading (perfect sawtooth pattern), and in general, 

x = (2/2) x (fraction of graded material). For k)ja approaching unity, G 

generally becomes more complex than listed here. If a higher-order component 

of the Fourier spectrum of the grating pattern is used for coupling modes, then 

G would have to be modified accordingly. 

The coupling constant is shown in Fig. 6.7 as a function of the guide width, 

for a total grating height of 50nm. We see that there is an optimum guide 

width which becomes more peaked as the index step between the guide and 

cladding increases. By converting from a sinusoidal grating to a square wave 

K (cm) 

(0) 0.2 0.4 0.6 0.8 1 

Guide Width, d (um) 

FIGURE 6.7. Coupling constant for the fundamental TE mode as a function of guide 

width in a three-layer waveguide for three different values of the guiding index. 

Parameters assumed are: A = 1.55 um, n, = 3.17 (InP at 1.55 ym), 2a = 50 nm, and 

G = 1 (sinusoidal first-order grating). 
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grating, the coupling constant can be increased by 4/z ~ 1.27. Also, there is a 

linear dependence on grating depth, implying that very deep grooves can be 

used to obtain large x. In general, the curves in Fig. 6.7 can be scaled for 

different G and a. 
The closed-form expression for the coupling constant Eq. (6.44) can only be 

used if the effective index of the guide is known, which in general must be found 

using the techniques discussed in Appendix 3. However, if the guide is symmetric 

(n, = N,-; = 3), the effective index is given exactly by [2] " 

In(i + V7/2 
W=nzb+n2(1—b), where bxl— ee (6.45) 

In this expression, b is defined as the field confinement factor (i.e., the field 

instead of the field squared is used as the weighting function). As with I’, we 

can approximate b using the normalized frequency, V = kod./ nz — nz. The 
approximation in Eq. (6.45) produces less than 1.2% error in the effective index 

over all ranges of V. In fact, using Eq. (6.45) in Eq. (6.44), we would obtain 

curves almost indistinguishable from those plotted in Fig. 6.7. 

6.3.2.2 With Facet Reflections As indicated in Fig. 6.8, it is not uncommon to 

have facet reflections at the end of the grating in practical DFB lasers. 

Facet-1 Facet-2 

FIGURE 6.8 Progression of calculations to get net transmission and/or reflection from 
a grating with facet reflections. Any distances to the facet reflections are included 
in the phases of r, and r, for convenience. That is, reference planes are those of the 
grating. 

XK 
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As also indicated, this situation can be modeled using the scattering theory 
developed in Chapter 3. That is, since we have the reflection and transmission 

parameters of a symmetrical grating, we can describe the grating by a scattering 

matrix and include it within a Fabry-Perot resonator formed by the facet 
reflections. 

The grating and back reflector can be combined to get an effective reflector 

which together with the front reflector form a simple two-mirror resonator for _ 
which we can write a characteristic equation. First, we combine the grating 

and the back reflector assuming any propagation phase is included in r. 
Following Fig. 6.8, 

t2r 
resp =%g +—*-_, (6.46) 

1— rgl2 

and 

iy 
Lethe: aot =e #2 (6.47) 

go 2 

where f, is the transmission coefficient of facet 2. Equations (6.46) and (6.47), 

of course, are the same as Eqs. (3.20) and (3.21), although here we have included 

the phase of the reflections and transmissions relative to the grating reference 

planes in r, and r,, and t, and t,, respectively. Note also that with the reference 

planes of the previous section, the reflection from either side of the grating is 

r,, unlike the case in Chapter 3, where we used physical reference planes and 

the reflection from opposite sides of the grating had opposite signs (see Fig. 6.5). 

Now, we can use Eqs. (6.46) and (6.47) as the properties of a new effective 

back mirror, and write the net transmission through the entire structure. That is, 

i Uylors Eylyt. ier eae ; (6.48) 
PIF Lt =r, -— 4 | - 1,72) 

: a UL) ' 

The characteristic equation is again given by the poles, or, 

ryPot? 
5 (6.49) 

aar,)(L— 19r;) 

As before, this can be solved for the threshold gain and wavelength using the 

constituent relationships. For the simple case of no grating, we can set r, = 0, 

and Eq. (6.49) reduces to the Fabry-Perot threshold condition, Rift aul 

Alternatively, for r, =r,=0, it reduces to the standard DFB threshold 

condition, t, = oo. And for r; = 0 (r, = 0), it reduces to rar, = 1(ryrg = 1), 

which is the threshold condition for a laser with active mirrors. When solving 

for threshold, keep in mind that the phase delays implicit in r, and r, include 
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the round-trip distance between facet-1 or facet-2 and the nearest cosine 

maximum of the grating index variation (since we have chosen ¢ = 0 and 

L, = mA for our grating reference planes). 

6.3.3. Codirectional Coupling: Directional Couplers 

In this section, two different modes propagating in the same direction are 

considered. These may be (a) orthogonal modes of the same waveguide, or (b) 

modes of two, initially separate, waveguides. A dielectric perturbation can 

couple these two modes in either case. In Case (a), the index of the single guide 

is perturbed, usually in a periodic fashion, and in Case (b) each initially separate 

guide acts as a dielectric perturbation for the other. As indicated in Fig. 6.9, 

an example of Case (a) is TE to TM coupling in one guide; and an example 

of Case (b) is a directional coupler for modes of separate, but closely spaced 

waveguides. In either case, we can express the net field as 

E(x, Jy, z) ari E,(z)U,(x, ye 2? + E,(z)U,(x, ye ae7 (6.50) 

where U, and U,, and f, and f, represent the unperturbed solutions for the 

two uncoupled modes, and the E,’s give the amplitude of each component in 

the net field. . 
For coupling between the modes, we need to add a dielectric perturbation. 

For Case (a), we assume é(x, y, z) = €,(x, y) + Ae(x, y, z), where é,(x, y) is the 

unperturbed waveguide, and Aé(x, y,z) is the (possibly periodic) dielectric 

perturbation seen by both U, and U,. Referring to Fig. 6.10 for Case (b), we 

observe that Ag, acts as the dielectric perturbation for U,, while Ae, acts as 

the perturbation for U,. Hence, for this case, e(x, y) = €, + Ae, (x, y) + Ae,(x, y), 

where the latter two terms act as both waveguides and perturbations simul- 

taneously. The equations to follow are derived for Case (b). However, by setting 

Ae, = Ag, = Az in these equations, we obtain the results for Case (a) as well. 

U;, Bi 

= 

U;,B, Up, By U2, B, 

(a) (b) 
FIGURE 6.9 Codirectional coupling schemes. Uncoupled eigenmodes (a) in the same 
waveguide and (b) in different waveguides. : 
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Proceeding as before, we add the dielectric perturbation, write the new 
perturbed mode profiles as U; + AU;, and plug the assumed net field into the 
wave equation (6.4). After dropping out second-order terms (assuming f, ~ f3) 
and the unperturbed solutions, this leads to 

; dE dE 
2jB,U, —e-# + 2j8,U, —* eb 

dz dz 

= Ag,(x, y)kgU,E,e7 48? + Ae, (x, y)k2U,E,e7 27. (6.51) 

Additional terms containing AU, and AU, analogous to those appearing on 

the right side of Eq. (6.14) also exist. However, we have left them out of Eq. 

(6.51) anticipating that we will be able to set them to zero if we dot multiply 

by U? or U# and integrate over the transverse cross section, as we have done 

in every other perturbation problem (we go to the trouble of first defining 

perturbed mode profiles U; = U; + AU; and then setting the AU; terms to zero 

to prove that to first order, we only need to know the unperturbed mode 

profiles, U;, to estimate the coupling between modes). 

_ Performing the integration of Eq. (6.51) after dot multiplying by U* (the 

parallel case with U¥ will be the same except for permuted subscripts), we obtain 

246, Ft eit (1, |? dA + 2B) Pe wo | up U,dA 

= keke | aca U, fe dA + kobe 7 [seu ‘U: dA. (6.52) 

To go further, we must consider Cases (a) and (b) separately. However, in 

both cases we argue that the second term on the left side of the equation and 

the first term on the right side are negligible or unimportant for coupling. Then, 

we can proceed to calculate a simple expression for dE ,/dz. Following this, we 

can write the corresponding expression for dE ,/dz, which follows by multiplying 

Eq. (6.51) by U% and integrating. The justification for dropping the unwanted 

terms goes as follows for the two cases. 

Case (a): U, and U, are Eigenmodes of the Same Guide For this case, the second 

term on the left side of Eq. (6.52) is identically zero, since the unperturbed 

eigenmodes are orthogonal. The first term on the right side of Eq. (6.52) 

is not necessarily negligible, but it gives only the single-mode f-perturbation 

calculated earlier from the dc part of As, and no mode-coupling effect. In fact, 

we already know that Ae must be periodic along the z-axis to couple the two 

different f’s in this case, so this periodic portion will integrate to zero in this 

first right-hand term. 
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U,, B U2, By 

AE, = €&| — €, AE, = En — E, 
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SQ KAS QA Qa 

\ EN 
FIGURE 6.10 Cross-sectional schematic of directional coupler showing added index 

regions for waveguides which also serve to perturb the other waveguide. Eigenmodes 

and propagation constants refer to unperturbed values. 

Case (b): U, and U, are Eigenmodes of Two Separate Guides Figure 6.10 illustrates 

the overlapping fields in a directional coupler and the fact that the placement 

of guide #2 near guide #1 is the perturbation to be analyzed for guide #1. 

On the left side of Eq. (6.52), we argue that the first term is much larger than 

the second for weakly coupled guides, since there is no place in the cross section 
of integration where both modes have .coincidental large amplitudes. The 

coefficients of the integrals should be comparable. Put another way, we could 

say that since we choose to neglect the second term on the left side, the 

theory is only valid for very small overlap of the two modes quantified by 

J |U,|* dA» | U#-U, dA. (When this condition is not met, a superposition of 

the exact “supermodes” of the five-layer system is required to determine the 

net energy transfer from the vicinity of one dielectric stripe to the other. This 

will be discussed later.) 

To neglect the first term on the right side for case (b), we realize that the 

integration is limited to the cross section of guide #2, where according to the 

weak overlap assumption, U, must be very small, so the first integral on the 

right is indeed small. The second term survives since U, > U, over guide #1 

where the integration exists. Also, this term is still much larger than the second 

term on the left side, since kj E, > B, dE,/dz. 

With these arguments then, we proceed with the analysis of the directional 

coupler using only the leftmost and rightmost terms in Eq. (6.52). Thus, for 
guide #2 perturbing guide #1: 

dE 
2j8 4 Ca | iOMe dAv==ths Bema | squr-u, dA. (6.53) 

For guide #1 perturbing guide #2, an equation similar to Eq. (6.52) can be 

derived by dot multiplying Eq. (6.51) by U% and integrating. After dropping 
the small terms, 

dE, 
2B —> eet | |U,|2.dA = k2E,e~ ib [se.uru, dA. (6.54) 
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Or, after rearranging both, 

| sc.ut-u, dA 
dE k2 : 

oe = eye ae ? (6.55) 

: far dA 

and 

dE, k2 [s.u¥u, dA 

ai = ss oe hace (6.56) 

2 

[runes 

These are the basic coupled mode expressions for codirectional coupling. 

They show that unless Ae; contains some spatially periodic factor, 6, must 

nearly equal 6, for coherent coupling (monotonic growth of E;) over some 

distance. This is the case for uniform directional couplers. However, if 8, # B,, 

then Ae; must contribute the difference by including a periodicity. Such is 

generally the case in our Case (a) where U, and U, are unperturbed eigenmodes 

of the same guide, and it can be the situation in our Case (b) if the two coupled 

waveguides are different. 

In the case of B, # 6,, Ae; can be Fourier analyzed, as in Eq. (6.16), and 

Eqs. (6.55) and (6.56) can be modified to explicity show the z-dependence of 

Ag;, analogous to Eqs. (6.17) and (6.18). As in the case of contradirectional 

coupling, these modified equations give a requirement on the spatial period of 

the perturbation for coherent addition of the coupling. For the present 

codirectional coupling case, 

20 4 ie S 
cree ts Ee eu (6.57) 

As can be seen, this condition leads to a somewhat coarser period than in the 

reflective grating case. In fact, the period is generally tens of wavelengths long, 

since the difference between the mode effective indicies, n, — n,, is usually not 

so large. 

Also, in Case (a) there is no distinction between Ae, and Aé,, since there is 

only one perturbation of a single waveguide. Thus, the subscripts can be 

dropped in Eqs. (6.55) and (6.56) and future codirectional coupling results for 

analyzing this case. In what follows, however, we shall explicitly treat the slightly 

more complex Case (b), which generally requires the distinction of Ae, from 

Ae,. Of course, it also leads to the technologically important four-port 

directional coupler. 
Before moving on to the four-port directional coupler, we choose to rewrite 

the coupled-mode equations (6.55) and (6.56) in terms of the “normalized 
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amplitudes,” a;’s, introduced in Chapter 3. Using Eq. (3.2) then, we make the 

substitutions, ’ 

a,(Z)/ 2n, = E, Geo 
(6.58) 

a,(Z)./ 22 = E,(z)e 1”. 

In this case, the assumed total electric field may be written as, 

s 
é = 2n,a,U, t= a/ 2n,a,U>. (6.59) 

From Eqs. (6.59) it can be seen that the power flow in the positive-z direction 

is just |a,|* + |a|?, as should be the case for the normalized amplitudes. Note 
that the cross terms are negligible for the same reasons as given earlier. 

Plugging Eqs. (6.58) into Eqs. (6.56) and (6.57) and neglecting the difference 

between y, and 7, we find 

da 
55 = —jBp a, —jk,24), 

: ' (6.60) 
a . . 

as = —jB,a2 — jk 214), 

where 

K2 | (e, — ¢)Uf-U, dA 

Soy of es ; 

: far d An 
(6.61) 

K2 | (e, — 6, )US-U, dA 

roe : 
: | |U,|? dA 

and the integration is shown explicitly as only over the region of perturbation 

where Ag; = (¢; — €,) is added to form the additional guide as indicated in Fig. 

6.10. That is, G2 represents the cross sectional area of added index material to 

form guide #2, etc. Again, recall that the e’s are always the relative dielectric 

constants. Also, note that although the coefficient of K,;, kj/(2B;) = @/(2cn;), 

is linearly proportional to the optical frequency, the overlap integrals can 

decrease rapidly as the wavelength decreases; thus, x,; actually tends to decrease 

slightly with increasing optical frequency in a directional coupler. 

In lossless waveguides, Ae, and Ae, are real and the phase fronts of the 

modes are flat and perpendicular to the propagation direction, implying that 

both U, and U, are real functions. As a result, both x,, and x,, are real. This 
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remains approximately true for waveguides with small gains or losses, as long 
as Ae, and Ae, are predominantly real, as is usually the case. In such cases, we 

can use the real part of the perturbation in each guide to estimate x,, and k,. 

In addition, if the guides are symmetric, then k,, = K,, = K (for asymmetric 

guides we can still define an average k = ./K,7K,). 

Equations (6.60) are already in a convenient form for solution, so we proceed 

toward a general solution. To this end, we assume trial solutions, a, = a,)e /*«, 

and a, = dz,e /**' where a,9 and dy, are real constants independent of z and 

B, is some unknown propagation constant, presumably with multiple solutions, 

for the coupled waveguides. The general solutions for the a;,(z)’s will then be a 

linear superposition of all of the particular solutions. Plugging the trial solutions 

into Eqs. (6.60), and solving for B., we obtain 

b= ee (ee) KS is (6.62) 
2 2 

or 

B.=Bts, (6.63) 
where 

pa ffs and p(B) + KK}. 

We can also define a codirectional detuning parameter, 6 = (6, — f,)/2, such 

that s* = k,K,, + 6”, making it the codirectional analog of Eq. (6.31). 

With Eq. (6.63), the general solutions are of the form: 

a,(z) = e-#*[A,e** + Ae], 
re (6.64) 

a,(z) = e821 B, els? ar Berra 

and we are now ready for a real problem with real boundary conditions. 

6.3.4 The Four-Port Directional Coupler 

Figure 6.11 schematically shows a four-port directional coupler formed by two 

coupled waveguides of finite length, L. In fact, we can derive most of the desired 

directional coupler expressions without being specific about the length, but we 

will assume that the outputs are matched so that no reflections exist. This allows 

us to derive the general scattering parameters for the directional coupler, and 

from these we can add a wide variety of different boundary conditions that can 

be handled from the scattering theory. 

To get started, we let a,(0) = a,(0), and a,(0) = 0, and plug into Eq. (6.64) 
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210) WWW TOW it 
, = + a,(L) 

FIGURE 6.11 Four-port directional coupler showing a single input excited. 

to find that B, = —B,, and a,(0) = A, + Az. Next, we evaluate Eq. (6.60) at 

z = 0, and using Eqs. (6.63) and (6.64), solve for B,. We find that 

eee aa (iyy (6.65) 
2s 

Again using Eq. (6.64) this gives 

a,(z) = —j 24 a,(0)e~”* sin sz. (6.66) 
S 

Next, we solve for A, and A, using these same equations. This leads to 

a — jpz : Bo = By : 
a,(z) = a,(O)e COS Sz + j era sin sz |. (6.67) 

S 

Therefore, generally, by linear superposition letting the input at port #2, 

a,(0) = a,(0), we have 

a,(z) = (00s sz+j = sin x] S27 Ohsin s |e“, (6.68) 
S S 

and, likewise by symmetry, we can interchange subscripts to solve for a,(z), 

a,(z) = |- j = a,(0) sin sz + ax(0)(c0 sz —j =e sin se) [ew (6.69) 
S 

Figure 6.12 illustrates these normalized amplitudes vs. z for 8B, = B, and B, # B, 

under the initial assumption that a,(0) = 0. \ 
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By = By 
EI By - B, = 0.8(n/L,) 

2 2 
> a,| la, 

if 

0.5 

1.5 2.5 
z/L, 

FIGURE 6.12 Energy exchange between two coupled waveguides as a function of 

propagation distance for matched and mismatched propagation constants. 

In the simple case of identical coupled guides, 6, = 6, and s = ./k,,k 2, = 

kK. For a coupler of length L, Eq. (6.66) gives 

a,(L) 

a,(0) 

from which the length, L,, for full coupling from guide #1 to guide #2 is found 

to be 

2 

= sin? KL, (6.70) 

jenn (6.71) 

This is generally referred to as the coupling length. Odd multiples of the length 

given by Eq. (6.71) also provide full coupling, as indicated by Fig. 6.12. 

Viewing the directional coupler as a four-port network, as suggested by Fig. 

6.11, it is desirable to develop the four-port scattering matrix, so that the 

techniques of Chapter 3 can be applied. For the labeling given in Fig. 6.13, Eqs. 

(6.66) through (6.69) can be used to identify these coefficients by inspection. 

That is, 

0 1—¢? 0 —jec 

= | ea ca 0 —jc 0 ‘ 
ise ‘ iy , Terma wz) 

—jc 0 1—<¢? 0 
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eg (NEE WD 1 b\(L) 

0 YL) ONS z 

FIGURE 6.13 Schematic of four-port network formed by two coupled waveguides. 

Note that we have retained the use of a,(z) and bz) for the forward and 

backward waves in guide i, rather than) going to the standard “input” and 

“output” definitions in Fig. 6.13. To conform to the standard scattering theory 

jaron used in Chapter 3, we must use a, =a,(0), b, =b,(0), a, = b,(L), 

b, = a,(L), a3 = a,(0), b; = b,(0), a, = b,(L), and b, = a,(L). 
The general scattering matrix given by Eq. (6.72) can be combined with 

various boundary conditions to develop scattering matrices of more complex 

photonic integrated circuits. For example, consider the configuration shown in 

Fig. 6.14 where guide #2 has reflectors r; and rz at z=0 and z=L, 

respectively. These provide boundary conditions that create backward traveling 

waves, b,(z) and b,(z). In the present case, it can be seen that b,(L) = r4a,(L) 

and a,(0) =r,b,(0). After a little algebra, the scattering parameters for the 

resulting two-port network can be obtained. That is, 

Sz 

2 — jBL 2 Ty 2 ne os c*rge _ eae CT tant = Ce ; 

1 —r3r,(1 —c?)e~ 26% Vrs tall —e jen elas 
: = (Sak bead 

IE CP ray — cree Cor, enr 

1 —r3r,(1 — c)e~ 298% 1—r3r,(1 —c*)e~ 2/8E 

(6.73) 

6.3.5 Codirectional Coupler Filters and Electro-optic Switches 

6.3.5.1 B,~B, If two identical waveguides are brought into close proximity 

to form a directional coupler, the device tends to function over a broad 

bandwidth of input wavelengths. This is because the unperturbed eigenmodes 

will be the same and the dispersion properties of each component guide will 

be the same. Thus, phase-matched coupling will always occur. This kind of 

dispersion is illustrated in Fig. 6.15, where we have plotted the two B 

solutions of Eq. (6.62) as a function of optical frequency. The overlap between 
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a, =a,(0) 1 1 a, = b,(L) 

b, = b,(0) ! ! 7) = a,(L) 

0 L 4 

FIGURE 6.14 Two-port formed by placing reflectors at ports 3 and 4 of a directional 
coupler. 

the unperturbed eigenmodes will vary with wavelength, and this results in a 

change in the coupling constant, x, according to Eq. (6.61). This gives the 

gradual spreading of the two propagation constant solutions as x increases for 

longer wavelengths (lower optical frequencies). 

For a given coupling level, a length can be chosen for 100% coupling from 

one guide to the other at the operating wavelength. This is given by the coupling 

length, L,, in Eq. (6.71) or odd multiples thereof. If the wavelength is now 

changed, the net transfer would be less for wavelengths either shorter or longer 

than this according to Eq. (6.70). In fact, to make a wavelength-selective filter, 

it is common to use a device many coupling lengths long, so that as the 

peo B. 

FIGURE 6.15 Dispersion diagram for identical coupled waveguides near the operating 

wavelength. The operating radial optical frequency, wo, results in two propagation 

constant solutions displaced +x from Bo, the value of the uncoupled f for each guide 

at this point. 
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wavelength changes and x changes, the transfer fraction, Eq. (6.71), will vary 

sinusoidally. Thus, at one wavelength the device can have an odd number of 

transfer lengths, while at another it can have an even number, yielding either 

100% or 0% transfer, respectively. This kind of filter is useful for separating 

relatively widely spaced wavelengths, such as 1.3 ym from 1.55 ym, however, 

because x is a slowly varying function of wavelength, this approach is not 

effective in providing relatively narrow filter passbands. The quantitative details 

of the filtering action of such four-port directional couplers are given by Eqs. 

(6.68) through (6.72). These also allow for slight mismatche’ in the unperturbed 

propagation constants as discussed previously. 

A voltage-controlled switch or modulator can be constructed of such 

nominally identical coupled waveguides, if the device is constructed in electro- 

optic material. The III-V compound semiconductors are electro-optic, and 

thus, such devices can be compatible with diode lasers. Appendix 15 gives 

a brief introduction to the electro-optic effect. Without going into a myriad 

of details, suffice it to say that for certain orientations of electro-optic 

materials, the application of an electric field with a frequency much lower 

than that of the optical wave (from dc up to at least 100 GHz) leads to a 

change in the index of refraction for certain polarizations of the lightwave. 

Thus, by applying differing electric fields to the waveguides in a directional 

coupler the propagation constants can be changed slightly, so that 6, 4 p, 

and the coherence of the coupling can be reduced according to Eqs. (6.66) 

and (6.67). 

As an example of electro-optic modulation, Fig. 6.16 shows a vertical 

directional-coupler configuration which allows separate control of the applied 

low-frequency electric fields in each guide, along with a plot of the power 
transfer fraction |a,(L)/a,(0)|? from Eq. (6.66) for.a general directional coupler 

with L=L, and 5L,. As can be seen, for a directional coupler which 

or WV oN! fae 

-10 =3) 0 5 10 

(By — BL, 

FIGURE 6.16 Schematic of vertical directional-coupler electro-optic switch and example 
plot of power transfer vs. the normalized deviation of the index of one guide from the 
other. 

light in, a, 

\ 
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is one coupling length long, no transfer occurs between the guides when 

B, = By pa /3K, (6.74) 

since s has increased from x to 2x at this point. More generally, for a coupler 
of length L = mL,, the first null in transmission from one guide to the other . 
occurs when the mismatch is . 

(B2 — B,)L, = m/[(m + 1)/m]? — 1. 

Thus, as Fig. 6.16 illustrates, a longer coupler (larger m) requires less of a 
mismatch to shut off the power transfer. 

6.3.5.2 B, A, If the two waveguide constituents in a directional coupler 

are not identical, or if two dissimilar modes of the same waveguide are coupled, 

then a much sharper wavelength filtering action is possible. The conditions for 

coherent addition of any coupling were discussed in conjunction with Eqs. (6.55) 

and (6.56). There are several specific possibilities worth mentioning. Two cases 

have already been outlined in Fig. 6.9. In Case (a) some coarse periodicity in 

the perturbation was found necessary to couple modes with different propagation 

constants in the same waveguide. In Case (b), if the f’s are different, a 

modulation of the index will again generally be necessary. In both cases, Eq. 

(6.57) gives the relationship between the periodicity and the difference in 

propagation constants. However, in some cases the waveguides can be different, 

but due to their different dispersive properties, they can have the same 

propagation constant at some particular wavelength, even with no index 

modulation. Thus, this becomes a third case, Case (c), where a codirectional 

waveguide filter is possible. These three cases are summarized by the w—f 

diagrams in Fig. 6.17. 

To understand the filtering action of these cases more quantitatively, we go 

back to Eqs. (6.55) and (6.56) and Fourier analyze Ae as suggested thereafter. 

This generates a +2z/A term in the argument of the exponential, and replaces 

Ae in the integrals by the Fourier coefficients Ae,,. Now for the specific case 

illustrated in the top of Fig. 6.17, 6, > B,, and for phase matching we choose 

—2n/A in Eq. (6.55) and +2z/A in Eq. (6.56). Equivalently, we let 

2 
pe eG a (6.75) 

and replace f, in all of the equations to follow with £,. Thus, when we arrive 

at Eq. (6.66), s and f are primed, which denotes the use of Eq. (6.75) in place 

fel dane 
The use of Eq. (6.75) results in a relatively large crossing angle for the two 

effective propagation constants as shown in Fig. 6.17. Since the proximity of 
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B,(@o) = B\(@o) + = B. 

Cases (a) and (b) \ 

Bx(@o) = Bi(@o) pe 

Case (c) 

FIGURE 6.17 Dispersion characteristics for two classes of codirectional coupler filters 

in which two dissimilar modes are coupled. At the top, a grating perturbation is included 

to provide for phase matching at wy. Either two modes of a single guide, Case (a), or 

coupled waveguides, Case (b), can be used. At the bottom, Case (c), two different 

waveguide geometries are engineered to have identical f’s at wp» prior to coupling. The 

crossing regions are expanded at the right insets to show the pair of new £,-solutions 

resulting from the coupling. 

the two curves near Ww, determines the degree of phase coherence for the 

coupling, the large crossing angle suggests a relatively narrow filter band. In 

fact, this is the case. Figure 6.18 gives an example of the transfer function, 

|a,(L)/a,(0)|’, vs. the detuning parameter, from Eq. (6.66) using Eq. (6.75). 

Switchable or tunable filters result from the combination. of the above filters 
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FIGURE 6.18 Power transfer for two different transfer lengths in grating-coupled 

waveguides vs. the detuning parameter, 6 = (B, — B{)/2 = (@ — @o)/@o‘(m/A)(An,/An), 

where A = A,/An. The ratio of the group effective index difference, n,. —7,,, to the 

effective index difference, 7, —n,, for typical semiconductor coupled waveguides is 

An,/An ~ 3, which reduces the filter bandwidth accordingly. 

with electro-optic material. The application of a field in one guide changes its 

refractive index which changes the slope of its dispersion curve on the w—f 

diagram. Since the slopes of the two dispersion curves are similar and since the 

offset 27/A does not change, the intersection point, w@), changes by a much 

larger relative amount than the index (much like how the intersection point on 

a pair of scissors moves more rapidly than the motion of the blades themselves, 

particularly when the blades are near parallel). That is, the center frequency of 

the grating-assisted codirectional coupler filter can be tuned by a much larger 

relative amount than the index. A similar action takes place for Case (c) in Fig. 

6.17, since here also, the two uncoupled dispersion curves cross at a small angle. 

This enhanced tuning rate is in stark contrast to most filters, including the 

contradirectional grating filter, whose center or Bragg frequency tunes by the 

same relative amount as the index. 

To be more specific, for the grating-assisted codirectional coupler filter 

shown at the top of Fig. 6.17, where B, = 6, + 22/A for phase matching, we 

find that the center frequency and wavelength vary as 

me ae (6.76) 

in response to an index change in guide #2. The g subscript denotes the group 

index, which appears due to the frequency dependence of the indices. For Case 

(c) in Fig. 6.17, we get the same result, but via a different derivation. The tuning 
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enhancement quantified by Eq. (6.76) has been used in tunable lasers, as will 

be discussed in Chapter 8. ’ 

6.4 MODAL EXCITATION 

In the process of interconnecting various optical waveguide components 

together, we must constantly deal with the problem of determining how much 

power is transmitted and reflected at the junctions. To derive general expressions 

for this problem we return to the normal mode expansion, Eq. (6.3), which 

allows us to express an arbitrary excitation field, &, in terms of a superposition 

of the eigenmodes, &,,, of the new waveguide section being excited. Figure 6.19 

illustrates the problem schematically. For this exercise it is convenient to work 

in terms of the normalized amplitudes, since their magnitude squared gives the 

power flow independent of the impedance of the medium. Thus, we express 

eigenmode m of the waveguide to be excited as 

Em = jroo Ohl 64 [) ue = Zi, 0, ee (6.77) 

~ 

from which the power flow in the positive z-direction is given by 

; 

Pom = |Qm|? = In dA, (6.78) 
2nm 

provided the transverse mode function U,,, is properly normalized according to 
Eq. (6.2). 

According to Fig. 6.19, we assume the given arbitrary field is incident on 

our waveguide at z = 0. Using Eq. (6.3) then, 

8.0) = J En) =D) /2t1m am(OU (6.79) 

Ki yr \ 
& (0) \ 

WS 
< 

= 0 

. FIGURE 6.19 Illustration of waveguide excitation with some arbitrary field at z = 0. 

This can be expressed in terms of a linear superposition of all the eigenmodes of the 

waveguide (including radiation modes). \ 
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Now, we dot multiply by Uj and integrate over the cross section. That is, 

| U#-8(0) dA = |p 2M 4p (O)UF-U,, dA. (6.80) 

Next, we recognize that all terms in the summation except the /th term are 

zero, and solve for the desired eigenmode amplitude at the entrance to our 

waveguide, a,(0). 

a0) = Us*-&(0) dA. (6.81) Al J2n 

We can apply Eq. (6.81) for whatever eigenmode number, |, we desire. 

Fortunately, we only need to know the transverse mode function of the mode(s) 

in which we are interested. 

To illustrate how to use Eq. (6.81) consider the common situation shown in 

Fig. 6.20, which depicts the joining of two dissimilar waveguides. As shown, 

power P,, is incident from guide 1, and some fraction P,, is transferred to the 

fundamental mode of guide 2. Other modes may also be excited, but we are 

not interested in them initially. (If the guide only supports a single guided mode, 

then the other modes of the summation are radiation modes, and these would 

generally be of little interest some distance away.) 

The most difficult problem in this and many similar problems is to determine 

the excitation field on the right side of the boundary (region 2). Once it is 

determined, we can just plug into Eq. (6.81) for the desired a,,. Unfortunately, 

it is a rather complex problem to determine &,(0) rigorously. Fortunately, for 

weak dielectric waveguides, it has been found that the field on the right side of 

the boundary is similar in shape to that on the left, but it is reduced in amplitude 

by some transmission coefficient. Also, in this case the transmission coefficient 

can be well approximated by using the waveguide effective indices in a plane 

Radiation modes 

\ ! | 

NK eee W WX Zz 

FIGURE 6.20 Illustration of butt-coupling between two waveguides and the excitation 

of the fundamental eigenmode of the right-hand guide by the left-hand guide. 
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wave formula. Taking all of this on faith, then, 

POD A 20 (6.82) 
where 

oe 4n,n, 

(i, +.) 

Thus, \ 

E(0") © /2n5ta,o(0 Uj, (6.83) 

where n}, is some effective impedance for the excitation field in region 2. It 

would be some weighted average of the impedances of the modes to be excited. 

Applying Eq. (6.81), we find 

2, Py(0*) (6.84) 

P20") 
Ax9(0*) 

a,0(0) 

2 
\ 

t | Ute-Uro dA 

where we have neglected the difference between 72) and 43, which is a good 

assumption if most of the energy goes into mode 0 or if the impedances of the 

primary modes excited are not so different. More generally, we could solve for 

P,o/P; to obtain the excitation of the mth mode. ' 

6.5 CONCLUSIONS 

In this chapter we have introduced perturbation and coupled-mode techniques 

to obtain closed-form analytic solutions to relatively complex problems. 

These problems are limited only by the requirement that the dielectric 

perturbation, which creates a change in propagation constant and/or coupling 

between different modes, is small. Thus, the techniques ‘are very powerful in 

analyzing many important practical problems. Even in cases where the 

perturbations are sizable, the techniques are still useful in obtaining approximate 

results as well as in determining the dependencies on the various parameters of 
the problem. 

For larger perturbations, where the validity of the perturbation and coupled- 

mode approaches are not good, it is generally necessary to attack the entire 

problem, usually using some numerical technique. In many cases, however, 

exact solutions are possible using purely analytical techniques. For example, 

the case of the quantum-well placed within a separate-confinement waveguide 

discussed above, is really a five-layer waveguide problem, for which analytic 

solutions exist. In fact, using the techniques to be introduced in the next chapter, 

waveguides of many layers can be analyzed. 

Another important case that can be solved exactly is the directional coupler, 

which can be viewed as a different kind of five-layer waveguide. As indicated 
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FIGURE 6.21 Directional coupler viewed in terms of the modal interference model. Input 

excites superposition of first even (solid) and odd (dotted) eigenmodes of the five-layer 

system. Over the coupling length the even mode travels some number of guided 

wavelengths, but the high-phase-velocity odd mode travels half a wavelength less. 

in Fig. 6.21, the first even and odd eigenmodes of the five-layer region can be 

superimposed to approximate the eigenmode of the individual three-layer guide 

which excites the coupled region. The phase velocities of the odd and even 

five-layer eigenmodes are different, so that after some propagation distance, L,, 

their superposition can result in most of the energy being aligned with the 
second high-index region, which in turn, can excite the second exit guide. Thus, 

most of the problem reduces to calculating the excitation of the different sets 

of eigenmodes at the boundaries between the uncoupled and coupled regions. 

Section 6.4 can be used to address this issue. 
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PROBLEMS 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

A symmetric graded-index slab waveguide has a Gaussian transverse 

mode and an effective index of 3.5. Half of its energy is contained in the 

central 300 nm of the guide at 1.55 um. 

(a) What is Af, if a 150 nm wide region from the center to one side of 

the mode is changed so that the index changes by 0.02? 

(b) If the changed region of (a) is only. inserted periodically along the 

waveguide length with a period of A/2n and a 50% duty cycle, what 

is kK for the resulting grating? 

(c) How long must the periodically perturbed waveguide section be for 

a power reflection coefficient of 0.5? 

Derive an expression for the effective reflection plane separation from a 

grating’s start, L.,,, using coupled-mbde analysis. 

Using the coupled-mode analysis, show that L,,, is also related to the 

energy decay length L, in a long grating. ‘ 

Using coupled-mode theory for the grating mirror, derive and plot the 

threshold modal gain vs. the detuning parameter, 6, for a DBR laser 

which has one cleaved and one grating mirror. The grating mirror 

also is terminated in a cleave with a relative reflection phase of ¢. Assume 

A = 1.55 um, no passive cavity section, an active length of approximately 

250 ym, an internal loss of 15 cm’ throughout, a grating k = 50cm“, 
and that a mode is aligned with the mirror Bragg condition at a 

wavelength 1.55 ym. Plot curves for ¢ = 0, 90°, and 180° with grating 

KL’s of both 0.5 and 1. : 

Show how a small propagation loss modifies the grating reflection and 

transmission coefficients. Express the results as the lossless expressions 

times multiplicative factors. 

Give an expression for the threshold condition (characteristic equation) 

for a quarter-wave-shifted DFB laser using coupled-mode results. Neglect 

any facet reflections. 

From the coupled-mode characteristic equation of a standard DFB laser 

with no facet reflections, calculate for the first two modes the threshold 

modal gain <g>,, and deviation from the Bragg condition, 5L, for 

(a) A 1.55 4m InGaAsP/InP DH laser with a kL =1 and a length 
L = 400 um. 

(b) An analogous quarter-wave-shifted DFB, as considered in Problem 

6.6, with the same grating and overall length. 

Assume the internal modal loss is 20 cm~'. Give the MSR for cases (a) 
and (b). 

\ 



6.8 

6.9 

6.10 

6.11 

6.12 

PROBLEMS 301 

For a passive grating section formed of 1.3m bandgap waveguide 

material clad by InP with a symmetric triangular grating formed on one 

side of the 1.3 um material so that the waveguide’s width varies from 

200 nm to 210 nm, calculate its coupling constant «x using coupled-mode 
analysis. 

Use Eq. (6.49) to determine the normalized threshold modal gain, 

(U9, — %;)L,, and wavelength deviation from the Bragg condition, dL,,.. 

for DFB lasers with facet reflections. Plot both values versus the phase 

of facet reflection #2, ¢,, for kL, = 1 and mirror reflection values of 

(a) r, = 0 and |r,| = 0.566, 

(b) r,; = 0.566 and |r,| = 0.566, and 

(c) r, = 0.566e/"/? and |r,| = 0.566. 

If necessary, assume a; = 15cm~*, L, = 300 pm, and J = 1.55 um. Use 

the analytic equations of this chapter. 

Two identical 3 um wide channel waveguides with center indexes 0.04 

higher than the surrounding cladding material (n = 3.5) are formed with 

their center axes 20 um apart. The lateral confinement factors are 40%. 

It is found that the lateral field of the first guide has decayed to 10% of 

its peak value at the center of the second guide. 

(a) What is k,,; =, ? Approximate integrals, do not calculate exact 

mode shapes. 

(b) What is the coupling length for 100% energy transfer? 

What is the 3 dB bandwidth of a directional-coupler filter formed by 

different width and different index difference guides on InP such that the 

effective indexes of both are 3.5 at 1.55 um, but at 1.50 um the effective 

indexes of the two guides are 3.51 and 3.52, respectively? At 1.55 um, 

Koei On fies 

Two three-layer slab waveguides formed of 1.3 pm bandgap InGaAsP/InP 

are butt-coupled together such that their center axes are aligned. The left 
guide is 200 nm thick and the right guide is 400 nm thick. Calculate the 

power loss in coupling across the boundary for the fundamental trans- 

verse modes at 1.55 um. Do the calculation twice. Once for coupling 

left-to-right and once for coupling right-to-left. 



CHAPTER SEVEN 

a 

Dielectric Waveguides 

7.1. INTRODUCTION 

Thus far, we have managed to introduce quite a bit of material which made 

use of the transverse mode function, U, of some dielectric waveguide without 

knowing much about its actual form, aside from the brief introduction in 

Appendix 3. We have chosen this approach in part to emphasize that for many 

cases one does not need to know the details of all the possible transverse modes 

that might be supported by some dielectric layer structure. The primary reason 

has been to maintain a focus on the active device theme of this text and avoid 

distractions. In fact, we still do not intend to give an extremely detailed 

treatment of dielectric waveguides because that lies outside the theme of this 

text. Rather, we wish to introduce several different approaches to solving 

dielectric waveguide problems to both complement the field theory approach 
in Appendix 3 as well as provide the student with a broader, and perhaps more 

intuitive, understanding of the nature of waveguiding in these structures. 

We begin by reviewing the reflection of plane waves that are incident at an 

arbitrary angle from a plane dielectric interface as illustrated in Fig. 7.1. The 

boundary conditions lead to general expressions for the reflection coefficients 

of both TE and TM polarizations. If the medium containing the incident plane 

wave has a higher index of refraction than that beyond the boundary, then we 

find that total internal reflection is possible. On the incident side of the dielectric 

boundary, the incident and reflected plane waves create a standing wave with 

a standing wave-ratio that becomes infinite for incident angles beyond the 

critical angle. Also, in this case we find that although the reflection coefficient 

is positive real (has a reflection phase of 0°) for incident angles smaller than 

the critical angle, it becomes complex beyond this angle (i.e., has a nonzero 

reflection phase as well as unity magnitude). Thus, for angles less than the 

critical angle, a standing wave maximum occurs at the boundary, but for 

incident angles beyond the critical angle the standing wave maximum moves 

back from the boundary. In what follows, we quantify the above observations. 

302 
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FIGURE 7.1 Illustration of a plane wave incident on a planar boundary. Angle of 
incidence less than critical angle. 

7.2 PLANE WAVES INCIDENT ON A PLANAR DIELECTRIC BOUNDARY 

Referring to the nomenclature introduced in Fig. 7.1 and earlier in Chapter 2 
and Appendix 3, we express the incident, reflected, and transmitted fields for 
the TE and TM cases as follows: 

TE 

E(x, z) = &(0, z)bei=*e— ihe? 

EX, Zz) = é,(0, zee se is? 
(7.1) 

E,(x, 2) = E,(0, z)b,e*=*e7 Js? 

T™M 

H6(x, Z) = HG(0, 2b, ei * e~ kez 

Hex, 2) = HO, 2)b, eH e~ He? ae 

HOAX. 2) = SO. zee" Ee. Is" 

Because the tangential electric fields, &, and magnetic fields, W% must be equal 

at x = 0, we have already used the fact that k;, = k,, = k,, = B. Also, from this 

we have that 0,=0;, and Snell’s law, k;sin0;=k,sin @,. As always the 

propagation vector components are related by k?, + k2 =k? =k? = kn? = 
k2e,, etc. 
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In any medium, the magnetic field of a plane wave is related to the electric 

field by Maxwell’s curl equation. For the assumed forms of Eqs. (7.1) and (7.2) 

we have 
1 

SOLE, (7.3) 
ou 

where p is the magnetic permeability of the medium. Now, using Eqs. (7.1) and 

(7.2) in Eq. (7.3), and applying the boundary condition that the electric and 

magnetic fields are continuous at x = 0, we can solve for the ratio of the reflected 

to the incident electric fields [1,2]. For the TE case with equal permeabilities, 

6, SMe S cas (7.4) 
6 x=0 : Kix Es Kix 

and for the TM case, wv < 

é Kix a kx 

7 apie ieee (AS) 
ilx= é 

Ki. oP -= Kez 

&2 

For the case illustrated in Fig. 7.1, the index of refraction in region 1 is larger 

than that of region 2. Thus, as the incident angle is increased, at some point, 

k;, equals k,. This is called the critical angle, 6., defined explicitly using Snell’s 

law by sin 0, =n,/n,. For larger incident angles, k,, must be imaginary to 
satisfy 

kn = kp — ki, =k? — ki, = kp — B?. (7.6) 

That is, for k;, > k,, 0; > 0,, and 

ke = ti/B—B = ine (7.7) 

where the sign of y,,. is chosen for a decaying solution in region 2. This situation 
is shown in Fig. 7.2. 

Plugging Eq. (7.7) into Eq. (7.4), we see that beyond the critical angle, 

ple = Kix alr Wx —- (7.8) 
ki — IV tx 

and (0; > 8.) 

Kix a i a Vex 

tee (7.9) 
6 

Kix 7 = Vex 
S 

In both cases, we see that the magnitudes are unity, but the reflected wave 
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FIGURE 7.2 Plane wave incident at dielectric interface with the angle of incidence larger 

than the critical angle. 

has a phase angle, ¢. That is, r = |r|e/®, where from Eq. (7.8) for the TE case, 

TE — tan”! te | = tan] | 7.10 
? E kiy 

or = 2tan”| | (7.11) 

or 

where 

eae " (7.12) 
Kix /(k,/B)? — 1 

For the TM mode using Eq. (7.9) one obtains an equation analogous to Eq. 

(7.11) in which ¢,/e, multiplies y,,. 

As indicated in Fig. 7.3, the reflection phase angle is zero for incident angles 

up to the critical angle, where it begins to increase monotonically toward 180°. 

This results in standing waves with maxima that move away from the boundary 

for increasing incident angles, as also indicated. For total reflection there is 

still energy in region 2, but it decays exponentially away from the boundary 

and there is no power flow in the x-direction. 
The standing waves can be calculated by summing the incident and reflected 
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FIGURE 7.3 (a) Illustration of standing waves resulting from plane waves incident at 

an angle just slightly larger than (dashed) and significantly larger than (solid) the critical 

angle. (b) Plot of reflection phase angle vs. the angle of incidence. 

waves as given by Eq. (7.1). For a TE wave with 0; > 0., 6(0, z) = &;(0, z)e?®. 
Therefore, . 

& + & = 60; z)é,[e** + ete he (7-13) 
or 

E, + & = 260, 28, e%#!? cos(kinx — $/2)e7 #?. (7.14) 

Figure 7.3 gives two examples for different ¢, illustrating how the peak of the 

cosine shifts away from the interface for larger 6;. 

The separation between the maxima and the boundary in Fig. 7.3 is labeled 

l.¢¢, Which is related to the reflection phase by 

r= \rje* = e 2skix(— less) — e2skixless, 

or 

ler a o/kix. : (7.15) 

7.3. DIELECTRIC WAVEGUIDE ANALYSIS TECHNIQUES 

7.3.1 Standing Wave Technique 

Now, with the above preparation, we can begin to consider the construction 

of a waveguide that makes use of multiple total internal reflections. In Fig. 7.4 

a standing wave resulting from the total internal reflection of a plane wave 

(such as is shown in Fig. 7.3) is illustrated. The first maxima occurs a distance 

l.¢¢ from the boundary as discussed above. The dashed lines correspond to 

symmetry planes where for the given angle of incidence another boundary 

identical to the original one could be inserted without changing the standing 

wave pattern between the two boundaries. 

We can see that with this construction, we have actually formed a waveguide, 

which traps the plane wave at the original incident angle, forcing it to zigzag 
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SB Se5 j 5 pis aed as SSSsg 
m= 

FIGURE 7.4 Construction of waveguides by inserting a second interface (top cross- 

hatched region) at the symmetry point on a given standing wave (i.e., given ray angle). 

Given standing wave at left; fundamental (m = 0) and first higher-order mode (m = 1) 

illustrated to the right. 

indefinitely back and forth so that the net propagation of optical energy is only 

in the z-direction, as illustrated in Fig. 7.5. The field has the form given by Eq. 

(7.14) between the boundaries and is evanescent in the two outer region-2s 

according to &, in (7.1) using (7.7) for k,,. 

From Fig. 7.4 the constructed waveguide width is seen to be 

A 

\ \ CSN 

D™MB?W[KYA Gav * 
FIGURE 7.5 Illustration of zigzag ray picture of waveguiding. Each ray of the plane 

wave reflects off alternate boundaries with the same angle of incidence and a reflection 

phase that provides in-phase addition with other rays propagating in the same direction. 
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where m is the mode number, equal to zero for the lowest-order symmetric 

mode, one for the first odd mode, etc., and 1, = 2z/k;, is the standing wave 

wavelength along the x-direction. Now, using Eqs. (7.11), (7.15), and (7.16), we 

obtain the waveguide dispersion relation for the TE modes, 

2 
) Sea ee ae tan#(") + m2 

or 

kad = 2tan”*( ™) + mn iO. 1 e (7.17) 
ix 

Equation (7.17) is equivalent to Eq. (A3.10), the dispersion relationship derived 

in Appendix 3 for the symmetric three-layer slab waveguide. Equation (7.12) 

expands y,,/k;, in terms of the waveguide propagation constant along z, f. For 

the TM modes the result is the same, except ¢,/e, multiplies y,.. 

Using these same techniques the dispersion relationship for a general 

three-layer asymmetric guide can be derived. As shown in Fig. 7.6 the two 

cladding layers have different indices of refraction. Thus,.the reflection phases 

at the bottom and top interfaces, ¢, and $3, and the separations of the standing 

wave maxima, |,,,, and |,-,3, respectively, are different also. 

Constructing an asymmetric guide with d=I,-,. +l.r3, and using 

YL \ ee 

Lak oS L yan. 

aig: d 

lego 

DW OWN 

. FIGURE 7.6 Fundamental mode of an asymmetric waveguide. The ray angle remains 
the same throughout, but the phase angle for the top reflection is larger than for the 

bottom. (Note the change in index definition in this chapter relative to Appendix 3.) 
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Eqs. (7.15) and (7.11), we find the epeericn relationship for the TE modes 

to be 

k, d= u - = + mn = tan™ (2) + tan*(1**) + mn, (7.18) 
ls Rec 

where as before, 

hey as ki — B?, Yax = ¥ p> — k3, Y3x =v B? — kj. (7.19). 

The electric fields are given by Eq. (7.14) between the boundaries with ¢ = @,, 

and Eq. (7.1) in the evanescent regions using Eqs. (7.7) and (7.19) for k,,. 

k 

7.3.2. Transverse Resonance 

Another way of analyzing a dielectric waveguide is the transverse resonance 

technique. This is equivalent to the waveguide construction technique given 

above and the field-theory technique given in Appendix 3. As indicated in Fig. 

7.7, transverse resonance means that the transverse round-trip phase must be 

a multiple of 2x after a complete cycle of a constituent ray. That is, the fields 

of an eigenmode must reproduce themselves after the plane wave components 

have zigzagged up and down one complete transverse cycle as the energy 

propagates down the guide. This is exactly the same condition as we imposed 

earlier in determining the modes of a Fabry—Perot resonator, only here we have 

generalized the situation to the case of nonnormal incidence. In other words, 

the component of the k-vector normal to the boundaries determines the phase 

progression along that direction. 

For a transverse mode, we must have transverse resonance, or 

7 2ikixd pib2 ibs — 9~2jmn (7.20) 

WW Nis 
FIGURE 7.7. Waveguide cross section showing variables relevant to a transverse resonance 

calculation. 
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where the variables are as defined above in Eqs. (7.19) and (7.11). This implies 

that ; 

2k,,.d — b2 — $3 = 2mr, G21) 

which is equivalent to Eq. (7.18). 

The transverse resonance technique is a relatively simple approach to 

obtaining a dispersion relationship for a complex dielectric waveguiding 

structure. That is, regions 2 and 3 can contain a number of dielectric interfaces, 

and using the techniques of Chapter 3, we can calculate the net reflection 

coefficient from which we can obtain the reflection phases, ¢, and $3. Then, 

Eq. (7.21) can be applied. For a lossless waveguide, the magnitude of these 

reflection coefficients must be unity. We shall later deal with cases where the 

reflection is slightly less than unity, but where the optical energy is still relatively 

well guided aside from a slight propagation loss. 
\ 

7.3.3 Cutoff and “Leaky” or “Quasi Modes” 

The point where the ray angle becomes sufficiently large (measured from the 

guide axis, z) so that some energy is transmitted at one boundary or the other 

is generally referred to as cutoff. (This is the point where the angle of incidence 

no longer exceeds the critical angle.) However, the optical energy may still 

continue to propagate with only modest attenuation since the reflection 

magnitude at the waveguide walls is still relatively large for angles near cutoff. 

The light that leaks out of the waveguide also tends to radiate in the forward 

direction so that it may run parallel to the guide for some distance. These are 

some of the key differences between dielectric and metal waveguides, in which 

cutoff tends to result in highly attenuated signals, and/or large reflections. 

Put in more mathematical terms, cutoff is where ¢; > 0, or where B - k,;, 

i= 2,3. In other words, the waveguide propagation constant must always be 

larger than either of the cladding plane wave propagation constants. This 

situation is illustrated in Fig. 7.8 in terms of the effective index, i = BA/2n. 

For the symmetric guide the dispersion relation, Eq. (7.17), becomes 

ki .4 | cuto pp < mn, (n, = n3) (7.22) 

from which we can see that the fundamental mode, m=0, has no cutoff 

except at zero frequency, or zero width, d. For the asymmetric guide, the 
dispersion relation, Eq. (7.18), becomes 

kind lags tan*( 8) + mn. (nS nh) (7.23) 
1x 

Here we see that the fundamental mode can be cutoff for some finite frequency, 
or a small enough waveguide width. In Appendix 3 normalized curves for the 
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ny 

(a) 

FIGURE 7.8 Illustration of effective index levels for mode numbers, m, in the (a) 

symmetric and (b) asymmetric cases. For decreasing frequency (increasing wavelength) 

n moves down toward the cutoff levels. 

dispersive properties of such waveguides are given. In Fig. 7.9, we plot the 

effective index vs. normalized frequency for an example asymmetric guide. 

Even if the reflection coefficient at one or both waveguide boundaries falls 

below unity for some ray angle, it is still possible to satisfy the transverse 

resonance condition. The dashed curves in Fig. 7.9 give the dispersion of these 

n 

my 

ny ~ 

ng |X ---- + ----pp- - ----------------- 
Sw pment 

J cos 8,3 cos 8, 

Leaky or Quasi-modes 

0 

nm 2n kd 
FIGURE 7.9 Schematic example of effective index dispersion curves for three lowest- 

order modes in an asymmetric slab. Solid curves give effective index for true guided 

modes. Cutoff is defined where the modes become leaky. Dotted curves indicate locus 

of points satisfying transverse resonance below cutoff. The angle 0,, is the critical angle 

at the 1-3 interface. This is not the cutoff angle, which is the critical angle at the 1-2 

interface. 
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“leaky modes” as the ray angle within the waveguide increases toward being 

normal to the sidewall boundaries, where n — 0. Since the reflection phase goes 

to zero below cutoff, these leaky modes are basically continuations of the guided 

mode characteristics, and they satisfy Eqs. (7.22) or (7.23) for kd < ky.d|ewosy> 

depending upon whether the guide is symmetric or not. For these cases, the 

optical energy still circulates in the transverse direction and builds up via 

constructive interference just as in any Fabry-Perot resonator. Thus, optical 

energy may still be concentrated about the guide axis, and it may be transported 

along the z-direction with only modest loss. The “modes” of such a structure 

are usually referred to as leaky or quasi modes since the propagating energy in 

the z-direction does change its magnitude along the waveguide. Axial modes 
of a Fabry—Perot laser cavity are an example of such leaky modes, since there 

must be mirror transmission for useful output. 

\ 

7.3.4 Radiation Modes 

The leaky modes discussed above are really not true modes but quasi modes 

as already suggested. Strictly speaking, modes must have uniform profiles and 

magnitudes along the z-direction. But the guided modes, obtained earlier in 

this chapter or in Appendix 3, do not form a complete set because a 

superposition of them can not in general synthesize an arbitary field. For such 

a complete set, we need to consider the “radiation modes,” which can have 

other ray angles besides those of the guided and transverse resonant leaky 
modes. 

To construct the radiation modes of some slab waveguide structure as true 

modes we must insert some additional perfectly reflecting boundaries which 

can be placed sufficiently far away in the x-direction so that any arbitrary field 

profile in the vicinity of the central waveguide slab can be completely described. 

Practically speaking, these inserted boundaries are really more of a mathe- 

matically necessary artifact than something that we actually insert in an 

experiment. Figure 7.10 shows the structure to be analyzed. 

As can be seen in Fig. 7.10, perfect reflectors are placed on each side of the 

waveguide slab a distance |/2 away. Now, the transverse resonance technique 

can be applied to obtain the dispersion relationship for the radiation modes. 
To make this a bit simpler, we calculate the net reflections looking in the positive 

and negative x-directions relative to a single reference plane in the center of 

the waveguide, r, and rg, respectively. Then, our transverse resonance condition, 
Eq. (7.20), reduces to 

ite =e (7.24) 

For the symmetric case in question, r4 = rg, and we refer to the inset in Fig. 
7.10 to calculate r,, 

(Lae age oe 
: ewer (7.25) ee) Me kes ; 

. (i re skaxl \ 
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(a) (b) 

FIGURE 7.10 (a) Waveguide cross section illustrating perfectly reflecting planes inserted 
at x = +1/2 to provide for a set of radiation modes. (b) Net reflection from top half, 

r4, calculated from the multiple interfaces using k;, as the transverse propagation 
constant. 

Using Eq. (7.4) for r and inserting Eq. (7.25) into the dispersion relation Eq. 

(7.24), we can derive a dispersion relationship good for both even and odd 

radiation modes [3], 

end 
co 2x ) ue: tan( “24 v), y= . i ee (7.26) 

2 ha 2 n/2 odd 

Generally, we choose | > d, so that the solutions to the dispersion relation- 
ship, Eq. (7.26), are closely spaced in frequency (or ray angle). This provides a 

good basis set that we can use to analyze the propagation of arbitrary optical 

energy profiles along z. Actually, the set is only complete for describing fields 

contained completely within /. Thus, / must be at least as large as the extent 

of the field to be approximated. In practice, setting //d > 10 is usually sufficient 

to provide the basis functions to synthesize arbitrary field profiles concentrated 

near the central waveguide. 
The field profiles of the radiation modes are standing waves between the 

outer mirrors with some variation in magnitude and phase over the waveguide 

slab region. Some of the radiation modes may satisfy transverse resonance for 

the waveguide interfaces. The fields of this subset will show the expected increase 

in magnitude over the waveguide due to the coherent addition of multiple 

reflections there. As set up, we find odd and even modes with respect to the 

waveguide region. That is, the modes will have either a node or antinode in 

the center of the waveguide. Figure 7.11 gives examples. 
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(b) 

FIGURE 7.11 Schematic examples of even (a) and odd (b) radiation modes constructed 

by placing perfect reflectors +//2 from either side of the waveguide slab. In these 

examples transverse resonance is approximately satisfied in the waveguide slab as well. 

Figure 7.12 summarizes the location of the radiation modes relative to the 

guided modes on an w-f plot. Radiation modes that satisfy transverse 

resonance in the waveguide are shown by the dashed curves. These char- 

acteristics are the same as those of the leaky modes discussed earlier. For finite 

I, the location of the outer mirrors must be chosen properly to satisfy both 

inner and outer boundary conditions simultaneously. 

~~ 

7.3.5 Multilayer Waveguides 

The transverse resonance approach used in the last section for radiation modes 

can also be applied for the guided modes of multilayer waveguides. That is, Eq. 

(7.24) is always valid, and it can be applied at the center of a waveguide with 

any number of dielectric layers. The selection of the center is actually not critical, 

rather a convenient reference plane that facilitates the subsequent analytical or 

numerical evaluation of the waveguide dispersion properties is generally 

used. 

Figure 7.13 shows an example of an m-layer waveguide. The evaluation of 

r, and rg can use the techniques developed in Chapter 3 for multilayer 

reflectors. However, here the axial propagation constant, k, = B, is replaced by 

the transverse propagation constant, k,, in all of the calculations. For only a 

few layers, it is possible to derive closed form expressions, as for the radiation 

modes above. For example, for a five-layer guide, Eq. (3.40) can be applied for 

both r, and rg. If many periods of a pair of layers are used, then the grating 

formulas can be adapted. That is, Eq. (3.52) can be used for r, and rg, provided 
again that appropriate k,’s replace the [’s. 

\ 
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B 

FIGURE 7.12 An w-—f diagram for a symmetric slab waveguide showing relative 

locations of various modes. Slopes of asymptote lines equal the phase velocities of plane 

waves in the waveguide slab (c/n,) and cladding (c/n,) regions. Local slopes of modal 

characteristics give the group velocities. Again, dotted curves give dispersion of radiation 

modes that satisfy transverse resonance in the guide. 

7.3.6 WKB Method for Arbitrary Waveguide Profiles 

In all of what we have discussed so far in this chapter the index of refraction 

was constant over some regions, and it jumped abruptly at boundaries there 

between. Thus, in each region the assumptions involved in the derivation of 

the transverse wave equation (e.g., uniform dielectric constant) were valid, and 

exact overall solutions could be found by applying the appropriate boundary 

conditions. 

—FoFCKCMC< 
SSSSSS SG SSS 
SSS 

Modes must satisfy: 
—2 jmu 

rt, =~l=e 

MM 
KG 

FIGURE 7.13 Schematic of generalized transverse resonance technique for the deter- 

mination of modes in multilayer waveguides. 
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In many practical cases the index varies continuously over some waveguide 

region rather than discontinuously as above. Thus, strictly speaking the 

transverse wave equation (6.5) is not valid as discussed in Chapter 6. However, 

in cases where the dielectric constant varies slowly, so that Ve(x, y) is small 

relative to B, we can still apply it with reasonably good results. Otherwise, the 

wave equation retains terms involving Ve(x, y) and it becomes very difficult to 

solve. Figure 7.14 illustrates a waveguide formed by a region in which the index 

varies continuously. 
Wentzel, Kramers, and Brillouin have found that good approximate solutions 

can be derived in the case of such a slowly varying index profile. Their so-called 

WKB approximation involves keeping the form of the uniform-medium wave 

equation, but using a plane wave k-vector that can vary transversely. That is, 

Eq. (A3.3) becomes 

V2U(x, y) + [k2(x) — BAU(x y) = 0. (7.27) 

This is the same as Eq. (6.5) where only an x-variation is permitted. Thus, we 

are still assuming a uniform waveguide along the z-direction. 

The WKB approximation also involves neglecting any backscattering due 

to the slowly varying index. For waveguiding we are only interested in rays 

traveling roughly perpendicular to the index gradient:(or parallel to z). Thus, 

even for relatively rapid index changes along x, the ray will only experience a 

XA XB x 

FIGURE 7.14 Transverse index and mode variation for a guide in which the index varies 
continuously. x, and xg are the ray turnaround points where the transverse mode also 
has points of inflection. ‘ \ 
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slight gradient. As might be expected in such cases, the ray would bend, and 

as we shall see, this bending is what provides the equivalent of the zigzagging 
ray of the analogous three-layer slab guide. 

To get started, we express the local plane wave propagation constant, k, in 
terms of its vector components, 

k2(x) + k2 = k(x), (7.28) 

where in this case, the index of refraction and the k-vector vary with x. However, 

for a waveguide mode, k, = 8 = kon, independent of x. Thus, we can write 

k(x) = ky./n*(x) — ni’. (7.29) 

The cutoff condition is where 7 = n,, the highest adjacent cladding index. 

The waveguide propagation constant can also be expressed in terms of the 

ray angle, @,(x), from which we can solve for this angle, i.e., 

AS at ee ee : 0.(x) = cos ra Fi (7.30) 

From Eq. (7.30) we see that the ray angle must vary with x, decreasing for 

decreasing n(x) until n(x) = 7”, at which point it is zero. Thus, as indicated in 

Fig. 7.15, the ray actually turns around at this point, meandering in a 

sinusoidal-like path as the lightwave propagates along z. At the turnaround 

points, x = X4, Xg and k,,(x) = 0. This is consistent with Eq. (7.29). Thus we 

have 

n(x.) =n(x_) = 71 or Keg) = hip) = p- (7.31) 

Zz 

FIGURE 7.15 Sketch of meandering ray path for the case of a smoothly varying index 

with a maximum between the turnaround points, x, and xg. Ray angle with respect to 

the guide axis, 0,, shown. 
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For x > xg, or x < Xy, Eq. (7.29) shows that k, is purely imaginary, indicating 

that the field decays away to provide the desired trapping of energy along the 

z-axis. The transverse wave equation (6.5) also shows that the transverse mode 

has inflection points, i.e., 0U?(x)/dx? = 0 at these turnaround points. 

Now, we would like to develop the dispersion relationship or characteristic 
equation. For this, the transverse resonance technique quantified by Eq. (7.21) 

is used. However, in the present case the round-trip phase across the waveguide 

is not simply 2k,,d, but it must be found by integrating k,(x) from x, to xg 

and back. That is, Eq. (7.21) becomes 

2 L k,.(x) dx — @, — $3 = 2mz, (7.32) 

where k,(x) is given by Eq. (7.29) and the limits of integration can be expressed 

in terms of the effective index, n, or propagation constant, f, using the actual 

index variation in Eq. (7.31). 

The remaining problem is to figure out what the ¢,’s are. For this we use 

the expressions for the reflection coefficient, either Eqs. (7.4) or (7.5) for the TE 

or TM modes, respectively. For k;, and k,,, we note that at x = x, or Xz, the 

transverse k, in the present case turns from pure~real to pure imaginary 

according to Eq. (7.29). Thus, the situation is similar to the abrupt index 

discontinuity case, and the reflection coefficients can be expressed as in Eqs. 

(7.8) and (7.9) with kj, = k,(xg) {or ke(})} and yy = jke(xp) {or jky(xg)}- 
That is, referring to Fig. 7.15, at the top turnaround point assuming a TE mode, 

kp) + jY¥xO8) 

k.(<p) — jYe(xB) 
r7* (xp) = (7.33) 

Since k,(x > xg) > 0, and y,(x > xg) > 0, we must expand them for xj, letting 
the plane wave propagation constant, k(x, ) = 6 + ok, and k(x ;) = B — ok. 

That is, using their definitions given by Eq. (7.19), we find to first order, 

bGs) = ./ MGs) = B= ./ CC? & 2p0k)— pe. 
and 

yn iw) Be Ge p(s po. (7.34) 
Thus, 

Sige 
rTE(x) = os =j, (7.35) 

and likewise for the other turnaround point. For the TM mode, y, is multiplied 
by €,/é2, but this approaches unity for a continuous index variation at the turn 
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around point. Therefore, for both TE and TM modes, ¢, = $3 = 2/2, and Eq. 
(7.32) becomes 

2 [ k(x) dx = (2m + 1)z, (7.36) 

or, using Eq. (7.29), 

2k | ./n?(x) — n? dx = (2m + 1)z. (737); 

To illustrate the use of the WKB technique, consider the important example 

of a parabolic variation of the dielectric constant as given by 

n?(x) = ra a (2) (7.38) 
0 

where we have chosen the origin of the x-axis to be at the maximum of the 

function. This function, illustrated in Fig. 7.16, is useful only for small index 

ranges under the WKB approximation, so that the optical energy must be well 

contained within |x| « x9. 

Plugging Eq. (7.38) into Eq. (7.37) gives 

XB 2 

ake | re — ras) — n* dx = (2m + 1)x, (7.39) 
XA Xo 

and x, = —X , by symmetry. At the integration limits, the argument of the 

integral is zero, since n(x,) = f, or, k, = 0. Therefore, we can solve for x, from 

Eq. (7.38) to obtain 

Xp = £X9s/1 — Hi/Minax)”? = £X0 0. (7.40) 

To make the integral more convenient to solve, we make the change of variables, 

X = X06 sin g, where ¢ does not necessarily have any physical meaning. Then, 

—Xo Xo x 

FIGURE 7.16 Parabolic dielectric constant variation given by Eq. (7.38). 
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performing the integration of Eq. (7.39) using Eq. (7.40) we find the dispersion 

relationship 

rp fieme ae LD) Dien, (7.41) 
koXo 

and plugging back into Eq. (7.40) the maximum ray excursion for mode m is 

2m + tt? one tx] ete % | A Bt (7.42) 
koNmaxXo 

The dielectric constant must continue to vary parabolically according to Eq. 

(7.38) over a width somewhat larger than the turnaround point separation 

which is given by twice Eq. (7.42). That is, in most practical examples, it is 

found that the parabolic medium width must be four or five times x, for the 

results to be approximately valid. \ 

Equation (7.41) can be plugged into the transverse wave equation to obtain 

an expression for U(x). This exercise shows that the eigenmodes of this 

parabolic medium are Hermite—Gaussian functions of the form, 

Unto) = Cut 
WwW 

eae (7.43) 

where H,,(€) are the Hermite polynomials and wo is the 1/e Gaussian 

spot size. For reference, the first three Hermite polynomials are 

H(é)=1, Ayg)=26, HA(¢) = 467 — 2. (7.44) 

It is also interesting to derive an expression for the ray path illustrated in 

Fig. 7.15. By definition, 

dx(z) _ kG) _ kel) 
dz B kon 

(7.45) 

From Eqs. (7.29), (7.38), and (7.40) 

k(x) =. ko Nmax/ 6? ze Gx) (7.46) 

and n,,4,/M = (1 — 6*)~ !/?. Using Eq. (7.46) in Eq. (7.45), 

dx(z) _ Mmax i (= 4 oT 

dz ft xGo) ed) 

and, again using the convenient change of variables, x = x)6 sing, we can 
integrate to obtain 

x(z) = X96 in| "ae =| (7.48) 
NIX 
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FIGURE 7.17 Illustration of ray paths in a parabolic medium that originate from a point 

source at the origin. Initial ray angle, 6, results in a sine wave of amplitude, xz = x96, 

and period of approximately 27x, (using n,.q./N * 1). 

That is, in a parabolic medium, the rays oscillate around the waveguide axis 

as sine waves with a period of 22x n/n,,,,. AS is the case for the dispersion 

relationship, Eq. (7.41), this is an exact solution to the approximate wave 

equation. Since n X n,,,,, note that the ray oscillation period has only a weak 

dependence upon the initial ray angle, dx(0)/dz = 6. However, the maximum 

excursion of the ray from the guide axis, xz, =x,0, increases in direct 

proportion. Figure 7.17 illustrates this behavior. The fact that the ray zigzag 

period along the z-axis does not change much for various angles also suggests 

that the propagation constant does not change for the various possible modes 

that satisfy the transverse resonance condition. Equation (7.41) shows this small 

modal dispersion. Clearly, the parabolically graded waveguide has very different 

properties from the three-layer slab guide discussed earlier. 
Now if we are interested in the eigenmodes of this parabolically graded 

waveguide, we can substitute the allowed values for x96. That is, using Eqs. 

(7.40) and (7.42) in Eq. (7.48), we obtain 

1 
x(z) = Xo te sin| "a a | (waveguide eigenmode) (7.49) 

koXoMmax n Xo 

Thus, only certain discrete ray angles are possible for the eigenmodes, but they 

still tend to have nearly the same propagation constant as mentioned above. 

In many cases, we may be interested in rays that do not satisfy transverse 

resonance, so Eq. (7.48) should continue to be used in these cases. 

In the absence of birefringence, the phase fronts of traveling waves are 

perpendicular to the ray direction. As in the case of the three-layer slab 

waveguide, the phase fronts of the constituent rays superimpose to form the 

net phase fronts or wave crests of the eigenmode. For negligible gain or loss, 
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the result in both cases is an eigenmode with plane phase fronts perpendicular 

to z. For the parabolic medium, the constituent phase fronts must bend to track 

the ray path, so they do not appear to be plane waves. For the WKB 

approximation to be valid, however, these phase fronts must be approximately 

parallel over distances of a few wavelengths in the x- and z-directions. Put 
another way, the constituent ray angle can not change appreciably over this 

distance along the ray. 
An example of a practical device that uses a parabolic graded-index 

waveguide section is the so-called graded-index rod or GRINROD lens. In this 

case we are not really interested in the eigenmodes of the waveguide, but rather 

how any given entering rays will propagate and focus after some distance. 

Although strictly speaking we should always express an entering field as a 

superposition of the eigenmodes of a waveguide to track its evolution down 

the guide, it is possible to use a ray-tracing approach if the waveguide is large 

enough. This makes particular sense, if the propagation distance is small. In 

the case of the GRINROD then, a pencil-like beam several wavelengths across, 
but much smaller than the diameter of the GRINROD will tend to propagate 

like a ray path given by Eq. (7.48). The eigenmode restriction given by Eq. 

(7.49), which provides for no change in mode cross section as a function of z, 

is not used because we really would have a large number of interfering 

eigenmodes superimposed to represent such a pencil-like beam. 

GRINRODs are really cylinders with a radial index variation, but we can 

use our planar analysis to understand how rays will propagate along planes 

containing the rod axis (so-called meridional rays). For paraxial rays (small 

angles), Eq. (7.48) shows that a ray entering the GRINROD on axis at z = 0 

is characterized by a slope dx(0)/dz = 6 = 0,(0) = @). Thus, we write, 

X(Z) = XoU_ SiIN(Z/Xo), (GRINROD) (7.50) 

where we already have that the inverse of x, is a measure of the curvature of 

the index-squared profile from Eq. (7.38) and 6, is the initial ray angle. 

GRINRODS are characterized by a pitch, which is really just the ray 

oscillation period of 27x, for paraxial rays. Thus, a quarter-pitch GRINROD 

converts any and all rays entering at angles 09; at its x—z origin to rays parallel 

to but spaced a distance X98; from the z-axis after a quarter oscillation length 

of mx /2. That is, it acts like an ideal lens of focal length zx,./2. Figure 7.17 

illustrates this fact. GRINRODS of any length behave like lenses, but their 

focusing properties are not as simple as for the quarter- and half-pitch cases. 

7.3.7 Review of Effective Index Technique for Channel Waveguides 

All of this chapter thus far has dealt only with slab waveguides in which only 

one-dimensional guiding was considered. For most practical applications 

two-dimensional guiding, which involves both the transverse (x) and lateral (y) 
directions, is desired. For most of these structures numerical techniques are 
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(a) (b) 
FIGURE 7.18 Example channel waveguide cross sections. (a) Waveguide channel buried 

in material of equal index on all sides, e.g., InP cladding 1.55 ym InGaAsP guide at 

1.55 um measurement wavelength. (b) Waveguide channel on substrate of one index 

covered with material of a different index, e.g., 1.3 um InGaAsP covering 1.55 ym 

InGaAsP guide on InP substrate at 1.55 um wavelength. 

required to derive accurate results. An exception is a cylindrical geometry for 
which it is possible to derive results for the circularly symmetric modes in 

analogy to the slab waveguides discussed above by using cylindrical coordinates 

in the wave equation. Here again only one variable (radial) is involved. 

To analyze two-dimensional or channel waveguide structures involving two 

independent coordinates the approximate effective index technique is sometimes 

employed. In Appendix 3, we have already introduced a recipe for obtaining 

results using this technique. Here we shall briefly review this technique by means 

of two examples shown in Fig. 7.18. 
Example (a) shows a simple buried heterostructure laser in which an 

InGaAsP active region with a 1.55 ym bandgap is buried in InP by regrowth. 

For efficiency we shall use the normalized frequency, propagation constant, and 

asymmetry parameters defined in Eq. (A3.12) of Appendix 3. We explicitly 

consider the TE mode, but as discussed in the appendix, for small index 

differences we can neglect the differences between the TE and TM modes in 

this approximate analysis. 

The first step of the effective index technique is to find the transverse effective 

index of each lateral region as if they were infinitely wide slab guides. In regions 

1 and 3 the material is InP for all x. Thus, the effective index in both is clearly 

A, =n; = 3.17. In region 2, we use Eq. (A3.12) to obtain 

2n 21 
Ve SS ne Sn? = 200 nm [3.55*"= 3:177]1/7 = 1.30 2 1 [ny — ny J 1550 nm [ ] 

and 

az = 0. 
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From Fig. A3.2, we then read b, = 0.31. Then, solving for the effective index 

in the central lateral region, n,, we find 

iy = [0.31(3.552 — 3.172) + 3.172] 1/2 = 3.292. 

Now, we have effective indices for each of the three lateral regions, and we 

can begin to solve the new lateral effective slab waveguide. Again using Eq. 

(A3.12), . 

27 9000 nm[3.292? — 3.172]? = 6.42, V = —__ 
1550 nm 

and reading from Fig. A3.2, we have b = 0.86. Thus, the net effective index is 

n = [0.86(3.292? — 3.177) 3 Madar =i Io: 

As discussed in Appendix 3, we use this net effective index to calculate the 

lateral k, in region 2 and the lateral decay constants, y,, in regions 1 and 3; 

however, we use fi, to obtain the transverse k,. and decay constants, y,, in all 

regions. ; 

Example (b) in Fig. 7.18 is a little more interesting, since this device is grown 

with a number of different index regions. Because wé have only two different 

index layers in regions 1 and 3, we have to use a method other than calculating 

the transverse effective index of a three-layer waveguide there. This would also 

be true if the guide in these regions were cutoff. Certainly, we can go ahead 

and calculate the effective index in region 2, then proceed to determine the 

transverse mode shape, which will be used for all three lateral regions. This 

latter point is a good clue as to how we should calculate the effective index in 

the outer regions. That is, we should use the mode shape of the central region 
to provide the appropriate index weighting for the outer regions. (In fact, this 

concept even has merit in cases where there is guiding in the outer regions, 

however, it’s generally not used because it’s more difficult.) 

First, we solve the transverse problem in the central region for this example 

(b). It should be noted that the cladding layer with the largest index should 

be chosen as the reference layer—denoted layer HI. Otherwise, a will be 

negative. Evaluating Eqs (A3.12), we find V, = 1.242, a, = 1.45, b, = 0.10, thus 

n, = 3.415. The small b indicates that we are approaching cutoff in this 
asymmetric guide. 

Now, we can again look at the outer lateral regions. Perhaps the best way 

to obtain the transverse effective index there is to use our perturbation formula 

(6.9). We note that regions | and 3 can be constructed from region 2 by reducing 

the index of layer II by 0.15. The perturbation formula naturally uses the 

eigenmode of region 2, which is exactly what we are looking for. Thus, we 

proceed with Ag = 2nAn = —2(3.55)(0.15) = —1.065. After some effort in 

evaluating the perturbation integrals using k, and g, from region 2, we find 
that n, ~ 3.34. Then, we proceed to solve the lateral problem and obtain 
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V = 8.66, a= 0, b = 0.92, and nv = 3.409. Thus, we see that the fundamental 

mode is very near cutoff. Unfortunately, this is also where the effective index 

technique becomes unreliable, since the evanescent fields are expanding rapidly 

with slight reductions in the guide’s effective index. 

7.3.8 Numerical Solutions to the Wave Equation 

Many problems cannot be accurately solved by the effective index or WKB 

techniques. In these cases one generally turns to numerical techniques. Given 

the availability of computers and the appropriate software in today’s world, 

such numerical techniques are fairly easy to employ. The most straightforward 

numerical solution to the generalized scalar wave equation (7.27) uses what is 
called the finite-difference technique. As shown in Fig. 7.19, this involves 

overlaying a grid of some finite period over the lateral waveguide profile to be 

solved. The lateral normalized field U(x, y) will be found at the nodes of the 

grid by converting the differential equation (7.27) into a set of finite-difference 

equations specified at the grid points. The eigenvalue of this set of linear 

equations will be the effective index of the mode in question. Thus, we wish to 
convert the partial differential Eq. (7.27) into an eigenvalue problem that can 

be solved by linear algebra, and linear algebra is easily done on a computer. 

This is the essence of the finite-difference technique. 

The first step in the finite-difference procedure is to appropriately select the 

computational window. We wish to limit the size of the domain for computa- 

tional efficiency. On the other hand, the domain should be large enough to 

contain the field distribution that we want to calculate. The most common 

approach is to set the field value to zero on the window boundary. Physical 

x Computational 

G@eie0) ee CET 

(0, 0) b+ (0, J + 1) y 

FIGURE 7.19 Illustration of finite-difference grid over a buried-rib waveguide. 
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considerations should help us in determining the optimum window size. After 

an initial guess, one can change the window size and check to see if the 

result is affected. For more accurate calculations on the window boundaries, 

appropriate boundary conditions to make the window transparent can be 

used [3]. 

The second step is to discretize the computational window using a grid as 

indicated in Fig. 7.19. The grid can be uniform or nonuniform. A nonuniform 

grid is useful to appropriately sample strongly guided modes which may still 

have long evanescent tails. Variations in both the transverse and lateral 

dimensions must be considered. For this introductory treatment, we will assume 

a uniform grid from this point onward to keep the math as simple as possible. 

That is, 

Xe = Aye. SMP ea lbae J 
(ieo1) 

pH yAyy  j=O1N23> so 
\ 

Before converting the scalar wave equation (7.27), we expand the operator 

V’ in rectangular coordinates and factor out the free-space plane wave 

propagation constant k, from the linear term. It then can be written in terms 

of the lateral index profile n(x} y), and the modal effective index n, as 

0° U(x, y) ap 0° U(x, y) 
axe adi ké[n?(x, y) — A?]U(x, y) = 0. (7.52) 

Now, we approximate the partial derivatives using the finite differences. This 

is accomplished by using a second-order Taylor series expansion of the fields 

at adjacent grid points. That is, 

dU(x, y) | (Ax)? 7U% y) U(x + Ax, y) = U(x, y) + Ax 
Ox 2 Fox 

oe (7.53) 
a 2 92 

U(x — Ax, y) = U(x, y) — Ax U(x, y) de (Ax)" °U(x, y) 
Ox 9} 0x2 

Adding the two and solving for the second partial derivative, 

07U(x, y) ay U(x ae Ax, y) == 2U(x, y) ot U(x = Ax, y) 

i i (Ax)? : (7.54) 

where the higher-order terms can be neglected if the grid is sufficiently small. 
Of course, a similar expression can be derived for the second partial with respect 
to y. 

Since we have discretized the space, we only need (or can solve for) the values 
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of the functions at these points. Thus, using Eq. (7.51) we will denote 
U(x, y) = Uj, U(x + Ax, y) = U5**, and U(x — Ax, y) = Ui !. Then, 

GU xy oe Ue 2 Ue” 

Ox? (Ax)? 

and similarly (7.55) 

07U(x, y)  Uj4, —2U4 4+ Ui_, 

b] 

J 

dy? (Ay)? 

The scalar wave equation can now be written in discretized form. That is, 

Ui 20.1 Ute 1G) =U Oy 
+ —! ft Ka — )Us = 0. ae Ay + k2(ni yUt=0. (7.56) 

For computational ease we divide through by k? and introduce the dimension- 

less quantities, AX? = kj Ax? and AY? = k2 Ay*. Then, Eq. (7.56) can be written 
as the matrix eigenvalue equation, 

1)\2 i Uses Ue Tt 
(ns) eres Syeuree Use (eo?) 

(ols Sate ( 2 2 
— + 

Nagi Yani NAXZal @AX? 

fori=Otol+1andj=O0toJ+1. 

As shown in Appendix 16 this finite-difference matrix equation can be solved 

numerically for the eigenvalue n, and the field profile U. This involves some 

matrix manipulation for compactness and the use of a standard linear 

matrix-solving algorithm which can be found in most basic numerical analysis 

software packages. An example problem is also given for clarity. In many cases 
solutions can be generated very quickly, once the basic finite difference 

equations are entered. 

One can improve the finite difference technique considering the vector nature 

of the fields [4]. Mode matching techniques that result in equivalent networks 

have also been developed [5, 6]. Finite-element techniques can also be applied 

to solve for vectorial fields [7]. 

7.4 GUIDED-MODE POWER AND EFFECTIVE WIDTH 

Many calculations require a normalization of the eigenmode or some integration 

over a part of it. In this section we calculate the time-averaged Poynting vector 

power, P, carried by a guided mode along the direction of propagation, which 

can be useful in such calculations. For the simple three-layer slab guide we find 

that it can be expressed in terms of the magnitude squared of the electric field in 

the center of the guide and an effective width, d,,,, which accounts for the 
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energy stored in the evanescent fields. Also, for two-dimensional guides in which 

the lateral width is much wider than the transverse width, we get a similar result. 

The time-averaged power propagating in the z-direction is given by 

1 
Sr Re | (€ x A#*)8, dx dy. (7.58) 

The electric field, &, is given by Eq. (6.1) and the magnetic field, W, is obtained 

from the curl of &. We initially consider the TE modes with the electric fields 

aligned along the x-direction. Since only & and #%, survive the vector products, 

and #, = (j/wp) dé,/dz, we have 

1 p= sb [ist axdy= 5 [| 16? ax ay, (7.59) 

where n, = wpu/B = 377Q/n is the waveguide impedance, and 

IAD SON OL OES Va ete oo (7.60) 

The form of the transverse mode shape, U(x, y), for the even (symmetric) modes 

is given by Eqs. (A3.16), (A3.21), and (A3.22) for a rectangular guide cross 

section. ‘ 

For simplicity we wish to look at a guide with a lateral width much wider 

than the transverse width or w > d. For the lateral dimension we consider only 

two extreme cases: (a) a fundamental lateral mode or (b) a uniform field. In 

both cases since w is large, we neglect any fields for | y| > w. Thus, the lateral 

integration gives in case (a), 

00 w/2 rt w 

| | U(x, y)|? dy = |U(x)/? | cos'(* a = |U(x)/? a (7.61) 
= "00 —w/2 2w 

(fundamental lateral mode) 

and in case (b), ; 

w/2 

| | U(x, y)|? dy = voor | dy = |U(x)|?w. (7.62) 
=O —w/2 

(uniform lateral field) 

Thus, the lateral integration adds only a multiplication by the width in the case 

of uniform fields or the half-width for the cosinusoidal lateral mode. 

Now, we can plug U(x) from Eqs. (A3.16) and (A3.21) into Eq. (7.59) and 

perform the integration. For the even modes of a symmetric waveguide, 

w/p s . P= sa |g Uyl*| 2 cos*(k,,x) dx + 2 | eost(kyed/2)e 2720 G4) ax|. 
u| g 10) d/2 

(7.63) 
N 
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where p = 2 or 1 for lateral waveguide cases (a) or (b), respectively. Using the 
waveguide characteristic equation, Eq. (7.17) or (A3.9), to simplify, it can be 
shown that 

d paw ipa upl? ff, (7.64) 
2n, Z 

where 

2 s eaten 
doy =d+—. (symmetric guide) (7.65) 

Vx 

For the odd modes, it can be shown that the result is the same. Also, if we had 

considered the more general asymmetric waveguide, we would have obtained 

1 1 : : 
depp =d+—+—. (asymmetric guide) (7.66) 

Vax Y3x 

In all cases we see that the power propagating down the waveguide is 
proportional to the magnitude squared of the peak field amplitude in the guide, 

|E)Up|*, and an effective width, d, ge» Which equals the slab thickness plus the 

decay lengths of the evanescent fields in the cladding regions. This is very useful 

in trying to approximate integrals involving the transverse mode, such as the 

perturbation integrals of the previous chapter. It is also interesting to note that 

the integrals in Eq. (7.63) contribute a factor d,,,/2, just as if the transverse 

field were a half-period of a cosine that goes to zero at |x| = d,,,/2. However, 

such a cosine would have a slightly longer transverse period than the actual 

cosine of the guide. 

If we repeat the above for the TM modes we would find that 

b o 
deren Otay ate (7.67) 

2x 3x 

3. ae Kix a Vix [3 

kis at (€,/€;) ve gj 

In addition to the total power, it is useful to know the relative power 

contained in the guide and cladding layers, represented by the two integrals in 

Eq. (7.63). We can write the terms corresponding to each integral conveniently 

for the fundamental TE mode of a symmetric guide by using the normalized 

frequency, V = d,/k2 + 2, introduced in Appendix 3. With Eq. (7.17), we can 
set cos(k,d/2) = k,.d/V and sin(k,d/2) = y,d/V in the evaluated integrals to 

obtain 

Dude 2 7 
Gi =| a | ere ’ 7.65’ 
it | a | fe We ats 

where 
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x Goos-Hanchen shift 

Effective energy bounce plane 

FIGURE 7.20 Zigzag ray picture of energy propagation in a three layer waveguide. 

The first set of brackets gives the relative power in the guide and the second 

set gives the relative power in the cladding layers. Equation (A3.14) gives the 

resulting fundamental TE mode confinement factor (aside from an n, /n factor). 

For weak guiding either through a small index difference or a narrow guide 

width (characterized by a small V), the tangent function in Eq. (A3.9) reduces 

to its argument from which we can derive y,d > ./1 + V? —1 = V?/2. In this 

weak-guiding limit, we can use Eq. (7.65’) to show that I, — 2d/d,,,. This 

result can also be obtained by considering a thin region of width d, which only 

samples the peak field of the guide. The power Contained in this region 

is oc|E)U,|*d,. In view of Eq. (7.64), the fraction of power is then 

D, = d4/(d. 75/2) = 2d4/d.¢7. This result applies equally to a quantum well of 

width d, placed at the peak of a mode in an SCH waveguide or to a 

weakly-guided mode in which the guide itself only samples the peak field, for 

which we can set d, = d. For the latter case, as the guiding becomes stronger, 

the prefactor of 2 approaches 1 as both I’, and d/d,,, converge toward unity. 

In general, for strong guiding, d/d,-, <I, < 1, and I’, 4 d/d,,, until both are 

unity. Thus, the d,,, defined in Chapter 2 (see Section 2.4) does not refer to 

this effective width, but the equivalent width of a mode with constant 
cross-section that is by definition equal to d,/T, (where d, is the active region 
width). 

The effective width as defined in Eq. (7.65) is not only useful in relating the 

peak field to the total power in the mode. It also has a physical interpretation 

as suggested in Fig. 7.20. Specifically, while the phase fronts of a wave in the 

zigzag ray picture bounce between effective metal planes spaced apart by z/k,., 

the energy propagating down the guide effectively bounces off of planes placed 

at one over the decay length into each cladding region, giving a total width of 

d.,, between bounces. This energy penetration accounts for the evanescent fields 

in the cladding layers and results in an axial shift and time delay of an incident 

beam before it is reflected off of the interface. The axial shift is known as the 

Goos-Hanchen shift and represents a very real displacement of energy that is 
observable in the laboratory. 

To rigorously derive the Goos-Hanchen shift, Lg_,,, we must consider the 

group characteristics of a spatial wave packet reflecting‘off of the interface 
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beyond the critical angle. Fortunately, we can also guess at the result by noting 

the familiar relations for phase velocity, w/f, and energy velocity, dw/dB. For 

our reflected wave, the phase fronts are advanced along z by ¢/f, since 

exp[ —jBzlexplj¢] = exp —jB(z — /B)]. We therefore predict that the energy 

is advanced or displaced by dd/dB. A detailed wave packet analysis would in 
fact confirm this prediction. In other words, the Goos-Hanchen shift is 

mathematically related to the dispersion of the reflection phase angle, ¢. Using 

Eq. (7.11) for the reflection phase of a TE mode, we can evaluate the derivative 

to obtain 

_ dp _ 2tand 
ipa Oa ee ac (Goos-Hanchen shift) (7.68) 

ap Vx 
G-H 

As shown on the right in Fig. 7.20, this is the same result we would obtain if 

the energy had to propagate (transversely) an additional 1/), before reflecting 

back. With a Goos-Hanchen shift on both sides then, the total effective energy 
propagation width is just d,,, defined in Eq. (7.65) or (7.66), as initially assumed. 

Also note that the length of the guide required for the energy to make one 

transverse round-trip is 2d,,,tan 0. 

7.5 RADIATION LOSSES FOR NOMINALLY GUIDED MODES 

There are a few practical situations where lossless guided modes become leaky 

modes. One occurs when a waveguide is curved to displace the axis of the guide. 

This is very common in practical devices. Another occurs when some cladding 

is removed or replaced by higher-index material in a symmetric guide over 

some device region. This creates an asymmetric guide that may be cutoff, 1.e., 

leaky. A different case is an antiguide which is deliberately constructed to have 

the largest index in the cladding regions. In these latter cases, we may want to 

use the energy that leaks out; the axis of the guide remains the z-axis, and the 

optical leak rate (or propagation loss) can be calculated from the transmission 

that occurs for a zigzagging ray at one or both waveguide boundaries. The loss 

rate per unit length is the transmission loss divided by the axial length it takes 

a ray to cycle back and forth transversely across the guide. 

We begin by considering a symmetric antiguide as shown in Fig. 7.21. Even 

though there is partial transmission at each boundary, the optical energy will 

be “guided” with relatively low loss provided transverse resonance is satisfied. 

Since there is x phase shift at each boundary for n, <n, the transverse 

resonance condition for the antiguide is 

k,.d =(m + 1)z. (antiguide) (7.69) 

Assuming TE polarization, the transmission at each boundary is given by 

(1 — r), where r is given by Eq. (7.4). A particular ray strikes a boundary 
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FIGURE 7.21 Illustration of radiation at boundaries in an antiguide for which n, <n. 

once in a distance Az. Setting k, ~ k,d/Az in Eq. (7.69), we obtain 
\ 

2) 

ee (7.70) 
(m+ 1)A 

for paraxial rays (small angles). Assuming the power decays exponentially 

according to P(z) = P(O)e~%”, we can solve for the attenuation constant as the 

relative power change per unit length, which can be approximated by 

_ 1 AP (1-r?yamt 1d 
Ae Pas 2n, a? 

(antiguide) (7.71) 

Equation (7.71) gives the attenuation constant for lightwaves propagating 

in a symmetric antiguide. Any coherent addition of the radiated fields has been 

neglected. This is valid in most situations where some absorbing or scattering 

boundary intercepts the radiated field before it has a chance to add along any 

appreciable length. The attenuation can be quite high or relatively low 

depending upon the parameters. For example, consider a typical case where 

m=0,A4= 1 im, n, = 3.5, d= 3m and’ the index» difierencer gives: a tay 

reflection coefficient, r? = 0.9. Plugging into Eq. (7.71), we find, « = 15.9 cm7}, 

which is not an extremely large loss for semiconductor waveguides. The d used 

suggests that this would be the lateral waveguide dimension rather than the 

transverse in the semiconductor case. For small d, e.g., one-tenth of that in the 

example, the loss would be 100 times larger, and this would be an extremely 
high loss. 

If multiple boundaries are included with reflections that add in phase for 

some wavelength, the net propagation loss can be significantly reduced for a 

leaky waveguide. Also, they can operate in a quasi-single mode even for large 

core widths, since only a particular ray angle experiences low loss. This can 

lead to desirably low vertical diffraction angles at output facets in semiconductor 

waveguides. Such “waveguides” have been referred to as antiresonant reflecting 
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FIGURE 7.22 ARROW slab guide bounded on its upper surface by a low-index 

medium (no) and on its substrate side by one (or more) higher-index (n,) anti- 

resonant reflector layers. After [8]. (Reprinted, by permission, from Electronics 
Letters). 

optical waveguides or ARROW’s [8]. Figure 7.22 shows an example of an 
ARROW guide. 

For low loss we desire a slab mode with a null at the lower interface. This 

is accomplished with a vertical standing wave that has a node at the interface 

between the slab and the first high-index reflector layer. If the top surface index 

difference is large, then the zigzag ray angle in the slab must be, 0 ~ 

cos” ‘(A/2n,d,). For the reflection layer of thickness t and index n, to be in 

antiresonance for high reflection, 

7p nz }2 ie 

ix ews nfs | tome SNe =e? of ohmo(deae) 
4n, n; 4n3d? 

The spacing d, to the second high-index reflector should also be antiresonant 

to maximize the net reflection. That is, 

d 
d, = QM + I), M =0,1,2,... (7.73) 

Using the transverse resonance recipe of Section 7.3.5 and the technique for 

calculating radiation loss outlined above, one can rigorously calculate the 

radiation loss into the substrate. Figure 7.23 gives an example result for the 

case outlined in Fig. 7.22. The reflector layer thicknesses are varied along with 

the slab thickness according to the approximate design rules given above. 

In addition to having low propagation losses and large fundamental mode 

size, ARROW modes are also interesting because of the very low overlap of 

optical energy with the first reflecting layer. Thus, it is possible to have an 

absorbing reflector layer and still have low waveguide loss. The placement of 
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FIGURE 7.23 Computed radiation loss as a function of slab thickness for the two 

lowest-loss TE modes in a double-reflector-layer ARROW at 1.513 um [8], with 

No = 1.0, n, = 3.17, and n, = 3.4. (Reprinted, by permission, from Electronics Letters). 

a null at the high-loss layer provides a unique way of placing high-loss layers 

(e.g., gain layers) immediately adjacent to low-loss guides. 

As a third example, consider the radiation loss associated with bending an 

initially lossless waveguide at a radius of R, as indicated in Fig. 7.24. For this 

problem we use a first-order perturbation approach in which the unperturbed 

eigenmode is used in the perturbed problem to calculate the loss. When this 

mode enters the bend of radius R, it is assumed to stay in the center of the 

guide with its phase fronts along radii from the center of curvature. From the 

figure we see that at some radius, xz, the exponential tail of the unperturbed 

mode must travel faster than the speed of light in the cladding medium to keep 

up with the rest of the mode. Clearly, this is not allowed, and we must assume 

that the light beyond this radius radiates away into the cladding. 

To obtain the value of xz, we note that the local phase velocity is equal to 

the radial distance times the angular sweep rate, and that it is assumed to equal 

the unperturbed guide phase velocity, w/f, at the center of the guide (r = R). 
That is, 

ee: meee ae) 
v,(r) Sa aaa ay (7.74) 

Now, by the criteria we have adopted, v,(R + Xz) = w/k,. Thus, 

Xp = R(B/k2 — 1). ' (7.75) 
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FIGURE 7.24 Illustration of eigenmode entering a waveguide bend of radius R so that 

the outside tail of the mode must radiate. 

As in the antiguide case, the problem is to determine the fraction of power 

lost, AP/P, over some incremental distance, Az, so that an attenuation constant 

can be estimated. Again, we shall neglect coherent addition of radiated fields, 

although this is generally not a good assumption. For the relative power lost 

we use the fraction of power contained in the portion of the mode that radiates 

(shaded region in Fig. 7.24). This is a very straightforward integration using 

the unperturbed mode. 

Estimating the effective distance it takes this energy to be radiated out of 

the mode is more complex. For this we use a diffraction distance defined as 
the distance where the peak power density falls to 1/e of its initial value. This 

is meaningful if the diffracting energy keeps the same functional form as it 

diffracts, for then, the width of the one-dimensionally diffracting energy in the 

slab geometry has increased by e-times in this same distance. It turns out that 

the Hermite—Gaussian functions introduced earlier by Eq. (7.43) as the 

eigenmodes of a parabolic dielectric constant medium also serve as the 

eigenmodes of free space in the sense that they maintain the same functional 

form laterally, even though their characteristic width, w, increases. Thus, they 

become the natural basis set in which to expand arbitrary excitation field 

profiles in a uniform medium. This important property comes about because 

the Fresnel diffraction integral generates the Fourier transform of a function, 

and the Hermite—Gaussian functions transform back and forth to other 

Hermite—Gaussian functions, reproducing the original function scaled only in 

width after some diffraction distance. 
Therefore, our procedure for determining the diffraction distance is to expand 

our radiating excitation field in terms of Hermite—Gaussian basis functions and 
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FIGURE 7.25 Radiating part of waveguide eigenmode for x > xz. Superposition of the 

first two Hermite—Gaussian basis functions can approximate this field. Their character- 

istic width determines the diffraction distance. 

determine the distance, Az, for their width to increase by e-times. Figure 7.25 

illustrates this expansion using only the first two Hermite—Gaussian functions. 
In the present case the excitation field is a decaying exponential of the form, 

€,(0) = Ae” >), ee (7.76) 

and the basis functions are given by Eq. (7.43). By iteration for best fit we find 

that the Gaussian 1/e spot size, wy, must be approximately 

0.6 
wos (7.77) 

a 

For a freely diffracting Hermite—Gaussian beam thé characteristic width, 

w, increases from wg at z = 0 according to [9], 

A 2) 

we v9 + ( z ) | (7.78) 
m™W6 

Interestingly, this is true for all of the higher-order functions as well as the 

fundamental. Thus, we do not have to keep track of different characteristic 

widths, and the diffraction problem is completely defined once the excitation 
problem is solved. 

Setting w/w, = e in Eq. (7.78) for the desired diffraction length, and using 
the estimation for the initial width of Eq. (7.77), we obtain 

Tw TN, 
~~ Az = el wo, 

A ays. 
(7.79) 
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FIGURE 7.26 Bending loss as a function of bend radius for different normalized 

frequencies and index steps. 

where n, and y, are the refractive index and the unperturbed modal decay 

constant, respectively, in the cladding region where the radiation is occurring. 

It is also notable that over this distance, Az, the wavefronts of the diffracting 

Hermite—Gaussian functions curve significantly, so that a coherent interaction 

with the planar phase fronts of the guided mode is inhibited. 

Now, we can estimate the attenuation constant, «, from 

{eWPd bay? | ua 
w= “ Ht) No = (7.80) 

e2 *| 18,2 dx 
1980 

Completing the integrations similarly to the work leading up to Eq. (7.64), we 

obtain 
2 

Ls ee. cos-(k,,d/2)e'=se. 7 Pike DR. (7.81) 
mn>(y,d + 2) 

To uncover important analytical dependences and allow plotting of nor- 

malized curves Eq. (7.81) can be approximated by 

y= Ce °2™ 

From Eq. (7.81), it can be shown that C, ~ y2/k, and C, ~ y3/k3, assuming 
weak guiding so that B/k, ~ 1 + 0.5(y,/k2)?. However, more exact calculations 

/ 

have shown that the second quantity is better estimated by C, ~ $y3/k3. Using 
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this and the fact that for weak guiding, y,d can be expressed solely in 

terms of the normalized frequency, V, introduced in Appendix 3 (ie. 

y,d = ./1 + V* — 1), we can generate the normalized plots given in Fig. 7.26. 
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PROBLEMS 

7.1. For TM plane waves incident on a planar dielectric boundary, it is 

possible to get total transmission as well as total reflection. This is called 

Brewster’s angle. Derive an expression for the incident Brewster’s angle 
in terms of the relative dielectric constants of the two media. 

7.2 A plane wave with 2 = 0.85 um in a medium of index 3.5 is incident on 

another dielectric medium of index 3.0. The reflection coefficient at the 

planar interface is determined to be 1/60°. What is the angle of incidence 
for TE polarization? Repeat assuming TM polarization. 
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A symmetric three-layer slab guide has a core region 0.4 ym thick. Its 

index is 3.4 and that of the cladding regions is 3.2. 

(a) Determine the ray angle for the reflecting plane waves that make up 

the fundamental TE guided mode. 

(b) What guide width will provide the same ray angle for the first 

higher-order odd TE mode? 

(c) If the cladding index were changed to 3.0 on one side, what guide 

width would be necessary to obtain the same ray angle for the 

fundamental TE mode? Assume 4 = 1.55 um. 

Plot the effective index vs. center layer thickness, d, for 0.1 < d < 0.8 um 

with 4 = 1.3 um for the multilayer slab guide shown in Fig. 7.27. Add 

dispersion curves for any higher order modes as they become lossless. 

ny = 3.4 

FIGURE 7.27 Schematic of multilayer slab waveguide. 

In exciting a 0.3 um thick GaAs slab waveguide, it seems that much of 

the excitation energy goes into radiation modes. In order to expand this 

excitation in terms of the eigenmodes of the system, perfectly reflecting 

planes are assumed to exist at a distance +30 1m on each side of the 

slab. The cladding material is Alp ,»Gag gAs and the wavelength is 1.0 um. 

Plot the propagation constant vs. mode number for all of the modes. 

Using the WKB method, determine the effective index vs. waveguide base 

width for the fundamental mode of the triangular index profile shown in 

Fig. 7.28 with 4.0 < d < 1.0 um. Assume A = 1.0 pm. Indicate any regions 

where the WKB approximation may not be accurate. Also, plot the ray 

path for the mode at d = 2.0 pm. 

A quarter-pitch GRINROD is 1 mm in diameter and 2 mm long. The 
maximum index in the center is 1.6. If an object is placed 1 mm in front 

of the GRINROD, what is the total distance from the object to the image, 

and what is the magnification? 
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FIGURE 7.28 Triangular index profile waveguide. 

~ 

7.8 A pencil-like beam of 1.3 um light, polarized perpendicular to the plane 

of incidence, strikes an air interface from a medium of index of 3 at an 

incident angle of 0;. Plot the shift of the reflected beam center vs. 6; for 

O00 

7.9 What is the loss of the fundamental “leaky mode” that satisfies transverse 
resonance for an antiguide consisting of a slab 1.0 pm thick of index 3.2 

sandwiched between media of index 3.4? Assume 4 = 1.3 um. 

7.10 In order to fan out from a directional coupler to adjacent fibers, 
symmetric S bend waveguide sections are required as shown in Fig. 7.29. 

Assuming BH waveguides of 1.3 ym Q-material surrounded by InP for 

the 1.55 um lightwaves, waveguide thicknesses+of 0.4 1m and widths of 

2.0 um and bend radii of R, to accomplish the total lateral shift of 70 um, 

what is the total excess loss due to the four bend sections between input 

and output ports? R, = 100 um, 150 um. 

2 um 

FIGURE 7.29 Directional coupler with input and output S-bends for fan out to fibers. 

7.11 Find the effective index, n, and the field profile, U(x, y), at 1.55 ym of 

the fundamental mode of the rib waveguide shown in Fig. 7.30 by 

numerically solving the scalar wave equation using the finite-difference 

technique. Hint: This is a strongly guiding waveguide, so the computa- 

tional window boundaries on which U = 0 can be placed fairly close to 

the core of the waveguide. In the initial trial, a 4.8 um wide (y-direction) 

by 2.3 um high (x-direction) window together with a grid size given by 

Ax = 0.1 um and Ay = 0.4 um should be sufficient. Place the window to 

leave 0.25 pm above, 0.65 um below and 1.4 um on either side of the 
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high-index rib. For more details see M.J. Robertson et al., Semiconductor 

waveguides: analysis of optical propagation in single rib structures and 

directional couplers, IEE Proceedings, Part J, 132(b), (1985). 

FIGURE 7.30 Rib waveguide cross section. 



CHAPTER EIGHT. 

assess 

Photonic Integrated Circuits 

8.1. INTRODUCTION 

In the last two chapters we introduced techniques to analyze waveguides and 

complex waveguide junctions: In this chapter we shall apply these techniques 

to practical examples of photonic integrated circuits (PICs). The purpose is to 

illustate the importance of these techniques and generate proficiency in their 

use, rather than to give a complete summary of PIC technology. In keeping 

with the active device theme of this text we shall emphasize PICs which include 

diode lasers or amplifiers, or which, in fact, are diode lasers of a relatively 

complex design. The incorporation of modulators with lasers will also be 

emphasized. 

To qualify as a PIC the device must have at least two sections with an optical 
waveguide junction there between. In Chapter 3 a few examples have already 

been introduced. For example, Fig. 3.16 shows a three-section DBR laser with 

separate gain, modal phase, and Bragg wavelength control electrodes. Each 

contacts a region with somewhat different optical waveguide properties. In this 

chapter we shall begin with a brief review of such reflective grating-based 

waveguide devices. Other than the multiple section laser analysis introduced 

previously, the main issue in such devices is efficient modal excitation (i.e., low 

scattering or mode mismatch loss) at the various waveguide junctions. A 

laser-modulator and a widely tunable laser will be considered explicitly. 

The second group of examples deals with the use of waveguide directional 

couplers for removing energy from a device or for coupling different devices 

together. A ring laser with a directional coupler output tap and a coherent 

receiver will give examples of PICs using directional couplers. As will be seen, 

these are considerably more complex structures than the in-line multiple section 

devices. The limitations on waveguide bending radius are particularly important 
in these cases. 

Thirdly, widely tunable lasers and filters that use codirectionally coupled 

filters will be investigated. Here we shall review how grating-assisted couplers 

342 
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are designed given a certain set of constraints. This discussion will also briefly 
introduce the acousto-optically coupled waveguide filter. The coupling of modes 
within one waveguide as well as coupling between modes of two nominally 

separate guides will be included. 

Finally, we review important numerical techniques for analyzing wave- 

guide junctions whose characteristics cannot be accurately understood from 

analytic techniques. The beam-propagation method (BPM) is the primary 

technique used. Examples of its utility include the zero-gap directional coupler. 
and Y-branching junctions. 

8.2 TUNABLE LASERS AND LASER-MODULATORS WITH IN-LINE GRATING 

REFLECTORS 

As discussed in Chapter 3 grating reflectors can be incorporated within 

waveguides to provide a frequency-selective reflection. Assuming the waveguide 

is within the i-region of a pin heterojunction diode, the index can be changed 

by either applying a forward current to inject carriers (free-carrier plasma effect) 

or a reverse bias to increase the electric field (electro-optic effect). Thus, the 

center (Bragg) frequency of the grating reflector can be tuned in direct 

proportion to the index change. As shown in Fig. 3.16, tunable DBR lasers 

have been constructed by incorporating this tunable DBR mirror with gain 
and phase-shift regions. The addition of the phase-shift region allows the cavity 

mode to be shifted in wavelength independent of the DBR mirror’s center 

frequency. Also, this region gives the flexibility of shifting the cavity mode 

together with the mirror center frequency for true continuous tunability of a 

single mode. Without the phase-shift region a tuning of the grating index moves 

the center frequency of the mirror across the axial mode spectrum to provide 

a discrete mode-jump tuning. 

8.2.1 Two- and Three-Section DBR Lasers 

Figure 8.1, shows a general multisection DBR laser with three separately 

controlled sections: one each for gain, mode phase shifting, and shifting of the 

frequency-selective mirror. Currents applied to these sections primarily affect 

the three aspects of gain, mode tuning, and mode filtering, respectively, as shown 

in part (c). However, it is generally not possible to have each electrode only 

control one aspect of the single-frequency laser’s operation. For example, a 

shifting of the grating index will shift the lasing mode slightly as well as the 

center frequency of the grating. 
For a two-section embodiment, the phase-shift section is left out. We 

can control the gain and filter wavelength directly. The mode locations 

will move only slightly along with the grating tuning according to the fraction 

of the mode volume that resides in the grating. As the grating current is 
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FIGURE 8.1 Three-section DBR. (a) Laser schematic; (b) effective cavity that determines 

mode spacing and tuning characteristics; (c) sketch of relative spectral characteristics 

of the cavity filter, gain, and modes along with currents that predominately affect the 

specified element. 

adjusted, the filter will move across the mode comb, alternately selecting axial 

modes. Its center wavelength, A,, tunes according to 

oars ate (8.1) 
AR ni, 

where n, is the effective index in the grating. A given mode will lie at the grating’s 

Bragg frequency only at one point near the middle of its selection during this 

tuning of the grating filter. The frequency spacing between selected modes at 

these points is 

c 

* 20H); L, ate (fig )gLers J 

Af (8.2) 

where (n,), and (n,), are the group indexes in the active and mirror sections. 

Figure 8.2 illustrates an actual experimental example of such a two-section 

discretely tunable DBR. This device has found considerable use in wave- 

length-division multiplexing (WDM) systems experiments. 
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FIGURE 8.2 (a) Schematic of the axial structure of a two-section DBR laser, and 

(b) output tuning characteristic versus the tuning current to the grating section. 

After [1]. (Reprinted, by permission, from Appl. Phys. Lett.) 

Ideal continuous single-mode tuning is possible by including a. finite 

phase-shift section [2]. Here we attempt to move the mode comb along with 

the grating filter by simultaneously applying a current to the phase-shift section. 

Because this section only encompasses a portion of the mode volume, we suspect 

that the index change here will have to be larger than in the grating. Specifically, 

we desire the wavelength of the mode, J,,, to be the same as the Bragg 

wavelength of the DBR mirror, Ag, for best modal purity (best MSR). For 

wavelength tuning, the relative change in wavelength of the mode should equal 
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the relative change in the grating’s Bragg wavelength, or 

aL a (8.3) 

Using Eq. (3.64) we can then solve for the required change in index of the phase 

shift region to accomplish this alignment, 

XS 

An, Sa at An, 1, Lg 
eee aaa | fe (8.4) 
Tecate Ld By Lal ie PO 

Thus, to obtain continuous single-mode tuning in the three-section DBR, 

the primary tuning signal is applied to adjust the index of the grating, and then 

a secondary signal is derived to adjust the phase shift region to satisfy Eq. (8.4). 

In practice, it is not necessary to measure all of the independent parameters in 
Eq. (8.4) to derive the desired tracking signal. This is because the output power 

experiences a local maximum when this ideal alignment is obtained, since the 

cavity loss is minimized there. Thus, a simple feedback loop can be constructed 

that senses the output power and adjusts the signal to the phase control 

electrode to locate a local maximum. Figure 8.3 illustrates one simple design 
which has been demonstrated. In principle, this feedback loop could be internal 

to the laser package. 

To accomplish the ultimate goal of a tunable laser with only two control 

inputs—one for power level and another for wavelength—the second inde- 

pendent feedback loop in Fig. 8.3 is added to control the current to the gain 

Phase correction 

Wavelength 

FIGURE 8.3 Circuit that uses first-order feedback to set the power level and a primitive 
AFC to lock the mode wavelength to the Bragg wavelength of the grating, an alignment 
where a local maximum in output power exists. \ 



TUNABLE LASERS AND LASER-MODULATORS WITH IN-LINE GRATING REFLECTORS 347 

section so that a given reference current from a power-monitoring detector is 

maintained. This latter feedback loop is already commonly applied to most 

lasers in lightwave systems environments in order to level the output power. 

In practice, control curcuits tend to be somewhat more complex than suggested 

by the figure. 

8.2.2 Two-Section Example Problem 

We wish to design a tunable two-section 1.55 um InGaAs/InP DBR (a gain 

region with a cleave at one end and passive grating at the other) which has 

output frequencies equally spaced by 50 GHz when the index of the grating is 

tuned. That is, we seek a design very similar to that illustrated in Fig. 8.2. A 

4-quantum-well gain region with characteristics as given by Fig. 4.25 is assumed. 

This is contained in a quaternary separate-confinement waveguide of bandgap 

wavelength 1.25 um, and this waveguide is clad by InP as illustrated in Fig. 

8.4. The product of transverse and lateral confinement factors is found to be 

6%. The grating region is formed by removing the quantum wells and etching 

a fundamental-order triangular sawtooth grating with a peak-to-peak depth of 

50 nm on the top side of the remaining 0.3 um quaternary waveguide. It is 

desired to tune the output over 12 of the axial modes (spaced by 50 GHz). We 

shall use a BH waveguide width of 3 pm, an internal efficiency of 0.8, an internal 

loss of 10 cm‘ along the entire device length, and a grating length to give a 

power reflection of 70% in the absence of loss. 

For our design specification, we need to determine the grating and gain 

region lengths; plot the power-out of the cleaved end vs. current into the gain 

section; and plot the output frequency deviation vs. the current injected into 

the grating, assuming only radiative recombination in the 1.25 um bandgap 

Q-material. 

We first determine the necessary grating length. The net power reflection 

gives us KL,, but we need to calculate « from the waveguide geometry. For the 

passive grating region we first calculate the effective index and width using 

Appendix 3. We find a normalized frequency V = 1.39; a normalized pro- 

pagation parameter, b = 0.32, and nv = 3.24, using an interpolated index of 

FIGURE 8.4 Two-section DBR laser with separate gain and mirror tuning electrodes. 
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n, = 3.37 from Table 1.1 for the waveguide slab. Also, the transverse k-vector 

and decay constant are k, = 3.76 ym‘, and y, = 2.72 pm *, respectively. Thus, 
from (7.65), dr = 1.04 um. 

The grating coupling constant can be found from (6.44), using G = 8/n’, 

a = 25 x 10? pm, and n, = 3.37. We find « = 0.0105 pm~*. From rj = 0.70 = 
tanh* «L,, we determine a grating lengh, L, = 115 um. Also, we can calculate 

the grating penetration depth, L,,, = 0.5 (tanh KL,)/« = 39.8 um. 

For 50 GHz mode spacing we use Eq. (8.2) to find Lpgr = La + Ler = 

c/(2<n>, Af) = 750m, using an average effective group index, <n), = 4. 

Subtracting the grating penetration, the active length becomes 

Ly = Lope — Less = 750 pm — 40 pm = 710 pm. (8.5) 

For the output power plot, we need to, determine the threshold current and 

the differential efficiency for the cleaved end.\The threshold gain Ig,, is 

1 1 
In 

0.075 cm 0.32 x 0.70 

Therefore, g;, =.(750/710)(1/0.6)20 cm~ 1 = 352.cm~*. From Fig, 4.25, J,, = 

150 A/cm? per well x 4 wells = 600 A/cm?. Then, I,, =wL,J,,/n; = 16 mA. The 
differential efficiency for the cleaved end #1 is 

VGeh = 0%; + Gm = 10cm7) + =O) cms SA (8.6) 

Om 

Nai = Fn; = 0.4F,. (8.7) 

VG: 

The fraction coupled out end #1, q 

t2 

F,= 2 = 0.77. (8.8) 
(1 “eet — 72) 

g 

Therefore, 47,, = 30.8%. Thus, the power out the cleaved end is 

hy 
Por = Nay —U — Iy,) = 0.2467 — 16 mA) mW/mA. (8.9) 

q 

For the desired 12 output frequencies spaced by 50 GHz, we need a total 
grating index change of 

1.55 um 

6 

A 
An, = -n( 1) = —3.24(12 x 50 GHz) = —0.010. (8.10) 

Now, An, = (0n/ON)N where 6n/ON = —T,,10~?° cm?. T,, is the confinement 
factor for the passive 0.3 ym guide ~ V7/(2 + V”) = 49%.\For only radiative 
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recombination, N is proportional to the square root of the grating tuning 

current. Solving for the frequency shift of the grating vs. the tuning current to 
obtain the desired plot, 

i 
ies (Oe E a lyjP4 

= 204. /T, GHz/mA1?. 811 
; ue V/1, GH2/ GL) 
g 

Figure 8.5 gives the desired plots of output power from the cleaved end vs. 
gain region current Eq. (8.9) as well as the output frequency vs. mirror tuning 

current Eq. (8.11) for this example problem. The solid curve represents the 

center frequency of the grating reflection. The bold horizontal bars represent the 

current range over which the laser stays in the selected axial mode. In reality 

the wavelength will change slightly over that range as the mirror reflection 

phase varies. Also, in practice we find that the assumption of only radiative 

Po, (mW) 

5) 

4 

(a) 3 

2 

(b) 

Frequency Deviation (GHz) 

0 z 4 6 8 10 

Grating Current (mA) 

FIGURE 8.5 (a) Optical power from the cleave vs. active-region current, and (b) output 

frequency deviation vs. tuning current of example two-section DBR. 
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recombination in this example is inaccurate for currents >1 mA. At 1 mA the 

carrier density, given by the square rooted bracket in Eq. (8.11), is 7 x 10°” 

cm °. At this point Auger recombination accounts for about 17% of the total 

recombination (using C = 3 x 10-7? cm®/s). Thus, we would actually need 
1.2 mA at this point. At 8 mA, the Auger current would be about one-third of 
the total. Thus, we would actually need 12 mA of total current to get the desired 

carrier density. 

8.2.3. Extended Tuning Range Four-Section DBR 

To obtain a wider tuning range than the 8—10 nm possible with the three-section 

DBR, research on other extended tuning range lasers has been carried out. 

Figure 8.6 gives some examples. One of these—the four-section modulated- 

grating DBR—builds upon the principles of the basic three-section DBR design. 

As shown in Fig. 8.7 this modulated- -grating device deviates from the 

three-section DBR only in that two separately contacted grating reflectors 

¢ Coupled Y-cavity laser 

Tuning current 1 

: lili) 
Tuning current 2 

¢ Grating-assisted co-directional coupler 

gain phase GACC filter 

¢ Sampled grating DBR laser 

sampled grating 1 gain phase — sampled grating 2 

LAMA Ms hss ssh dssssssitissa.uissiasiiilidii.iitssisi, iid D 

FIGURE 8.6 Examples of extended tuning range lasers.After [3-6]. 
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FIGURE 8.7 Four-section extended tuning range laser. (a) Device layout; (b) individual 

sampled-grating mirror reflectivities, R, and R,. Alignment at 1.55 um is indicated, so 

that the net mirror loss will only have a single minimum at 1.55 um. A slight change in 

index of one mirror will shift the alignment position to another pair of peaks. 

are used for the end mirrors, and each of these contains a periodic modulation 

of the amplitude or phase of the grating. This periodic spatial modulation, 

which can be as simple as a periodic blanking of the grating, creates a 

corresponding reflection spectrum with periodic maxima in the frequency 

domain. This can be understood most simply in the special case of weak 

reflections in a very long grating with very short grating bursts. Here the impulse 

response is seen to be a comb function, and the Fourier transform of a comb 

function is another comb function in the frequency domain. Figure 8.8 illustrates 

how the periodic blanking of a continuous grating results in a comb of reflection 

orders. 
As suggested above, the simplest form of modulated grating is the sampled 

grating in which a uniform grating is periodically blanked, perhaps with a 

double exposure during the lithographic fabrication step. For a finite-length 

grating the reflection coefficient for each peak in the comb of reflection maxima 

has the same form as the unsampled grating, i.e., Eq. (6.37), however, in this 



352 PHOTONIC INTEGRATED CIRCUITS 

REAL SPACE FOURIER SPACE 

Grating Delta Function 

Continuous Grating —» }«—/A aes | iid Aaa S> 5 4 
rorseyeyyge perry gy woa—yp fmqIeysey pY=~_F8P=PYYEP9P9YP9YEY))(U(S. 

WA 

c(p) 
Sampling 

| | Function | | | t Sampling Comb 

“Vz VW 

AE,,(p) 
Sampled Grating Comb 

Sampled Gratin: = Zz amp ating P= 0 

| Zo | . 1 / A spatial 
frequency 

FIGURE 8.8 Sampling of a continuous grating is accomplished by multiplying it by a 

sampling function. In the Fourier domain the delta function spectrum of the continuous 

grating is replicated into a comb. . : 

case the total reflection spectrum is composed of a superposition of these 

reflection components, one for each peak (reflection order) of the comb. Also, 

the coupling constant, x,, and the normalized propagation constant, o,, are 

functions of the duty factor of the sampling function, z,/z), and the peak (or 

order) number, p, in the comb of reflection peaks. For simple periodic blanking 

of a grating, the coupling constant is given by 

Z4 sin(1pz,/Zo) e inpzi/z0 
> 

Zo (mpz,/Zo) 
Kp = Kg (8.12) 

where x, is the coupling constant for the continuous, unsampled grating, z, is 

the length of the grating burst, and z, is the sampling period. From Eq. (6.37) 

the reflection coefficient for one of the reflection orders is, 

yo aiky tanh Lo55)] 

o, + jo, tanh[o,L, | : 
(8.13) Pp 

where 

Oy ara N/ cals a O, 
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and « is the net propagation power loss. The net total sampled-grating reflection 
coefficient is 

r, =p: (8.14) 

In Eq. (8.14) we should only use the largest r, at any wavelength in the 

summation to be consistent with the assumptions of the coupled-mode 
formalism which only considers one Fourier order at a time. 

As indicated in Fig. 8.7, the 4-section sampled-grating DBR laser makes use 

of two different sampled-grating mirrors. By sampling the gratings at different 

periods, reflection maxima with different wavelength periods are created in each 
mirror. Thus, as shown in part (b), if a certain reflection maximum from one 

mirror is aligned with one in the second mirror, the others will be misaligned, 

and the product of the two reflectivities which determines the cavity loss, 

will only have one maximum. That is, the laser will still be a good single- 

frequency laser with very good MSR. Now, if both mirrors are tuned together, 

e.g., by connecting their electrodes, we are left with an effective three-section 

DBR that functions identically to the normal three-section DBR. Thus, 

~8 nm of continuous single-mode tunability might be expected at 1.55 um by 

simultaneous tuning of the phase electrode. 

However, if the index of one grating is tuned differently from the other, 

adjacent maxima will successively line up. We refer to this differential adjust- 

ment to obtain alignment of different reflection maxima as channel changing, 

whereas the above joint adjustment of the two mirrors is fine tuning. If we wish 

to have full wavelength coverage, the channel spacing between mirror reflection 

maxima should be less than the fine-tuning range of ~8nm. Since the 

periodicities of the maximas may be only slightly different, only a relatively 

small differential index change is necessary to switch channels. Thus, with a 

differential effective index change of less than ~0.1%, it is possible to switch 

the alignment point across many different reflection maxima channels. As can 

be seen, this sliding-scale action is very similar to the function of a vernier scale. 

Figure 8.9 gives experimental results from ridge-waveguide sampled-grating 

devices near 1.5 pm. As can be seen a large tuning range with very good side 

mode suppression is possible. 

8.2.4 Laser-Modulator or Amplifier 

One of the more important PICs being developed in recent years is the 

laser-modulator. Usually the laser is also a tunable laser, so as shown in Fig. 

8.10, we again have at least three waveguide sections butted together. In this 

case, however, one of the sections (the modulator) is outside of the laser cavity 

beyond the DBR mirror. The modulator section is somewhat analogous to the 

phase-shift section in the continuously tunable laser. However, here we desire 

an intensity modulator rather than a phase modulator, so that the laser can 

operate cw and the emitted lightwave can be modulated external to the cavity. 
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FIGURE 8.9 (a) Schematic of experimental sampled-grating device that uses two 

tensile-strained InGaAs quantum wells. (b) Pulsed and cw tuning characteristics vs. 

(J, — I,). (c) Spectra at the 7 bias points indicated in part (b). The cw output level was 

~10 mW at 1543 nm. After [6]. 
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FIGURE 8.10 Schematics of laser-modulators incorporating a tunable DBR laser. The 

top illustrates a Franz—Keldysh absorption modulator, the center shows a modulated 

post-amplifier, and the bottom illustrates a guide/antiguide refractive modulator. 

The main reasons for interest in the laser-modulator PIC is that the external 

modulator adds less wavelength chirp in the process of modulation, and its 

modulation bandwidth can be higher than that of a laser which is optimized for 

tunability or some other purpose. 

If wavelength tuning is not necessary, a somewhat simpler laser-modulator 

PIC can be formed by using a simple single-section DFB laser, rather than the 

three-section DBR shown in Fig. 8.10. Figure 8.11 shows such a configuration 

along with some experimental results [7]. As shown the DFB in this example 

utilizes a quarter-wave shifted design, and the modulator uses electroabsorption 

from the Franz—Keldysh effect. For low-chirp operation, it was found that the 

isolation resistance between the laser and modulator sections had to be larger 

than 500 kQ. These kinds of devices are being developed for use with long 

optical fiber links such as in undersea cable. 

8.2.4.1 Franz—Keldysh Modulator Perhaps the most popular intensity modu- 

lator is the bulk Franz—Keldysh modulator. This modulator consists simply of 

a straight section of waveguide with an active region of slightly larger bandgap 

energy than the photon energy of the lightwave to be modulated. The 
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FIGURE 8.11 (a) Schematic of monolithically integrated laser-modulator using Fe 

doped semi-insulating regrowth to form the lateral BH structure and isolate the sections. 

The laser is a 300 pm long asymmetric quarter-wave-shifted DFB, and the modulator 

is a 290 ym long buffer layer loaded electroabsorption structure. The separating isolation 

region is 50 um long. (b) Modulation extinction ratio as a function of bias voltage to 

the modulator. (c) Modulator frequency response. After [7]. (Reprinted, by permission, 

from H. Tanaka, M. Suzuki, and I. Matsushima, [EEE J. Quantum Electron. QE-29, 

1708 (1993). © IEEE.) 

application of a reverse bias field lowers the absorption edge via the Franz— 

Keldysh effect and reduces the emitted light. As indicated in Fig. 8.12, the 

Franz—Keldysh effect describes the electron—hole excitation with below-band- 

gap photons due to the possibility of lateral carrier tunneling with an applied 

electric field. It can equivalently be understood in terms of the extension of 

carrier wavefunctions into the forbidden gap when the field is applied. 
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(a) (b) (c) 

FIGURE 8.12 Schematic of photon absorption to generate an electron-hole pair; (a) 
with no electric field, and (b) and (c) with a strong applied field so that photons lower in 
energy by AE can be absorbed. (b) illustrates the tunneling model and (c) the equivalent 
wavefunction overlap model. 

The reduction in required photon energy, AE/q, for ionization is given by 

the product of the applied electric field, &, and the effective tunneling distance, 

Ax. Tunneling is important at distances up to several nanometers, and electric 

fields of ~2—3 x 10° V/cm are easily applied in pin structures. Thus, a lowering 

of the absorption edge by &Ax ~ 10 meV (or increasing the absorption 

wavelength ~10nm near 1.3 um) is obtainable. As a result, the attenuation 

constant for a given wavelength within several nanometers of the absorption 

edge can be increased from a few cm~! to well over 100 cm“! for a few volts 
applied in practical pin DH waveguides. For a desired modulation ratio, P,/P.,, 

and available change in modal loss, <Aa,,»>, the required modulator length is 

given by 

pet Poe (8.15) 
(Ade » tee 

Modulator lengths ~300 um are typical for practical Franz—Keldysh modu- 

lators. Another important design consideration is that the zero field loss, <a>, 

must be sufficiently small so that the available output power is not reduced too 

much. This restricts just how close the operating wavelength can be to the 

unperturbed absorption edge. 
Figure 8.13 gives results of detailed experimental measurements of the 

absorption near the band edge as electric fields are applied. Also shown for 

comparison are similar measurements for quantum-well material. In the 

quantum-well case the absorption is primarily due to excitonic effects. Thus, it 

has been dubbed the quantum-confined Stark effect to emphasize the different 
physics involved. As can be seen, the primary difference with the quantum-well 

absorption edge is that it is much sharper. As a result, larger field effects are 

possible over a narrow wavelength range. However, because the effect is more 

confined to the proximity of the absorption edge, devices using it require 

well-defined wavelengths and are more temperature sensitive as compared to 
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FIGURE 8.13 Absorption edges of (a) bulk and (b) quantum-well material as electric 

fields are applied. Applied fields are given in the figures. For (b) dgw = 9.5 nm and 

dparrier = 3-5 M Of Alp 3Gay.7As. After [8,9]. (Reprinted, by permission, from JEEE 

Photonics Technology Letters © 1993 IEEE, and Optical and Quantum Electronics.) 
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bulk Franz—Keldysh effect devices. Thus, for use’ with tunable lasers, the 

bulk-effect devices may be the better choice. 

8.2.4.2 Modulated Amplifier For widely tunable lasers, even the bulk-effect 
absorption modulators may not have enough optical bandwidth to serve as 

effective external modulators. To achieve broader optical bandwidth, different 

kinds of intensity modulators have been investigated. The second two examples 

in Fig. 8.10 are capable of providing modulation over a broader optical 

bandwidth. The modulated amplifier consists simply of a gain section in series 

with the laser. For fabrication ease, this can be the same gain material as that 

in the laser. Thus, the optical bandwidth should be as large as the laser’s gain 

material. In fact, depending upon how the amplifier section is biased, it may 

be possible to have an even larger optical bandwidth than the laser. This fact 

can be appreciated by reviewing the example gain spectra given in Chapter 4. 

Besides chirp, the primary question in the modulated amplifier case regards 

the magnitude of the modulation bandwidth. For the best on/off ratio it is 

desirable to swing the modulation current above and below the transparency 

value. However, as can be seen from the carrier density rate equation (2.15), 

the carrier decay time is comparable to the normal carrier lifetime when the 

gain is small (or negative). This is typically ~3 ns, which would limit the 

modulation bandwidth to ~ 100 MHz. However, if the amplifier is biased at a 

relatively high level, where the stimulated emission term dominates, and then 

modulated, it may be possible to obtain a modulation bandwidth >1GHz 

with a reasonable (~ 10 dB) on/off ratio. 

With stimulated emission, we can use Eq. (2.15) to obtain an effective carrier 

lifetime, t’, given by 

fipy 1 PE 
—=—+a'v,N =-+a'—~, (8.16) 
ho 4 T w dhy 

where a’ = g/N at the bias point and P is the optical power flowing in the mode. 

From this we see that the optimum bias point is at the knee of the gain curve 

where g/N is a maximum. The modulation bandwidth limited by carrier lifetime 

1S 

1 4 PY 
———— = +a’ 2 | (8.17) 

270 (eG w dhy 

Plugging in values for a 1 mW/pm? input power density at 1.55 um wavelength, 

and a gain bias point at the knee of the gain characteristic where a’ ~ 107 '° cm’, 

we obtain t’ ~ 1 ns. Higher input power densities will decrease this, and as the 

photon density grows along the amplifier’s length, t’ would also decrease more. 

Thus, gigahertz operation appears to be possible. However, we would not expect 

to be able to operate this amplifier modulator much above the gigahertz level 

unless very high input power densities were used. 
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If the input (or output) power level of the amplifier becomes relatively large, 

we must also consider the power saturation characteristics of the amplifier. 

When the stimulated emission term becomes comparable to the other carrier 

recombination terms in the carrier rate equation, the carrier density and, hence, 

the gain decrease with increasing optical power. Substituting for the photon 

density as in Eq. (8.16), the carrier rate equation becomes 

idee No bach N lg wee (8.18) 
deg yay w dhyv 

At low optical powers in the steady state, N = Ny = n,It/(qV), and over some 

bias range we can approximate the gain by g = a(N — N,,). Therefore, the 

steady-state gain can be written as gy, = a[n;It/(qV) — N,,]. Then, solving for 

the steady-state carrier density and gain‘for higher optical powers where the 

stimulated emission term must be included, We obtain 

ee OPr 
Nis gee (8.19) 

qV w dhyv 

and 

Jo gle Oe . 8.20 
aS stat ars 

where 

dh 
pan (8.21) 

aly & 

For quantum-well separate-confinement waveguide amplifiers typical values 

lead to P,~ 1 — 10 mW. 

Now, to get the net amplifier response, we must integrate over the length of 
the gain region using 

dP ‘ 
— = gP. (8.22) 
dz 

Inserting Eq. (8.20) into (8.22) and performing the integration over a length L, 

we obtain an implicit relation for the large-signal gain, G = P(L)/P(0) = P.,/P,,,, 

Gs 
G=G; exp| - ae =. (8.23) 

where Gy = exp(gL) is the unsaturated gain for P,« P,. From this we can 
derive the output saturation power, P,., where the gain has fallen to half of Go, 

P _Goln2, 
faa tl (8.24) 
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Thus, we note that P,. is slightly smaller than P,. 

Another issue with the modulated amplifier approach is the broadband 
spontaneous emission level. Although it is easy to keep the spectral density 

level low, the integrated spontaneous energy can be comparable to the energy 

at the desired output wavelength if the input signal level is not large enough. 

Careful spatial filtering can be used to eliminate off-axis spontaneous energy, 

but there is still the inherent spontaneous emission into the mode of interest. 

It can be shown [10] that the noise figure, F, = (SNR);,/(SNR),.. must be 

>2n,,, the population inversion factor introduced in Chapter 4. In fact, a 
quantitative measure of this spontaneous emission relative to the gain can be 

obtained from the details in Chapter 4. The minimum noise figure is increased 

further by internal loss, «;, and any facet reflections. Neglecting the facet 

feedback, we can write the noise figure as [10], 

p=m,{2)=20=20(_#_) 
g — 4%; tof eNgrens; 

Typically, F, ~ 5 dB in semiconductor amplifiers. 

8.2.4.3 Guide/Antiguide Modulator The third example of an integrated 

modulator is the guide/antiguide modulator [11] shown in Fig. 8.10. Unlike 

the other two examples, this device uses refractive index effects to achieve 

intensity modulation. However, unlike other devices of this class, such as 

Mach-Zehnder or directional-coupler modulators, it does not rely upon 

length-dependent mode beating or interference effects. Thus, it tends to be less 

dependent upon wavelength and temperature changes. It consists of a field- 

induced guide region surrounded by identical field-induced cladding regions. 

It functions as an intensity modulator by using applied voltages to alternately 

create either a laterial index guide or antiguide profile as indicated in Fig. 8.14. 

1 
{ 1 
1 ' 
1 1 
1 ' 
1 ' 

(a) (b) 

FIGURE 8.14 Schematic of guide/antiguide modulator in (a) on and (b) off states. 
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Thus, like the Franz—Keldysh and amplifier modulators, it basically consists 

of a straight section of guide that does not require long waveguide bends or 

other transitions. Radiated energy in the antiguiding state must be spatially 

filtered in the output guide; this would naturally occur in fiber coupling. 

8.2.5 Laser-Modulator Example Problem 

Figure 8.15 shows a schematic of a tunable laser-modulator to be designed. 

The device is to operate at a minimal bias current at 5 mW out, have a +2 nm 

continuous tuning range, and a 10:1 on/off ratio with a 2V p—p applied 

modulation. The characteristics of the active layers in the gain, phase shifting, 

DBR, and modulator regions are given by Fig. 4.25, the example of Section 

8.2.2, and reference 7, respectively. The problem is to determine the lengths of 
the various sections. A final criterion is that the total injected current density 

to any section can not exceed 10 kA/cm? due to anticipated problems with 

device heating and reliability. 

We also need to determine the mismatch loss at each waveguide junction, 

so that we can calculate the total internal loss. Each region will have slightly 

different modal cross sections*and waveguide impedances, and reducing the 

mismatch loss between these sections is one of the key problems in fabricating 

a viable device. For this step we use the modal excitation formula (6.81), which 

leads approximately to (6.84). 

LLL LLL LL fll, 

eas 0.99 a. 

FIGURE 8.15 Example DBR tunable-laser—FK-modulator, indicating various para- 
meters: (a) top view; (b) cross-sectional side view. The internal modal loss is assumed 
to be 10 cm! throughout; the internal quantum efficiency for current injection is assumed 
to be 0.8 throughout. Separate current sources are attached to each top electrode. 
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First, we calculate the effective indices of each waveguide section, and then 

we calculate the confinement factors in the active and passive regions. From 

Section 8.2.2, n, = 3.24. Also, n, = 3.23. The addition of the 4-quantum-well 

active region gives n, = 3.30. From perturbation theory, I’, = 0.06, and from 

Section 8.2.2, I,,,, = 0.49. From this information we can plug into Eq. (6.84) 

for the various interfaces. For the gain-to-phase shift region we find a power 

transmission of 98%. Between the phase-shift and grating regions or the grating 

and modulator regions, the transmission is near unity. Most of the energy not 

transmitted between the gain and phase-shift regions is lost to forward- 

propagating radiation modes. However, a little (~ 0.2%) is reflected back. This 

can show up as a slight modulation on the cavity loss, but since our primary 

mirrors have much larger reflectivities, we shall neglect it here. 

Before we can pursue the issue of optimum mirror reflectivity, we need to 

determine the minimum lengths for the phase-shift section and modulator. The 

phase-shift section must be sufficiently long to provide continuous tuning over 

4nm. From Eq. (8.4), neglecting the difference in effective indices and phase 

shift in the gain region, we find 

An, 4 L 
ie (1+) (8.25) 
Rigent550 ie 

Thus, we see that even for L, > L,, we require An,/n, > 0.0026. If we let 

L, = L,, then An,/n, < 0.005, over nearly all of the tuning range. (The required 

maximum grating effective index change is 4/1550, or just half this amount.) 

This is about as large as we can expect to get without adding significant free 

carrier losses with injected currents, thus, we make the choice, L, = L,. From 

Eq. (3.66) we can calculate the maximum tuning current required for either the 

phase-shift or grating sections. That is, 

qw dL; 
Tienes 

Wepe xl0r-) cm J 
; Afi, (8.26) 

where the subscript j = g or p. For An, = —0.01, An, = —0.02, and a carrier 

lifetime t = 3 ns, I, = 90.9L, mA/mm and I, = 181.8L, mA/mm. The maximum 

current density in the phase shifter is therefore 6.1 kA/cm7?, a sufficiently low 

value. 
For the external modulator, we use Eq. (8.15) with absorption numbers from 

[7]. First, we determine a zero-bias built-in voltage of 0.8 V for a relatively 

heavily doped pin structure, and assume modulation of 0—2 V. Thus, the internal 

modulator field varies between 0.8 V/0.3 um and 2.8 V/0.3 ym. From ref. [7] 

for 1.45 um bandgap material at 1.55 um, we obtain Aw; = 140 cm *. Using 

a confinement factor of 0.66, and P)/P,, = 10, in Eq. (8.15), we obtain 

0.66 
ephee Fe eA ON 250 tan: 8.27) 

eae, 240.Cmiae ae : 
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With a 10 cm~! residual loss, the net on-loss in the modulator is 1.1 dB. Thus, 

we must get 6.4 mW out of the grating mirror to get 5 mW to the output facet. 

In order to select the active region and grating lengths for minimum 

drive current, we refer to Appendix 17. In this appendix, L, is the total passive 

length including the grating penetration depth. From the discussion there 

we also know that we will minimize the drive current for the largest mirror 

reflectivity and shortest gain length that is consistent with other practical 

constraints. One practical constraint is the ‘additional loss in propagating 

through the grating that is not included in Appendix 17> Another is heating 

that will occur for high current densities. Thus, we know that we need to use 

a nominal-length grating. As a first design iteration we will use the existing 

design of Section 8.2.2, since the reflection was relatively high. For this design, 

ro =0.7, L, = 115 pm, and L,,,= 40pm. Thus, using the effective mirror 

model, we have an additional propagation.factor through the remaining grating 

length of exp[ —2(40)0.001] = 0.92; or we need P), = 6.9mW at the effective 

mirror output. 

Reviewing Appendix 17, we see that our present case doesn’t really fit into 

any case considered due to the grating penetration. Case C (fixed L,/L,) would 

appear to be the closest; however, after plugging in our numbers, we see that 

it leads to an optimum threshold gain far above the knee of the gain 

characteristic, where the current density >10kA/cm?, which would be im- 

practical from the standpoint of device heating, carrier leakage, and accelerated 

aging. The other extreme would be Case A1 (fixed L), where the optimum 

threshold gain is at the knee of the gain vs. current characteristic. Working 

through these two extremes and using Fig. 4.25, we obtain g,,,(C) ~ 1500 cm’; 

Jop(A1) ~ 600 cm™*. Since no case exactly fits our example, we choose the 

average of these two extremes as a first iteration. At this point J, ~ 1.9 kA/cm? 

for the 4-quantum-well active region. Then, we can calculate L, (assuming 

L; = L,)s using Py Gth ua = a(2L, ae Lerr) ait In(1/R), 

a;Lerp + In(1/R) _ 10 cm~*(0.004 cm) + In(1/,/0.7) 
hl = 

i Tyy9ul1 — 20,  0.06(1050 cem~*) — 2(10 cm~?) 
=Slum. (8.28) 

For this first trial the required drive current to the active region is 

owl | a, L 
| us + | +i [2 7, 

Vv Ni n; LIn(1/R) 

1900(3 x 51 x 1078) i foams [Ss Z a mA + Bele 86 One 
0.8(10-3) o8Lina/Jo7) | 1.24 G2) 

= 3.64mA + 19.36 mA 

= 23.0 mA. 
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Here we observe that the first term is the threshold Current and the second is 

the current required to obtain 6.9 mW of output. We also note that the device 

is being operated at about 6.3 times threshold at a net input current density of 

~15kA/cm?. This clearly exceeds the allowed drive current density. In this 

case, we might expect significant problems with heating and resulting carrier 

leakage and degradation. Thus, our optimization problem is superseded by the 

need to reduce the operating current density to 10 kA/cm?. This will require a 

lower threshold current density and longer length. Also, we need to look at: 

other mirror reflectivities to find an optimum design. 

In order to see the tradeoffs between the selected mirror reflectivity and 

active region length most clearly, we plot the calculated total drive current from 

Eq. (8.29) versus the active region length determined from Eg. (8.28) in Fig. 

8.16. For the gain curve the analytical expression given in the figure caption of 

Fig. 4.25 is used. Besides the initial value of R, = rj = 0.7, output grating power 

reflectivity values of 0.5 and 0.3 are shown in Fig. 8.16. The vertical arrows 

indicate the first point that exceeds a total current density of 10 kA/cm? on 

each curve. All points to the left have higher current density and are excluded 

from consideration. Therefore, even though the higher mirror reflectivity 

combined with short active regions has a lower mimimum drive current, the 

current density is too high to be considered. 

Current, I, (mA) 

Active Region Length, L, (um) 

FIGURE 8.16 Required drive current for DBR tunable-laser FK-modulator for 5 mW 

output power. 6.9 mW is required at the effective mirror plane of the DBR laser section. 

The points represent threshold gain increments of 50cm '. The leftmost point for each 

reflection value is for a threshold gain of 2000cm~'. The rightmost points for the 

R, = 0.7 and 0.5 cases are for 550 cm~ ' while for R, = 0.3, the endpoint is at 600 cm~ te 

The vertical arrows mark the point at which the operating current density reaches 

10 kA/cm?. The solution chooses L, = L,, assumes zero coupling loss between sections, 

and uses the parameters given in the example. 



366 PHOTONIC INTEGRATED CIRCUITS 

From this figure we see that the 50% grating power reflectivity is the best 

compromise to achieve the lowest drive current while not exceeding 10 kA/cm? 

in current density. Just to the right of the vertical arrow we have a threshold 

gain of 1100cm™~', a threshold current density of 2.1 kA/cm?, a total drive 

current of 23.6 mA, and a drive current density of 9.5 kA/cm? for an active- 

region length of 83 ym. Thus, this is the best solution for the given criteria. A 

summary of these and other device parameters follows: 

r, = 0.707, g = $4 um, Less a 34 um, 

La= 83m L, = 83 pm, 

Tf = 66 mAs J, = 21 kA/cm?, 

pca)3.6,1m Ay J, = 9.5 kA/cm?. 
\. 

(8.30) 

In finishing this design we should note that even 10 kA/cm? is a high current 

density for lasers in the InGaAsP materials system. As shown in Fig. 8.16 the 

total drive current increases relatively slowly for increasing L, away from the 

minimum. Thus, it is generally found desirable to design devices with active 

regions quite a bit longer than the value for minimum current, since a large 

reduction in current density can be achieved. For example, if we increase the 
length to 173 um, the drive current increases to 29.6 mA, but the drive and 

threshold current densities drop to 5.7 and 1.1 kA/cm?, respectively. Also, with 

a mirror reflectivity of 30% in the above example, a 170 um active length 

requires a current of 27.9 mA with drive and threshold current densities of 5.5 

and 1.7 kA/cm?. 

8.3. PICs USING DIRECTIONAL COUPLERS FOR OUTPUT COUPLING AND 

SIGNAL COMBINING 

A different class of PICs uses directional couplers to tap and couple optical 

energy from one waveguide to another. This lateral or transverse coupling opens 

new opportunities as compared to PICs which use only axial coupling of 

waveguides. Mode mismatch and fabrication problems in accurately butt 

coupling two minute semiconductor waveguides are avoided. As in microwave 

circuits energy can be tapped without strongly perturbing the original wave- 

guide. As an example, directional couplers can tap energy from a laser cavity 

just like a partially transmissive mirror, but the output ends up in a parallel 

waveguide still within the semiconductor material for further processing. As a 

second example, lightwaves from two waveguides can be combined into one or 

both to add or mix two separate signals. This process is central to forming an 

optical heterodyne receiver. In these examples as well as others, one of the key 

difficulties with using directional couplers is the waveguide transitions necessary 
to separate the close spacing required in the coupling region. These usually 
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: Pare nr jum ————*+¥=— 250 pm —*4 
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(a) 

Received 
Signal 

3 dB Directional 
Coupler 

FIGURE 8.17. Example directional-coupler devices: (a) ring laser with directional- 

coupler output tap; (b) heterodyne receiver with integrated preamp and local oscillator. 

It is further assumed that the internal modal losses are 10cm~! throughout both 

structures (not counting any radiation losses) and the internal efficiency is 0.8. The 

spacing in the directional coupler is 1 um. 

require gradual waveguide bends that use up a considerable length on the 

circuit. 

Figure 8.17 illustrates the use of a directional coupler as both an output 

coupler for a ring laser and a signal combiner in a monolithic coherent receiver. 

In the following two sections we shall explore examples of each. We assume 

the same passive and active waveguide regions as in the previous examples. 

8.3.1 Ring Laser with a Directional Coupler Output Tap 

Referring to Fig. 8.17, part (a) shows an example ring laser problem. We wish 

to analyze the performance of the device assuming a 4-quantum-well gain region 

as in Fig. 4.25. The passive waveguide cross section in the x-direction is similar 
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to that considered in the previous examples; i.e., it is 0.3 um thick, has an index 

of 3.37 and is clad by InP with an index of 3.17 at 1.55 um. However, we here 

adjust the lateral width to insure single lateral mode operation. Again, a BH 

structure is assumed with a lateral cladding of InP also. Primarily, we are 

interested in the L—I characteristic. Thus, we first need to determine the output 

coupling loss (analogous to mirror loss). Then, we can proceed to calculate the 

threshold modal gain, threshold current and differential efficiency. 

For the calculation of the coupling ratio, we first need_to determine x, the 

guide-to-guide coupling constant from Eq. (6.61). Assuming the lowest-order 

symmetric lateral mode, we can plug Eqs. (7.60), (A3.16), and (A3.19) into Eq. 

(6.61) and solve. For identical guides coupled laterally we find 

2kG(E1 — E)Vy cos*(ki yw/2) os 

Bwey ply? + ki Fd), 

_7 (8.31) 
x 

where I, is the transverse confinement factor, ¢, and ¢, are the relative dielectric 

constants (indices squared) of the waveguide slab and surrounding cladding, , 

is the lateral decay constant outside of the guides, w is the lateral waveguide 

width, w.,,- is the effective width (given by Eq. (7.65) with y replacing x), and 

s is the waveguide separation in the coupler region. _ 

First, we need to determine the guide width, w, and the lateral propagation 

and decay constants using the effective index technique. For single lateral mode, 

V, < 3.25. Therefore, from Eq. (A3.12), w< 1.2m. Then, using n, = 3.24; 

n = 3.216,k, = 1.60/um, and y, = 2.20/um. These numbers give w.,, = 2.51 um. 

Then, we can plug into Eq. (8.31) for the coupling constant between the two 

guides in the directional coupler, . 

2(27/1.55 m)?(3.2167 — 3.177)2.2/um x cos?(1.6 x 1.2/2) 

[27(3.216)/1.55 wm]2.51 pm(2.2? + 1.67)/um? ‘ 

= 15,7 cme: (8.32) 

Dex A K = 0.49 

The fractional power coupled from one guide to the other over the 500 um long 
coupler length is 

c? = sin? KL = sin2(15.7 x 0.05) = 0.498, (8.33) 

omitting internal losses. This means that (1 — c?) = 0.502 of the power is 
transmitted through one of the guides, again omitting losses. 

For the ring laser we need to identify the various lengths, so that we can 

use Eq. (2.22) or (2.23) for the threshold modal gain. We only consider 

propagation in one direction, since there is no coupling between forward and 

backward waves. Clearly, the active length L, = 500 um, and the total passive 

length, L, = (7500 + 500) um = 2071 pm. The equivalent of the mean mirror 
reflectivity, R, in Eqs. (2.22) and>(2.23) is just (1 — c”) as might be verified by 
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reviewing the derivation leading up to Eq. (2.22). Thus, the output coupling loss 
(equivalent of mirror loss) is 

L, _o- 2 eters (8.34) 
ot 

Next, we must determine the additional loss due to radiation at the bends. 

The internal modal loss is given as 10cm~! throughout, but this does not 

include the radiation losses. For this we use Eq. (7.81) or equivalently, Fig. 

7.26. For the present example, the normalized frequency, V = 3.25, and the ratio 

of radius to guide width is 313. Therefore, from the figure the radiative 
attentuation on the bends, ap, is 

a Oe | Wi=6 3 cee, (8.35) 

Thus, the average internal modal loss is 

_ (2 x 500 pm)10 cm~* + (1571 pm)16.3 cem~! 

2571 um 
<a; > =13.8cm !. (8.36) 

Now, we can calculate the threshold volume modal gain as 

Wg =O ae eae LOI (8.37) 

The confinement factors for the transverse, lateral, and axial directions are 0.06, 

0.84, and 0.194, respectively. Thus, the threshold gain, g,, = 1688 cm~*, from 

which we can extrapolate from Fig. (4.25) that Jj, = 5.2 kA/cm?. Then, the 

threshold current, I, = J,,wL,/n; = 52 mA. This is a very high threshold gain 

and current density. In a real case we would try to include more quantum wells 

to increase the modal gain by increasing the transverse confinement factor. For 

example, with six quantum wells the threshold gain and current density would 

be reduced to 1125 cm™! and 3.3 kA/cm?, more reasonable values for 1.55 um. 
For the complete L—I curve, we also need to determine the differential 

quantum efficiency. Using the above numbers, but excluding loss in the output 

waveguide, the differential efficiency is 

DH 
= (0.8) —— = 13.1%. 8.38 Na = ( Dee: ie ( ) 

For the output power, this must be multiplied by the additional attenuation 

factor from the coupler to the output facet. The coupler loss has been included 

in the ring cavity, but not for the energy coupled over. A careful review of the 

theory reveals that the average propagation constant is used in the propagation 

delay for both the coupled and uncoupled portions of the lightwave. If it is 
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Output Power, P) (mW) 

0 50 100 150 

Gain Region Drive Current, J, (mA) 

FIGURE 8.18 L-TI characteristic of example ring laser. 

complex, an attenuation factor will be introduced in both cases. That is, in the 

present case the coupled fractional power is c” exp(—a,L), and the uncoupled 

fractional power is (1 — c*) exp(—a;L). We have alteady included all of the 

loss in the uncoupled fraction by including the coupler length in L,, but this 

only includes the loss in one guide for the coupler as a whole (ie., half of the 

coupler loss for the coupled fraction). Thus, we must include an additional 

factor of e ‘1°*%°-5) for the energy coupled over. (Put another way, we have 
modeled the coupler as an effective lumped coupler at the center of the actual 

coupler.) Since we have an additional 250 pm in the extension guide after the 

coupler, the net reduced differential efficiency becomes 

ny = 0.131e720*995) 7.9% (8.39) 

The L-I characteristic (Fig. 8.18) can then be determined from Eq. (2.36), 

using the values for J,, and nj above. This ring laser is obviously not a very 

efficient device, primarily because of the long sections of lossy passive waveguide. 

8.3.2 Integrated Heterodyne Receiver 

Part (b) of Fig. 8.17 illustrates a monolithically integrated heterodyne receiver. 

Such structures have been widely studied as receivers for coherent fiber-optic 

communication systems. Figure 8.19 shows a structure developed by Koch and 

Koren [12]. The reasons for using a heterodyne receiver include possible gains 

in receiver sensitivity and wavelength selectivity as compared to a direct 

detection system preceded by some sort of optical filtering. (In a later section 

we will also consider such a direct detection receiver.) The received photocurrent 

flowing from the detector diodes in the present case is proportional to the 



PICs USING DIRECTIONAL COUPLERS FOR OUTPUT COUPLING AND SIGNAL COMBINING 371 

zero-bias 

MQW waveguide 
Ws detectors x 

zero-gap “ BS 
directional coupler 

AK switch 

single mode 
parallet 
input port 

Pl r 
SSIES part:ally transmitting 

front 3ragg section 

MQW 3c1n section 

phase section 

high reflector 

back Bragg section 

semi-insulating !ayers 

buried rib semi-insulating blocked 
semi -insulating-clad buried heterostructure 
passive guide MQW -DBR waveguide 

FIGURE 8.19 Schematic diagram of MQW balanced heterodyne receiver photonic 

integrated circuit, containing a continuously tunable LO, a low-loss buried-rib parallel 

input port, an adjustable 3 dB coupler, and two zero-bias MQW waveguide detectors 

[12]. (Reprinted, by permission, from Electronics Letters.) 

product of the amplitudes of the received signal and the local oscillator (LO). 

Thus, for increased LO powers, the receiver sensitivity increases. Because the 

signal and LO lightwaves are “mixed” in the detector diodes, the output current 

also has an IF carrier frequency equal to the difference of the optical frequencies 

of the two lightwaves. Thus, a relatively simple microwave filter can be used 

to reject unwanted adjacent wavelength channels in a WDM application. The 

preamplifier shown in our example is not always used. It is desired only to 

compensate for the coupling and waveguide losses. Also, it can cause problems 

with cross talk if a number of wavelength channels are present. 

We wish to consider an example problem to solve for the required lengths 

and currents to make a viable heterodyne receiver as shown in Fig. 8.17(b). 

Needless to say, there are a variety of elements in this structure that need to 

be specified. Some of the individual component parameters are specified in the 
figure caption. We wish to complete a design for such a device with a preamp 

gain which makes up for any input coupling and propagation losses and still 

gives 6 dB of net optical gain, a local oscillator with 10 mW of output power, 

radiation bend losses sufficiently low that the overall propagation loss in the 

bends is minimized (considering the 10cm~' of background), and a 3 dB 

directional coupler to provide a balanced drive to the differentially connected 

detectors. We assume waveguides, gain sections, and a directional coupler 
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similar to those analyzed for the ring laser in part (a). Furthermore, we require 

that the guides be spaced by 141 ym for fiber coupling, and we also find that 

the input coupling loss is 4 dB. 
Assuming the directional coupler is identical to that above, for which 

«k = 15.7cm7~!, we can calculate its required length to provide a 3 dB coupling. 

That is, using Eq. (6.70). 

1 /2 
L2G dBy= asin! $052 — 450 im. 8.40 
eae ee 2(15.7 cm~?) 7 Oey 

The additional transmission factor due to the internal modal loss over this 

distance is exp(—0.001 x 450) = 0.64, or —2 dB. 

Now, for the bend radii we wish to minimize overall loss, knowing that the 

background propagation loss due to scattering and free-carrier absorption is a 

relatively high 10cm™', or 4.34dB/mm, Each S-bend must move the guide 

laterally by 70 um, or each segment must move the guide by ~35 um in the 

y-direction. That is, referring to Fig. 8.20, we see that the angle swept by each 

half S-bend using arcs of radius R is 0, = cos” *[(R — 35)/R]. 
The total loss in traversing an S-bend is, therefore, 

Ree si) 

R 
Cpl, = (o> + Cre = OR) cos” ; | (R > S,/2) (8.41) 

where S, is the lateral waveguide displacement to be achieved (in this case 

70 um), and C, ~ y2/k, and C, x 4y3/k3 are the radiation bend loss constants 
given with Eq. (7.81). Equation (8.41) can be minimized with respect to R by 

taking its derivative and identifying the zero crossing on a plot of the result. 

However, since a plot is required for the transcendental equation, we might as 

well just plot Eq. (8.41) directly. The result is plotted in Fig. 8.21 for the present 

parameters. As can be seen the optimum R is found to be 205 um. The total 

loss in each S-bend at this minimum is found to’be 1.12 dB. 

The total loss for the input signal which must be compensated by the 

FIGURE 8.20 Single-guide S-bend used at each end of the coupler for both guides. 
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FIGURE 8.21 Plot of S-bend loss vs. bend radius for y, = 2.2/um, k, = 12.85/pm, and 

S,/2 = 35 um, and a background propagation loss of «; = 10 cm7?. 

preamp, in addition to the desired 6 dB net circuit gain, is 4 dB + 2(1.15 dB) + 

2.0 dB = 8.3 dB. Thus, the net preamp gain must be 14.3 dB. From Fig. 4.25 

the point of maximum gain per unit current with four quantum wells is 

(600 cm~', 900 A/cm). Thus, with the transverse lateral confinement factor of 

I’,,, = 0.05, the required amplifier length to operate at this point is 

G 14.3 dB 

(,,g —4;)  (0.05(600) — 10) cm~ '(4.34) dB 
= 1628 pm, (8.42) 

where we have reduced the net preamp gain by its internal loss of 10 cm™'. 

The drive current required would be Ip_, = JwLp_4/n; = 22.0 mA. This very 

long device results from an internal loss that is comparable to the modal gain. 

Thus, we might consider operating higher up the gain curve to save real estate. 

For example, if we use the bias point (1050 cm’, 1.9 kA/cm?) considered in 

Section 8.2.5 above, we would obtain a required length of 775 um, which would 

need a drive current of 22.1 mA. The minimum current occurs at the point 

(900 cm~!, 1.5 kA/cm?) with a length of 941 pm, where it is 21.2 mA. Thus, we 
again see how broad the minimum in drive current tends to be. The current 

density with the 775 pm length is still only 2.4 kA/cm?, so we will select this 

design as being more desirable than the point of minimum current. That is, the 

final preamp design is given by 

LTT Sim! FIST mA (8.43) 

Finally, the DBR local oscillator is to put out 10 mW presumably in the 

most efficient manner. Here we are assuming that the only passive cavity length 
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is the penetration length in the gratings. For the back mirror we wish minimal 

transmission with a reasonable grating length. Let’s look at KL, = 2. Then, 

tanh «KL, = 0.96, which is a relatively high value. Using « = 80 cm~ ’ as in the 

earlier DBR design, the grating length, L,, = 250 pm, and the effective penetra- 

tion length for the back mirror, L,-;, = 60 pm. Since the preamplifier is so long, 

this grating should not use up any extra real estate on the substrate. Here, our 

gain level is higher than in the earlier case, and we wish more power out. Thus, 

the output mirror should be relatively low in reflectivity. That is, lower than 

the value selected in Section 8.2.5 as justified in Fig. 8.16. Thus, here we select 

the 30% mirror considered in that earlier section. There we found that 

Lip = 59 um and L,--, = 26 um. 

Since the preamplifier was so long, we still have lots of room for gain without 

increasing the chip size. That is, Lj| max = (775 — 250 — 59) um = 466 pm. 

Checking with Appendix 17, we see that a considerably shorter active region 

would minimize the current, but again the ‘power density is high. Thus, we'll 

again use the (1150 cm 1, 1.9 kA/cm7) point and see what length this gives us. 

Analogous to Eq. (8.10), but without the passive section, we find that 

L, = 148 um. Using Eq. (8.11) this leads to a threshold current of 4.22 mA and 

a current above threshold to get to 10 mW of 21.7 mA. However, the resulting 

current density is 14.6 kA/cm?, so we need to use a longer length. Using the 

conservative knee of the gain curve (600 cm ', 900 A/cm?) considered initially 
for the preamp, we would need a length of 344 um, which is shorter than the 

space available, so this is the length we'll use. Here the threshold current is 

3.1 mA and the current to get to 10 mW is 26.8 mA. The total drive current of 

29.9 mA results in a current density of 7.2 kA/cm?, so this more conservative 

design seems okay. 

To summarize, we choose the following lengths and drive current for the 

LO laser, 

Lay = 250 ym, Lip = 59 um, 
(8.44) 

L,=344ym, = I,9 = 29.9 mA. 

Its output characteristic is shown in Fig. 8.22. 

8.4 PICs USING CODIRECTIONALLY COUPLED FILTERS 

As discussed in Chapter 6, directional couplers can become wavelength filters 

if the two coupled waveguides are dissimilar. Also, the percentage of tuning can 

be larger than the fractional index change, so as already pointed out in Fig. 

8.6, a laser with a tuning range, AJ/A > An/n, can be constructed. Such filters 
are also potentially useful in tunable receivers for WDM systems. One difficulty 
with such devices is that the bandwidth of the filter also tends to become large 
as the tuning range is increased. Thus, it can be difficult to construct lasers 
with both large tuning range and MSR, and even more difficult to construct 
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FIGURE 8.22 Light output vs. drive current for the local oscillator laser. 

receivers with many resolvable channels having low cross talk. Nevertheless, 

these codirectionally coupled filters promise to be very important elements in 

future photonic integrated circuits. 

There are two important examples that deserve mention, the acousto- 

optically tuned filter (AOTF) and the grating-assisted codirectionally coupled 

(GACC) filter. Both use an additional k-vector in the effective index of one 

guide to accomplish phase matching between two coupled waveguides. In the 

case of the AOTF, the effective index modulation is accomplished via the 
acousto-optic effect with a copropagating ultrasonic wave of wavelength A({,); 

in the case of the GACC filter the effective index modulation is done directly 

by modulating the geometry of the waveguide with a periodicity of A. The 

AOTF allows real-time control over the added grating via the acoustic 

frequency, f,, whereas tuning in the GACC case is accomplished by changing 

the background index either electro-optically or by current injection, similar to 

the cases discussed previously. In both cases maximum coupling occurs when 

2 
pay fase = ae eye (8.45) 

as discussed in Section 6.3. Because the difference between the effective indexes 

of the two coupled modes is generally <0.1, the period of the index perturbation 

is usually > 10 times the optical wavelength. This makes the corrugation fairly 
coarse in GACC filters, and allows for VHF acoustic frequencies in AOTFs, 

since the velocity of sound is typically ~10~° c. 

If the index difference is tuned by An, the filter center frequency tunes 

according to Eq. (6.76) or 

= = F—, (8.46) 
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where the tuning enhancement factor, F = n,,/(fi,; — gz), gives the increase 

in tuning range as compared to devices which tune by the same relative 

amount as the index. Also, this tuning enhancement is accompanied by a similar 
increase in the filters FWHM optical bandwidth, Ad,).. For a uniform 

interaction region of length L., this bandwidth, as outlined in Fig. 6.19, is 

given by 

ee 4 (8.47) Ady). = 08 
Ngitc 

Thus, for a reasonably narrow bandwidth filter, F cannot be too large. This 

implies that the effective index difference between the two coupled modes must 

be relatively large. 

Because the acoustic wavelength in :AOTFs is much larger than the 

optical wavelength for reasonable tuning enhancement, it is generally difficult 

to acousto-optically modulate one waveguide of two coupled optical wave- 

guides without modulating both. Thus, AOTFs usually involve TE-to-TM 

conversion in a single optical waveguide. That is, they are usually an example 

of Case (a) in Section 6.3.3. Since it is difficult to obtain very much effective 

index difference by waveguide dispersion alone, the necessary dispersion to 

fabricate relatively narrowband filters must come from material birefringence. 

This requirement eliminates the semiconductor materials we are considering 

in this book. Highly anisotropic materials like lithium niobate (LiNbO,) are 

required. Thus, we shall not consider specific examples of AOTFs here. 

However, guided-wave versions are becoming very important in WDM light- 

wave systems. 
pe 

8.4.1 The Grating-Assisted Codirectionally Coupled Filter and Related Devices 

Figure 8.23 schematically illustrates one technique of constructing a GACC 

filter. Here we show the introduction of the necessary index modulation by 

corrugating the side of one of the coupled waveguides. 

This tunable filter can be used in both lasers and receivers as mentioned 

E,(x, y) emg E oy (% y) 

FIGURE 8.23 GACC filter with corrugated-waveguide index modulation to achieve 
coherent coupling. ; 
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earlier. In either case, there are several different possible geometries that can 

be used. Figure 8.24 shows two different laser structures and a two-stage 

receiver. Although the AlGaAs/GaAs system is shown, most work has been 

carried out in the InGaAsP/InP system for operation near 1.5 um. 

The first laser structure incorporates a pnp (or npn) structure so that the 

upper and lower guides can both be biased separately. This has been used to 

provide gain in the lower guide and index tuning in the upper guide along the 

coupler. The uncoupled section can be short, and it is only used to attenuate 

uncoupled energy in the lower guide by applying a reverse bias there. The 

advantage is that the axial confinement factor can be large, since there is gain 

along the coupler. The disadvantage is the difficulty in fabricating the necessary 

contacts and electrically isolating the two sections of the lower active waveguide. 

The second laser structure, Fig. 8.24 (b), overcomes some of the fabrication 

difficulties by using an inactive lower waveguide. But now an active—passive 

Uncoupled Section Active Coupler 

SLILELIELEIELELEELILS CLIITIIIITEIEEEEOEEEEIEEELEELEEELELEOIEEL ELS 

Active Section Passive Coupler 

OLILEILILIIITLEILIE LS (WITT 

Amplifier GACC Tunable Filter Detector 

SEIEEEEEIEIEELEELELEAROLEILEEEE 

(c) z 

FIGURE 8.24 Schematics GACC tunable devices: (a) active-coupler tunable laser, (b) 

passive-coupler tunable laser, and (c) photonic integrated-preamp tunable receiver. 
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junction must be formed in the top guide, and the resulting laser has a relatively 

small axial confinement factor, since the coupler is all passive. In fact, for good 

single-mode behavior, we wish to maximize the fraction of the cavity filled with 

the coupler filter, since any additional length results in a reduced mode spacing 

and more modes within the filter’s passband. Using Eq. (8.47), we can relate 

the mode spacing, A/,,, to the FWHM of the filter, AA, /., 

fl cuore Ad Mee 
Ae OF me 

\ (8.48) 

where L; is the total effective cavity length experienced by the laser mode. That 

is, the right side of Eq. (8.48) is the reciprocal of the number of modes under 

the filter’s passband. As the tuning enhancement, F, is increased, so are the 

number of included axial modes. Fortunately, only a fraction of these modes 

near the passband center are important in the spectrum of a laser. Comparing 

the central mode to the next adjacent mode in the case of Fig. 8.23(b), an 

approximate analytic expression can be derived [5] for the mode suppression 

ratio (MSR), 

‘2.P Pe NE 
MSR = oe ( : ) i (8.49) 

hav n,,1g,, n(i/R) \Lr F Ly —L, 

Here we observe a quadratic dependence on the coupler length and inverse 

tuning enhancement. This is plotted in normalized form in Fig. 8.25 along with 
the normalized filter bandwidth as a function of the tuning enhancement factor, 

F. As can be observed, for L2/L7L,, ~ 1, it is still possible to have a reasonable 

40 4 MSR ———— Ad jale 
2 LpLy) ie 72 

So s 
re 3.83 3 30 3 
a. iS 
Cc © 
S a 
3” 2 = 
3 = 
a 

Z 20 ¢ 
3 ic 
= 15 1 

5 10 15 20 

Tuning Enhancement Factor F 

FIGURE 8.25 Calculated mode suppression ratio normalized by L2/(L,L,) and plotted 

against tuning enhancement factor F at 1 mW, 5 mW, and 10 mW power levels. n, = 4, 

ho =1eV, Tyyg_ = 50cem™*, R=0.3, and n,, = 1.2 were assumed. L, = Ly — Le. 
Theory after [5]; shaded areas refer to early experimental results at UCSB [5] and 

AT&T [4]. ‘ 
\ 
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MSR at high output powers. Of course, it is not as good as in normal DFB 
or DBR lasers. 

As indicated in Fig. 8.24(c), this same GACC filter can be incorporated into 

integrated tunable receivers. The configuration shown uses the same concept 

as the laser of part (b), but two stages are cascaded, and AR coatings are 

necessary on the facets to prevent regenerative feedback or lasing. The operation 

of the various sections in the receiver is very different from the case of the laser. 

The first section of gain material is used as a preamplifier; the two-stage filter 

selects one wavelength channel from the incoming spectrum and removes the 

spontaneous emission out of this band; and the second region of gain material 

is reverse biased to function as a waveguide detector. Presumably the same 
gain material can be used for the preamplifier and the waveguide detector, so 

that the fabrication is basically the same as for the laser of part (b). 

Having two or more stages of filtering provides an additional degree of 

freedom to shape the passband for the received signal. Higher rejection of 

adjacent channels is possible and a more flat-topped transfer function is also 

possible to allow for slight deviations in the wavelength of the incoming signal. 

Effective removal of out-of-band amplified spontaneous emission is very 
important since the incoming signals may be relatively small. The coupling 

constant along the length of each filter can also be weighted to further reduce 

the side-lobe level for the filter. 
The design of the amplifier involves an exercise similar to the one carried 

out in Section 8.3.2 above. That is, it is generally necessary to compensate for 

input coupling, propagation, and filter insertion losses to avoid a loss of receiver 
sensitivity. Usually, it would be desirable to have additional preamp gain to 

improve receiver sensitivity. But since the preamp amplifies all of the incoming 

channels, a large gain here is not as desirable as adding an additional gain stage 

after a first channel-dropping filter. This could be accomplished by cascading 

two of the Fig. 8.24(c) structures. Then, the second active region would become 

the second amplifier rather than a detector, and a third active section would be 

the detector. Again, this two-amplifier, four-stage filter device could be fabricated 

with the same steps as for the receiver shown. 

The waveguide detector design involves a tradeoff of its quantum efficiency 

and capacitance, since both increase with length. Receiver sensitivity is inversely 

proportional to the capacitance, since the load resistor must be chosen to 

provide enough bandwidth to receive the highest frequency components of the 

data. The required detector length for a desired quantum efficiency, 7p, is given 

by 

1 1 
Lp= 1 D ; (8.50) 

[Gp = Np 

where I’,.,@p is the incremental modal absorption constant in the detector. The 

absorption constant, ap, is just the negative of the gain at zero injection given 

in Chapter 4. From Fig. (4.18) for example, we see that %p ~ 5000 cm™? in 
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InGaAs quantum wells. For an RC-limited receiver bandwidth equal to the bit 

rate, B (ie., a receiver baridwidth twice the highest fundamental frequency 

component in the data), the required load resistor, R;, 1s 

1 
; 8.51 

2NnBCp ent 
5 io 

Assuming a FET amplifier front end, the received signal is proportional to the 

signal voltage on the gate. This voltage is equal to the detector photocurrent, 

ip, times this load resistance. For an input optical power of P,, we can use Eqs. 

(8.50) and (8.51) to obtain 

P:qnp aT Xp 

hy 2nBepwin(1 — np)!” 

where d, ép, and w, are the thickness, dielectric constant, and width of the 

waveguide detector region, respectively, used to calculate the capacitance. 

Effective values may be necessary to account for fringing and parasitic 

capacitance. 
Using the waveguide design of Section 8.3, ap ~ equ cm“, and a desired 

Np Of 90%, we find from Eq. (8.50) that 

1 1 
—lIn = 92 im. 

0.05(5000cm~') 1-09 
Dias 

The capacitance for this length of the example waveguide under reverse bias is 

~ 100 fF, allowing for some fringing and parasitic capacitance. Thus, for a data 

rate of 1 Gb/s, Eq. (8.51) gives a load resistor, 

1 1 
R= hig ve: 

2nBCy  2n(10°/s)(10-*? F) 

For 1 pW of optical input power to the detector, we then find that the FET 
gate signal voltage, V, = 1.8 mV. 

8.5 NUMERICAL TECHNIQUES FOR ANALYZING PICs 

8.5.1 Introduction 

Numerous photonic integrated circuits cannot be accurately analyzed by simple 

analytic techniques. Also, even where analytical techniques are available, 

numerical techniques are oftentimes employed to verify the designs before 

proceeding to invest serious effort in making new structures. In fact, numerical 
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techniques are becoming increasingly available and user-friendly. In Section 
7.3.8, we introduced the finite-difference technique to analyze dielectric wave- 
guides. In this section we introduce the beam-propagation method (BPM) to 

analyze arbitrary waveguide propagation problems. In particular, we consider 

a finite-difference BPM as one of the best approaches. As we shall find it builds 
upon the finite-difference techniques developed in Chapter 7 and Appendix 16. 

The most rigorous way of handling electromagnetic wave propagation in 

integrated optics is to solve Maxwell’s equations with appropriate boundary 

conditions. However, such PIC structures have certain features which makes 

this approach very difficult to implement. The main reason is the large aspect 

ratio between the propagation distance and the transverse or lateral dimensions 

of the propagating energy. The cross section may be contained ina 2 um x 5 um 

window, but the propagation distance could be centimeters long. Therefore, to 

establish a fine enough grid for a boundary-value approach would pose a great 

challenge for computer memory and CPU performance. Fortunately, the guided 

waves in PICs have certain other properties which allow some approximations 

to be made. For example, in most cases the scalar wave equation is sufficient to 
describe the wave propagation. Secondly, the phase fronts of guided waves are 

nearly planar or their plane wave spectra are quite narrow. Therefore, they are 

paraxial. Thirdly, index changes along the propagation direction tend to be 

small and gradual in many situations. Hence, as discussed in Chapter 6, the 

wave amplitudes change slowly and back reflections are negligible in these cases. 

Under these conditions it is possible to reduce the scalar wave equation (6.4) 

to the paraxial wave equation, which can be written as 

0 0? 6? aaa - + K3[n?(x, y, 2) — nP WW, (8.53) 2iko n, 

where n, is a reference index that describes the average phase velocity of the 

wave, and w(x, y, z) = E(z)U(x, y). That is, n, determines the rapidly varying 

component of the wave, and w includes the slowly varying amplitude along 

the propagation direction. Thus for the polarization of interest, &(x, y, z) = 

W(x, y, z) exp[ —jkgn,z]. The index n, must be carefully chosen to get accurate 

answers. In guided-wave problems it is usually chosen as the index of the 

substrate. 
The paraxial wave equation describes an initial value problem as opposed 

to a boundary value problem. As a result, one can start with an arbitrary initial 

wave amplitude, W(x, y, 0), which could be a Gaussian beam formed by a lens, 

for example. The resulting amplitude Az away can be found by integrating the 

paraxial wave equation over Az. Repeating this procedure one can find the 

evolution of the initial field profile over the photonic integrated circuit. Note 

that one only needs the field values at z = 0 in order to calculate the field values 

at z = Az. Therefore, there is no need to store or manipulate the field values 

at every grid point in the z-direction as required in the solution of the 
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boundary-value problem. Thus, BPM is much more computationally tractable 

and efficient. Furthermore, all parts of the wave, including the guided and 

radiation spectrum, are handled together. So there is no need for modal 

decomposition or to neglect the radiation part of the spectrum. However, since 

it originates from the paraxial wave equation, back reflections and wide-angle 

propagation are not handled. 

The initial procedure for BPM involved operator techniques and FFTs 

[13]. But recently it has been shown that algorithms eee are much more 

efficient and robust can be generated by using finite-difference techniques 

[14]. Due to its significant advantages only the finite-difference BPM 

(FD-BPM) will be described here. It is possible to generate FD-BPM algorithms 

using implicit or explicit techniques. In this basic treatment only an implicit 

algorithm based on the Crank—Nicolson algorithm [15] will be given. The 

reader is referred to the literature for discussion of the explicit FD-BPM 

[16]. | 

8.5.2. Implicit Finite-Difference Beam-Propagation Method 

The basic idea of the implicit finite-difference beam-propagation method 

(FD-BPM) is to approximate the paraxial wave equation (8.53) using finite- 

difference techniques described in Section 7.3.8. This requires choosing a 

computational window in the transverse dimension (x, y) as well as choosing 

a grid in the z-direction. The computational window must be large enough 

to contain the desired field distribution all along the propagation path. 

However, since radiated fields can always be present, setting the field values 
to zero at the boundaries of the computational window can create difficulties. 

Since this boundary condition effectively creates~a reflecting boundary, the 

radiated fields will reflect back and create spurious field distributions. One way 

to eliminate this difficulty is to use absorbing boundaries. This is achieved 

by introducing an artificial complex index distribution around the computa- 

tional window to generate a lossy boundary. The radiated fields are then 

absorbed before reaching the edge of the window. In practice, less than 10 mesh 

points around the boundary with a complex index tends to be sufficient. 

Also, the imaginary part of the index is tapered so as to avoid reflections. 

Remember to keep the absorber outside of the desired field profile. An 

alternative approach is to use “transparent boundary conditions” [17] to avoid 
the absorbers. 

With the computational window and z-grid appropriately chosen, we then 

have x = pAx, y = qAy, and z = IAz. The Crank—Nicolson algorithm is chosen 

since it is both unconditionally stable and unitary [18]. The reader is warned 

that a straightforward implementation of the FD-BPM can lead to an unstable 

algorithm which is not power conserving, thus allowing slight round-off errors 

to lead to nonphysical results. With the Crank—Nicolson scheme fields will not 

diverge or diminish without any physical reason regardless of the mesh size, 

Ax, Ay, or Az. But accuracy will be lost as the mesh size gets larger. 
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To convert Eq. (8.53) into the finite-difference form, we let W(x, y, z) = es 

and approximate the z-partial on the left side by a forward difference to obtain 

ow a we — ; 

Ay Ez e | (8.54) 

The right-hand side involves only x and y derivatives which are approximated 

using the regular finite-difference approximations for second-order partial 

derivatives given by Eq. (7.54). This is refined by taking the average of the 

discretization at z = [Az and z = (1 + 1)Az. That is, 

Oy _ | tity eve + yt Wo+ta— 2. at W- iq p—1,q + 

Ox 2 INE Wee 
i (8.55) 

vel iba Gens a 1 att =o, Pea 1 ae ae re | (8.56) 

Also, for the final term, 

(8.57) 
aes oe 1a| oe 2 ae (n',, “ee na [te ee ae Wig 

2 2 

For normalization we divide the whole equation by kg and call k, Az = AZ, 

k,» Ax = AX, and k,Ay = AY. Then substituting Eqs. (8.54) through (8.57) in 

Eg. (8.53) and grouping terms with common q indices, we obtain 

+1 thread 

‘ 
sre! OW eat Gey PV gi a = 

, y (8.58a) 

15 +1, 
= Aye 1 [bW5.4 -it a 18 bW.q+1] a Ga. 

where 

cae! 

NWEe 

2j 1 i ocoee Suk Gorp yas ipl we 
a,g= t+ Mi eed | es Crd) SUP 

j AZ AX AY= <2 2 

4jn, 
pa Opa AZ 

For p = 1 to P and q = 1 to Q within the computational window, we obtain 

P x Q coupled equations at each z step, one Eq. (8.58a) for each value of p and 

q. The solution to these equations is best handled with matrices. The following 
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reduction of the equations to matrix form runs parallel to Appendix 16 and 

assumes the same zero-field boundary conditions discussed in more detail there. 

We first compact the y-direction into matrix notation by defining a vector 

which encompasses y for each x position, p: 

pil 

l 
p,Q 

Then, by vertically listing all Q equations (8.58a) for a given p, we can group 

common p indices into a matrix-difference equation along x: 

\ 

—Byi + A,W! — Bul = BY, , + Ci) + By,.,,  (8.58b) 

where 

yal 

2AX? © ; 

iB b 60 0 0 

=n aC Veet ee al) 0 

eee OR Spa 0 0 : . 

0 ‘ 0 

0 Onpe ee beGig hy ie 

0 0 0 —) eae 

Creed 0 0 0 

Deceit TD 0 0 

or 0 Dac, 0 

0 0 

0 0 ans Sarr 

0 0 0 b Cue 

and I is the Q x Q identity matrix. If there is no y-direction in the problem of 
interest, then, > Wi, A, > a,,C, > Cc», B > 1/2AX?, and Eq. (8.58b) reduces 
to a simple difference equation along x. \ 
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Now writing all P equations (8.58b) along x in matrix form, we obtain 

A; -B Q == 0 0 ee 

—-B A, -B 0 0 wits 

0 -B A; -B_ 0 ; wr 

tala at allie 
0 0 —B A,_, —B ne 

0 0 0 —-B Ap, A 

Cy. VBuee 0 0 0 ‘ 

C,.. 8 0 0 A 

Ov BarGyr 3B 0 : 3 Pulses ‘ ’ (8.58c) 

0 0 Cp-. B |} Wp_, 
0 O 0 B GC Wp 

which we can write symbolically as 

Vi 
AW*1=CW' with w=] : |. (8.59) 

Vp 

The right-hand side is known since both C and Wy’ (the values of the field at 

the previous propagation step) are known. To solve for the unknown field 

values in the next step we have to solve this set of linear equations. As we 

propagate the beam we need to do this at every propagation step. If the problem 

is two-dimensional, i.e., if there is only one transverse dimension, A becomes a 

tridiagonal matrix. There are very efficient algorithms to solve for a tridiagonal 

system of equations [18]. Therefore, it is very advantageous to convert a 

three-dimensional problem into a two-dimensional problem using the effective 

index approximation, if possible. In the full three-dimensional case it is generally 

better to use iterative techniques rather than inversion of matrix A at each step. 

8.5.3. Calculation of Propagation Constants in a z-invariant Waveguide from a 

Beam Propagation Solution 

The field distribution w(x, y, z) everywhere in a z-invariant waveguide can be 

calculated by applying the algorithm represented by Eq. (8.59). In the course 
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of the propagating beam calculation, one calculates the correlation function, 

which is , 

P(z) = {| w*(x, y, O)W(x, y, z) dx dy. (8.60) 

On the other hand, W(x, y,z) can be represented by the superposition of 

othogonal eigenfunctions of the z-invariant waveguide, which is 

W(x, ys z) = ss E, U,(x, y) exp( ==} Bonade (8.61) 

where U,(x, y) and f,,, are the eigenfunction and the propagation constant of 

the nth mode as obtained from the paraxial wave equation (8.53). In this 

expansion it is assumed that degeneracy does not exist, which is a good 

approximation for dielectric waveguides. If (8.61) is substituted into (8.60), one 

obtains 

P(z) =) |En|? exp(—JB pn2)- (8.62) 
y 

The Fourier transform of (8.62) is 

P(B) = 1E,|75(B — Bon). (8.63) 

Thus, one can find the propagation constant, f,,, by numerically calculating 

the correlation function, P(z), Fourier transforming it, and locating the peak 

in the Fourier domain. Ideally the accurate determination of f,, can only be 

done by infinitely propagating the beam or when the electric field value is 

known over all z because only when z extends to infinity will the Fourier 

transform of (8.62) yield (8.63). However, in practice, one can propagate a beam 

only a finite length, hence field values over a certain z-range, or z-window, are 

known. In mathematical terms this is equivalent to multiplying (8.60) with a 

window function w(z), which accounts for the finite length of propagation. Then 

the Fourier transform of the correlation function, P,,(z), becomes 

P,(B) =} |Enl?L(B — Bon), (8.64) 

where the lineshape function for the propagation distance, D, is defined by 

1 D 

LAB: — Bpn) = al exp[j(B — Bpn)z] w(z) dz. (8.65) 
0 

Knowing this lineshape function the propagation constant can be quite 

accurately determined from the spectrum, P,(8), using curve fitting. In the 
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calculation the Hanning window function, w(z) = 1 — cos[(27z)/D], is used as 
is typically done in the literature. The eigenfunction of the paraxial wave 
equation (8.53) is identical to that of the original scalar Helmholtz equation. 
However, the propagation constant of the Helmholtz equation, f,, is found 
from that of the paraxial equation, f,, using the relation, 

B, = kon,(1 + 2B,/kon,)*/. (8.66) 

The details of calculating the peak position from the spectrum are described 
im: i2). 

8.5.4 Calculation of Eigenmode Profile from a Beam Propagation Solution 

If both sides of (8.61) are multiplied by D~ ‘w(z) exp(jBz) and integrated from 

0 to D, we can obtain 

1 D 

W(x, y, B) = al W(x, y, Z) exp( jBz)w(z) dz (8.67) 
10) 

=) E,U,(x, y)L(B — Bon): (8.68) 

Thus, for B = B,;, W(x, y, B,:) can be expressed as 

W(x, Y, Bri) = E, U(x, y)L0) + )) E,U,(x, Y)L(Bpi — Byn) (8.69) 
n#i 

Equation (8.69) shows that the eigenmode profile U,(x, y) can be determined 

by evaluating the integral (8.67) with B = £,; provided that most of the excited 

power belongs to the ith mode which is the mode of interest. In practice, such 

excitation can be achieved in most cases for dielectric waveguides. The detailed 

description of this method can be found in [19]. 
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PROBLEMS 

These problems may draw from material in previous chapters and appendices. 

8.1 Design a tunable two-section 1.55 tm InGaAsP/InP DBR (a gain region 

with a cleave at one end and a passive grating at the other) which has 

output frequencies equally spaced by 100 GHz when the index of the 

grating is tuned. Assume a 4-quantum-well gain region with characteristics 
as given by Fig. 4.25 with quaternary barriers of bandgap wavelength 
1.25 pm. This active region is placed on top of a 0.25 um waveguide also 
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8.3 
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of 1.25 um bandgap material and all clad with InP. (You must determine 

the confinement factor, effective index, etc.) The grating region is formed 

by removing the quantum wells and etching a fundamental-order triangular 

sawtooth grating with a peak-to-peak depth of 30 nm on the top side of 

the remaining 0.25 um quaternary waveguide. This again is coated with 
InP. It is desired to tune the output over eight of the axial modes (spaced 

by 100 GHz). Assume a BH waveguide width of 1.5 um, an internal loss 

of 10cm~' along the entire device length, an internal carrier injection 

efficiency of 70%, and provide a grating length to give a power reflection 

of 50% in the absence of loss. 

(a) Determine the grating and gain region lengths. 

(b) Plot the power out of the cleaved end vs. current into the gain 

section. 

(c) Plot the output frequency deviation vs. the current injected into the 

grating assuming both radiative and Auger recombination in the 

1.25 um bandgap Q-material. 

Design a 1.55um DFB laser with an integrated amplifier used as a 

modulator. The DFB laser is a quarter-wave-shifted design with each 

grating half having kL = 0.7. Its total length is 400 um. The active region 

consists of four quantum wells in a separate-confinement waveguide as 

described by the gain curve of Fig. 4.25, and the transverse confinement 

factor is found to be 6%. This active region is the same throughout, and 

there is no significant gap between the laser section and the amplifier 

section. Assume ideal AR coatings on the output facets, an internal 

efficiency of 70%, and an internal loss of 15 cm~' throughout. The laser 

is biased to output 3mW cw into the amplifier section. We desire the 

amplifier-modulator to operate as fast as possible, to have a 10 dB optical 

on/off ratio, and to have an on-level output of 10 mW. 

(a) Determine the length and width of the amplifier (same width for 

laser—cannot exceed 5 ym for single lateral mode). 

(b) Determine the total laser current and the on/off level currents to the 

amplifier. 

(c) What is the maximum modulation data rate? 

(d) Can the modulation rate be improved for different laser and modulator 

biases? 

It is desired to design a quarter-wave-shifted 1.55 4m DFB with a 

maximum overall power efficiency (power out/power in) at an output 

power of 10 mW. (Assume a series resistance that scales with active area, 

which equals 10Q at an area of 100 ym?. Estimate the junction voltage 

by the approximate quasi-Fermi level separation.) At 300 K, we assume 

a gain as determined by Fig. 4.25, a transverse confinement factor of 6%, an 

internal efficiency of 70%, an internal loss of 15 cm~ 1 anda xk = 50cm “1. 

However, we also empirically decrease the gain curve and the internal 
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efficiency by 1% for each 1°C temperature rise. We assume that the thermal 

impedance can be estimated by Eq. (2.58) with a substrate thickness, 

h = 100 pm and effective thermal conductivity, € = 0.3 W/cm-°C. 

(a) What length and width is optimum? 

(b) Plot the resulting Z—I curve. 

It is desired to design a 1.55 um GACC laser as illustrated in Fig. 8.23(b) 

with a tuning enhancement factor of F =15 and maximum MSR at an 
output of 5mW. We assume a gain characteristic As in Fig. 4.25, a 

transverse gain region confinement factor of 6%, an internal efficiency of 

10%» Msp = 1.2, nz, = 4, an internal loss of 15 cm! in the active and 

passive sections of the top guide, an internal loss of 5cm~* in the lower 

guide, a design for 100% guide-to-guide coupling, and an active region 

length of 300 um. Also, the operating current density in the active region 

is limited to 8 kA/cm?. \ 

(a) What is the corrugation period in the coupler? 

(b) What is the required x for 100% coupling? 

(c) What is the optimum coupler region length for maximum MSR? 

(d) Plot the LI characteristic for a 3 ym active region width from the 

left facet when the coupler is tuned for alignment of a mode with its 

filter peak. ‘ 

Consider the slab guide geometry shown below. The free-space wavelength 
issleS punt 

Choose the computational window as shown in the figure, ie., 1 um 

above the core in the air and 1.5 um below the core in the substrate. 

Introduce absorbing regions 0.5m thick on the boundaries of the 

computational window. In the absorbing regions we need to introduce a 

negative imaginary part to the actual index distribution. For example, the 

indices of the absorbers in the air and in the substrate can be chosen as 

1 —j0.08 and 3.1 —j0.08 respectively. Now set up a grid such that 
Ax = 1/6 um. This should result in 18 grid points as indicated in the figure. 

Excite this geometry at z= 0 with a Gaussian beam whose profile is 
given as, 

0) — DG —_ —«____ 

6 

meal 
() 

where x is in micrometers. 

This is a Gaussian whose center is located on the lower grid point in 

the core, i.e., on the grid point closer to the substrate interface. Using the 

FD-BPM propagate this Gaussian 100 ym along the slab. You can choose 

W(x, 0) exp 
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, = 3.1 and Az = 5 um. At the end of 100 um compare the resulting field 

distribution with the analytical one discretized on the same mesh. In this 

case you may find it advantageous to calculate the inverse of the matrix 

A once, since the geometry is invariant along the z-direction. You can 

improve your accuracy by increasing the number of mesh points and the 

propagation distance, but this will increase the computational effort. 
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Review of Elementary Solid-State 
Physics 

A1.1 A QUANTUM MECHANICS PRIMER 

A1.1.1 Introduction 

In quantum mechanics, the properties and motion of particles are defined in 

terms of a wave (or state) function, ‘¥; its magnitude squared gives the 

probability density of finding a particle at some point in time in a volume 

element dV. Or, put another way, the density of particles at some point in space 

is proportional to ¥*. Note that ) Y*¥ dV = 1, for properly normalized state 

functions, since the probability of the particle being somewhere is unity. In our 

case we are interested in both electrons and photons as particles. For photons 

this description is roughly equivalent to standard electromagnetic theory where 

the wavefunction is analogous to a normalized electric field. Maxwell’s equations 

give the description of photon fields. In this appendix we shall focus more 

specifically on the properties of electrons. 

In quantum mechanics, measurements are limited in accuracy by the 

uncertainty principle, AxAp, > h/2, where p, is the momentum in the x- 

direction. (In electromagnetic theory the equivalent statement is that 

AxAk,. > 1/2.) The expected (or mean) value of some observation is calculated 

by operating on the wavefunction with the operator, A, corresponding to the 

observable, a. The operation to obtain the mean value is analogous to a 
standard weighted average, 

<a) = [vray dV, (A1.1) 

where a is a possible observation of the operator A. In many cases the operator 

simply multiplies the observable variable, in others it is more complex, such as 
momentum, p, where it is —ihV. \ 

392 
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The motion of particles is governed by Schrédinger’s equation, 

—h? ow 
— VP + VE = ih — 5 i mee (A1.2) 

where m is the particle’s (e.g., electron) mass, V is the potential energy operator 

(same as observable), and (—h?/2m)V? is the kinetic energy operator (= p?/2m). 

Together, these two form the overall energy operator, the so-called Hamiltonian. 

The state function can be expressed as the product of space-dependent and 

time-dependent factors, ‘P(r, t) = w(r) w(t). If we substitute into Eq. (A1.2) and 

divide by ww, we obtain a function on the left which only depends on r and 

a function on the right which only depends on t. Thus, to be valid for all r 

and t, each side must equal a constant, E: 

Mite sg) 7 aaa (A1.3) 

From this we immediately have 

w(t) = Ce EM, (A1.4) 

from which we can identify E = hw, where w is the radian frequency of 

oscillation. For the time-independent part, 

5) 

iis V7y + Vw = Ew. (A1.5) 
2m 

The general solution for a uniform potential can be written as the sum of two 
counterpropagating plane waves, 

W(r) = Ae? + Beni, (A1.6) 
where 

2 2 = (E—V), (A1.7) 

is found by substituting back into Eq. (A1.5). 

A1.1.2 Potential Wells and Bound Electrons 

Electrons are confined by some potential depression in most situations. The 

most fundamental example is the atom, where electrons are bound by the 

confining potential of the positively charged nucleus. For the simple case of the 

hydrogen atom, V(r) = —q?/[47éor], and analytic solutions to Schrédinger’s 

time-independent Eq. (A1.5) can be found. However, for atoms with higher 

atomic numbers and many electrons, only numerical solutions are possible. 

Nevertheless, the electron always experiences some sort of confining potential. 
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When solids are formed from these atoms, the more weakly bound electrons 

near the exterior of the atom are significantly influenced by the attractive 

potential of neighboring atoms. In fact, in covalently bonded solids, the outer 

valence electrons are shared by many atoms, and they develop wavefunctions 

that extend throughout the crystal. In such cases, the details of the original 

atomic confining potential are lost. Thus, we shall not dwell on that problem 

unduly. Rather, we shall investigate the properties of an electron in a simple 

rectangular potential well to develop the concepts of confined wavefunctions 

and discrete energy levels common to atoms. 

It will later be shown that by coupling together a series of such wells, a 

periodic potential is formed which leads to electronic properties very similar 

to those in real crystals. Thus, we can learn much about the properties of 

electrons in solids by taking this course. As is well known, one of the key results 

is that electrons in solids can behave much like free electrons with plane wave 

solutions and a parabolic E—k relationship as illustrated by Eq. (A1.7). 

However, they appear to have an effective mass, m*, that is different from the 

free electron mass. Also, this effective mass approximation is usually limited to 

relatively low kinetic energies. Finally, we shall consider quantum-confined 

structures that include heterostructures to form much larger potential wells 

than for a single atom. Nevertheless, the mathematics is very similar and we 

will be able to apply much of what we develop in this section. 
First, consider the one-dimensional potential well of width / shown in Fig. 

Al.1. The simplest method of solution is to recognize that there are three 
separate regions of uniform potential, where the solution to Schrédinger’s 

equation will have the form of Eq. (A1.6). Then, if we assume that the effective 

electron mass is the same in all regions, we can develop a complete wavefunction 

by requiring that the value and slope of the constituent solutions in each of 

the three regions match at the boundaries. That is, we would not expect any 

discontinuity in the probability density function. Looking for bound solutions, 

aht/2 1/2 x 

I | Il | Il 

FIGURE A1.1 One-dimensional potential well for electron confinement. 
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for which E < Vo, we can rewrite the general solution Eq. (A1.6) in each region. 
In the central region II, 

Acoskx (symmetric solutions) 
Wu = : , : : (A1.8) 

Asinkx (antisymmetric solutions), 

where k* = 2mE/h?. In region III, 

Win = Be ™, (A1.9).- 

where y* = 2m(Vq — E)/h?. In region I, , = Be’, but by symmetry, we only 

need to use the single boundary condition at x = 1/2 between regions II and 

Ill. At x = 1/2, we have that Wy = Wy and Wy = iy. For the symmetric 
solutions, this gives 

k 
A cos() = Be "2, (A1.10a) 

and 

kl 
Ak sin(*) SaByeme =: (A1.10b) 

Dividing Eq. (A1.10b) by (A1.10a), we obtain the characteristic equation, 

kl 
k tan(®) 3) (A1.11) 

Similarly, for the antisymmetric solutions, we obtain 

kl 
k tan| — — —} = 9, A1.12 (3 ‘) ? ( ) 

where cot x = —tan(x — 7/2) has been used to illuminate the similarity between 

the symmetric and antisymmetric characteristic equations. 

The electron energy, E, appears on both sides of these characteristic 

equations via k and y, implying that only discrete values of E will satisfy the 

requirement that the wavefunction and its derivative be continuous across the 

boundaries. Because the tangent function is periodic, multiple solutions can be 

found for E, leading to a discrete set of wavefunctions which satisfy the 

boundary conditions. 

Figure A1.2 shows the first few wavefunctions drawn schematically on their 

respective energy levels over the potential well for reference. These clearly 

represent bound solutions. There are solutions with E > VM) but they are not 

bound, and their wavefunctions extend to +oo. An interesting property of all 

of the solutions is that they must be orthogonal. That is, if we multiply one 

wavefunction by the complex conjugate of another and integrate over all space, 

the integral must be zero. If the wavefunctions are normalized so that the 
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FIGURE A1.2_ Energy levels and wavefunctions of one-dimensional potential well. Three 

bound solutions illustrated. 

integral of the product of a wavefunction times its own complex conjugate is 

unity, then the wavefunctions would be orthonormal. 

To determine the bound solutions, we need to solve the characteristic 

equations. For infinitely large Vj, such that the wavefunction goes to zero at 

the boundaries, i.e., y(1/2) = 0, the characteristic equation for both symmetric 

and antisymmetric cases becomes simply 

sa SN ES oe (A1.13) 
2 y, 

where odd (even) quantum numbers correspond to symmetric (antisymmetric) 

states. The corresponding discrete energy levels in terms of the quantum 

numbers are 

B= Bs (A1.14) 

where 
hk? h? 1? 

= —— = 3.76(m,/m)(100 A/l)?__ in meV. 
2m = 2mi? 

When JV, is reduced from infinity, the discrete energies can still be found 

using (A1.14), however, the quantum numbers in this case are no longer simple 

integers, but are real numbers which we will refer to as ngw. For example, if 

Vo = 25Ef, the infinite-barrier integer quantum numbers n= 1, 2, 3, 4, 5 

become ngy = 0.886, 1.77, 2.65, 3.51, 4.33. 

To calculate ngy for an arbitrary Vo, we need to solve the characteristic 

equations given in Eqs. (A1.11) and (A1.12). Using Eq. (A.14), combined with 
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the definitions for k and y given below Eqs. (A1.8) and (A1.9), the characteristic 
equations can be conveniently normalized: 

T 1 tan ran ae [nex — Now )'!? (symmetric) (A1.15) 
ow 

1 tan) ion = | = — [n>. — Nowl'? (antisymmetric) (A1.16)~ 
2 Now 

j Bre Yo 
Now = _ |— and Nae = [—. Al.17 
eNCE® \ EX ( ) 

These equations can be solved graphically by plotting both the left-hand side 

(LHS) and the right-hand side (RHS) as a function of ngy. Figure A1.3 

illustrates this procedure for four different values of Yo. 

Note that only a finite set of quantum numbers exist for a given potential 

barrier, Vo. The normalized variable, n,,,,. when rounded up to the nearest 

integer, yields the largest number of bound states possible for a given Vj. For 

example, with Vo = 3E%, from Eq. (A1.17), we find that ng. = ./3 © 1.73. 
Thus, only two bound states are possible under these circumstances. This is perhaps 

demonstrated more clearly by plotting the possible ngy as a continuous function 

where 

RHS LHS 

FIGURE A1.3_ Graphical solution to Eqs. (A1.15) and (A1.16). The intersections between 

the LHS and RHS of the equations yield the possible values of ngy for a given n,,qx (OF 

equivalently Vo). The odd (even) quantum numbers displayed next to each tangent curve 

correspond to the LHS of the symmetric (antisymmetric) characteristic equation. 
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FIGURE A1.4_ Plot of quantum numbers as a function of the maximum allowed quantum 

number which is determined by the potential height, VY). The quantum numbers are 

related to V) and E through Eq. (A1.17). The lower plot gives a close-up view of the 

curves (which have been shifted vertically to fit on the same scale). 

Of Mnax- Figure A1.4 gives all possible solutions for n,,,,, < 6 (which covers nearly 

all practical ranges of interest). Note that all quantum numbers approach their 

integer limit as n,,,,, increases toward infinity. In addition, the quantum numbers 

cease to satisfy the equations (indicated by the open circles) when a given 

quantum number approaches the integer value of the next lowest state. The 

lowest quantum number can be approximated to within +1% using the 
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following formula: 

2 
Now © — tan” *[Mmax(1 + 0.6"™***)]. (A1.18) 

Tt 

A1.2_ ELEMENTS OF SOLID-STATE PHYSICS 

A1.2.1_ Electrons in Crystals and Energy Bands 

Electrons in crystals experience a periodic potential originating from the 

regularly spaced wells at the lattice ions. Figure A1l.5 gives a schematic 

picture along one dimension of such a lattice. As predicted in Chapter 1, when 

N, atoms are coupled in such a manner, each atomic energy level of the 

constituent atoms splits into a band of N, discrete levels. However, this splitting 

is only significant for the uppermost energy levels where the two atoms 

interact. 

There are several approaches that have been applied to solve this problem. 
The Kronig—Penney model approximates the actual periodic potential of Fig. 

A1.5 by a square wave potential, then uses the single rectangular well solution 

above as a starting point. However, the result is a complex transcendental 

equation that must be solved numerically. A second approach which provides 

better closed-form analytic solutions is the coupled-mode approach of Feynman 

et al. [1]. For accuracy some fairly complex functions need to be evaluated, 

but by leaving them in general form, we can still get a good picture of the 

nature of the solutions. 
The first step is to go back to Schrédinger’s equation and consider a possible 

general solution for a perturbed system, such as the atom which has been placed 

into a crystal. The isolated atom had a set of orthonormal wavefunction 

Potential well of 

isolated atom 

eee ee ee on = fe a a So a a a a a a a a a a a a ee ee ee 

Net confining Lattice 
potential ions 
7 

FIGURE A1.5 Schematic of net potential variation along a one-dimensional crystal 

lattice. Wavefunctions of nominally bound (w;) and free (y,) electron states are 

illustrated. 
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solutions just as we obtained for the rectangular potential well. When we 

perturb the original potential, a new set of orthonormal wavefunctions will 

exist. But now it may be impossible to solve Schrédinger’s equation. It is 

common to use a superposition of the original set of orthonormal functions to 

express the new solutions. We shall use this kind of “normal mode expansion” 

later when we discuss optical solutions. 

In the present case we let 

Y=) w,()W,(r), ~ (A1.19) 
j 

plug into Eq. (A1.2), multiply by y*, and integrate. Then, we have 

dw, 
Emo furny,ar= ny | vey,ar, (A1.20) 
j J 

where the Hamiltonian, H = [(—h?/2m)V* + V], in which V includes the 
perturbation. Since the original basis functions are orthonormal, the last 

integral is zero’ unless j = k. Using the shorthand notation, 

A, = | vet, dV, : (A1.21) 

we finally have 

, dw, 

dt j 

This is the desired coupled-mode equation which is independent of the spatial 

variables. It illustrates that the probability density will flow back and forth 

among the various original states as a function of time to form the new states. 
Note that with k = j in Eq. (A1.21) we have the equation to determine the 

expected value of energy for that original wavefunction—the eigenvalue E that 

we have been evaluating previously. Thus, the diagonal terms in the H,; matrix 

are these energy eigenvalues for the respective unperturbed states. The off- 

diagonal terms represent the coupling strength between the various states. They 

determine the magnitude of the energy splitting experienced by some original 

state. It is also important to realize that for most of what we are doing 

here we do not have to know the actual form of the wavefunctions or even the 

magnitudes of the matrix elements, H,;. Experimental measurements are usually 

used to determine the actual values. 

Our first example is that of coupling just two identical atoms together. For 

sufficiently weak coupling, we can approximate the effect on a particular state 

‘ Actually, in some important cases of interest, y, and ; may include basis functions of laterally 

displaced atoms to better approximate the perturbed solution. Thus, for some terms in the 

summation the integral is only small rather than identically zero. \ 
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by using only the basis function for that state from each atom in the summation. 

(Clearly, for vanishingly small coupling, these give the exact solution.) Then, Eq. 

(A1.22) can be expanded into two coupled-mode equations: 

, aw, 
Baar = Ay,w, + H,.W>, 

(A1.23) 
, dw, 
Hie Wie Pas + H,.W>. 

Letting the energy of the state in question H,, = H,, = Eo, the coupling energy 

H,, = H,, = AE, and then, assuming solutions w,(t) = C,exp(—iEt/h) and 

plugging into Eq. (A1.23), we obtain a characteristic equation from which we 

must have 

Pn AR: (A1.24) 

Thus, the original energy level at Ey for the isolated atom has split into two 

levels spaced equally on either side by the magnitude of the off-diagonal matrix 

element, AE. This same process for N, atoms leads to N, levels spaced 

symmetrically about the original level. 

Now we are ready to illustrate how energy bands are formed when a large 

number of atoms are coupled together in a crystal. First we consider a simple 

one-dimensional crystal. Figure A1.6 illustrates a row of atoms spaced by a 

distance a, similar to the situation of Fig. A1.5. 

Our first approximation will be to neglect the perturbation from all atoms 

except nearest neighbors. Then we can consider a general atom, the kth atom, 

which can represent every atom in this long chain. From Eq. (A1.22), taking 

A,, = Hy = E, and Hy, = Aas, = AE, 

_ dw, 
ih == d —— AEw, - , SF E,W. SF AEw, + 4. (A1.25) 

t 

Wavefunctions of 

isolated atoms 

Lattice 
x Xx x 5 kt k k+1 ions 

(Xa) (x, +a) 

FIGURE A1.6 One-dimensional lattice of coupled atoms to derive energy bands using 

the coupled-mode approach. 
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Again letting w,(t) = C; exp(—iEt/h) and plugging into Eq. (A1.25), we obtain 

a characteristic expression; 

EC, — EC; a5 AE(C,-; = Ga k (A1.26) 

However, since the subscript k corresponds to the general lattice location, x,, 

and the neighbors are at x, + a, we can rewrite Eq. (A1.26) letting C, => C(x;) 

and C,4, = C(x, +a). Then, we have a difference equation in terms of the 

spatial variable x. This is solved by letting C(x,) = K exp(ikx,). Finally plugging 

in this assumed solution, 

Ee Piege. =n etkxx =f ANF le<e a) ae 7h RIB N fp 

or, 

E = E, + 2AEcos ka. (A1.27) 
\ 

Equation (A1.27) indicates that in this infinite one-dimensional crystal a 

continuum of energy values between E = E, + 2AE is allowed. This is the 

familiar energy band that solid-state and semiconductor engineers are always 

referring to. (A later section of this appendix will remind us that for finite 

crystals, the discrete levels in any real situation really are very closely spaced.) 

This same development of bands happens for all of the higher-lying energy 

levels when atoms are bonded together to form crystals. Thus, the next 

higher-lying band at energy E, also splits into a band due to nearest- 

neighbor coupling energy AE’. Therefore, it provides a new band with E’ = 

E, + 2AE’ cos ka, where in direct bandgap semiconductors, the sign of AE’ is 

reversed. Also, the overlap of wavefunctions is larger for the higher lying energy 

levels. Thus, according to Eq. (A1.21), the coupling energy is larger, and 

the bands become wider. Figure A1.7 illustrates these two bands. As indicated, 

one period of the plot is sometimes referred to as a Brillouin zone. Since the 

curves repeat themselves for larger k-values, we usually need concern ourselves 

only with the first Brillouin zone. 

In semiconductors all states of all bands up to the valence band are full, and 

in the next higher-lying band, called the conduction band, they are empty at 

T=0OK. We could imagine that Fig. Al.7 represents the conduction and 

valence bands of a direct bandgap semiconductor such as GaAs or InP. The 

potentials affecting electrons in such semiconductors are a little more com- 

plicated than described by this simple example, in which only nearest-neighbor 

interactions are considered. So, the E—k plots are not perfect sine waves. Also, 

in these materials the valence band actually divides into two bands called the 

light-hole and heavy-hole bands. These originate because of the asymmetric 

wavefunctions involved, and the difference in overlap that can occur for different 

relative orientations when Eq. (A1.21) is evaluated. 

For a real three-dimensional crystal with lattice constants a, b, and c, the 

same procedures can be carried out using a three-dimensional version of Eq. 
(A1.22) with coupling coefficients AE,, AE,, and AE,, and a three-dimensional 
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FIGURE A1.7_ Energy bands created by a one-dimensional chain of coupled atoms. Two 

bands resulting from two original discrete states are shown. 

envelope wavefunction, 

(omy nmnt eaten elcome erst aA, (A1.28) 
to obtain 

E=E, + 2AE, cosk,a + 2AE,cosk,b + 2AE,cosk,c.  (A1.29) 

The real situation is still more complex than the first-order calculation 

resulting in Eq. (A1.29). Figure A1.8 illustrates the actual band structure for 

both GaAs and InP along the <1 00> and <1 1 1) directions. 

A1.2.2 Effective Mass 

Near the top of the valence band and near the bottom of the conduction band 

it is sometimes possible to approximate the shape of these E—k extrema by 

parabolas. In these cases the concept of an effective mass is useful, and simple 

expressions for the density of states are possible. However, the concept of an 
effective mass has also been extended to limited regions within nonparabolic 

bands where the parabolic approximation is still valid. 

To determine an expression for the effective mass and show that the parabolic 
band is desired, we follow a semiclassical approach in which we calculate the 

acceleration of an electron in a solid under the force of an applied electric field. 

The force g& on a particle may be classically expressed as the time rate of 

change of its momentum, p. Quantum mechanically p = hk. Thus, the force is 

dk 
F=q€ =h—. A1.30 q ‘ ( ) 
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FIGURE A1.8 Band structure of GaAs and InP. The conduction band as well as the 

heavy-hole, light-hole, and split-off valence bands are labeled by, c, hh, lh, and sb, 

respectively (W, = E,). (Reprinted, by permission, from K.J. Ebeling, Integrated Opto- 

electronics, Springer-Verlag, 1993). 

The velocity of particles is defined by their group velocity, v, = dw/dk = 

(1/h) dE/dk, which shows the proportionality of velocity to the slope of the E—k 

characteristic. Since the acceleration, acc., is the time derivative of the velocity, 

we can write 

dv, dv, dk 1 d?E dk 

dt dk dt hdk? dt 
acc. = (A1.31) 

Dividing Eq. (A1.30) by (A1.31), and defining an effective mass, m* = F/acc., 
we obtain 

h2 
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Thus, for parabolic bands, as observed for uniform potentials, e.g., Eq. (A1.7), 

the electron will move much like a free particle, but with an effective mass, m*, 

related to the curvature of the band. For nonparabolic bands, m* is not constant 

and the local slope and curvature of the E-k relationship must be used to 
obtain the velocity and acceleration of a particle with energy E. 

A1.2.3_ Density of States using a Free-Electron (Effective Mass) Theory 

We just learned above that an electron in a crystal can behave much like a free 

electron moving in a region of uniform potential if it is at a point on the E—k 

diagram that is parabolic. This is a remarkable result, since we know that the 

potential within a crystal is very nonuniform. Nevertheless, this revelation 

allows us to treat some very complex problems. For example, if we consider a 

crystal of finite dimensions, d,, d,, d,, we can more or less ignore the crystal 

lattice potential which is periodic on the scale of the lattice constant a, provided 

that d; > a (Fig. A1.9). But, we must use a different effective mass as determined 

by the curvature of the E—k diagram. 
By considering electron energies near band extrema, where the E—k curve 

tends to be parabolic, we can now consider reusing some of the same physics 

that we developed in Section A1.1.2 for electrons in very simple potential wells 

that had uniform potential regions. That is, we can now find the states in finite 

pieces of crystal or pieces with potential wells created by double heterostructures 
as described in Chapter 1. The simplest case is when the potential barriers are 

large so that we can assume that the bound wavefunctions go to zero at the 

boundaries. Then, from Eqs. (A1.13) and (A1.14), we have 

h2k? h2 

E = — 

2m* 2m* 
(asics (A1.33) 

Effective 
potential well 

Actual 
potential 

Pal aim wld a d Lattice 
2 ions N 

FIGURE A1.9 Potential plot for crystal (or quantum-well) of thickness d. The dashed 

well is an approximation to the actual potential. 
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where we have included all three dimensions for completeness and assumed 

that the effective mass is ‘the same in all directions. Applying the boundary 

conditions for a large barrier, k,;d; = n;7, 

aia (32) +: (2) Fe (2) | (A1.34) 
2m* d,, d, d, 

From Eq. (A1.34) we note that we have an energy state for each (G,.30j-72) 

set of quantum numbers. To determine the size of the energy spacing between 

states, we can evaluate the coefficient, h?2?/2m) = 376 meV-nm’, where we have 
used the free electron mass rather than the effective mass. In GaAs the electron 

mass, m* = 0.067mg, so we should use 15(376) = 5640 meV-nm? for the coefficient 

in the conduction band. From this we can see that the energy separation 

between states is quite small. For example, for a cube with d; = 1 ym, the 

difference in energy between the first two states, E(211) — E(i11) x 17 x 

10-3 meV. Since kT ~ 26 meV at room temperature, we see that this energy 

difference is less than one thousandth of a kT. On the other hand, for a cube with 

dimensions d; ~ 10 nm, this energy difference is ~ 170 meV, or more than 6kT 

at room temperature. 
From the above, we conclude that for dimensions d; Z 1 um, quantum 

effects are not going to be very noticeable at room temperature, and the E—k 

diagram can be treated as describing a continuum of states. We shall refer to 

this as the bulk regime. On the other hand for d; < 100 nm, the discreteness of 

the energy levels indicated in Eq. (A1.34) must be considered. We shall refer to 
this as the quantum-confined regime. 

Even though the states may be very closely spaced in the so-called bulk 

regime, we still need to be able to count them to determine the carrier density 

and the energy to which they would have to be filled for a given carrier density. 

In the smaller structures, we again need an effective method of counting states. 

The method commonly used is to define a density of states, p, which when 

integrated over some range gives the number of states in that range. The density 

of states can be expressed in terms of a number of variables (e.g., E, p, or k) in 

a number of different coordinate systems. If N, is the number of states up to 
some point, we can generally state that 

u 

N,(u) = r| p(u) du, (A1.35) 
0 

where u is the desired variable and V is the volume. Once we have this definition, 
we can then state that 

p(u) du = = dN,(u). (A1.36) 
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It should be realized that p(u) du can be defined and used regardless of the size 

regime in which we find ourselves. For the smaller structures, we find that it 

contains discontinuities and even impulse functions, but it is still a good 
function. 

In order to determine p(u) du for the various cases of interest, we follow a 

standard procedure: (1) determine the number of states by calculating the 

volume in state or n-space, N,(n); (2) substitute for the desired variable,n = f(u), - 

which gives N,(u); and (3) apply Eq. (A1.36) to get the desired p(u) du. A few 

examples are useful for future reference. 

For the first example, we consider bulk dimensions, a spherical coordinate 

system, and energy as the variable. Spherical coordinates imply that we are 

considering a spherical state space. Equation (A1.34) is written in rectangular 

coordinates, but as stated after it, each set of quantum numbers, or each volume 

element in n-space, represents a state that can be occupied by an electron. Figure 
A1.10 illustrates this n-space. The first step is to calculate the volume N,(n) 

Nn) = $nn3-2-2. (A1.37) 

The first factor just gives the standard expression for volume. However, 

we must multiply by 2, since two states actually exist at each allowed energy 

because of spin degeneracy. And only positive quantum numbers are allowed, 

so we have the factor of $. Now, for the second step, we use Eq. (A1.34) in 

spherical coordinates, (identical to Eq. (A1.14)), solve for n in terms of E, and 

plug back into Eq. (A1.37): 

NE) = 5 ( (A1.38) 
h?n 

EAN 

FIGURE A1.10 State space or n-space in spherical coordinates. Each block corresponds 

to a particular state and has unit dimensions. 
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For the third step, we now apply Eq. (A1.36), and use V = a 

* 13/2 

o(E) dE = - E | E12 dE. (A1.39) 
TU 

Equation (A1.39) is our final result. It will be of much use in calculating carrier 

densities, gain, and other quantities associated with bulk active regions in lasers. 

For the second example, we consider bulk dimensions, rectangular co- 

ordinates, and momentum as the variable. Then, the volume in n-space is, 

N,(n) =2n,n,n,. The momentum in each direction, j, is 

Ann; hn. pj = hk; = t= (A1.40) 
J J 

Solving for n,, n,, and n,, and plugging into N,(n), we get 

? ce 

N,(Px» Py» Bz) =2 (*) PxPyP2(d, 4, 4,). (A1.41) 

Applying Eq. (A1.36) to (A1.41) gives the desired density of states, 

9) 3 

P(Px, Py» Pz) dp, dp, dp, = (7) dp,. dp, dp,. (A1.42) 

The density of all states with a given momentum, p(p), can be obtained from 

this result by setting dp, dp, dp, = 4np” dp/8. The factor of 8 is required because 

(A1.42) defines the density of standing wave states, psy(P,, Py, P-), Which do not 

distinguish between positive and negative values of momentum. Hence, the 

density is limited to the first quadrant. We can also define a density of plane 

wave states, Ppw(Px; Py, P.), Which can travel in any direction. Using periodic 

boundary conditions, we have k; = 21n,/d; instead of k; = 1n,/d;, but now we 

consider both positive and negative values of n,; as unique states. In three 

dimensions then, ppw(Px, Py, Pz) = Psw(Px> Py» Pz)/2°, and is distributed over all 

quadrants of momentum space. So for ppy(P,, Py, P.), we can set dp, dp, dp, = 

4rp* dp. In either case, we obtain ppy(p) = Psw(p) = 8p?/h>, from which we 
also obtain p(k) = (k/x)* (since p(k)dk = p(p) dp). 

For the third example, we consider a quantum well (small dimension in one 

direction), cylindrical coordinates, and energy as the variable. We shall let d, be 

the small dimension. As always the energies are given by Eq. (A1.34), but we 

need to develop a density of states for the y—z plane, which will be summed 
for each n,. Figure Al.11(a) gives a plot of the energy, E, relative to the k,—-k, 
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(a) (b) 

FIGURE A1.11 (a) Three-dimensional E-k plot showing discrete jumps in k, due to 

small d,.. (b) Projection perpendicular to the k, axis. 

plane for a quantum-well region using Eq. (A1.34). The lowest-lying states for 

n, = | and 2 are labeled by the quantum numbers (n,, n,, n,). Since d,. is small, 

there are no states near k = 0. Figure A1.11(b) replots the energy vs. k, (or k,) 

in a two-dimensional graph for clarity. In part (a) only positive k, and k, are 

shown. 

Now to determine the density of states for this quantum well, we start with 

the disk of Fig. A1.12 and determine N,(n). The volume of the unit height disk 

in the first quadrant, multiplied by 2 for spin, is 

N(ny-) = : (n? + n2). (A1.43) 

FIGURE A1.12. Two-dimensional state space which occurs for each n, in a quantum well. 
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Using the y and z terms from Eq. (A1.34) for E,, and (n? + nz), letting 

d? = (d? + d?), and assuming that the effective masses are the same in y and z, 

* 2 

N(Ey,) = E yz* 
mh? 

(A1.44) 

Again, we apply Eq. (A1.36) and recognize that this density of states is for 

n, = 1. Thus, generally 

i m* 
= ) = HR = Ww A1.45 p(E) 7 7) (& | E..) (for OW) ( ) 

\ 

where n, and E are related by Eq. (A1.14) with] = d,, and #(E — E,,) is the 

Heaviside unit step function. 

Figure Al.13 compares the densities of states for the bulk and quantum- 

well active regions, Eqs. (A1.39) and (A1.45) respectively. As can be 

seen the bulk curve forms an envelope for the steps of the quantum-well 

case, which correspond to the energies where thes quantum numbers are 

(nselet). 

ptE) 

3m" 

d,mh? 

* 

2m 

d,mh? 

* 

PLUS, 
d,mh? 

Ein E14 F311 E 

FIGURE A1.13_ Density of states for an infinite-barrier quantum well and bulk 
material. If the barrier is not infinite, the quantum-well energies decrease slightly. If 
desired, the density of state plateaus can be decreased by using an effective d, = as 
(a different one for each state) so that the extrema continue to intersect the bulk 
characteristic. , x 
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APPENDIX TWO 

OOo ee 

Relationships between Fermi 
Energy and Carrier Density 
and Leakage a 

A2.1 GENERAL RELATIONSHIPS 

In Appendix 1 the groundwork of energy bands and densities of states within 

these bands was outlined. Here we attempt to understand how carriers fill these 

states in semiconductors. This will allow us to relate the carrier density to the 

ranges of energies that must be occupied. They key missing element is the state 

occupation probability, f(E), at energy E. For a large density of states, this 

function is equivalent to the fraction of states occupied at energy E. For particles 

in solids the relevant function is the Fermi—Dirac distribution, 

S(E) = a=tpat aq" (A2.1) 

where the energy E; is called the Fermi level. This probability distribution is 

one-half at E = E,, and closely approaches unity for E a few kT below E,, and 

zero for E a few kT above E,. In fact, for E a few kT on either side of E,, the 

asymptotic approach to these limits is exponential. These regions are sometimes 

referred to as the Boltzmann tails, since they imitate the classical Maxwell— 

Boltzmann distribution. At T = 0 K, f(E) is essentially a step function, stepping 
from unity to zero at E = Ey. 

Now, we can write the carrier density, N, as the integral over energy of the 

density of filled states in the conduction band, 

Ne ey (E) dE, (A2.2) 

412 
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and similarly, we can write the hole density, P, as the integral of the density of 

unfilled states in the valence band, 

i= | eee — f(E)] dE, (A2.3) 

where p(E) and p,(E) are the density of states (per unit volume per unit energy) 

in the conduction and valence bands, respectively. Figure A2.1 gives schematics 

of the density of filled and unfilled states vs. electron energy in the conduction 

and valence bands, respectively, for a bulk semiconductor under nonequilibrium 

conditions at T=0OK and 300K. Figure A2.2 gives analogous plots for a 

quantum well. 

In both cases we have only shown the heavy-hole band in the valence 

band. In reality, the light-hole band also is a significant part of p,(E), 

and some of the holes occupy states there. The light-hole band is a little 

less important in quantum wells because of the separation of the light- 

hole band from the heavy-hole band at the finite k,, where the lowest energy is 

found. 
Equations (A2.2) and (A2.3) give a relationship between the carrier densities 

and the Fermi level, E,,, for a known density of states. As a very simple example 

consider a quantum well at T = 0 K with an electron density of N. In this case 

(b) 

FIGURE A2.1_ Density of filled states in the conduction and valence bands of a bulk 

semiconductor under nonequilibrium conditions at (a) T=0K and (b) T= 300K. 

Under nonequilibrium conditions, such as when a current is flowing, separate Fermi 

functions and quasi-Fermi levels, Ey, and E,,, are used for the electrons and holes, 

respectively. 
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(b) 

FIGURE A2.2 Density of filled states in the conduction and valence bands of a quantum 

well under nonequilibrium conditions at (a) T = 0 K and (b) T = 300 K. 

the step-like Fermi function merely sets the limits of integration from the first 

allowed state, E,,, to E, as shown in Fig. A2.2(a). From Eqs. (A1.45) and 

(A2.2), and assuming we do not approach n, = 2, we have 

m* 

IN == nhd, (Er — Ess). (A2.4) 

Thus, we can solve for E;, as 

nh*d,. 
Ey = E44, + . N. (QW; n, = 1;T=0K) (A2.5) 

m 

At finite temperatures, the Fermi function is no longer a simple step function, 

and we must use the general form (A2.1) inside the integral. This makes the 

integration more complex, but using a quantum-well density of states function, 

the integral still has a closed-form solution. Repeating the above calculation at 

finite temperature, we have 

1 Ties lites dE 

Nara. OT ae 
where #(E — E,,) in Eq. (A1.45) has shifted the lower integration limit. Making 

the substitution u = exp[—(E — E,)/kT], allows the integration to be readily 
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performed. Then, for the situation of Fig. A2.2(b), 

kTm* 
a7 Y" In[l + e@F-ExT] (QW) (A2.7) 

For n, = 1 and (E; — E,,,) > kT, note that Eq. (A2.7) reduces to Eq. (A2.4). 

A2.2 APPROXIMATIONS FOR BULK MATERIALS 

Unfortunately, the finite-temperature calculation for carrier density is not as 

simple using a bulk-like density of states function, as in Fig. A2.1(b). The general 

form for the carrier density in bulk material is given by 

Lan? (2 EE 
n= 3 (3 | bE. (A2.8) 

2n? \ h? pe eee st 

where E, is the conduction band edge. Defining v = (E,; — E,)/kT and y = 

(E — E,)/kT, we can write the integral in a more normalized form: 

» oc 

Ne VP ye NESEY (A2.9) 
y-v ! 

Ws (0) l+e /n 

*kT zie * 13/2 3/2 

N= (ee) AO 51 oc a0 ti =| m | sax cm-3, (A2.10) 
nh? mo 300 K 

where F;/2(v) is known as the Fermi—Dirac integral of order 1/2 (referring to 

the y!/? in the numerator), and N, is the “effective” density of states in the 
conduction band. For v «0 (in other words, for E,;,<«E,), the 1 in the 

denominator can be neglected reducing the Fermi function to the Boltzmann 

exponential limit, allowing the integral to be evaluated in closed-form. The 

result reduces to 

NyxiN eee Soe (bulk, Boltzmann limit) (A2.11) 

For larger v, other approximation techniques must be used. Tables A2.1 and 

A2.2 summarize various approximations to the Fermi—Dirac integral (and their 

range of validity) which have been formulated over the years (see Blakemore 

[1] for an overview). The first table finds N in terms of v, while the second 

table finds v in terms of N. 

The error associated with the various approximations listed in Table A2.1 

are plotted in Fig. A2.3. The Boltzmann limit discussed above is valid for large 

negative v, but quickly begins to overestimate the carrier density as v approaches 

zero (that is, as E, approaches the band edge). At the other extreme, the 
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2 
TABLE A2.1 Summary of Approximations for Carrier Density N = N, —— F,,.(v). 

We 
Range Over Which 

Formal Name Mathematical Expression Fractional Error* < 1% 

Fermi-Di 2 a ee oa F,,(v) = ole dy exact definition 
10) 

v = (E, — E,)/kT \ 
y=(E—E,)/kT 

Boitzmann Jn a 

approximation Fig) = isd Dae ere 

Unger Jn Le 1 nt ae 1 I GI ge antiara 7 ee a eal Sere st order v< —2.7 
approximation 122) 2 Liga: wd (a, = 0) 

Cia 2nd order spat el 
1 1 =()) 

a, = 3(1-E) 014645 cag ae) 
2 Alp: 2nd order v < 7.6 

z =In(1 e’) (a, = 0:15) 

Sommerfeld — F, .(v) ¥4077[a, +a,0°7+---] 1st order (0) et 

NEO STE a,=1 2nd order (1.2337) v > 2.9 
2 

a= > 1.2337 2nd order (1.3) v>17 

Modified nn? 
SSmmerfeld Fade 1 ar z 74: | 1st order (0) v> ii 

approximation ey 2nd order (1.233.7)) «v3 

Global _ Fip)2(3+0.3x)FE error < 0.06% 
approximation + (0.76 +0.24x) FR ]1/? —0 <v<0 
(one of many) 2 Jn 

rie note that 

Fy = $297 ze 

p = 34+x—0.19e" © 9257/8 eee ee 
x = tanh(0.8(v — 2.7)) Z—> 0 

z =In(1+e’) x1 OE: 
ee eee 

Perrot =| Fi = Fonel/ Fi 
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TABLE A2.2) Summary of Approximations for Fermi Level v = AN/N,). 

Range Over Which 

Formal Name Mathematical Expression Abs Error* < 0.04+ 

Inverse v= Fi p[Fip)] exact definition 
Fermi—Dirac Jat 

integral = Fal Nin, = f(r) 

v = (E, — E,)/kT, r = N/N, 

Boltzmann veiInr v< —2.1 

approximation 

Joyce—Dixon velnr+A,r+A,r?7+°::: Ist order vie 

To Ay = 1//8 Qnd order =v < 42 
A, ® —4.95009 x 10°* 3rd order v < 5.6 

A,;~ 1.48386 x 10°* 4th order v< 68 
A, © —4.42563 x 107° 

Pade vzInr+ Ayr K, =4.7 

approximation + [K, In(1 + Kyr) — K, Kar] error < 0.0004 v <9.8 
K, = 4.75.2 K,=49 

Ky = \/2|Aa\/K, error < 0.02 v<188 
A,, A, as defined above K, =5.2 

error < 0.1 v < 28 

Inverse second-order 

Unger De ingen] (@/144a,r — | =. i (a, = 0.14645) v<28 
ay approximation (a; =0.15) v<74 

Inverse first-order A v > 20 
/3 

Sommerfeld ne ae ) 
approximation 4 

Nilsson’s global fine Us error < 0.006 
i i ~ ota —=3166) eS 6 

UR Ag? f—r? | 14+ (0.24 + 1.08f,)-? ae 

eee 
* error = |v — Veal, f AEr © +1 meV @ RT. 
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(a) Limiting Forms of F’,.(v) (c) Modified Limiting Forms 

100 : 

g ie = 10£ 2 2 
E £ 
‘Om OQ 
© © 
on a 
E E 
® ® iP 0.01 w 

0.001 
-10 -5 0 5 @ WG 20 

10) 

(b) Fractional Error (low limit functions) pe ,. (d) Fractional Error (low & high) 

« 

lobal 

FIGURE A2.3 (a) Plot of Fermi—Dirac integral along with first-order limits for low 

and high v. (b) Fractional error of Boltzmann and first- and second-order Unger 

approximations. (c) Modified first-order limits using the z function substitution introduced 

by Unger. (d) Fractional error of Boltzmann, first- and second-order Unger, first- and 

second-order modified Sommerfeld (MSF), and global approximations. (There is little 

difference between the error in the Sommerfeld and modified Sommerfeld expansions.) 

Sommerfeld expansion (which essentially determines the zero-temperature 

carrier density with correction terms added to account for the finite-temperature 

smoothing of the Fermi function) can be used to determine the Fermi—Dirac 

integral for large positive v. The first-order terms of the Boltzmann and 

Sommerfeld limits are plotted in (a). As can be observed, the two limits fail to 

cover the range —2 < v < 5. Unger [2] introduced a function z which led him 

to a useful expansion of the Fermi—Dirac integral for small v. The fractional 

error of the Unger expansion is plotted in (b). The multiple curves are plotted 

. using the second-order expansion coefficient as a curve-fitting parameter. 

Increasing a, from its true value of ~0.14645 to 0.15 to 0.1537 reveals the 

trend toward reducing the initial hump in the curve at the expense of increasing 
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the error elsewhere. Note that with a, = 0.15, the Unger expansion provides 
an error less than ~ 1% for v as large as 7 (actually the initial jump dips below 
1% when a, = 0.151, but there is something to be said for round numbers). 
What this means is that E, can penetrate 7kT into the conduction band and 

the Unger approximation will still provide an accurate estimate of the carrier 

density. Higher-order terms in the Unger expansion can also be used but they 

do not significantly increase or extend the accuracy of the approximation. _ 

For some applications it is desirable to know the Fermi function for 

values of v even larger than the Unger approximation is capable of handling. 

For these situations, one could switch to the second-order Sommerfeld expan- 

sion, but it would be advantageous to have a single expression to cover 

the entire range of v. One could think of constructing a global approximation 

by bridging the two limiting approximations. However, the Sommerfeld 

expansion is unfortunately invalid for v < 0. For the purpose of constructing 

a global approximation, we can substitute z for the two limiting forms given 

in (a). The resulting expressions are plotted in (c). Note that the “modified” 

limiting forms are better behaved than the limiting forms in (a). The global 

approximation given in Table A2.1 bridges the gap between these “modified” 

limits [3]. The overall expression for the global approximation is a bit 

complicated, but it does get the job done—it approximates the Fermi—Dirac 

integral to within 0.06% over the entire range of v, as shown in (d), with excellent 

convergence on either side of the “trouble area.” 

Table A2.1 found N in terms of v. However, oftentimes we know the carrier 

density, and would like to determine the Fermi level. This requires calculating 

the inverse of the Fermi—Dirac integral. Various approximations used to 

achieve this are summarized in Table A2.2. Of these, the Joyce—Dixon 

approximation [4] is perhaps the most well known. Its popularity stems from 

the fact that it simply adds correction terms to the Boltzmann approximation, 

which is useful for the analytical description of semiconductor devices. The 

Unger approximation appears in this list as well. In fact, one very attractive 

feature of the second-order Unger approximation is that it is invertible [5]! 
Figure A2.4 plots the various approximations for comparison. In (a) we see 

that the even-order Joyce—Dixon series expansions diverge rapidly for v > 10, 

while the odd-order terms remain well-behaved. The Unger expansion actually 

tracks the exact solution better than any of the Joyce—Dixon expansions. 

However, (b) reveals that the absolute error for the second-order Unger 

expansion is larger than the higher-order Joyce—Dixon expansions for small v. 

To extend the range, Nilsson [6] constructed a global inverse approximation 

by attempting to bridge the inverted Boltzmann and Sommerfeld expansions. 

The error in his global approximation is shown in (c). While the absolute error 

remains low, the convergence on either side of the “trouble area” is not 

particularly strong. 
The Padé approximation [7] shown in (d) is a variant of the Joyce—Dixon 

approximation which avoids the highly divergent properties associated with the 

even-order Joyce—Dixon series. The Padé approximation is by far the most 
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(a) Joyce-Dixon & Unger Approx. (c) Absolute Error of Global Approx. 

Fermi-Dirac Integral 

Boltzmann: 
(JDO) . 

10-4 fae Aer 

10°5 
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FIGURE A2.4 (a) Plot of Fermi—Dirac integral along with various orders of Joyce— 

Dixon (JD) approximations and the second-order Unger approximation. (b) Comparison 

of the absolute error of these approximations. (c) Absolute error of Nilsson’s global 

approximation. (d) Absolute error of the Padé approximation for different values of the 

adjustable parameter, K,. 

accurate approximation for v < 10 with K, set to 4.7. One nice feature of this 

approximation is that it is adjustable. For example, to extend the range one 

can sacrifice accuracy slightly by increasing K, up to a maximum of 5.2 (beyond 

which the error becomes very large). 

At this point, we can see that the number of approximations available for 

the Fermi—Dirac integral allow us to determine the relationship between carrier 

density and Fermi level in bulk material to a very good degree of accuracy. In 

fact, it could be argued that the quantum-well Fermi level is more difficult to 

calculate than the bulk Fermi level because the summation in the expression 

for quantum-well carrier density (Eq. (A2.7)) prevents one from inverting the 

equation. ; ‘ 
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A2.3 CARRIER LEAKAGE OVER HETEROBARRIERS 

In double heterostructures the band diagrams shown in Figs. A2.1 and A2.2 

for the bulk and quantum-well active layers are not valid for energies greater 

than the band offsets between the active and cladding materials. That is, once 

carriers fill to the top of the barrier they are free to diffuse into the cladding 
regions. At finite temperatures shown in parts (b) of these figures, the carriers - 

in the high-energy tails would ideally extend to energies above the barriers. 

Thus, in practice there is a “carrier leakage” out of the active region which 
results in a leakage current as the carriers diffuse away. With increased 

temperatures the fraction of carriers in the high-energy tail as well as the carrier 

leakage current will increase. 

Figure A2.5 is a plot of the carrier distribution for an electron density of 

2 x 10'8cm~3 in a GaAs active region clad by AlGaAs for which the net 
effective barrier height is 0.3eV. The horizontal axis is the electron spectral 

density p,(E) f(E). To calculate the density of electrons above the barrier, N,,, 

indicated by the shaded region, we integrate the electron spectral density from 

the top of the effective barrier (which also includes any residual band-bending 

effects). Thus, as in Eq. (A2.2), but beginning the integration at E, rather than 

E., we obtain 

Ny = | " pAB) (CB) ak (A2.12) 
Ep 

E (eV) 

10'3 10!4 10! 10'° 10!’ 10!8 10° 102° 

p.(E)f(E) cm@eVv! 

FIGURE A2.5 Room temperature electron energy vs. the electron spectral density in the 

conduction band of GaAs with a total integrated density of N = 2 x 10'8cm~*. The 

leakage density, Ny, above the 0.3 eV AlGaAs barrier is shaded [8]. The total effective 

barrier height (E, — E,) includes residual band bending under forward bias as well as 

the conduction band discontinuity, AE,. 
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or for a bulk-like density of states, 

Nu = = (a) | ‘: CE BiB dE. (A2.13) 
an? hb? ] Je, 1 + expl(E — E,.)/(kT)] 

For the assumed barrier height of E, = 0.3 eV; and for a Fermi level to yield 

a total density N = 2 x 10'8cm~° carriers from Eq. (A2:2), one finds that 
Ny, = 3.4 x 10'* cm~3 at room temperature as shown in Fig. A2.5. 

Some of these high-energy electrons will escape the active region and diffuse 

into the p-cladding material as illustrated in Fig. A2.6. The fraction that actually 

do however involves a number of factors. For example, some electrons 

approaching the cladding barrier will be reflected even though they have 

sufficient energy to pass over the barrier (it is much like photons being reflected 

off of a dielectric interface). For a simple potential step the reflection coefficient 

is not significant, dropping below 50% for electrons with energies just 3% greater 

than the barrier. However, specially designed cladding layers can reflect a much 

higher portion of the high-energy electrons. 

Another factor to consider is that in a thermal distribution, the electron 

velocities are randomly distributed in all directions (with just a slight preference 

toward the direction of the current flow). Therefore only a fraction of the high 

energy electrons are even moving toward the p-cladding barrier. Finally, some 

electrons which make it into the p-cladding layer will diffuse right back into the 

active region. Thus, we must consider the flow of electrons in both directions. 

Thermionic emission theory can be used to estimate the maximum supply rate 

of electrons to the p-cladding layer by calculating the average thermal velocity 

of high-energy electrons directed toward the barrier. However, the tricky part 

is determining how many might be flowing back. 

An alternative approach to studying the detailed flow of electrons across the 

barrier is to simply assume that the electron populations on both sides of the 

barrier are in thermal equilibrium such that we can match the quasi-Fermi 

levels across the barrier. If we assume this to be the case, then in the Boltzmann 

Fermi Distribution 
Electron 

Injection 
Electron 

E Leakage Current 

Active p-Cladding 

FIGURE A2.6 Schematic band diagram of a double heterostructure showing electron 

energy distribution in the active layer and leakage current. 
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limit, the electron population at the edge of the p-cladding layer is given 

by 

Npo = aaa (assuming Excl act ay Evel ctaa) (A2.14) 

This estimate of the actual leakage carrier density which establishes itself in the 

p-cladding layer is typically 20-30% of the value suggested by Eq. (A2.13). It 

also reveals the strong exponential dependence of the leakage carrier density, 

and eventually, the carrier leakage current on temperature. 

Once we know the electron density at the edge of the p-cladding layer, we 

can estimate the electron leakage current by assuming that the electrons diffuse 

away transversely into the p-cladding material as minority carriers with an 

assumed initial density N,. and a diffusion length L,,. Taking the x = 0 origin 

to be at the barrier on the p-side (opposite side from which they were injected), 

the distribution of electrons in the p-type cladding layer can then be written as 

N(x) = Nyoe */", (A2.15) 

where we can express L, = ./D,t,, with t, being the minority carrier lifetime 

and D, being the diffusion constant in the p-cladding material. From the Einstein 

relationship, kT/q = D/u, we can use the measured mobility to estimate the 

diffusion constant. 

Assuming that any residual electric field would have a negligible effect, and 

also assuming a sufficiently thick p-layer, the associated diffusion current of the 

leakage electrons (neglecting the sign) is given by 

dN N, 
Jnleno = QD, — = qD, ° = ql, =. (A2.16) 

dx Is is 

The last form shows that the diffusion current is equivalent to the recombination 

of a uniform carrier density spread over one diffusion length. For the example 

of Fig. A2.5 with N = 2 x 1018 cm~? and E,, — E, = 79 meV, we find that a 
0.3 eV barrier yields N,y = 8.5 x 10'* cm~* from Eq. (A2.14) using the N, of 
GaAs for simplicity (for AlGaAs, N, is slightly larger and might need to include 

other conduction band minima depending on the x value). For L, = 5 wm and 
Tt, = 5ns, we obtain J, ~ 1.4 A/cm? at room temperature. For holes a similar 

leakage current will exist. For P = 2 x 1018, we have E, — Ep, = —28 meV. 

Assuming a net barrier of 0.25 eV and using N, 4, + N,,m of GaAs for simplicity, 

we calculate P,) = 1.4 x 10'*cm~*. For L, = 1 um and t, = S ns, we find that 
the hole leakage current at the other barrier is J, ~ 0.5 A/cm. 

Since typical laser threshold current densities are at least a few hundred 

A/cm?, we conclude that for this high barrier GaAs/AlGaAs example, carrier 

leakage is not significant at room temperature. However, in material systems 

which do not have the luxury of large heterobarriers (for example, 630—680 nm 
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emission AllnGaP), carrier leakage can be much more of a problem in view of 

the exponential dependence on barrier height through N,9 in Eq. (A2.14). 

Carrier leakage also increases rapidly with temperature, such that even lasers 

with relatively high barriers can be affected at high temperatures. Finally, if the 

cladding material has a high defect density, the reduced minority carrier lifetime 

can lead to high carrier leakage currents even for a small N,o 

If the resistance in the p-cladding is substantial, an electric field will assist 

electron diffusion away from the active region, enhancing the leakage rate. If 

we include this as well as the existence of a contact (which is assumed to be a 

region of zero lifetime) a distance x, away, it can be shown that a more general 

expression for the electron leakage current results [9]: 

1 Miia 0 bs Neel Oh 1 

where 

2kT o 
Lop = Pas eA 
* q Diss 

g, is the conductivity of the p-cladding region, and J,,, is the total diode current 

density. In analogy with the diffusion length, we can think of L,, as the drift 

length, which decreases with increasing total current (as the electric field in the 

cladding increases). For low currents and high p-type conductivity, L,, > L,, 

and the carrier leakage current is dominated by the diffusion component 

considered above. However, for high currents and/or low p-type conductivity 

in the cladding, it is possible for L,,<« L,, in which case the carrier leakage 

current becomes dominated by the drift component, which increases with the 

total current in addition to increasing with N,o. More specifically, if L,, « L,, 

Xp, then J, > duty Npo4tor/Fp- The double dependence on injection level leads to 

a higher sensitivity to temperature which can be severe in lasers with low 

heterobarriers [9]. If the contact is placed close to the active region such that 

x,<«<L,, Ly, then the current reduces to J, > qD,N,o/x,, becoming inde- 

pendent of both drift and diffusion lengths. Finally, it should be realized that 

for either x, > 0 or L,, > 0, the carrier leakage current does not really go to 

infinity but becomes limited by the rate at which carriers can be supplied to 

the cladding region (it becomes thermionic emission-limited rather than 

drift-diffusion-limited). 

So far we have been considering a simple double heterostructure laser for 

which the active region fills the entire waveguide. In quantum-well lasers, the 

active region is restricted to the width of the well(s). Thus, carrier leakage has 

two meanings in this case. Carriers can leak into the separate confinement 

- waveguiding layers as well as leaking out of the entire SCH waveguide region 

into the doped cladding layers. Carrier populations in the SCH regions 

lead to recombination that can be approximated using Eq. (A2.16) with the 
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diffusion length replaced by the width of the SCH region, or 

N. 
Jscu = WLscu = (A2.18) 

n 

For Lscy = 1500 A, and 1, = 5 ns, we find Jscy ~ 50 A/cm? per 10!’ cm~? of 
carrier density. This highlights the importance of maintaining low carrier 

populations in the waveguide regions of the laser. Of course, depending on the 

material quality of the SCH regions, the carrier lifetime may be longer or shorter 

affecting the carrier leakage current accordingly. 

In Chapter 2, we introduce an effective recombination rate per unit active 

volume for carrier leakage, R,. In terms of the total carrier leakage current, 

J, = J, + J, + Jscu, we can define 

Rp (A2.19) 

where d is the active region thickness. If lateral carrier leakage is important 

then it shoud also be added to R, with the lateral active width replacing d in 

Eq. (A2.19). For example, in ridge lasers carriers are free to diffuse laterally 

since no heterobarrier exists. This lateral diffusion component of R, is discussed 
in Chapter 4. 

A2.4 INTERNAL QUANTUM EFFICIENCY 

We would finally like to consider how carrier leakage affects the internal 

quantum efficiency, ;, introduced in Chapter 2. In practice, n; is defined as the 

fraction of current above threshold which results in stimulated emission, or 

nT — I,) = 14. The output power is then Py = (hvu/q)-noly,, where no is the 

optical efficiency of the laser cavity introduced in Chapter 5. This gives 

Py = (hv/q)-ninoU — I). The slope of the PI curve is related to n,n, from 

which n; can be extracted experimentally. This above-threshold definition of n; 

is slightly different than the one given in Chapter 2; however, the two definitions 

are the same if n; is not a function of current beyond threshold. 

If we specify the total current as the stimulated current plus the sum of n 

various other components (i.e. spontaneous, Auger, leakage, etc.), such that 

I=1,,+ 1, and I,, = >) I,» then we can expand 1 — n; and rearrange to 

obtain 

iL. on: dL, * T,,th) 
(eS (A2.20) pet PERG i Lieulo, 

In this form we clearly see that any currents which clamp at threshold along 

with the carrier density do not contribute to a reduction of 4;. This point is 
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often misunderstood in the laser community. The common mistake made is to 

set 7; = I,,4/I, where I,,q is the radiative current in the active region. This 

definition originates from the concept of radiative efficiency in an LED and has 

nothing to do with the laser performance above threshold. To demonstrate this 

point, consider a laser in which 90% of the current at threshold is Auger current, 

while the rest is spontaneous emission current in the active region (there is no 

leakage current). Because both Auger and.spontaneous currents clamp at 

threshold (ie. I, = In,.,), Eq. (A2.20) reveals that we can still have n; = 100% 

even though the radiative efficiency near threshold is only 10%. The true 

radiative efficiency in this case does not approach 100% until the stimulated 

emission current becomes much larger than threshold. 

The main question is which currents do contribute to a reduction of n;? The 

simple answer is those that continue to increase above threshold. Now because 

the carrier density, N, in the active region clamps at threshold, all currents 

which depend monotonically on N should have no effect on n;, including R,,, 

R,,, aS well as carrier leakage out of the active region, R, (since N,o defined in 

the last section should in principle clamp along with N). However, the clamping 

of the modal gain (which is what really clamps) does not always result in a 

complete clamping of the carrier density in all of the various regions of the laser. 

For example, there is always some small compression of the gain with 

increased photon density (see Chapter 5) which requires additional carriers to 

restore the threshold modal gain. Also, spatial hole burning of the carrier 

density profile by the optical mode can result in even larger changes in the local 

carrier density. These second-order effects can allow R,,, R,,, and R, to increase 

above their threshold values, reducing 4; according to Eq. (A2.20). However, 

these effects are typically not very significant. 

The more important factor to consider is the incomplete clamping of carrier 

densities in the surrounding regions, Nscy and N,o, defined in Section A2.3. 

For example, one model of the SCH-quantum well pn-junction suggests that 

carriers in the well couple to a second carrier pool in the SCH region which is 

not clamped at threshold, but related to the well carriers through a set of capture 

lifetimes (see Chapter 5). The carrier density in the SCH region and cor- 

responding current defined in Eq. (2.18) can therefore increase with injected 

current above threshold, while the gain remains fixed in the quantum well [10]. 

From another point of view, there is no guarantee that the quasi-Fermi levels 

in the SCH and cladding regions clamp along with the quasi-Fermi levels in 

the active region at threshold. As a result, recombination rates away from the 

active region can potentially reduce n;, if significant carrier populations exist 

there and if the quasi-Fermi levels in those regions remain unclamped or only 

partially clamped above threshold. Unfortunately, realistic modeling of the 

extent of clamping throughout the lasing junction is a very complex undertaking. 

Thus, the extent to which such effects contribute to a reduction of 7; is hard 

to predict. Experimental values for 7; are commonly in the range of 70% to 

80% but can often be as low as 40% or as high as 95%. 

In Chapter 2, we specifically assume that the leakage rate of carriers out of 
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the active region, R,, depends monotonically on the carrier density in the active 

region. This is assumed mainly to highlight the fact that in principle, carrier 

leakage does not affect the internal quantum efficiency. In view of the above 

discussion, this may not always be the case since some carrier leakage currents 

may clamp or partially clamp and others may not. In any case, only the amount 

of leakage beyond threshold, R, — R,, ,,, reduces n;. For leakage currents which 

partially clamp at threshold, this value will typically be much smaller than that 
suggested by the magnitude of R, itself. 

We can modify the derivation in Chapter 2 to include the above effects by 

first expanding n,(J — I,,) in Eq. (2.31) into I — I,) — Uy, — Inn) = I — In) — 

(I, — I,, 1»), where I, is the current leakage which does not generate carriers in 

the active region (see Fig. 2.2). Then by adding recombination terms R, — R; ,, 

for carrier leakage and similarly for all other recombination rates, we can use 

Eq. (A2.20) to reduce the carrier density rate equation back to Eq. (2.31), with 

the new n; encompassing all currents which do not clamp at threshold. 

Finally, it is interesting to note that even if the carrier density clamps 

everywhere, the drift carrier leakage defined in Eq. (A2.17) will continue to 

increase above threshold due to its dependence on the total current density. 

Therefore, if drift carrier leakage is significant, it can lead to a noticeable 

reduction of ;, even for a fixed N,. above threshold. 
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APPENDIX THREE 

n,n 

Introduction to Optical 
Waveguiding in Simple 
Double-Heterostructures 

A3.1 INTRODUCTION 

Starting from Maxwell’s equations a wave equation (sometimes referred to as 

the Helmholtz equation), which is very analogous to Schrédinger’s equation, 

can be derived: 
2 OE 

where ¢ is the dielectric constant and p is the magnetic permeability. In this 

derivation it is assumed that ¢ is uniform in space, and both w and ¢ can be 

complex, although for the semiconductor materials of interest, pi & Hiow Lhe 

imaginary part of ¢, includes the gain or loss that can occur in these materials. 

We are searching for time-harmonic fields propagating in the z-direction, so 

we try 

&(x, y, 2, t) = 6 E U(x, yeiot #®), (A3.2) 

as a solution to Eq. (A3.1). The unit vector é€; gives the polarization. E, has 

units of volts, U(x, y) has units of per unit length, and it is usually assumed to 

be normalized such that | |U(x, y)|* dA = 1. Plugging Eq. (A3.2) into (A3.1) 

and factoring out common terms, we find that the transverse amplitude 
function, U(x, y), must satisfy 

V7U(x, y) + [A7k§ — B?]U(, y) = 0, (A3.3) 

where the square of the index of refraction fi” = ¢/e9, the free-space propagation 

428 
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constant, ki = w*u9& = (2n/A)*, and-both n and the propagation constant in 

the z-direction, f, are complex. Expanding 6 = 6 + jB;, we see from the form 

of Eq. (A3.2) that B = w/v,, where v, is the velocity of a phase front, or the 

phase velocity. We can also introduce an effective index of refraction, n, so that 

B = kot = oni/c = 2nn/A. In Chapter 2 we model how £; contains the gain and 
internal loss terms in a laser. 

A3.2 THREE-LAYER SLAB DIELECTRIC WAVEGUIDE 

As shown in Fig. A3.1, the double heterostructure used in diode lasers provides 

a three-layer slab configuration in which each layer has a different index. More 

generally, in lasers we may be interested in regions where the index varies both 

transversely and laterally. Thus, we might modify Eq. (A3.3) to give 

V2U(x, y) + [f2(x, y)k2 — B?]U(x, y) = 0. (A3.4) 

However, as indicated by the ~ symbol, this now only approximately satisfies 

Maxwell’s equations, since our derivation assumed that ¢ (and therefore n) was 

uniform in space. 

In the current one-dimensional slab case, we can obtain an exact solution 

by solving Eq. (A3.3) for uniform n in each of the three regions and then 

matching the boundary conditions at the interfaces. By noting that the ratio 

of the real to the imaginary part of the index is very large in all practical cases 

of interest, we can replace B by £, with some assurance that the mode shape, 

U(x, y), will not be significantly in error. We shall still use Eq. (A3.2) to include 

the gain or loss in the propagating mode. 

The solution procedure is very similar to how we solved for the confined 

d/2 

lll LLIN LLL bs MLL LLL 
VlsllLA 
LLLLLLL 

FIGURE A3.1 Schematic of a three-layer slab waveguide. Indices are assumed to be 

uniform in the z-direction. 
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states of the electron in a, one-dimensional rectangular well in Appendix 1. 

Indeed, there is no difference in the form of the wave equation for the transverse 

electric field, Eq. (A3.3), and the time-independent Schrédinger’s equation, Eq. 

(A1.5). Thus, the solutions will have the same form if the boundary conditions 

are analogous. As we shall see, they are analogous for the TE modes which are 

polarized in the y-direction, but a little different for the TM modes which are 

polarized in the x-direction. 
~ 

A3.2.1 Symmetric Slab Case 

For a symmetric three-layer slab guide (n, = ny), we follow the solution given 

in Appendix 1 for a one-dimensional potential well very closely. In the central 

region, we assume solutions of the form, 

A cos k,.x (symmetric solutions) 
Uy(x) = :; , ante (A3.5) 

A sin k,.x (antisymmetric solutions) 

In region I, 

UL Cal=) Bea (A3.6) 

After substituting Eqs. (A3.5) and (A3.6) into (A3. 3) with n=n, and n, 

respectively, we find that 

kz = kong — B?, 
and (A3.7) 

y? = B? — kony. 

In region III, Uy = Be’*, but by symmetry in this case (n, = my), we only need 

to use the single boundary condition at x = d/2 between regions II and I. 

For the TE modes at x = d/2, we have that U, = U, and Uj, = U;. These 

conditions derive from the requirements that both the tangential electric and 

magnetic fields, respectively, are equal at the boundary. For the symmetric 

solutions, this gives 

kd 
A cos . == Bea fo2 (A3.8a) 

and 

k 
Ak,, sin “ = Byeg 2. (A3.8b) 

Dividing Eq. (A3.8b) by (A3.8a), we obtain the characteristic equation, 

kd 
k,. tan me = y- (A3.9) 

Similarly, for the antisymmetric solutions, we obtain k, cot k,d/2 = —y. Both 
can be included in a characteristic equation by recognizing the 2/2 shift between 
the tan and cot functions. That ‘is, after substituting for k, and y from Eqs. 
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(A3.7) and using B = koi, 

a =F = ONG/2 
wot [n2 — a2]? = ran(” =) nl) a (A3.10) 

2 ee 
» ny tA 

where m = 1, 2, 3,... for the fundamental and higher-order modes. For the TM 

modes, the continuity of the tangential electric and magntic fields at the 

boundaries results in an additional factor of (nj/n?) on the right side of Eq. 
(A3.9) and inside the brackets of the tan~’ function in Eq. (A3.10). 

The solution to this transcendental equation is done graphically as was done 

for confined electrons in Appendix 1 and illustrated in Fig. A1.3. As might be 

expected, the results are analogous for this symmetrical slab case. 

A3.2.2 General Asymmetric Slab Case 

To add additional generality to the present case, we can repeat the above 

procedures for an antisymmetric three-layer slab waveguide. That is, (n, # ny). 

For the TE modes, we find that the characteristic equation, Eq. (A3.9), becomes 

(1)/kx) + Om/k.) 

1 — W1Yim/ ke 
tan k,d = (A3.11) 

where y, and +, are the decay constants in the upper and lower cladding regions, 

respectively, defined as in Eq. (A3.7). Equation (A3.11) also can be solved 

graphically, but it is convenient to define a normalized frequency, V, propagation 

parameter, b, and asymmetry parameter, a, in order to display the results. These 

normalized parameters are defined as follows: 

V = kod (ni = ni)" !?, 

=) 2 
ls Ting 

b= 2 ae 
ny — Nyy 

and (A3.12) 
2 2 

etn ay 4 
= 5 me 

ny — Ay 

Figure A3.2 gives plots of the normalized propagation parameter as a 

function of the normalized frequency for a range of normalized asymmetry 

parameters. 
For TM modes we can use Figure A3.2 with some small error due to the 

neglected dielectric constant ratio that should multiply y, and y, in the 

dispersion relationship. The error becomes vanishingly small in weak dielectric 

guides. 
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FIGURE A3.2 Normalized propagation parameter vs. normalized frequency for a range 

of asymmetries for the first three TE modes. After Kogelnik and Ramaswamy [1]. 

(Reprinted, by permission, from Applied Optics). 

A3.2.3 Transverse Confinement Factor, I’, 

The transverse confinement factor for the three-layer slab waveguide is defined 

as the fraction of the optical energy that is contained in the active slab region. 

As derived in Appendix 5, Eq. (A5.13), this fraction can be approximated as 

(neglecting n/n) 

d/2 

| | U(x, y)|? dx 
—dj2 r,s (A3.13) 

| |U(x, y)|? dx 
— oe 

For the symmetric case (a = 0), we can use Eqs. (A3.7) and (A3.5) in Eq. (A3.13) 



EFFECTIVE INDEX TECHNIQUE FOR TWO-DIMENSIONAL WAVEGUIDES 433 
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FIGURE A3.3 Comparison between the exact confinement factor (solid curve) and the 

approximate formula (A3.15) (dashed curve) for several values of the cladding index as 

a function of the guide thickness for the fundamental slab mode. 

Rae enka (A3.14) 
1 + 2/yd 

For the fundamental mode with relatively small index differences, Eq. (A3.14) 

can be approximated by 

(A3.15) 

Figure A3.3 compares the approximate formula to the exact confinement factor 

(neglecting n/n) for several values of nyy. 

A3.3. EFFECTIVE INDEX TECHNIQUE FOR TWO-DIMENSIONAL WAVEGUIDES 

As indicated in Chapters 1 and 2, practical diode lasers usually employ 

waveguiding in the lateral y-direction as well as the transverse x-direction. These 

are referred to as either two-dimensional or channel waveguides. After Eq. 
(A3.4) it was suggested that exact analytic solutions to this two-dimensional 
problem depicted in Fig. A3.4 are impossible. The problems arise in matching 

the lateral boundary conditions for all values of x. 

In the limiting case of very strong index discontinuities at the active—cladding 

interfaces, the field within the active region will fall to zero at the boundaries, 

and the boundary conditions can be met around the perimeter. That is, for 
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TRANSVERSE 

LATERAL 

FIGURE A3.4 Waveguide cross section perpendicular to the z-direction. The transverse 

and lateral directions are divided into regions I, I], and III and 1, 2, and 3, respectively. 

symmetric modes in region II-2 (the active region), 

UG. y) =U, cos k,x cos k,y, (region II-2) (A3.16) 

and for antisymmetric modes, sine functions replace the cosines. Including both 

in sequence, the boundary conditions give k,d = nm, and k,w = mm,, where 

the m,s are the respective mode numbers (m; = 1 is the first symmetric mode 

in either direction, m; = 2 is the first antisymmetric mode, etc.). Thus, the 

general solution for the symmetric modes is 

tee Ge y) = Up cos = cos (An +0) ~—(A3.17) 
WwW 

Unfortunately, we cannot make the large index discontinuity assumption 

in most cases. (However, a semiconductor—air interface is sufficiently large to 

neglect fields outside the semiconductor provided it is thicker than a few 
wavelengths.) Thus, we must employ some other approximation. The most 

common of these is the effective index technique. This technique involves a 

sequential solution to the problem of Fig. A3.4. It is most accurate when the 
transverse slab mode solutions in regions 1, 2, and 3 are nearly the same, and 

when w/d > 1. 

The effective index technique is the limiting form of a rigorous technique to 

match the fields in the lateral direction for all values of x along the interfaces 

between regions 1, 2, and 3 at y = +w/2 illustrated in Fig. A3.4. This rigorous 

technique uses a superposition of the simple (uniform-y) slab mode solutions 

along x derived in Section A3.2 to express the overall channel waveguide mode 

shape in each of the three lateral regions. To be completely rigorous, a complete 

set of slab modes along x must be used in each region (including the 
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radiation modes) to accurately synthesize any arbitrary mode shape. Another 
consideration is that all components of the channel waveguide mode must 
propagate along z with the same phase velocity, or the same propagation 
constant, . 

To adjust the f’s of the various slab modes in the expansion to the same 

value, we must add a y-component to the propagation direction. For example, 

if B,, is the propagation constant solution of the mth slab mode, and f is the 

propagation constant along z, then for a slab mode propagating along z, B,, = B 

(as we assumed earlier). Now, if we tilt the propagation direction slightly toward 

y, then B2 = Bp? + ken. Thus, kym can be used to make up the difference between 

the fixed B and each slab mode’s £,,. For each slab mode in region 2, we 

therefore define k,,, = ./B?,. — B?, which produces cosine and sine profiles 
along y (for f,,. > B). In regions 1 and 3, we anticipate that B > B,,1, Bm3 SO 

we define yn; = ./B? — Bar and Yyn3 = ./B? — B23. This yields the familiar 
evanescent decaying solutions along y in these regions. 

Adding the y profiles to each of the slab mode solutions along x, we can 

now express the overall channel waveguide mode as a weighted sum of the slab 
modes within each lateral region: 

E(x, y) — » But UA eer a 

65(%5 y) = Y, AS U2) COS Kym + YAS, Up2(X) sit kym Ys 

E3(x, y) a » Bn3 A 6h RR a 

Bnis AS, A’, and B,,, are the weighting or expansion coefficients which are 

adjusted to accurately synthesize the overall channel waveguide mode in each 

of the lateral regions. U,,;(x), Um2(x), and U,,3(x) are the transverse mode shapes 

of the mth slab mode in regions 1, 2, and 3. 

The final task is to match the boundary conditions at the planes between 

regions 1 and 2, and 2 and 3 using 6, &, and 63. If the electric field is 

predominantly polarized along x (TM transverse mode), the matching of the 

tangential electric and magnetic fields is to a good approximation equivalent 

to matching & and 0&,/dy at each boundary (we neglect the small & and é, 

components). If the lateral waveguide is symmetric, we can define laterally 

symmetric and antisymmetric solutions which require matching at only one 

boundary. For the symmetric solutions, we can set B,,, = B,,3 = B,,, Aj, = 9, 

and A‘ = A,,. Matching these fields and their y-derivatives at the y = w/2 

boundary yields 

Kym W 
Y. Am Un2(x) COS OMB U etx jer ors (A3.18a) 
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and 

Kym W 

» 
SA Usya(X) Kym Si = Y. By Uya(X)?yme 22, (A3.18b) 

where 

KZ, ii a Dade a 5 emt oat gate (A3.19) 

Bz and B,,3 are the mth slab mode propagation constant solutions in regions 

2 and 3, respectively. The A,, and B,, expansion coefficients can only satisfy 

Eqs. (A3.18) at all values of x for discrete values of 6, which yield the guided 

mode solutions of the overall channel waveguide. 
If the electric field is instead predominantly polarized along y (TE transverse 

mode), as is more commonly the case, the matching of the tangential electric 

and magnetic fields across the y = w/2 boundary is approximately equivalent 

to matching ¢&, and 06,/dy. Thus for TE ‘transverse modes, the dielectric 

constant ratio €3,(x)/é,(x) should appear on the right side of Eq. (A3.18a). This 

factor however can often be ignored without introducing much error. 

To solve Eqs. (A3.18), we need to have as many equations as there are 

expansion coefficients. If M modes are included in the summation in region 2, 

and M modes in region 3, then there are 2M unknown coefficients overall, and 

two equations at each x location. To get enough equations along the lateral 

boundary then, we must evaluate the lateral boundary conditions at M values of 

x. The resulting system of equations can be solved uniquely only when the 

determinant of the matrix formed by the factors multiplying each expansion 

coefficient goes to zero. The zero crossing can be found numerically by scanning 

the value of f across some appropriate range. As already suggested, if the 

transverse slab mode shapes in the adjacent lateral regions are similar, only a 
few slab modes are required to give good results. 

The effective index technique results when we use only one transverse slab 

mode of region 2 and region 3 to approximate the channel waveguide field. 

Because only one unknown coefficient exists in each region (two total), we only 

need to evaluate the boundary conditions at one point along x (usually at 

x = 0). In this limit, Eqs. (A3.18) reduce to Eqs. (A3.8) used earlier to solve for 

the one-dimensional slab modes. Thus, the solution to the lateral guide problem 

becomes identical to the transverse slab guide problem, except that Eqs. (A3.19) 

replace Eqs. (A3.7), or B,. replaces ky and B,,, replaces ky, (=k,). More 

generally, the effective index of the slab mode in each lateral region is used in 

place of the index of the medium in the normalized parameters defined in Eqs. 
(A3.12). 

In summary, the solution sequence for the effective index technique is as 
follows: 

1. Three-layer slab problems are first solved across the smallest dimension 
(x-direction in Fig. A3.4) using n,, ny, my, as if the regions were uniform 
in the other longer (y) dimension. This is repeated in each of the three 



EFFECTIVE INDEX TECHNIQUE FOR TWO-DIMENSIONAL WAVEGUIDES 437 

lateral regions listed in Fig. A3.4 to produce fi,, 7,, and ;. The effective 

index in the central (#2) region is used for the transverse k, and y, in 
the final solution. 

2. The three effective indices thus obtained (f,, 7,, and 7) are now used in 

a new three-layer slab problem for the other (y) direction. The result is 

a final effective index for the two-dimensional problem. This is used 

for the lateral k, and y,. The net axial propagation constant, f, thus, 

as always satisfies 

[komy]? = k2 + k? + p?. (A3.20) 

This effective index technique can be applied relatively easily by successive 

use of Fig. A3.2. Although this figure is strictly only for TE modes, it can be 

approximately used for TM modes if the index differences are small. The thinner 

transverse dimension determines the designation of TE or TM. The second half 

of the effective index procedure is really dealing with the opposite polarization 

from the first. However, if the indices are similar, the difference in the solution 

is negligible. 

The overall solutions for the symmetric modes of U(x, y) are identical to 

Eq. (A3.16) within the active region, region II-2. In region I-2 the y-dependent 

factor remains the same, but the x-dependent factor becomes a decaying 

exponential like Eq. (A3.6). That is, 

kd ‘ 
UG) = U; cos cA e *=~42) cosk,y, (region I-2) ~~ (A3.21) 

where y, comes from the first step and k, comes from the second step in the 

effective index technique. Note that the magnitude has been matched to the 

solution in region II-2. For region IH-3, the solution in the x-direction 

remains from the first step and the lateral decay is found from the second step, 

UG, y) =10,.c6s ms (cos k,x)e7 9% ¥/?), (region II-3) (A3.22) 

The functional forms of U(x, y) in other regions should now be obvious. 

The lateral confinement factor IT, can be approximated by the lateral 

equivalent to Eq. (A3.15). That is, 

2 

a (A3.23) 

where, V, = k,w(3 — 13)'/”. 
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A3.4 FAR FIELDS 

The waveguide field profiles given above are assumed to be uniform along the 

length of the laser as long as the cross section of the guide remains uniform. 

At the output facet this field emerges from the laser waveguide and diffracts 

freely into the surrounding dielectric (usually air). In most applications it is 

desirable to capture this output light into some other waveguide or detector. 

The amount of light actually captured depends on the size and shape of the 

beam at the cross section of the capturing object amongst other things. Thus, 

it is useful to predict the field profile as it extends beyond the output facet. 

In diffraction theory we refer to the field emitted from the laser weaveguide 

as the near field and the diffracted field some distance away as the far field. The 

transition occurs at roughly w?/A, where w is some characteristic full width of 

the near-field pattern. In a real index-guided waveguide, the wavefronts are 

planar as they approach the emitting facet. They remain approximately planar 

in the near field, but begin to show noticeable curvature in the transition to 

the far field. After some distance into the far field, the wavefronts approach a 

spherical shape with a radius of curvature measured from the center of the 

emitted mode at the facet where the wavefronts are planar. The most narrow, 

planar wavefront location is termed the beam waist in Gaussian mode theory. 

Figure A3.5 describes the generation of the far field by the emitted near field. 

To determine the far-field pattern, U,, a distance R and angle 0, from the 

FIGURE A3.5_ Illustration of near-field pattern, U(x, y), and far-field element, dU;, a 
distance R from the facet at the waveguide axis in the x-z plane. 
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origin as defined in Fig. A3.5, we consider each amplitude increment of the 

near-field pattern, U(x, y), to be a radiating point source. Each point source or 

“spherical wavelet” then propagates a distance r to contribute a far-field 

element, dU,. The total far-field amplitude at any given point is found by 

coherent addition of all wavelet contributions. The field of each spherical 

wavelet a distance r away from its source and weighted by the near-field amplitude 

within the increment dx dy can be written as 

— jkr f 

dU, = dx dy U(x, y)< E cos | (A3.24) 
r 

where k = 27/4 and @, is the angle between r and the z-axis (if the medium 

outside the laser is not air then 4 — A/n). The added factors in square brackets 

are mathematical refinements to the intuitive wavelet concept originally 

conceived by Huygen. These factors introduced later by Fresnel (as well as 

Rayleigh and Sommerfeld) allow Huygen’s principle to be applied to a wide 

range of scalar diffraction problems with excellent accuracy. The most significant 

of these terms is the obliquity factor, cos 6,, which adds a directivity pattern to 

each spherical wavelet (it accounts for the reduced apparent area of each 

incremental emitter when viewed off-axis). 

If x, y « R for all x and y in which U(x, y) has significant amplitude, we can 

approximate the distance from the increment to the measurement point as 

fix, Ri sit Oy sin: 0, (A3.25) 

where 0, and 0, are the angles measured from the z-axis toward the x- or y-axis, 

respectively. Since the phase factor is the most sensitive, we should use Eq. 

(A3.25) in the exponent of Eq. (A3.24). However in the denominator, we can 

set r= R and also 0, = 0g. With these far-field approximations, we can sum 

over all wavelet contributions by integrating Eq. (A3.24) over the near-field 

emission plane to obtain 

U0. 0) = ee ene {| U(x, y)eiksinxxeiksin®yy dy dy, (A3.26) 

with cos 0p = cos 0, cos 0,/(1 — sin? 0, sin? 6,)*”. 
Concentrating on a single axis by setting 6, = 0, and taking the magnitude 

squared, we arrive at the angular power spectrum in the far field, 

2 2 

one (A3.27) 
ATR? 

| U(x)e* sin0xx dx 
|U-(6,)? = 

where U(x) = J U(x, y) dy. First of all we see that the far-field intensity drops 

as 1/R?, like a spherical wave. In addition, for small angles where sin 0, ~ 0, 
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and cos 0, = 1, we observe that U,(6,,.) and U(x) are Fourier transform pairs. 

In this approximation then, the far-field angular spectrum is just the Fourier 

transform of the near field, suggesting that a narrow emitting aperture (ie. 

waveguide) leads to a wide angular distribution in the far field, and vice versa. 

For larger angles, the Fourier transform relationship breaks down, but the 

inverse relationship between the near-field and far-field beam width remains 

qualitatively valid. 
With in-plane lasers, the transverse waveguide width is usually much smaller 

than the lateral width. This causes the transverse far-field pattern to have a 

much larger angular spread than the lateral far-field pattern. However, as long 

as U(x, y) is real (i.e. has planar wave fronts), the far-field wave fronts will be 

spherical from the constant exp[ —jkR] factor in Eq. (A3.26). In other words, 

even though the emitted power distribution is asymmetric, the output beam is 

not astigmatic. Thus, the emitted beam’can be easily collimated into planar 

wave fronts with a simple spherical lens. However, the intensity pattern will be 

elliptical. To correct for this, the collimated beam can be refracted through a 

wedge with nonparallel planar surfaces to elongate one axis. The result is a 

circular collimated beam, but the procedure is rather inconvenient. With 

VCSELs, the transverse and lateral guide widths are usually the same, 

producing nice circular output beams in the far field. 
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APPENDIX FOUR 

Density of Optical Modes, 
Blackbody Radiation, and 
Spontaneous Emission Factor 

A4.1. OPTICAL CAVITY MODES 

Figure A4.1 shows an optical cavity with dimensions d,, d,, and d_. If we assume 

that the reflection coefficient at each boundary is real, then for each component 

of the propagation constant, k;, the boundary condition for resonance is 

2k,d; = 2m,n, (A4.1) 

where j = x, y, or z, and m, is the respective mode number. This follows from 

the fact that the electric field of a resonant mode must replicate its phase after 

traversing a round-trip in the cavity. Thus, considering all three components, 

the magnitude of the propagation constant for some resonant mode of the 

cavity is given by 

Ns ec ee INV wf -GF-GF} a d,. d, d, 

where |k| = wn/c. 

Now just as in the case of electronic states, we wish to calculate the density 
of optical states or modes. The reasons are much the same. We would like to 

know the number of optical modes within some energy range, and rather than 

laboriously counting mode numbers, we would prefer to integrate a density of 

states. The process and the results are much the same, for there is little difference 

in concept between the electronic wavefunction and the normalized optical 

electric field. They both satisfy similar wave equations and boundary conditions 

as reviewed in Appendices 1 and 3. 

However, there is one major difference between photons and electrons. 

441 
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FIGURE A4.1 Optical cavity showing dimensions d,, d,, and d,, and a superimposed 

k-vector decomposition for an optical mode. 

\ 

Whereas only one electron can occupy an electronic state (after doubling the 

possible energy levels because of spin), an unlimited number of photons can 

occupy the same optical mode (again, after we have doubled the number of 

allowed k-values because of polarization). That is, there is no Pauli exclusion 

principle for photons. Thus, after we calculate the number of photon modes, 

we still have to determine how many photons occupy each mode to get the 

total number of photons. 

Following the same procedure outlined after Eq. (A1.36), we now proceed 

to calculate the number of optical modes per unit volume per unit frequency. 

(We could do energy, E = hy, but let’s have a little variety.) As in Appendix 1 

we shall first consider bulk dimensions, a spherical coordinate system, but switch 

to frequency as the variable. The first step is to calculate the volume, N,(m), in 

mode number space as depicted in Fig. A1.10. Analogous to Eq. (A1.37), we 

determine the volume of the sphere, multiply by 2 for the two polarization 

states and divide by 8 to allow only positive mode numbers, 

N,(m) = $nm3-2-2. (A4.3) 

Now, in spherical coordinates, k? = (2nv)*/(c/n)? = n?m?/d?, where n is the 
index of refraction, m? = m2 + m; + m2, and we have let d? = d2 = d? = d?. 
Solving for m(—2 dnv/c) and plugging into Eq. (A4.3), 

3 

Nv) = ; (7) v3, (A4.4) 

Finally, we apply Eq. (A1.36) (set po(v) dv = (1/V)(dN,/dv) dv), and use V = d? 
_ to obtain 

g 
po(v) dv = - n°n,v? dy, (A4.5) 
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where we have defined a group index, n, = [n + v(0n/ev)], since the index of 
refraction can be frequency dependent. 

If the dimensions of the optical cavity become small, say d j < 104A, the modes 

will not be so closely spaced, and it is advisable to use Eq. (A4.2) to count the 

modes within some range of wavelengths or frequencies. This situation is 

analogous to the electronic “quantum box.” Because the states are widely 

spaced, the density of states just becomes a series of delta functions as each 

state is encountered. If only one dimension is small, we again have a similar 

situation to the quantum well for electrons as discussed in Appendix 1. 

A4.2_ BLACKBODY RADIATION 

Equation (A4.5) gives us the desired density of optical states, but as mentioned 

above, any number of photons can occupy these states, so we need another 

piece of information to determine the photon density per unit frequency. One 

interesting boundary condition that can be applied to give a photon density is 

thermal equilibrium. In this case we can use the Maxwell—Boltzmann distribu- 

tion to give the occupation probability of the optical states as a function of 
frequency. Maxwell—Boltzmann statistics dictate that a state with energy E will 

have a probability exp(—E/k7) of being occupied under thermal equilibrium 

at temperature 7. Thus, we can calculate an average energy per state, (E», by 

taking a weighted average of the possible energies and their probability of 

occupation. Because light is quantized into photons of energy hv, the allowed 

energies are E; = jhv, j = 0, 1, 2,.... So we take the sum of allowed energies 

multiplied by the occupation probabilities and normalize this by dividing by 

the sum of the probabilities. That is, 

0e~° + hve BVET + Dhye AAT 4... sale 
cE = ep 1 a7 aa : (A4.6) 

Summing the infinite series and dividing, we get the average energy in each 

mode, 

hy 
(E> = wikT — 47 (A4.7) 

The blackbody radiation density, W(v) dv, is now found by multiplying Eq. (A4.5) 

by Eq. (A4.7). That is, the equilibrium energy per unit volume per unit frequency 

is equal to the number of modes per unit volume per unit frequency times the 

average energy per mode under thermal equilibrium. Thus, 

Po(v)hv pie 8nn*n, hv? /c? 
ehv/kT = Ad ehv/kT aay} 

W(v) dv = dy. (A4.8) 
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A4.3 SPONTANEOUS EMISSION FACTOR, B,, 

The spontaneous emission factor can be obtained from the density of optical 

modes per unit volume per unit frequency, Eq. (A4.5), by integrating over the 

cavity volume and the bandwidth of the spontaneous emission to find the 

number of optical modes that must contain the total spontaneous emission. 

Usually, it is assumed that the coupling to all modes is the same, so the 

reciprocal of this number of relevant modes is just the fraction of energy going 

into each mode, B,,. Initially, making this assumption, the number of cavity 

modes in a bandwidth Av, is found by integrating Eq. (A4.5) from v to v + Av,, 

to be 

(A4.9) 

where V, is the cavity volume. Taking the reciprocal and using Av,,/v = Ad,,/4, 

the 
———— A4.10 
8nVn7n, Ad,, ( ) 

Dee = 

where IT, = V/V,, and V is the active region volume. For typical values of 

parameters, B,, ~ 10°° to 10° *. 
But the assumption that the spontaneous emission is uniformly distributed 

amongst the various cavity modes within Ad,, is generally not true. In real 

devices, the emission spectrum follows a more bell-shaped curve as a function 

of both frequency and wavelength. If the mode of interest falis at the peak of 
the emission spectrum, then (A4.10) should be modified by setting WMA 

(peak)/(area), where the area represents the total area under the emission 

spectrum, or the total emission rate. For example, if the emission spectrum 

follows a Lorentzian lineshape, we can set (peak)/(area) = (2/7)/AA,,, rw, where 

the FW implies the full-width at half-maximum. Thus, an additional factor of 
2/n should appear in Eq. (A4.10). For more complicated lineshapes, the ratio 

(peak)/(area) will be related to 1/A,,, but the exact prefactor will depend on 
the specific lineshape. 

Additional considerations involve the strength of the mode’s wavefunction 

within the active region. The fraction of spontaneous emission represented by 

(A4.10) refers to the modal spontaneous emission rate which must account for 

the overlap of the mode of interest with the active region. In Appendix 5 we 

show how such modal averages are taken. We have intentionally set 1/V.=IT"./V 

in Eq. (A4.10) to emphasize this modal averaging process. One interesting 

consequence of this substitution is that if the active region is very thin, and the 

mode for which we wish to calculate £,, has a null at this point, then I, ~ 0, 

‘ from which it follows that B,, ~ 0 as well. This would not be obvious if we had 
simply used 1/V. in Eq. (A4.10). 

Equation (A4.10) represents the semiclassical version of the spontaneous 
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emission factor. In Chapter 4, a more useful version of the spontaneous emission 

factor derived from quantum mechanical considerations will be introduced. The 

quantum version is more general and simpler to evaluate. 
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APPENDIX FIVE 

Modal Gain, Modal Loss, and 

Confinement Factors 

A5.1 INTRODUCTION 

Within a laser cavity the gain and loss are not uniform throughout the volume 

occupied by the optical modes of interest. In fact, the gain region typically 

occupies only a few percent of the volume occupied by the optical modes, and 

the material absorption loss is typically very different in different regions of the 

cavity. Thus, we must develop some sort of overlap factor which gives the net 

gain or loss provided to an optical mode. 

To be completely general, let’s define the localized material gain as a function 

of all three dimensions of space: g(x, y, z). To provide the net effect of g(x, y, z) 

on the mode as a whole, a properly weighted average of the gain distribution 

must be taken throughout the entire cavity volume. Now from Chapter 4, we 

know that the gain varies according to the stimulated emission rate, which in 

turn is proportional to the square of the electric field. Thus, it seems reasonable 

to use the electric field pattern, &(x, y, z), of the appropriate resonant mode as 

our weighting function. The standard definition of a weighted average from 

classical or quantum mechanics leads then to the following definition of modal 

gain: 

| er y, Z)g(X, y, Z)E(x, y, z) dV 

G7 = (A5.1) 

[ise y, z)|? dV 

_Before applying this result to typical laser structures, it is instructive to 

examine a little more carefully the appropriateness of this somewhat ad hoc 
definition. , \ 
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A5.2 CLASSICAL DEFINITION OF MODAL GAIN 

To rigorously determine the appropriate weighting function to be used in 

defining the modal gain or loss experienced by a waveguide mode, we turn to 

a classical description of gain and loss in the cavity. If we define w,(x, y, z) as 

the energy density throughout the cavity, then gain and loss per unit time can 

be associated with the time rate of change of this local energy density, dw,/dt. - 

For example, if dw,/dt > 0 at some point in the cavity, energy is being generated 

locally which indicates the presence of gain in the material. Integrating dw,/dt 

over the entire cavity then allows us to determine the total energy generation 

rate. Defining the modal gain per unit time as the fractional generation rate of 
energy, we have 

dw,/dt dV 
1 dW, | ‘ 

CGd= P= = (AS5.2) 
W, dt | 

wr dV 

where W, is the total energy in the cavity. To check that this classical definition 

is in agreement with what we know from Chapter 2, we can express the total 

energy in terms of the photon density using W, = hvN,,V,. Equation (A5.2) then 

reduces to the familiar rate equation, dN,/dt = <G)N, where ¢<G> = v,<g> and 

<g> is the modal gain (written explicitly as 'g in Chapter 2). 

Equation (A5.2) is a rigorous classical definition of the modal gain per unit 

time. We now wish to express this definition in terms of the electric fields of a 

given waveguide mode. It can be shown using a variant of Poynting’s theorem 

(which makes use of slowly time-varying phasors) that dw,/dt is related to the 

local field strength through the imaginary part of the dielectric constant, ¢;. The 

exact relation (assuming p = Up) is given by 

de: = 4Mé9t;6 °*, (A5.3) 
dt 

where & is the electric field vector. Equating the imaginary parts of the 

dispersion relation, k? = w7p1o& 8, we find that e9¢; = k(x, y, z)g(x, y, Z)/@7 Uo 
where g = 2 Im{k}. Decomposing the total field into the two counterpropagating 
fields within the cavity, &*(x, y,z) and & (x, y,z), the above relation then 

becomes 
dwr _ 
ce $(kg/wpo)|€* + €|?. (A5.4) 

For notational convenience, it is to be understood that if the electric field vector 

has more than one component, then ||? implies &-&*. This expression can 

be used in the numerator of Eq. (A5.2). Now we need to replace the 

denominator. 
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To relate the total energy in the cavity to the electric fields, we start by 

writing down an integral relationship between the energy density and the 

Poynting vector taken over any cross-sectional area of the cavity: 

Vg [ove dA = 5(B/@Uo) [ust I? + 6p |?) dA. (A5.5) 

On the left-hand side, the group velocity of the mode, v,, converts the integrated 

energy density to total power flowing through the cross-section. On the 

right-hand side, the sum of forward and backward time-averaged Poynting 

vectors defines the local power density which when integrated also yields the 

total power flowing through the cross-section. We have written the Poynting 

vectors explicitly in terms of the transverse electric field components and the 

effective propagation constant of the mode, fi 

To determine the total energy, we need to integrate Eq. (A5.5) over the length 

of the cavity which we take as the z-direction. To include possible axial 

variations in the waveguiding structure, we let v, > v,(z) and B > f(z). Moving 

v,(z) to the right-hand side, integrating over z, and setting dA dz > dV, we 

obtain 

| veay= | Boke pez 4+ |6zP]aV. (A5.6) 
Ug Z 

Using Eqs. (A5.4) and (A5.6) we can write <G)> in terms of the electric fields. 

We can then use the group velocity in the active waveguide to convert the 

modal gain per unit time to modal gain per unit active length: <g> = (G)/v,q. 

Setting k = nk, and f(z) = n(z)ko, we finally obtain 

| ania +é° (dV 

>= (AS.7) 

| i A(Z)E|et? + |€F 72] aV 
Ug\Z 

If the material gain, g, is dependent on the polarization of the electric field 

(which is true in quantum-well and quantum-wire active materials), then the 

numerator should be written more precisely as g,|&|? +9,|6|/? +92|6| 
(where each field component represents a sum, &;' + @; ). 

It is interesting to note that the energy generation rate in the numerator of 

Eq. (AS.7) includes coherent effects such as standing waves, while the denomi- 

nator does not. This is because gain in a medium is obtained specifically through 

interactions with the electric field. Hence, the energy generation rate in the 

cavity is concentrated at the peaks of the electric field standing wave pattern. 
- The stored energy, on the other hand, exists in both the electric and magnetic 

fields continually shifting back and forth between them. As a result, the 
time-averaged energy distribution is independent of the standing wave pattern. 
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When there are no axial variations in group velocity or propagation 
constant, we can simplify Eq. (A5.7) by setting v,,/v,(z) = 1 and pulling a out 
of the integral: 

{ae +&é dV 

9) = , where G=g = (A5.8) 
fustr + |87|?] dV 

By defining an effective material gain, g, in our weighted average (which is 

found by replacing the index with the effective index in the expression for gain 

given in Chapter 4), the rigorous definition of modal gain can be made to 

resemble our initial guess Eq. (A5.1). In fact, for TE modes which have no 

longitudinal electric field components, the correspondence is exact (aside from 

the incoherent sum in the denominator). For TM modes which do have 

longitudinal electric fields, there is still a slight difference between (A5.8) and 

(A5.1). For laser applications, the mode of interest is typically a TE mode which 

is very well confined to the active region, implying that 7 ~ n, and hence g ~ g. 

As a result, it is quite common to simply use (A5.1) with the real material gain, 
g, in defining the modal gain. This procedure typically introduces little error. 

To be completely rigorous, however, Eq. (A5.8) (or Eq. (A5.7) if there are axial 

variations in the waveguiding structure) should be used. 

A5.3 MODAL GAIN AND CONFINEMENT FACTORS 

Figure 2.6 illustrates a laser cavity in which the gain region intersects the optical 

mode over some portion of its width and length. Figure A5.1 gives a slightly 

more detailed version of a typical laser cavity. The ith component of the electric 

field in such a cavity can be written as 

E(x, y, z) = U,(x, y),/2 cos Bz, (A5.9) 

where U;(x, y) is the normalized transverse electric field profile, derived in 

Appendix 3 for a three-layer slab, and 6 (=22/A4, = 2nn/A) is the z-component 

of the propagation constant k. In writing (A5.9), we have neglected the 

imaginary part of £, and hence are ignoring the growth of the fields in the cavity 

(see Section A5.5). The simple cosine function also indicates that an infinite 

standing wave ratio has been assumed in the z-direction. Such a situation will 

actually exist only over ranges in the cavity where the two counterpropagating 

waves are equal in magnitude (see Fig. A5.3). For a cavity with large mirror 

reflectivities (r > 0.9), such as in a vertical cavity laser, this range extends over 

the entire cavity. For a laser with low mirror reflectivities (r < 0.2), an infinite 

standing wave ratio exists only over a small portion of the cavity. In either 

case, if the axial (z-direction) integration is over many wavelengths, the 

contribution from this factor averages out. 
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FIGURE A5.1 General laser cavity with active and passive axial sections. 

\ 

If we assume that the group velocity and propagation constant are the same 

(or very similar) in both active and passive sections then we can use Eq. (A5.8) 

to define the modal gain. Plugging Eq. (A5.9) into Eq. (A5.8) and considering 

the e*/*? and e~/*? components of the cos £z separately in the denominator, 
we obtain ‘ 

{| acs y, z)|U(x, y)|*? 2 cos? Bz.dx dy dz 

xyz 

Le {I U(x, y)|? dx dy 

xy 

We. have dropped the i subscript on the transverse field pattern, assuming 

that only one electric field component exists. If U(x, y) is normalized, the 

denominator integral will be unity. However, we shall carry it along to include 

cases where it is not normalized. 

In applying Eq. (AS.10) to the laser cavity in Fig. A5.1, a few further 

assumptions are usually made. For in-plane lasers, the gain can be assumed to 

be constant within the active region, which has transverse thickness d, width 

w, and length L,. Therefore, the gain can be removed from the integral, 

replacing the limits of integration by these dimensions. Assuming the origin to 

be in the center of the active region, and also resetting g = gn/n (where n is the 

refractive index of the active material), we have 

Lal2 (w/2  {d/2 

| | | | U(x, y)|? 2 cos? Bz dx dy dz 
RENWS Pi = <g> g : Ea/2 HE d/2 

L {jf U(x, y)|? dx dy 

xy 

<go= (A5.10) 

(A5.11) 

The integration over x and y yields a transverse confinement factor I, anda 
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FIGURE A5.2 (a) Transverse confinement factor for a typical three-layer slab waveguide 

vs. normalized waveguide thickness. (b) Enhancement factor vs. normalized active length 

(where n is the effective index of the guide). The insets display the standing wave pattern 

in the cavity and its overlap with the active material. 

transverse modal gain, <g>,, =I,,g, which defines the incremental rate of 

growth of the fields in the active section (aside from any losses present). The 

integration over z gives an axial confinement factor I’, and the overall cavity 

modal gain: 

DM =TKDx» =T5T29, (A5.12) 
where 

wr a | U(x, y)|? dx dy 
ple 282 ; (A5.13) 

|} U(x, y)|? dx dy 

La/2 "2 - VE 

pol | 2 cos? Bz dz = — [ spc ‘| (A5.14) 
Eyes L BL, 

The ratio n/n in Eq. (A5.13) is usually close to unity and is typically neglected. 

The axial confinement factor can be further separated into a fill factor, 

T yin = L/L, and an enhancement factor, I, = 1 + sin(BL,)/BL,, such that 

DT, =T pint enn. Figure A5.2 plots the one-dimensional transverse confinement 

factor, I, for a symmetric three-layer slab waveguide geometry (with and 

without n/n), and I ,,,, in general. 

A5.4 INTERNAL MODAL LOSS 

Equation (A5.7) with g replaced by «, gives the correct expression for the 

internal modal absorption loss, <«;>. Unfortunately, it does not simplify quite 
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as much as the modal gain, even if it is taken as constant within certain regions. 

This is because the passive loss has a value everywhere, unlike the gain. 

However, because we have already defined the transverse and axial confinement 

factors above, we can still construct an abbreviated form for the modal loss for 

this particular case, if we assume that the loss is constant within the active and 

passive channel waveguide regions as well as in all of the surrounding cladding 

material. We take the respective loss values.as jg, “ip, %ic, aS labeled in Fig. 

A5.1. Then using Eq. (A5.13) we can define transverse modal averages within 

both active and passive sections as 

0; > Sy = Dy Sia a dd = Te) Oee> 

CES = Late th d = Dy) Vie: 

(A5.15) 

The complete modal average over the entire cavity (assuming the group velocity 

is similar in both sections) is then found using Eq. (AS5.14): 

<a; = erp es + (1 7m PKG 225 (A5.16) 

Combining these equations, we obtain: 

<a; > a Pai, at Fatt = Lae = (Al 2 | BEE ee (AS.17) 

where the cavity confinement factor, l = I’,,,T’,. In some cases, the modal loss 

expression can become even more complicated than listed here. For example, 

the P and N cladding regions on either side of the active region may 

have different losses. Furthermore, in separate confinement lasers (including 

quantum-well lasers), there are additional waveguide (barrier) layers which have 

different losses than the active and cladding materials. In these cases the 

transverse confinement factor must be calculated for every layer that has a 

unique loss value. In VCSELs, the loss is often a function of the axial direction. 

In such cases, the axial confinement factor for the internal loss must be 

calculated by integrating Eq. (A5.14), including «;(z) as well as additional axial 

variations of the standing wave pattern such as an exponential decay into a 

distributed Bragg reflector, as considered in Chapter 3. Because the exact form 

for modal loss is very cavity-specific, we will continue to refer to cavity modal 
loss as <a;> in most expressions. 

‘A5.5 MORE EXACT ANALYSIS OF THE ACTIVE/PASSIVE SECTION CAVITY 

Sections A5.3 and A5.4 make two simplifying assumptions in defining the 
various axial averages: (1) the propagation constant f in Eq. (A5.9) is purely 
real, and (2) the group velocities in the active and passive sections are the same. 
In this section we will remove these two assumptions. However, to retain 
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relatively simple expressions we must assume that no reflections exist at the 
active-passive interface. For this case, i|&,|? is preserved across the interface 

and multiple bounces in the cavity are eliminated. Standing wave effects are 

also ignored since the following analysis applies primarily to in-plane lasers. 
However, footnotes are provided to indicate where standing wave effects would 

alter the result. We will first examine the axial confinement factor and then 
describe the threshold condition and differential efficiency more carefully than 
considered in Chapter 2. 

A5.5.1 Axial Confinement Factor 

If we include the growth of the fields within the active section (i.e. we allow B 

to be complex in Eq. (A5.9)), the axial confinement factor (neglecting coherent 

effects) is no longer equal to the simple geometric fill factor, L,/L. This can 

understood by examining Fig. A5.3 which illustrates the power flowing back 

and forth in a laser cavity assuming the active section provides net gain and 

the passive section provides loss. The area under the power flow curves 

divided by the group velocity in each section is proportional to the total energy 

in the cavity. From the figure it is evident that the fractional area contained in 

the active section is nontrivial when the fields display exponential growth and 

decay characteristics. 

To determine the fractional energy contained in the active section (i.e. the 

axial confinement factor), we need to integrate the power curves along z. The 

functionality of each curve is provided in Fig. A5.3. Performing the integrations 

(neglecting coherent effects) and weighting the area in each section by the group 

velocity in accordance with Eq. (A5.7), the axial confinement factor becomes’ 

—_——— I, /v4, 
3 In ./1/R,R, , ; (A5.18) 

ele ae In ga 2 3 Tes Yop 

In ./1/R,R, In ./R3/R, 

where 

P= oy — ./R; = relative power out mirror i. (AS.19) i JR; 

Equation (A5.18) is equivalent to T, = W{/W,, where W*, is the total energy 

within the active section. If the passive section has no loss, then the second 

term in the denominator (i.e. W% normalized to the power at the crossing point) 

reduces to (1/./R3 + ./R3)L/vgp- 

Typically the net transverse modal gain in the active section (i.€. <g>.) — (i) <y) 

1 If the active section is very short, Eq. (A5.18) can be multiplied by I,,,, as defined in Eq. (A5.14) 

to approximately account for standing wave effects. 
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FIGURE A5.3__ Illustration of power flow in a laser cavity with active and passive sections, 

assuming no reflections at the active-passive interface. R, defines the effective reflectivity 

of the passive mirror (R;) as seen by the active.section at z = 0. The magnitudes of each 

power curve at the interfaces are indicated relative to the power level at the crossing 

point inside the active section. The functionality of each curve is also provided. In the 

active section, the threshold condition is used to express the net growth rate as: 

{9 xy — <4) >%y 7 In(1/,/R,R2)/L,. In the passive section, the definition of R, is used 

to express the decay rate as a, = (a; >%, > In(./R3/R2)/L,. 

is larger than the loss in the passive section <a;>?,, implying a larger bowing 

of the power flow curves and hence a larger reduction of the area under the 

curves in the active section. As a result, the fill factor tends to be smaller than 

the geometric fill factor. However, the more linear the curves are, the more 

Eq. (A5.18) resembles the geometric fill factor. For example, linear curves imply 

low gain or high mirror reflectivities. If we set R; = 1 — J; and examine the 

limits as R,, R,, R3 > 1, we find that P, > 7;; In[1/R,R,] > T, + T,, and 

In[R;/R,] — T, — T;. The axial confinement factor in this limit reduces to: 

l_ 3 Sess (roughly linear growth/decay) (AS.20) 
ec a 

This limiting form is convenient to use even though it usually overestimates 

the axial confinement factor slightly. Note that the lengths are weighted by the 

group index. For monolithic active and passive sections, the group index does 

not vary much and the group indices can be cancelled out of the expression. 

However, if an external cavity is coupled to a laser, then n,, > 1 and the 

inclusion of the group indices becomes important. 

To include reflections at the active-passive interface in the derivation of the 

axial confinement factor, one must determine the power disttibution throughout 
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the entire cavity, and then calculate the fraction of energy contained in the 
active section. 

A5.5.2 Threshold Condition and Differential Efficiency 

With the axial confinement factor defined, we can now determine the threshold 

condition and differential efficiency of the active/passive section cavity shown 

in Fig. A5.3. The threshold condition can be found by setting the energy 

generation rate equal to the loss rates created by absorption and power coupled 

out of the cavity (i.e. P, + P;,). From Eqs. (A5.2) and (A5.12) we can write the 

total energy generation rate per unit time as I’,v,,(g>,, W;. Defining a similar 

term for the absorption losses per unit time and dividing by the total energy 
W,, we obtain 

P, + FP. 
Le ee = | ee “sg (1 = Fa) pak Coy + is 

E 

The last term corresponds to the fractional mirror loss per unit time. Alterna- 

tively, by following the power curves through one round-trip of the cavity 

similar to the procedure outlined in Chapter 2 (see Section 2.5 and Eq. (2.22)), 

we obtain the more standard version of the threshold condition: 

1 
C9) xylig = (0 Sy Lg + <a; >2,L, + ln ———. (AS5.22) 

SRR: 

With this version, if we divide by L we obtain I’, = L,/L regardless of any 

exponential field growth in the cavity or differences in group velocity between 

the active and passive sections.” In contrast, I’, in Eq. (A5.21) is the actual axial 

energy confinement factor (A5.18). The two versions of the threshold condition 

are equivalent but appear different because the former equates the total 

generation and loss rates, while the latter simply equates the accumulated 

exponential growth and decay factors. So while the latter version (A5.22) is 

more convenient to use, it lacks a one-to-one correspondence with the 

generation and loss rates of the active/passive section laser. 

For example, the (1/L) In ./1/R,R, term in Eq. (A5.22) is usually associated 

with the mirror loss. However, with Eq. (A5.21) we can identify the true mirror 

loss rate per unit active length as: a,, = (P; + P3)/(vjq Wz). Using Eq. (A5.18) to 

set W, = W%/T,, the true mirror loss becomes* 

Yea ram 
= n , (AS5.23) 

Pies R,R, 
m 

2In very short active sections, a more careful round-trip analysis including reflections at the 

active-passive interface(s) created by the gain discontinuity would yield I,,,,L,/L instead of L,/L. 

3 For very short active sections where standing wave effects are important, T, =I°.,,,W%/W, so 

that T, >T-,/I,,, in the expression for the true mirror loss. In other words, standing wave 

enhancements to the gain do not affect the mirror loss. 
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With no passive section, «,, > (1/L,)In./1/R,R,. Thus, the mirror loss 

deviates from the standard definition only with the addition of a passive 

section. With no loss in the passive section, P, = P;, R, = R3, and a,, > 

(I,/L,) In ./1/R,R3. With high mirror reflectivities and similar group velocities, 

lr, > L,/L. Combining these restrictions we recover the standard definition: 

, > (1/L) In ./1/R,R3. In a VCSEL which typically has small losses and high 

mirror reflectivities, 0, > (ZT, + T3)/(La + LP a/Vgp)- 
Because I’, # L,/L, we also know that the total generation rate is not exactly 

<9>xyL,/L and the total absorption loss rate is not exactly <«;>{,L,/L + 
<a; >2,L,/L as one is tempted to conclude from Eq. (A5.22). This observation 

has no effect on the threshold value of ¢g>,,, since both Eqs. (A5.21) and (A5.22) 

predict the same value. However, it does become important when defining the 

differential efficiency which involves the ratio of these terms. Using Eqs. (A5.12) 

and (A5.23), the differential efficiency of the active/passive section cavity 

becomes 

Om In. /4j/RR> P; + P, 

Uf Pere [erect oars = NiMaaap> (A5.24) 
<g> OO) x yleae P, + P, 

where 2 

In ./1/R,R, In 7 KR é 
Naa = = (AS.25) 

Cpe {Hip xy lea = In O/; 1/R,R,_ 

we sis (1 — Ry)//Ri + (1 — Ra)//Rs Nap = . (A5.26) 
"PtP, (1 —Ry)//R, + (1 — Rye 2*2?)/, /Ry eke 

The active and passive section efficiencies, y,, and-n,,, were expanded using 

Eqs. (A5.22) and (A5.19) with R, = R,e7 2%P"e, 
To more clearly see the high mirror reflectivity limit, we can rewrite 

Eq. (A5.26) using hyperbolic definitions and algebraic manipulations to obtain 

sinh $[In ./1/R,R3] cosh $[In ./R,/R3] 

sinh $[<o,>2,L, + In /1/R,R3] cosh 4[(a,>2,L, + In ./R,/R3] 

(A5.27) 

For R,, R; > 1, R, ~ R3, and «;,L, « 1, we can replace the sinh functions by 
their arguments and set the cosh functions to one, which gives 

In ./1/R,R3 
Hae : (A5.28) 
ne ln. ike 

and 

In ./1/R,R 
NéaNap © /RiRs (A5.29) 

<a ey, ae Lapyily af In V 1/R,R, 
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In this limit, the differential efficiency reduces to the ratio one would assume 
using the standard threshold condition (A5.22). 

Another consideration is the fraction of power out of each facet. With 

i= OR and P, = (1 — r7)/r; from Eq. (A5.19) we quickly find that 

ae? 
F, = P, Bas iS r)/T1 5 : (A5.30) 

Pe, en) ty tn ra ils 

ae 
F, P; bel (1 — r3)/rs (A5.31) 

Pen, Ui aed ae 

When F, is multiplied by t{/(1 —r7) and F, is multiplied by t2/(1 — r2) to 
account for possibly lossy mirrors, we obtain the same expression (3.30) as 

derived in Chapter 3. Thus, the fraction of power out is not affected by the 
lossy passive section. 

In practice, I, does not usually deviate substantially from the geometric fill 

factor. As a result, the terms comprising the standard version of the threshold 
condition (A5.22) usually represent reasonable approximations to the generation 

and loss rates, implying that the differential efficiency is usually well approxi- 

mated by Eq. (A5.29). It is for this reason that we prefer to use the simpler 

more intuitive Eqs. (A5.22) and (A5.29) throughout this book. However, there 

are certain situations where Eq. (A5.29) fails to predict the differential efficiency 

accurately. 

For example, with R, = 0.1 and R, = 1, the approximate differential efficiency 

(A5.29) is within 5% of the exact Eq. (A5.26) for «;,L, < 1. For uncoated facets 

(R, = R, = 0.3), it overestimates the exact value by ~ 10% for «;,L, = 0.5, and 

~ 30% for a larger loss of «;,L, = 1. For R, = 1 and R; = 0.1, the overestimate 

is Close to 25% for a;,L, = 0.5, and is almost 60% for «;,L, = 1. In general, 

the approximation gets worse for smaller values of R; and larger values of 

a;,L,, but is not significantly affected by the value of R,. Hence, for «;,L, < 0.5 

and R,; > 0.3, the approximate differential efficiency (A5.29) is generally fairly 

accurate. 
It should be noted in closing this section that if there are reflections at the 

active-passive interface, then I’, and all dependent expressions will be different 

than given here. 

A5.6 EFFECTS OF DISPERSION ON MODAL GAIN 

Finally we would like to consider parenthetically the effects of material and 

waveguide dispersion on the modal gain. Equation (A5.8) reveals that <g> oc 1/n. 

Physically, this dependence reflects the fact that the effective index controls the 

angle at which plane waves bounce down the guide (see Chapter 7). The smaller 

the effective index, the more bounces the plane waves make per unit length. 

As a result, the mode effectively “sees” more active material per unit length, 
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which shows up as an enhancement in the modal gain per unit length. In other 

words, waveguide dispersion slows down the mode, allowing more stimulated 

transitions to be acquired into the mode per unit length. Thus, the modal gain 

per unit length is enhanced by waveguide dispersion. As for material dispersion, 

we find that (A5.8) contains no dependence on the overall group velocity, 

implying that <g> is independent of material dispersion. 

The gain per unit time defined by (G)> =.v,<g>, is inversely related to the 

group effective index since <g> is independent of n,. Now because n, > n in 

most cases, we conclude that waveguide and material dispersion reduce the modal 

gain per unit time. The waveguide dispersion component of n, is roughly 

compensated by the 1/n implicit in <g>. Neglecting waveguide dispersion, we 

still find that <G) is compromised by material dispersion. Physically this occurs 

because the local energy density in a dispersive medium is ocn,n|E|* (where n, 

is the group index associated with material dispersion rcluaneiyn Thus, an 

increase in the group index for a given energy ‘density compromises the electric 

field strength, which reduces the local stimulated emission rate. The result is a 

reduced modal gain per unit time in the cavity. The modal gain per unit length 

does not suffer this consequence, because as n, increases, the wave moves slower, 

allowing more stimulated transitions to be acquired per unit length. The 

reduction in field strength and the slowing down of the mode offset each other, 

leaving the modal gain per unit length independent of material dispersion, as 
concluded above. 



APPENDIX SIX 

ee 

Einstein’s Approach to Gain and 
Spontaneous Emission 

A6.1. INTRODUCTION 

Equation (2.14) gives us the relationship between gain and the stimulated 
recombination rate, 

Ry, = 0,9N,. (A6.1) 

As shown in Fig. 1.3, the net stimulated rate R,, = R,, — R, , is the stimulated 

emission less the stimulated absorption of photons. Thus, we wish to calculate 

R,,, from which the gain, g, can be obtained. As also suggested in Chapters 1 

and 2, the stimulated emission and absorption rates depend on the number 

of available electronic states and their probability of occupation in both the 

conduction and valence bands for the transitions to occur. The unknowns are 

the multiplicative rate constants. Once these are determined, we can calculate 

R,, and the gain, g. 

Einstein gave us a technique to calculate these rates without delving too 

deeply into the details of the stimulated emission physics. His technique is to 

determine the desired rate constants under a particular set of boundary 

conditions. Once obtained, however, these constants are generally applicable 

to other situations. As shown in Fig. A6.1, the medium of interest is placed in 

a closed cavity, which has neither inputs nor outputs, and held under thermal 

equilibrium. Then, a dynamic balance equation can be set up which expresses 

the desired rates in terms of the equilibrium optical energy density, W(v). Since 

this is known (from Appendix 4), the rate constants can be determined. 

In this situation we must include all carrier recombination mechanisms in 

writing a dynamic balance equation. The nonradiative rates generate heat, 

which is naturally taken into account in this closed system. By one means or 

another, they must saturate in equilibrium. Thus, in equilibrium, for a pair of 

energies, E, and E,, in the conduction and valence bands, respectively, 

459 
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FIGURE A6.1 Schematic of an arbitrary closed cavity with negligible energy in or out. 

Contents must be in thermal equilibrium. 

we have 

dN, 
sag a SSE 58 Ryp,21 Sa AS (A6.2) 

where the first two terms represent electrons recombining by either stimulated 

or spontaneous processes, respectively, and the last term represents elec- 

trons being generated by stimulated absorption. The 21 subscript on R,, 

distinguishes this two-level spontaneous rate from the net recombination 

between two bands in a semiconductor as we have considered elsewhere. We 
could summarize Eq. (A6.2) by saying that the downward transition rate (i.e., 

coiduction to valence band) must equal the upward transition rate. 

The equilibrium occupation probability at some temperature is given by the 

Fermi function introduced in Appendix 2 

1 
pS EDT 1? (A6.3) 

where i = | or 2 for the involved transition energies in the valence or conduction 

bands, respectively. That is, f, = fraction of states filled at E,, and f, = fraction 

of states filled at E,. Figure A6.2 illustrates the various energy levels for 

reference. 

In Appendix 1, we also defined a density of states, p(E), to describe the 

distribution of states in a band. The number of states are equally distributed 

in k-space, but by integrating p(E) over some energy range, the number of states 

in that range is obtained. As shown in Figure A6.2, the radiative recombination 

of an electron and hole involves states in the conduction and valence bands 

with the same k-vector. That is, both energy (E,, = hv,,) and momentum 

(hk-electron ~ hk-hole) conservation must be satisfied. (As discussed in Chapter 

4, the photon momentum is negligible.) Thus, we can consider the density of 
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E,,. (nonequilibrium) 

Ey (equilibrium) 

k 
E,, (nonequilibrium) 

FIGURE A6.2 Energy vs. momentum schematic illustrating a transition between two 

energy states in the conduction and valence bands, respectively. Quasi-Fermi levels for 

both equilibrium and nonequilibrium carrier densities are also illustrated. 

state pairs, or a reduced density of states, p,(E>,), in calculating emission at E,, 

from electron-hole recombination. We shall explicitly derive p,(E,,) for 

parabolic bands to obtain an analytic expression, however, the concept is 

entirely general. 

With reference to Fig. A6.2 and using the results of Appendix 1, we can 

express the transition energy difference, E, — E, = E,, as 

hk? hk? /m* + mé tag 8 seabird ere (A6.4) 

where E’ = h?k*/2m* for parabolic bands. For relatively thick active regions 

(bulk), we found from Eq. (A1.39) in Appendix | that 

p(E’) aE’ = =| 
2n? 

* 2m? 3/2 

mt (E')1/2 dE’. (A6.5) 

Solving for E’ from Eq. (A6.4), and forming dE’, we have 

E'= m* sei (E>, = jae 

: : " (A6.6) 
mM, 

aed m* + m* Pas 

Finally, plugging Eq. (A6.6) into Eq. (A6.5), we obtain the desired reduced 
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density of states, 

1 | 2mt r? 1/2 
PAE21) = an Sas (lia; = E,) > (A6.7) 

where m* = m*m*/(m* + m*). 

A6.2. EINSTEIN A AND B COEFFICIENTS 

“\ 

The general approach of Einstein was to assign rate constants to the three 

radiative processes appearing in Eq. (A6.2), with the assumption that these rates 

must be proportional to the carrier density. These were written empirically as 

Rop.21 = Aa1No, R21 = Bo,W(v) Nz, and R,, = By, W(v)N,. Generally speaking, 

the A rate constant is associated with spontaneous processes, while the B rate 

constants are associated with stimulated processes, and hence are weighted by 

the radiation spectral density, W(v) (introduced in Appendix 4). In Einstein’s 

day, most radiative transitions of interest took place between atoms with very 

isolated, sharp energy levels. The carrier densities therefore referred to the 

density of atoms with electrons in either energy level 1 or 2. In the current 

context, we must interpret these definitions somewhat differently because in 

semiconductors, the energy levels are neither isolated nor sharp. 

To deal with the continuous nature of energy states in semiconductors, we 

restrict our attention to a differential population of state pairs existing between 

E,, and E,, + dE,,. Using the reduced density of states function derived above, 

the differential population available for producing downward transitions 

becomes 

aN, = f2(1 — fi) p(E21) dE a1, (A6.8) 

where dN, = number of state pairs per unit volume between E,, and E,, + dE,, 

available to interact with photons near E,,, in which the upper state is full and 

the lower state is empty. Similarly, the differential population available for 

producing upward transitions becomes 

dN, =f, — fr) p,(E21) dE;, (A6.9) 

where dN, = number of state pairs per unit volume between E,, and E,, +dE,, 

available to interact with photons near E,,, in which the lower state is full and 

the upper state is empty. 

Another factor we must consider in semiconductors is that the states in 

p,(E2,) have a finite lifetime due to collisions with other electrons and phonons. 

As a result, a given differential population can actually appear over a small 

range of energies and thus interact with photons spanning some narrow energy 

range, AE,,. The probability of finding this population at energies away from 

E,, is characterized by some lineshape function, #(E — E,,) which has a 

full-width half-maximum (FWHM) AE,, and is centered at E,, as shown in 
Fig. A6.3. The longer the lifetime of a given state, the narrower the spread in 
energy AE,,, and hence, the more chance there is of finding the state pair at E,,. 
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(state with longer lifetime) 

Ey, E 

FIGURE A6.3_ Plot of lineshape function vs. transition energy. We require that it be 

normalized so that its area equals one (the state must exist somewhere!). (The peak 

probability shown assumes a Lorentzian distribution.) 

A direct consequence of the finite state lifetime is that when we consider 

interactions between our differential population and photons of a given energy, 
hy, we must somehow account for the fact that the population only spends a 

fraction of its time at that photon energy. In other words, we must weight our 

differential population by the probability of finding that population between 

photon energies hy and hv + hdv, which is given by Y(hv — E,,)hdv. The 

differential population “seen” by photons at energy, hv, therefore becomes 

dN, => dN, -Li(hv = E,,)h dy, 

(A6.10) 
dN, > dN,:L (hv — E,,)h dv. 

These are the forms for N, and N, that we must use when analyzing 

semiconductors. 

With our differential populations defined, we can now make use of Einstein’s 

A and B coefficients. The differential downward transition rates created by our 

differential dN, population can be written as 

The integral over photon frequency is necessary to include contributions that 

W(v) makes over the full range of energies that dN, is spread over. 

The differential transition rates on the left-hand side of (A6.11) have units 

of [volume~! time~']. The population density, dN,, has units of [volume™ ']. 
Therefore, the spontaneous recombination rate constant, A,,, has units of 

[time *] and is often expressed as an inverse spontaneous lifetime, 1/t,,. In 

atomic systems, A,, does represent the inverse of the spontaneous lifetime of 

energy level 2. However, in the present context, A,, is associated with the 

spontaneous lifetime (which we will denote as 13>) of only the differential 
population, dN,, and is not equal to the entire band-to-band spontaneous 

lifetime, t,,. Later we will determine the relationship between the two-level 
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lifetime 12) and t,,. For the stimulated term, we note that W(v) represents the 

optical energy per unit volume per unit frequency. Therefore, the units of the 

stimulated recombination rate constant, B,,, are [(volume x frequency)/ 

(energy x time)]. 

The differential upward transition rate created by our differential dN, 

population can be written as 

dey | can; Wv)B, 5] L(hv — E,,)h ay, (A6.12) 

where B,, is the stimulated generation rate constant and has the same units 

as By. 

A6.3. THERMAL EQUILIBRIUM 

Einstein’s approach allows us to relate the three rate constants appearing in 

Eqs. (A6.11) and (A6.12) in a straightforward manner. Under thermal equilib- 

rium, we can set (A6.11) equal to (A6.12) according to (A6.2) which we assume 

holds for differential rates as well as the integrated rates. To remove the integrals 

over photon frequency, we note that equilibrium blackbody radiation is 

broadband and varies little over typical linewidths, AE,,, associated with the 

lineshape function. This allows us to treat the lineshape as a delta function, or 

hL (hv — E,,) > 6(v — v1). In other words, we simply evaluate all terms under 

the integral at v,,. The balance equation then reduces to 

dN, W(v2,) Br + dN, A>, = dN, W(v2,)Bi2- (A6.13) 

Rearranging, we obtain 

dN, Ze, W(v21)By2 

dN, W(v1)Ba, + Ani 
(A6.14) 

Alternatively, from Eqs. (A6.8) and (A6.9), using (A6.3) and E,, = hv,,, we find 
the simple result 

dN, = rhe. a fy) eva /kT = = A6.15 
aN, f,(1 — fy) 

Setting Eq. (A6.15) equal to (A6.14) and solving for W(v,,), we obtain 

A,,/Bo, 
Wo.) = : 

Was) (B,/B,;)e""** Sil 
(A6.16) 

From Appendix 4, the blackbody radiation formula which defines the spectral 
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density of photons under thermal equilibrium is given by 

Po(V21) hv24 
Vo. = =. (21) olvalkT 4 (A6.17) 

Comparing Eq. (A6.16) with Eq. (A6.17), we see that both can be true for all 

temperatures only if the following two equalities hold: ’ 

By, = By, (A6.18) 

Ax, = Po(V21) Av21° Boy. (A6.19) 

Equation (A6.18) reveals that stimulated emission and stimulated absorption 

are truly complementary processes associated with the same rate constant. 

Perhaps more significantly, Einstein’s approach establishes a fundamental link 

between stimulated and spontaneous emission processes through Eq. (A6.19). 

Thus, by analyzing the system under thermal equilibrium, Einstein’s approach 

allows us to reduce the three differential rate constants to one independent 

constant, B,,. We could have designated A,, as the independent constant, 

however, too often this leads to the incorrect conclusion that B,, is inversely 

dependent on the density of optical modes, p,(v,,). More correctly, we should 

view B,, as the rate constant of a single optical mode, and A,, as this rate 

constant multiplied by the equilvalent spectral density that induces spontaneous 

emission into the full density of optical modes near y,,. It is interesting to note 

that the equivalent spectral density, po(v,,)hv,,, implies one photon per optical 

mode. In Chapter 4, more insight into this observation is gained through a 

quantum mechanical perspective. 

A6.4 CALCULATION OF GAIN 

Now that we have established the connection between the three rate constants, 

we can leave the closed-system, thermal-equilibrium environment, and proceed 

to calculate the gain for a monochromatic radiation field under nonequilibrium 

conditions. Under forward bias, the Fermi level in the active region splits into 

two quasi-Fermi levels to reflect the nonequilibrium electron and hole densities. 

The splitting corresponds roughly to the applied voltage. The nonequilibrium 

carrier densities are then calculated from 

Se | eaceyce) dE x P= on — fo(E)] aE, (A6.20) 

where we have assumed N ~ P because of negligible doping in the active region. 

The factors, p,(E) and p,(E), refer to the densities of states in the conduction 

and valence bands, respectively. Also, f(E) and f,(E) are the Fermi functions, 
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in which E, is replaced by the quasi-Fermi levels, E,, and E,,, for the 

conduction and valence bands, respectively. 

To calculate the gain we turn to Eq. (A6.1) which allows us to relate the 

gain to the net stimulated emission rate. However, we must keep in mind that 

contributions to the gain at a particular frequency of radiation, v9, will come 

from many differential populations distributed roughly over energies comparable 

to the lineshape width, AE,,. The gain contributed by each population can be 

written as \ 

dR 
dg(hvo) = Oe 

Ug Np 

tee | W(v)B,,[dN, — dN,]L(hv — E,,)hdv.  (A6.21) 
v,Np \ 

The second equality is obtained by setting dR, = dR,, — dR,, and using Eqs. 

(A6.11) and (A6.12) with B,, = B,,. For a monochromatic field, W(v) > 

hv) N,6(v — vo), where the strength of the delta function is equal to the energy 

density of the field and vo is the frequency of the wave. With this substitution, 

the integral reduces to evaluating all photon frequency-dependent factors at vo, 

and we are left with 
h bas 

dg(hvo) = —°. hB,,[dN, — dN,]£(hvy — E>,). (A6.22) 
v 
g 

The appearance of the lineshape function reminds us that the further away the 

differential population is in transition energy from the photon energy, the less 

contribution it makes to the gain at that frequency. 

The total gain at hv, is found by integrating dg over all existing populations 

of state pairs which might possibly interact with the field. Expanding the 

differential populations in (A6.22) using Eqs. (A6.8) and (A6.9), simplifying the 

Fermi factors, and integrating over all possible transition energies, we obtain 

h 
g(hvo) = 2 h one — fi) LZ(hVvo — E21) dE. (A6.23) 

g 

If the energy-dependent factors, B,,p,(E2,)(f2 — f;), are slowly varying com- 

pared to the lineshape function, then we can set L(hvg — E21) > d(hvo — E>) 
and the gain expression reduces to 

hv, 
Ju ee Pai Baie Sha) (AE; > 0) (A6.24) 

g 

where E,, is evaluated at the photon energy of interest (.e., g,, = g(hvo = E)). 

Equation (A6.23) is the central result of this section. It reveals that the gain 
is directly proportional to the rate constant B,,, the reduced density of states, 
and the Fermi probability factors. It is immediately apparent from (A6.24) that 
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to achieve positive gain, we must create enough electrons and holes to allow 
fy > f,. This places a condition on the quasi-Fermi levels which reduces to the 
requirement that the quasi-Fermi level separation be larger than the incident 
photon energy, or AE; > hvy. Chapter 4 considers these issues in more detail. 

To fully evaluate the gain, we still need to determine the rate constant, B),. 

In lasers which use atomic transitions, a measurement of the spontaneous 

emission linewidth of a given transition can allow us to estimate A,, if the. 

broadening of the line is dominated by the spontaneous emission lifetime, 

Ts» = 1/A,. With this information, B,, can readily be determined using (A6.19). 

Thus, with Einstein’s approach and this one simple measurement, the description 

of gain and spontaneous emission in atomic systems is completely self- 
contained. 

Unfortunately the situation is not so simple in semiconductors since the 

spontaneous emission spectrum represents a superposition of transitions from 

all of our differential populations. The resulting broad emission spectrum 

prevents us from isolating the linewidth of just one differential population, and 

therefore prevents us from evaluating A,, (and hence, B,,) via direct experiment. 

The approach that must be followed in semiconductors is to estimate the 

transition rates using other more in-depth theories, and then relate the resulting 

expressions back to B,, and A,,. Chapter 4 details the theory required to 

evaluate the transition rates explicitly from a more fundamental quantum 

mechanical analysis. An explicit expression for B,, will be presented there. 

We can alternatively express the gain in terms of the spontaneous rate 

constant, or the two-level lifetime, t3> = 1/A,,. Using (A6.19) in (A6.24), the 
gain takes the form 

J21 = Au Ee ai fo — fi) 
Po(V21) % 

Ae = gang MOMEa Ma — fo (A6.25) 

where we have set o(v2,) = 82n*/A$v, according to Eq. (A4.5), with Ap = ¢/v24. 
While this expression is equivalent to Eq. (A6.24), it is very deceptive for two 

reasons. 
First of all, a common mistake in the literature is to equate Tey with 

the band-to-band spontaneous lifetime, t,,, incorrectly linking the gain with 

the carrier lifetime. In fact, some go even further by linking A,, with the 

overall spontaneous emission bandwidth (analogous to atomic transitions)—a 

procedure which is completely misguided in semiconductors, but nevertheless 

encouraged by writing the gain in terms of A),. 
The second problem is that when written in this way, one might conclude 

that the gain varies inversely with the optical mode density. Only upon more 

careful inspection does one realize that implicit in the two-level lifetime, z;,, is 

an inverse dependence on the mode density (i.¢e., the ee the mode density, 

the shorter the lifetime). As a result, the product po(v2,)t3, (and hence the gain) 
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becomes independent of the optical mode density—a conclusion which is 

obvious from Eq. (A6.24). Reduced optical mode densities possible in very small 

VCSEL structures (or “microcavities”) have lead some researchers to conclude 

using (A6.25) that the gain is increased as a result—again, a conclusion which 

is misguided. For these reasons, Eq. (A6.24) which more appropriately defines 

the gain in terms of the single-mode stimulated rate constant, B,,, is preferable. 

Another issue we need to resolve is whether we should use (A6.24) or the 

more complex (A6.23) to evaluate the gain. The time between collisions for 

electrons in typical semiconductors is on the order of 0.1 ps which leads to a 

FWHM of AE,, ~ 14meV (assuming a Lorentzian lineshape). At room 

temperature, this bandwidth is small enough that we can assume f, — f, to be 

roughly constant. Furthermore, B,, does not have a strong energy dependence. 

Therefore, our main concern lies with p,(E,,). In “bulk” active regions, p,(E>,) 

varies as E‘/* and the rate of change can be neglected in comparison to the 
bandwidth of the lineshape function. In other words, at room temperature, 

(A6.24) can generally be used with bulk active regions. 

For quantum wells, the reduced density of states can be found by using the 

reduced mass in Eq. (A1.45). It_is zero up to the first allowed energy states in 

the conduction and valence bands where n, = 1, ie. (E.,; — E,,). There it 

abruptly increases to 
* 

m 
hy ee pChv21) hd , Ex, > (Ee, — Ent) (A6.26) 

where it remains constant up to the point where n, = 2. There it again increases 

by the same amount. Thus, it violates the assumptions about being slowly 

varying over the bandwidth AE,, made between Eq. (A6.23) and Eq. (A6.24). 

Therefore, we must use Eq. (A6.23). Unfortunately, the actual lineshape function 

is not well established. A Lorentzian is often used, but the results are somewhat 

nonphysical; so other, more complex functions have been developed to better 

fit the experimental data. The simple Lorentzian with an FWHM of AE,, takes 

the form 

2/tAE >; 
L£(E — Ey) = 2 aS 

1 + 4(E — E,,) /AE5, 
(A6.27) 

The integration of Eq. (A6.23) with Eq. (A6.27) will smooth the discontinuities 

in p,(E,,) that exist in quantum-well (as well as quantum-wire and box) lasers. 

However, the plateau gain levels obtained by inserting Eq. (A6.26) in Eq. (A6.24) 

will be correct, as long as we are > AE, away from a step edge. The numerical 

gain calculations in Chapter 4 illustrate this behavior more quantitatively. 

A common feature of all active materials (regardless of the lineshape 
broadening or reduced dimensionality) is that the gain increases from an initial 
unpumped absorption level given by g,(f, = 0, f, = 1), to a transparency gain 
value given by g3,(f2 = f,), finally approaching a saturation level of g.,(f, = 1, 
f; = 9) (equal in magnitude to the unpumped absorption level) as more and 
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FIGURE A6.4 Illustration of gain vs. carrier density. Straight-line approximation valid 
over limited ranges. 

more carriers are injected into the active region. In Fig. A6.4 we schematically 
illustrate this characteristic. 

In Chapter 4 we shall find that this characteristic can be well approximated 

by a logarithmic function; however, for many situations only a small portion 

of the curve near and somewhat above the transparency point is of interest. In 

these cases, a straight-line approximation is often very useful. That is, 

J21 = A(N — N,), (A6.28) 

where a is the differential gain, 0g/0N, and N,, is the transparency carrier 

density. 

A6.5 CALCULATION OF SPONTANEOUS EMISSION RATE 

In creating a given amount of gain in the semiconductor by increasing dN, 

relative to dN,, we unfortunately end up creating a large amount of spontaneous 

emission over a relatively broad range of frequencies. This section deals with 

developing the relation for the spectrum of spontaneously emitted photons, 

which when integrated allows us to determine the total number of spontaneous 

photons being generated per second. 

We start by defining the spontaneous emission within a small energy interval 

to be R@(hv)h dv, where R* is the emission rate per unit energy per unit volume 
occurring at hv. As with the gain, we need to sum over all differential 

populations to determine the emission rate at a single frequency. The probability 

of dN, appearing at hv is given by L(hv — E,,)hdv. Weighting dN, by this 

factor, multiplying by the spontaneous rate constant, A,,, and integrating over 
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all state pairs, we obtain 

R™(hv)h dv = | Ay, [L (hv — E21)h dv] dN). (A6.29) 

Canceling out h dv on both sides, and expanding dN,, we arrive at the desired 

result: 

Rep(hv) = | AniecE afl — fy Lhv — Bn) Gr (A6.30) 

Equation (A6.30) reveals that the spontaneous emission spectrum is smoothed 

in the same manner as the gain spectrum discussed above. It is interesting to 

note that while we must have E,, > E, to have a nonzero reduced density of 

states, it is possible for hv < E, since #(hv — E,;) can be nonzero for 

hy — E,, <0. Thus, anilenenne emission can actually be observed at 

energies ~AE,,/2 below the bandgap. This reflects the uncertainty in the 

energy of states at the band edge, which results from the finite lifetimes of 

electrons in those states. 

Again if A,,p,(E2,)f,(1 — f,) is slowly varying compared to the line- 

shape function, then we can set Y(hv — E,,) > d(hv — E,,) and Eq. (A6.30) 

simplifies to 

Re = Axi (Ei) AU — fy), (AE3, > 0) (A6.31) 

where we have defined R?} = R@(hy = E,,) in analogy with g,,. Comparing 
R32} to go, given in Eq. (A6. 24), it is interesting to note that the two are quite 

similar. In fact, we can express the spontaneous emission at E,, in terms of the 
gain at E,, as follows: 

v, Ag, fol—f,) 1 
Ror = Fay Be fpf) 921 7 Poles) Patan» (A6.32) 

21 21 2 1 

where we have made use of the relation between the raté constants expressed 

in Eq. (A6.19). We have also introduced the population inversion factor which 
is defined as 

soles sae I 
sp GS =a78) eal a elhv21 —AEp)/kT * 

(A6.33) 

The popular usage of the sp subscript originates from the fact that n,, was 

initially referred to as the spontaneous emission factor, but was later changed 

to eliminate conflict with £,, which is also defined as the spontaneous emission 

factor. We now refer to n,, as the population inversion factor because it is the 

semiconductor laser equivalent to the ratio N,/(N, — N,) encountered in atomic 
laser physics. In atomic systems, when N, — N, > 0, the population is said to 
be inverted, the ratio N,/(N, — N;,) is positive, and optical gain is achieved. 
Similarly, when n,, > 0, a population inversion is established in the semi- 
conductor, indicating a net optical gain. 
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If the quasi-Fermi level separation in the semiconductor is known, then using 
Eq. (A6.32), we can determine the spontaneous emission rate if we know the 
gain, or we can determine the gain if the spontaneous emission rate is known. 

In Chapter 4 a more thorough investigation of this fundamental relationship 
between spontaneous emission and gain is provided. 

Now we wish to determine the total spontaneous emission rate, R,,, by 

integrating (A6.30) over all photon energies: 

Ra = | Rion dy 

= | 4ueleofa — f,)L (hv — E,,) dE,,h dv 

~ | AneAEa fl ~ 40) | 20 — E,,)h iv| dE, 

= | Aneaéa dhe —f,)dE,, = | Re dE >. (A6.34) 

The third equality is found by inverting the order of integration and pulling 

out all terms not dependent on the photon frequency. The approximate sign is 

used here because A,, is not completely independent of photon frequency 

(A, 0c v, from Eq. (A6.19) with po(v) oc v? and B,, oc v~* (see Chapter 4)). 
However, in comparison to Y(hv — E,,), this dependence can be neglected. 

The integral in brackets then reduces to unity which leads to the fourth equality. 

In other words, the lineshape broadening has no effect on the total spontaneous 

emission rate, and we can simply integrate over the simplified R?} defined in 

(A6.31). 
Setting A,, = 1/t2} and R,, = N/t,, in (A6.34), we can define the total 

spontaneous lifetime in terms of the local spontaneous lifetime through the 

following nontrivial relation: 

il el 

Tsp = n| [= PAE2) fol — fi) dE, | (A6.35) 
sp 

Generally speaking, the term in brackets will tend to go as N? due to the double 

dependence on the quasi-Fermi levels (f, related to N and 1 — f, related to 

P). As a result, the total spontaneous lifetime typically follows a 1/N dependence 

as assumed in Chapter 2. 
In performing actual calculations of the total spontaneous emission rate, it 

is useful to replace A,, with the single-mode rate constant, B,,. Doing this, Eq. 

(A6.34) becomes 

Re = | BasbrsspuleadolEsdfll — f,) dE,,. (A6.36) 
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Thus, we see that the spontaneous emission rate includes both optical and 

electronic density of states functions. 
By reducing the cavity size to dimensions on the order of the emission 

wavelength in the material, it is in principle possible to significantly alter the 
optical mode density which allows us to actually alter the spontaneous emission 

rate. An active field of research which studies these microcavity effects is 

attempting to reduce the spontaneous emission rate substantially. The motiva- 

tion for this lies in the following relation: < 

| GN ee (A6.37) 

That is, the total spontaneous emission rate represents the number of carriers 

lost to spontaneous recombination per second, and can therefore be equated 

with the radiative portion of the injected current. By minimizing R,,, researchers 

hope to minimize the threshold current of certain types of lasers. In particular, 

VCSELs represent excellent candidates for such experiments due to their 

scalable geometry. 

In concluding this appendix, it is useful to appreciate that the carrier density, 

the optical gain, and the radiative current in the active region can all be 

calculated from the quasi-Fermi levels using Eqs. (A6.20),-(A6.23), (A6.36), and 

(A6.37). Thus, E,, and E,, completely determine all relevant parameters under 

nonequilibrium conditions. Furthermore, by invoking charge neutrality, we can 

find E,, for a given E,, using (A6.20), reducing the entire problem to one 

independent parameter. In other words, we can obtain gain vs. current, gain 

vs. carrier density, or current vs. carrier density, by scanning E,, over the 

appropriate ranges. The linear relationship of gain to carrier density, and the 

quadratic relationship of current to carrier density discussed in Chapter 2 

represent approximations to the more rigorous nontrivial relationships derived 

in this appendix. . 
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APPENDIX SEVEN 

( 

Periodic Structures and the 

Transmission Matrix 

A7.1. INTRODUCTION 

Distributed Bragg reflectors (DBRs) are important in many laser applications 

because (1) they can provide extremely high reflectivities, and (2) they can be 

used as frequency-selective filters. If the dielectric stack is completely periodic, 

the entire reflection spectrum can be determined exactly. If the dielectric stack 

is not perfectly periodic, then for practical purposes, only the peak reflectivity 

can be determined analytically. The main portion of this appendix deals with 

periodic stacks, first at the Bragg frequency to obtain the peak reflectivity, and 

then away from the Bragg frequency to determine the entire reflection spectrum. 

Correspondence is then made between the exact analysis and approximate 

Fourier and coupled-mode analyses. Finally, nonperiodic dielectric stacks are 

considered at the Bragg frequency. 

A7.2 EIGENVALUES AND EIGENVECTORS 

We begin with a homogeneous dielectric slab as shown in Fig. A7.1. Dividing 

up the slab into half-wave segments, we can assign normalized magnitudes to 

the forward- and backward-propagating fields at the ith plane: 

A; 
eae A7.1 =| (An) 

Here e; is defined as a two-component field vector, comprised of a forward 

wave of normalized amplitude, A;, and a backward wave of normalized 

amplitude, B;. 
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FIGURE A7.1_ Propagation of fields through a uniform dielectric slab of index n,, with 

reference planes placed at half-wavelength intervals. Arrows indicate the phase of the 

forward and backward waves. 

\ 

Now because the planes are spaced by a half-wavelength, the phases of the 

waves must change by z as we move from one plane to the next, and therefore 

€;., = —e;. We can also express this relation in terms of the half-wave phase 

delay transmission matrix introduced in Chapter 3: 

e+, = (Tile = te (A7.2) 

Thus, the transmission matrix of a half-wave segment operating on any field 

vector is reduced to a multiplicative constant. The field at the input can be 

related to the field at the output as follows: 

Cn = [T4/2]"€o — ere. (A7.3) 

Thus, the input fields are simply equal to the output fields times the multi- 

plicative constant taken to the mth power, from which the reflection and 

transmission through the structure can be immediately obtained. 

For more complex dielectric structures, the T-matrix which relates the fields 

at one plane to the fields at the next is reduced to a multiplicative constant for 

only two specific field vectors. However, it can be shown that these two field 

vectors can be weighted and added to construct any desired field vector. In 

mathematical terms, the two fields are referred to as eigenvectors, and the 

corresponding multiplicative constants are the eigenvalues of the transmission 

matrix. For a reciprocal matrix with 7,,7,, — T,,T), = 1, the product of the 

eigenvalues of the two eigenvectors equals unity, allowing us to express them 

in the following manner: 

[Tle, =e**e, and [Ties = exes (A7.4) 

Here e, and e_ represent the two distinct eigenvectors of the T-matrix, and 

e** are the corresponding eigenvalues. Written in exponential form, € plays 
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the role of a propagation constant. However, the “propagation” we are referring 

to is from plane to plane, indicating that € is more appropriately defined as 

the discrete propagation constant relating the field vector at one plane to the 

field vector at the next. For a uniform slab with planes spaced by half- 

wavelengths, Eq. (A7.2) reveals that € = jx. In complex dielectric structures, 

Re{é} #0, and e, and e_ grow and decay as we propagate through the 

stack. ; 

By writing out the equations implicit in (A7.4), we can solve for the 

eigenvalues and eigenvectors, or the eigensystem in terms of the T-matrix 

components: 

[Be Fa]fAe caf] aes 
T, T,2 By By 

Ce aici lo, lets NCR amt By) a (A7.5b) 

A i; cal: apes iat ee 4 220 (A7.Sc) 
B. Cae Ti; T 

The eigenvalues are found by moving all terms in (A7.5a) to the left, setting 

the resulting determinant to zero, and applying 7, , 7). — 7,2 7, = 1 to simplify 

the square root term. For the eigenvectors, only the ratio of the two components 

is relevant (the absolute magnitude can be chosen arbitrarily). The two versions 

of A/B in (A7.5Sc) are found using the upper and lower equations in (A7.5a), 

respectively. 

A7.3. APPLICATION TO DIELECTRIC STACKS AT THE BRAGG CONDITION 

By filling roughly half of each segment defined in Fig. A7.1 with a different 

dielectric or index, n,, we arrive at the quarter-wave distributed Bragg reflector 

introduced in Chapter 3, as indicated in Fig. A7.2. From Eqs. (3.43), the 

T-matrix coefficients of one period of this structure at the Bragg condition are 

symmetrical such that 7;, = 7,2, Ty; = T,2, and Wei oy = 1.0 These: rela- 

tions simplify the eigensystem considerably: 

A 
et*=T7,,+T, and aE = +1. (A7.6) 

+ 

ee H and = Ca: (A7.7) 
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Now getting back to our objective, we want to know the input fields in terms 

of the output fields of the stack. Assuming no incoming wave from the right 

(Bo = 0), we can write the field vector at plane 0 as 

ea H =4(e, +e_). (A7.8) 

To determine the field vector at plane 1, we apply the T-matrix to eg, which 

upon encountering the two eigenvectors is reduced to the two eigenvalues. 
Repeated application of the T-matrix allows us to determine the field vector at 

the ith plane: 

e;= [Thee =4(e“e; Fe e_) = | (A7.9) 

\ 

cosh i 

sinh ié | 

The forward and backward wave components of the field vector are drawn 

according to Eq. (A7.9) at each plane in Fig. A7.2. Physically, the index 

discontinuities are feeding power from the forward to the backward wave, 

causing the forward wave to decay into the stack and the backward wave to 

grow from zero at the output. 

It is apparent in Fig. A7.2 that the more periods there are, the closer the 

backward and forward wave are in magnitude at the input, and the higher the 

reflectivity of the stack. Evaluating Eq. (A7.9) at the mth plane and taking 

the reflected to incident amplitude ratio, we obtain 

g 

B 
i= e = tanh mé, (A7.10) 

m 

or with r,; = tanh € = T,,/7,, (= the reflectivity of one period), we can write 

tanh mé 

tanh é ~ 
lg => ryMer ¢ where Mer ¢ (A7.11) 

FIGURE A7.2_— Forward and backward waves in a grating reflector. 
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Thus, the total reflectivity is just the reflectivity of one period times some 

effective number of mirror periods seen by the incident field, m,-;. As m > 00, 

m,,, saturates to a value ofm,,, > 1/tanh € = 1/€ (for small €). From a physical 

viewpoint, the forward wave decays approximately exponentially into the 
mirror, and hence effectively “sees” only 1/é periods. 

To further quantify the reflectivity, we must evaluate the discrete propagation 

constant. This is accomplished using Eqs. (3.43) to set 7,;, = —(1 + r’)/t? and 

T,, = —2r/t”, where r is the reflectivity of the 2-1 interface, and t? = 1 — r?. 
With these substitutions, we have 

Bo Dank Tog (Ler yt le =o). (A7.12) 

The first relation reduces to —(1 + 2r) for small interface reflectivities. Solving 

for the discrete propagation constant, we find € ~ jz + 2r. In addition to the 

phase shift seen with the homogeneous slab, there is a real part to the discrete 

propagation constant which is responsible for the attenuation of the incident 

wave. The attenuation per unit length in this small r limit is just 2r/A, or two 

reflections per half-wavelength—an intuitive result, indeed. Plugging the latter 

equality of (A7.12) into (A7.11), we find that the effective number of mirror 

periods at the Bragg frequency becomes 

_ tanh [m In(n,/n,)] 

ile tanh [In(n,/n,)] — 
(A7.13) 

To determine the reflectivity, we expand (A7.10) into exponential form, and use 

(A7.12) for e°: 

_ (m/my)" = (a/ny)™ _ 1 = @/m2)?" (A7.14) 
(n2/n,)" + (n2/m,)-™ — 1 + (ny/n2)?™ 

As m approaches infinity, this ratio approaches one, with larger differences in 

the index accelerating the convergence (see Problem A7.1). In the last section 

of this appendix, we will develop a more generalized version of (A7.14), 

applicable to more general quarter-wave stacks at the Bragg condition. 

A7.4 APPLICATION TO DIELECTRIC STACKS AWAY FROM THE 

BRAGG CONDITION 

The above analysis corresponded to the quarter-wave stack at its peak 

reflectivity, where all interface reflections add in phase. With the thickness of 

each layer being exactly one quarter-wavelength, the T-matrix reduced con- 

siderably allowing us to simplify the description of the eigensystem. In the more 

general case away from the Bragg condition, T,, # T,, and T,, # T;, and the 
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eigensystem becomes more complex. Rather than repeat the above procedure 

for this more general case (see Problem A7.2), we will explore an alternative 

approach which involves determining the overall grating matrix in terms of the 

single-period T-matrix. 
We can relate the grating matrix to the eigenvectors and eigenvalues of the 

single-period T-matrix as follows: 

[T, Jes =[T]"e, =e*™e,.~  \ (A7.15) 

This equation reveals that the eigenvectors of the grating matrix, T,, are in fact 

the same as the eigenvectors of the single period T-matrix, with the corresponding 

eigenvalues taken to the mth power. As a result, from the first equality in Eq. 

(A7.5c), we can set i 

cscatl = ai (A7.16) 
e oat oatosar 8 

Subtracting the minus version of this equation from the plus version, we 

immediately obtain: 7,,, sinh € = T,, sinh mé. If we now add the minus version 

to the plus version, we find: (sinh m¢)(cosh ¢ — T,,) = (sinh ¢)(cosh m¢ — 7), ;). 

Solving for the grating matrix coefficients, we obtain 

_ sinh mg sinh mé cosh € — cosh mé sinh € 

Se Sinn sinh € 
, (A7.17) 

_ sinh mg 

91? “sinh é nae 

Identical relations exist for 7,,, and 7,,, using the second equality in Eq. 

(A7.5c). The overall reflectivity is then simply given by 7,,,/T,,,, which becomes 

Vy 
pes ae (A7.18) 

Th11 ms sinh(m — 1)é 

T,, sinh mé 

where we have used the identity, 

sinh m¢ cosh € — cosh mé sinh é = sinh(m — 1)é. 

While Eq. (A7.17) provides us with the reflectivity of the grating, it is lacking 
. in the sense that it does not provide us with any feel for how the reflectivity 
changes with frequency. Approximate expressions for r, characterize the 
frequency dependence using the detuning parameter, 6 = B ~ Bo, introduced in 
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Chapter 3. Toward this end, we define a generalized detuning parameter, which 
is characterized by the asymmetry in the diagonal matrix coefficients: 

ji? afr 

Th. + Ty, 
> Il (A7.19) 

In the low interface reflectivity limit near the Bragg frequency, A > dA = 
7(V — Vo)/Vo (see Eqs. (3.43) with no loss). 

In order to use A in Eq. (A7.17), we first replace every sinh x function with 

(cosh x)(tanh x). The tanh x functions can then be replaced with the effective 

number of mirror periods, m,,;, = tanh mé/tanh €, and we are left with only 

cosh x functions. By adding the plus and minus versions of Eq. (A7.5b), we can 
set 

T; T. 
cosh € = 3(T,; + T,2) =—— 22 = ' (A7.20) 

ST oes arn 

The latter equalities make use of Eq. (A7.19). Using cosh € = T,,/(1 + jA) for 
Tji1 and 7),,, and cosh € = 7,,/(1 —jA) for T,,. and 7j,,, Eqs. (A7.17) 

transform into 

This = (1 + jm,.,,A) cosh mé, 

(A7.21) 
fe 

ie 
gph ae m.r/(1 + jA) cosh mé, 

11 

and 

Ti. 
T,42 = ——m,, (1 — jA) cosh mé, 

cath ey toe (A7.22) 

Tj22 = (1 — jm.7,A) cosh mé. 

Using Eq. (A7.21) to define the grating reflectivity, r, = 7,.,/T7,,,, we obtain 

1+jA 
eee ae (A7.23) 
TI sim ek 

rg =rym 

where r, = 7>,/T;,, the reflectivity of one period. 
In this version of r,, the frequency dependence is more clearly visible. For 

example, at the Bragg frequency, A > 0 and Eq. (A7.23) reduces immediately 

to Eq. (A7.11). For small deviations from the Bragg condition, we can expand 

the denominator to first order in A to obtain 

oi ryMer LI — jJQMess — 1A] =rym,.,5/[1 — j26L.r5]. (A7.24) 

The latter equality, being the first-order expansion of e /?°"*//, suggests that 

we can approximate the reflection phase deviation by a simple propagation 
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delay associated with some effective length, or penetration depth. For small 

interface reflectivities near the Bragg frequency, A ~ 6A, m,,, > 1, and Ler, © 

7m,.,,A. A more rigorous analysis which evaluates the exact phase slope at the 

Bragg frequency reveals that 

f 1 1 
= mesh 3 == i (A7.25) 

eae tee: Liseihalin ties, 

where m,,, is evaluated at the Bragg condition, and r is the interface reflectivity. 

For small r, m.,, becomes large and the term in brackets reduces to unity. 

Problem A7.3 examines the penetration depth concept applied to the energy 

distribution and absorption loss of a grating at the Bragg frequency. It is shown 

there that in the small r, large m limit, we can again set L,-, = 4merpA. Less 

is equal to half the effective number of mirror periods seen by the field because 

the energy distribution and power go as the field squared, decaying twice as 

fast as the field. 

To completely specify the. grating reflectivity, we need to define explicit 

relations for r,;, A, and m,,;, in terms of the matrix coefficients developed in 

Chapter 3. In Eqs. (3.43), two phase factors are used, = B,L, + BL. With 

no loss, we can use Eq. (3.46) to set ¢, =2+06L and ¢_ =0, where 

6 = Bf — Bo, and f is the average propagation constant of the grating defined 

in Eq. (3.44). For a lossless DBR, Eqs. (3.43) become 

ine ap) 

oh roe 

i Sea 1 : 
1 = — 2 (ei — r”), foe = 5 (errs “ Fy 

t 
(A7.26) 

(ee 
Beet), lene gem ay 

t 

From these relations we can immediately determine r, and A: 

T: cos(dA/2)e~ 44/2 
y= ee (A7.27) 

1 heres 

to — 1, sin 0A 
A = j 24a Be (A7.28) 

Tone dees GCOS Oeics 

To help determine the eigenvalues and m,,,, we have 

1 
3(T11 + Th) = — 2 (cos 6A + r?), (A7.29) 

\ 

seri! 
Cee ey et :s [2r?(1 + cos dA) — sin? 6A]"/?. (A7.30) 
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Using these relations in Eq. (A7.5b), we can calculate both € and m, rr- The 
reflection coefficient is now completely defined in terms of fundamental grating 

parameters: m, r = (ny — n,)/(n, +n), t = ./1 — r’, and 6A = (B — B,)A, where 

1/B = 5[1/B, + 1/B,]. 

A7.5 CORRESPONDENCE WITH APPROXIMATE TECHNIQUES 

In this section, we examine how the exact reflectivity reduces to common 

approximate expressions. We will consider two limiting cases. The first ap- 

proximation involves neglecting r? and higher terms, while retaining all terms 

related to dA. In this case, the reflectivity reduces to the Fourier limit. The 

second approximation involves retaining terms up to r? and limiting the 

frequency deviation to (SA)? terms. In this case, the reflectivity reduces to the 

coupled-mode limit considered in Chapter 6. 

A7.5.1 Fourier Limit 

To analyze the grating reflector using Fourier analysis, we send an impulse 

function into the stack and track the resulting distribution of reflected 

impulse functions in time. Such an analysis gives us the impulse response of 

the grating. The Fourier transform of the impulse response should then 

correspond to the reflection spectrum. While this approach in principle is exact, 

in practice, the infinite number of impulse functions which appear back at 

the input after repeated bounces within a multilayer stack makes this approach 

mathematically intractable in the general case. However, if the interface 

reflections are small, any impulse functions which make double bounces or 

more before returning to the input will have negligible magnitude and can be 

ignored. In this limit, only a small uniform burst of impulse functions will 

return (assuming the transmission through each interface does not reduce 

the magnitude of the impulse). This square-shaped envelope of the impulse 

response when Fourier transformed leads to a sin x/x type reflection spectrum. 

It is this functionality we would like to reproduce using the exact expression 

(A7.23). 
To approximate the simplified Fourier analysis, we neglect all but linear 

terms in r, simulating the single-bounce approximation. However, the fre- 

quency variation we retain completely, since this is accurately determined 

using the Fourier approach. With these approximations, (A7.27) and (A7.28) 

simplify to 

r, © 2r cos(dA/2)e7 */?, 

A x tan 0A. 
(A7.31) 

The discrete propagation constant and the effective number of mirror periods 

é 
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found using (A7.29) and (A7.30) in (A7.5b) and (A7.11) simplify to 

3(T,; + T2) ® —cos dA, 

Ji(Ty1 + Ty — 1 jsin 6A, 

et? x —cos dA +jsin dA = eet A, (A7.32) 

tanh mé tanmdA = 
Mer f = ~ si 

tanh € tan dA 

In the Fourier limit, the discrete propagation constant becomes simply the 
phase delay between mirror periods including detuning effects, jn + joA. 

Using these approximations in the expression for reflectivity (A7.23), we 

obtain ; 

tanmdA 1+jtandA 
r, © 2r cos(dA/2)e" °*”? 

tandA 1+jtanmdA 
(A7.33) 

To reduce this expression to the Fourier limit, we move the cosines in the first 

fraction to the second fraction and convert the entire second fraction to 
exponential form. We then assume that the phase deviation across one period 

can be expanded to second order, such that cos(6A/2) = 1 and sin dA = 6A. 

The accumulated phase deviation, mdA, across the entire grating may be large, 

so we leave this in general form. With mA = L, (the length of the grating), Eq. 

(A7.33) reduces to 

sin OL, 
NG = 2mr Blake a) ee (A7.34) Vg | Fourier 

g 

This result is exactly the result we would obtain from a simplified single-bounce 

Fourier analysis, revealing the characteristic sin x/x spectral dependence of 

weakly reflecting gratings. The m — 1/2 term in the phase factor results from 

our definition of L, which places the output reference plane one half-period 

beyond the last reflection of the grating. 

A7.5.2 Coupled-Mode Limit 

The coupled-mode approach to be discussed in Chapter 6 analyzes the grating 

by solving the wave equation assuming the waves are sufficiently slowly varying 

that second-order derivatives of their magnitude can be neglected. This 

restriction implies that the interface reflectivities must not be too strong, and 

_amounts to neglecting terms higher than r?. Because the coupled-mode 

approach includes r* terms, it is much more accurate than the Fourier approach 

for strongly reflecting gratings near the Bragg condition. Another fundamental 

approximation of coupled-mode theory involves retaining only those Fourier 
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components of the index variation which effectively couple forward- and 
backward-going waves at the Bragg condition. Away from the Bragg condition, 

other Fourier components of the index variation begin to contribute to the 

coupling between forward and backward waves. With these contributions 

neglected, we would expect that the coupled-mode approach is only good over 
a limited frequency range, in contrast to the Fourier approach. Therefore, to . 

reproduce the coupled-mode approximation, we will limit the frequency 
deviation to (dA). 

Proceeding as before, we retain terms up to r? and (dA)?, neglecting all 

others. We also neglect all products between r and dA. Equations (A7.27) and 
(A7.28) in this case simplify to 

r, = 2r=kA, 
(A7.35) 

A OA. 

Here we have introduced a new variable, x = 2r/A, which in coupled-mode 

theory represents the coupling per unit length between the forward and 

backward waves. For the square wave profile analyzed here, the coupling 

constant, kK, 1s just equal to two reflections per grating period. We will use x in 

place of r for the rest of this section. 

The discrete propagation constant and the effective number of mirror periods 

found using (A7.29) and (A7.30) in (A7.5b) and (A7.11) simplify to 

£(Ty4 + Tyo) © —(1 +.(cA)?/2 = (6A)?/2), 

JSi(T1, + Ty)? — 1 © [(eA)? — (6A)?]1? = A, 
et® ~ —(1 $= aA + (cA)*/2) = eleT™, (A7.36) 

tanhmé tanhmoA 
Nee ~ : 

ef tanh € oA 

For consistency with coupled-mode notation used in Chapter 6, we have 

introduced another new variable, o = ./x* — 6*. The discrete propagation 

constant is simply jz + aA, to second order in oA. Within the stopband 

(|5| < k), o = Re{é/A} and we can interpret it as the decay constant per unit 

length. 
Using the approximations contained in (A7.35) and (A7.36), the general 

expression for reflectivity (A7.23) reduces to 

=“ tanhoL, (A7.37) 
oO 6 

1+j-—tanhoL, 
oO 

lg | coupled-mode 
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In deriving this result, we have neglected jA in the numerator in comparison 

to one, and set mA = L,. Equation (A7.37) is equivalent to the coupled-mode 

result, Eq. (6.37), aside from the —j phase factor listed there, which arises from 

a difference in the choice of input reference plane (see Chapter 6 for details). 

A7.6 GENERALIZED REFLECTIVITY AT THE BRAGG CONDITION 

The analysis described above assumes that the overall grating matrix can be 

represented by the single-period T-matrix taken to the mth power. The 

disadvantage of this approach is that it assumes the grating is completely 

periodic with only two alternating index layers. In practice, the input and output 

layers usually have different refractive indices from those comprising the 

alternating layers of the grating. More generally, there might be a situation 

where many of the layers within the grating itself are different. In this section 
we would like to generalize the results of Section A7.3 to include such 

nonperiodic gratings. Unfortunately, this type of analysis is not possible away 

from the Bragg condition, so. we focus our attention on determining the 

reflectivity at the Bragg frequency. 

Breaking the grating down into its fundamental components, we find that 

there are three types of matrices we need to consider: (1) high-to-low interfaces 

(referenced from left to right), (2) low-to-high interfaces, and (3) quarter-wave 

phase delays. Denoting these by Ty,, T,4, and T,,4, we would like to consider 
their effect on the following vectors: 

e =| d =| | A7.38 tala an ens ae | (A7.38) 

Using Table 3.3, it can be shown that 

[Tur les =e" ex, [Tarle- =e *e- 

[TryJe, =e “ex, [T,yJe- =e**e_ (A7.39) 

[Tyj4le, =Jje_, [Tyj4le_ = je, 

where for the ith interface 

aes $n] (A7.40) 

_ Ny; is the high index of the ith interface, and n,; is the low index. From Eqs. 
(A7.39), we see that e, and e_ are actually the eigenvectors of both T,,, and 
T,y, Suggesting that s; is just the discrete attenuation constant of the ith 
interface. For a quarter-wave delay, e, and e_ are not the eigenvectors, 
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however, T,,, does transform one into the other. In Problem A7.4 the reader is 
asked to verify these relations. 

Equations (A7.39) are all we need to propagate through any structure 
comprised of index discontinuities and multiples of quarter-wave segments. We 
are specifically interested in a grating whose index layers follow an HLHL 

sequence, and are each a quarter-wavelength thick. We begin by expanding the 

output field vector using Eq. (A7.8). Propagating through the first half- 

wavelength of the structure, assuming interface 0 is high—low, and interface 1 
is low-high, we obtain 

[Tra ICT a4) Tat I(T y4]eo = (Tr I(Ti4] [Ty] [Tyj4]3Le+ ees 

P= (Tra I[Taalizle e- + e*%e,] 

—sle %%e, Pe Stree], (A741) I 

Thus, the s parameters of the two interfaces simply add together. Continuing 

the above procedure through N interfaces to the input, and taking the ratio of 

the reflected to incident wave amplitudes, we find 

N 

(7, |(=-tanh )s s;, (A7.42) 
1) 

where N is the number of quarter-wave layers in the grating. Using Eq. (A7.40) 

for s;, we can alternatively express the reflectivity as 

fe Sa Ed a I =| (A7.43) r,| = ———_ = — |. : 
: 1+b5 0 Lg; 

If n, and ny, do not change throughout the grating, and there are N = 2m 

quarter-wave layers with nzo/nyo = 1 (see Fig. A7.2), then b = (n,/ny)*”, and 

(A7.43) reduces to the more limited (A7.14) derived earlier. 

The tools developed here can also be applied to dielectric structures which 

may have half-wavelength spacings, as well as to structures which do not follow 

the HLHL alternating sequence (antireflection coatings are an example of this). 

The interested reader is invited to compare this method to the method discussed 

by Corzine, Yan, and Coldren (see reading list) which analyzes a wider range 

of dielectric structures using essentially the same approach. 
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PROBLEMS 

A7.1 

AT7.2 

A7.3 

Design the grating mirrors of a VCSEL which meet the following 

requirements: 

(i) The output coupler mirror must be as close to 99% peak power 

reflectivity as possible. 

(ii) The back reflector must be greater than 99.9% peak\power reflectivity. 

Specify the mirror designs including number of periods and layer 

thicknesses for two material systems: 

(a) Aly »Gay gAs/AIAs alternating layers which provide a peak reflectivity 

at 0.87 pm 

(b) InP/InGaAsP(1.3 pm) alternating layers which provide a peak reflec- 

tivity at 1.55 um : 

Table 1.1 may be helpful in establishing the proper design. For the back 

reflector, assume the grating terminates in the higher index material on 

both sides. For the output coupler, assume that one side terminates in 

the higher-index material, and that the other side terminates in air (in 

your output coupler design, take care to insure that the index follows 

the HLHL ordering sequence required for proper phasing of the reflected 

waves). Include a schematic of the index profile for all finished mirror 

designs. 

If the region between the two mirrors of the VCSEL is one optical 

wavelength thick, how long would it take to grow both the short- 

wavelength and long-wavelength VCSELs assuming a typical growth 

rate of 1 um/hour? Can you comment onthe benefits of either the 

short- or long-wavelength material systems from this perspective? 

Derive the general expression for the grating reflectivity, Eq. (A7.23), 

using the techniques developed in Section A7.3. Specifically: 

(i) Determine the eigenvectors using the second version of Eq. (A7.5c). 

(ii) Expand the output vector in terms of the two eigenvectors. 

(iii) Propagate the fields to the input plane. 

(iv) Evaluate the reflected to incident amplitude ratio. 

In defining the eigenvectors you may find it useful to set e*5 = 

T,,(1 + tanh €)/(1 + jA) and 7,, = 7,,(1 —jA)/(1 + jA) (however, if 

you do use these relations, verify that they are indeed correct). 

The concept of a penetration depth not only applies to the linear phase 

deviation of the grating near the Bragg condition, but also to the energy 

distribution and absorption loss of the grating at the Bragg frequency. 

(a) The energy penetration depth can be defined as the depth at which 

the incident energy taken as constant into the mirror is equal to the 

total energy integrated over the grating length. Setting the incident 
energy times the energy penetration depth equal to the summation 
of energy throughout all periods, we have 
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(A*A,, + Br Bm) Less = (A¥A; + B¥B;)A. (A7.44) 
i=4 L 

Here the total energy in each period is approximated by the energy 

density at the left edge times the thickness of one period. This will 

be a good approximation if A is small compared to the length of the 

stack (m is large). 

Using Eq. (A7.9) for A; and B; at the Bragg frequency, show that 

the energy penetration depth can be approximated by 

t anh 2mé x 

2E 

Hint: The summation can be approximated with an integral by 

setting A > dz and iA > z. 

Show that this expression is equivalent to 5m,,,A in the small r, 
large m limit. 

(b) The absorption loss penetration depth can be defined as follows. If 

some small absorption loss, «, is distributed uniformly throughout 

the grating, the reflectivity of the grating will be reduced somewhat. 

If we model the reflector as a hard mirror recessed by some 

penetration depth into the lossy material, then the resulting round- 

trip attenuation is equal to e~?*4*7 x 1 — 2aL4 rp (for small losses). 

The definition of L?,;, is found by equating this effective reduction 

in power reflectivity with the true reduction. 

By including a uniform loss in the phase terms, ¢,, of Eqs. (3.43), 
show that at the Bragg frequency, A ~ —jaA/2 instead of zero. With 

this result and Eq. (A7.23), derive an approximate expression for 

Lirr> assuming the loss terms can be expanded to first order. Show 

that L2,, is equivalent to 3m,,,A in the small r limit. 

(c) Derive the exact phase penetration depth, L?,,, given in Eq. (A7.25). 

Verify all relations in Eq. (A7.39). What are the corresponding relations 

for a half-wave phase delay? Answer this question by: 

(a) directly using the half-wave matrix 

(b) connecting two quarter-wave phase delays in series 

Using the half-wave phase delay properties just derived, and other tools 
developed in Section A7.6, derive the reflectivity of a structure which is 

composed of: 

(i) a low-high interface 

(ii) a half-wavelength phase delay 

(iii) a high-low interface (where the high layer of both interfaces is the same) 

Express the reflectivity both in terms of the three refractive indices and 

in terms of the individual interface reflectivities. Repeat the derivation 

assuming a quarter-wave phase delay instead. How do these expressions 

compare to the Fabry—Perot expressions derived in Chapter 3? 



APPENDIX EIGHT 

EEE 

Electronic States in 

Semiconductors 

A8.1 INTRODUCTION 

In Appendix 1, a basic description of electronic states in periodic potentials was 

given. Important concepts such as energy bands, the electron effective mass, 

and the density of states were introduced. All of these concepts are essential to 

understanding the manner in which light interacts with semiconductor crystals. 

However, in order to provide a quantitative description of optical gain in these 

materials, a more complete description of the electronic states is required. In 

this appendix, the wavefunctions of the electrons required to evaluate the 

transition matrix element (see Appendix 10) will be considered in some detail. 

In addition, valence band-mixing effects related to the coupling of the heavy- 

and light-hole bands will be discussed. Finally the effects of strain on the 

subband structure of strained quantum wells will be treated. Some of the 

discussions will draw upon material introduced in Appendix 1. 

A8.2 GENERAL DESCRIPTION OF ELECTRONIC STATES 

The electron wavefunctions in the conduction and valence bands of the 

semiconductor are found by solving the Schrodinger equation which relates the 

system Hamiltonian, Hp, of the crystal lattice to the energy, E, of the electron. 

It can be written as 

iy = FE - ro |v SE. (A8.1) 

where p is the momentum operator, r is the position vector, m, is the free 

electron mass, y is the wavefunction of the electron, and V(r) is the potential 

488 
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created by the crystal lattice. Due to the periodicity of V(r), the solutions of 

the above equation are given by Bloch waves of the form 

w = etu(k, r), (A8.2) 

where k is the wavevector of the electron, and u is a Bloch function with the ~ 

special property that it is periodic with the crystal lattice, and hence repeats 

itself in each unit cell of the crystal. In most practical cases, we never actually 

need to know the exact description of the Bloch function. What is important 

however is the symmetry properties of the Bloch functions in the conduction 

and valence bands, which will be considered in Section A8.3. 

For analyzing localized electronic states such as those encountered in 

quantum wells and quantum wires, it is useful to consider linear combinations 

of the Bloch wave solutions in Eq. (A8.2). Using an arbitrary set of expansion 

coefficients, A(k), we can express a spatially localized wavefunction as 

wy = | Adoe*ut r) d°k = u(0,r) | Adve a°k = F(r)u(r). —(A8.3) 

The description of localized states contained in (A8.3) is known as the envelope 

function approximation. The key assumption here is that within a given energy 

band, the Bloch function is not a strong function of k (at least in the proximity 

of the band edge) and can thus be approximately represented by the band edge 

(k = 0) Bloch function, u(0,r) = u(r). This allows us to pull it out of the 

expansion and define an envelope function, F(r), whose Fourier spectrum is 

made up of the plane wave components of the solutions in (A8.2). Thus, our 

generalized approximate solutions in a given energy band consist of the band 

edge Bloch function multiplied by a slowly varying envelope function. We 

choose the two components to be normalized such that in Dirac notation, we 

have 

1 
criFy= | F*F d*r = 1, <ulu> = | u*u d°r = 1. (A8.4) 

Vv unit cell uc 

For the envelope functions, V is the volume of the crystal. For the Bloch 

functions, we only need to consider the volume of a single unit cell of the crystal, 

V,.. Note that with our chosen definitions, the envelope functions have 

dimensions of V~'/?, whereas the Bloch functions are dimensionless. 

From symmetry considerations alone, one can deduce that the conduction 

band and valence band Bloch functions are orthogonal to each other. In Dirac 

notation, this orthogonality can be compactly written as 

<u,|u,> = (uy|ue> = 9. (A8.5) 

In Section A8.3, a more detailed discussion of the Bloch functions will reveal 

why this orthogonality exists. The envelope functions on the other hand can 
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be determined explicitly. For example, in bulk material, the normalized envelope 

functions are simple plane waves: 

ie a (A8.6) 
JV 

The envelope functions in quantum-well material are considered in Appendix 

1 and also later in this appendix. 

We are particularly interested in the relationship between the energy, E, of 

the electron or hole given in (A8.1) and the electron’s wavevector, k, given in 

(A8.6). It is quite common to assume the bands to be parabolic in both the 

conduction and valence bands, allowing us to invoke the effective mass concept: 

\ 

2E2 ZEZ 

A (ate OS a (jc me 
2m. 2m, 

fy 

p (A8.7) 

where E,, , are the band edge energies, Me, » are the effective masses in the two 

bands, and k, , are the magnitudes of the wavevectors of a given electron or 

hole. However, these expressions are oversimplifications to reality. First of all, 

E(k) is not the same along all directions of the crystal, and we cannot simply 

use k in place of k. For example, the heavy-hole band in GaAs is known to be 

highly anisotropic as a function of the k-vector direction (in comparison, the 

conduction and light-hole bands are much more isotropic at energies near the 

band edge). Secondly, at energies away from the band edge, the band curvature 

does not remain perfectly parabolic, especially in the light-hole band. In 

quantum-well and quantum-wire material, the valence band becomes extremely 

nonparabolic. Thus, in defining the relations for gain, we must keep in mind 

that (A8.7) is not always a good approximation to reality. 

A8.3. BLOCH FUNCTIONS AND THE MOMENTUM MATRIX ELEMENT 

To define the electronic states more explicitly, we will first consider the Bloch 

functions of the various energy bands. The conduction and valence bands are 

illustrated in Fig. A8.1. The three valence bands are commonly known as the 

heavy-hole (HH), light-hole (LH), and split-off hole (SO) bands. We can view 

each energy band as originating from the discrete atomic energy levels of the 

isolated atoms that compose the crystal as introduced in Appendix 1. In this 

sense, the conduction band can be thought of as a remnant of an s atomic 

orbital, while the three valence bands are remnants of the three p atomic 

_ orbitals: p,, p,, and p,. The corresponding Bloch functions for these orbitals 

are denoted here as u, and u,, u,, and u,. It is very useful to make this 

correspondence because the Bloch-functions retain many of the symmetries that 

the atomic orbitals possess. 
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HH 

FIGURE A8.1_ Typical III-V semiconductor band structure schematic illustrating the 

conduction (C), heavy-hole (HH), light-hole (LH), and split-off (SO) bands and their 

relative energy separations. The true (solid) and approximate (dashed) C bands are 

shown with their corresponding effective masses. (The relative scale of the four bands 
corresponds roughly to GaAs.) 

For instance, the conduction band Bloch function, u,, has even symmetry in 

all three directions within each unit cell, similar to the spherically symmetric s 

atomic orbital. In a similar manner, u, has odd symmetry along z, but even 

symmetry in the other two directions, within each unit cell, similar to the p, 

atomic orbital. From these two facts alone, we can state that the net odd 

symmetry along z must give <u,|u,> = 0 (where the brackets indicate integration 

over a unit cell). However, operating on u, with the momentum operator, p,, 

inverts the symmetry along z and the momentum matrix element <u,|p,|u,> is 

therefore, in general nonzero. From these and similar arguments we can 

immediately write down some useful symmetry relations and definitions [1] 

<u,|piluj>=9, fori ¥j (A8.8) 

<us|p|uj; > = «us| p;luj> = M, (A8.9) 

<u,|p|u; > = 0, (A8.10) 

where i = x, y, z, and u;, u; indicate spin-up and spin-down functions. The third 

relation comes from the fact that Bloch functions of opposite spin do not 

interact. The constant M is defined here as the basis function momentum matrix 

element. Thus, through simple symmetry arguments, the various momentum 

matrix elements between u, and the three u; can now all be related simply to 

one constant, M. 

The valence band Bloch functions u,,,, u,,, and u,, corresponding to the bands 

of Fig. A8.1 are usually written as linear combinations of the “basis” functions 

u,, Uy, and u, [2-4] in a manner analogous to the construction of hybrid orbitals 

in the study of molecular bonds. Spin degeneracy exists in all three bands, so 
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we actually need to define six Bloch functions. Defining the electron’s k-vector 

to be directed along z, the valence band Bloch functions can be written as 

1 a = 
Unn = S(O iu,), hh = —= (Uy iu, ), ip 

L Gare D pip oe ee oa Apnea) Ujp, = U,. Wy, — u, 3 Ujp = OS me y z)> i 

v. Bis 
1 

Us. = ——= (4, + iu, + u,), u,. = —= (u, — iu, — u,). 
3 i Rs : 

The prefactors are normalization constants which can have arbitrary phase (the 

phases chosen here are those of Broido and Sham [5]). For k directed along 

another direction we would have to redefine the above relations (however, cyclic 

permutation of x, y, and z do yield equivalent relations if we also include the 

direction of k in the permutation). 

The above linear combinations of basis functions are known as the angular 

momentum representation. They are useful when we consider the spin— 

orbit interaction between the angular momentum of the p orbitals and the 

spin angular momentum of the electron. The spin—orbit interaction term is 

“diagonalized” in the above representation [2]. The SO band would be 

degenerate with the HH and LH bands if the spin-orbit interaction did not 

exist. As it is, the spin—orbit interaction partially removes the degeneracy, 

suppressing the SO band from the other two by a spin-orbit splitting energy, 

A, which in GaAs is equal to ~0.34 eV. 

With the above description of the valence bands, we can obtain a more 

complete description of the transition matrix element. However, the magnitude 

of the basis function momentum matrix element is still an unknown. Therefore, 

we will close this section with an example use of the above relations to obtain 

an approximate expression for the magnitude of | M|?. 

Evaluation of |M|? in bulk material was first obtained by theoretically 

relating it to the curvature of the conduction band [3, 6]. Using a second-order 

perturbation technique known as the k-p method [1-3], we can express the 

conduction band effective mass along the electron’s k-vector direction (which 

for the definitions of Eq. (A8.11) is the z-direction) as 

= <1 9)an Seles ah LGA 
Mz Mo n#=c No E. a E, 

where the summation sums over all n energy bands (not to be mistaken with 

energy subbands in quantum wells) of the crystal, and the E, and E, are the 

band edge energies of each band. From (A8.12) we see that the deviation of 

the conduction band effective mass from the free electron mass arises from the 
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interaction between the conduction band and all other energy bands in the 
crystal. 

It is interesting to note that due to the sign of the denominator, contributions 
from higher energy bands make the effective mass heavier and tend to flatten 

out the conduction band, while contributions from lower-lying energy bands 

tend to decrease the effective mass, increasing the curvature of the conduction 

band. In either case we find that the effect of a given band is to repel the 
conduction band away from it. 

Also because of the denominator, only energy bands close in energy to the 

conduction band will contribute significantly to the summation. By neglecting 

all but the three valence bands in the summation, we can obtain an approximate 

closed-form expression for the conduction band effective mass using the 

relations given in (A8.8) through (A8.10) and (A8.11). Note that the HH Bloch 

function does not contain u,, and hence its contribution to the sum is zero. 
Thus, summing over the LH and SO bands and using the energy separations 

defined in Fig. A8.1, we obtain 

1 Mic /2 1 4 
Sp ef (A8.13) 
m* my \3E, 3(E, +A) 

The approximate conduction band effective mass, m*, is expected to be lighter 

than the true effective mass since the effects of any higher energy bands have 

been neglected in our approximation. The approximate conduction band (with 

curvature related to m*) and the true conduction band are both illustrated in 

Fig. A8.1. 
The true conduction band effective mass can be measured experimentally to 

a good degree of precision using cyclotron resonance techniques [7]. Thus, by 

assuming that m* is close to the true effective mass, m,, we can rearrange (A8.13) 

to obtain 

E,+A m= (2-1) hear; 
m 2 (e+ 34) 

3 

So we see that the simple description of the valence bands given in (A8.8) 

through (A8.10) and (A8.11) has led directly to a formula which can yield a 

rough estimate of |M|? [6]. And while the above relation is not exact, it does 

reveal that |M|? is roughly proportional to the ratio of the energy gap to the 

conduction band effective mass of the semiconductor [8]. 

We have derived Eq. (A8.14) as an exercise in using the valence band Bloch 

functions. It is a useful formula for materials which have not been fully 

characterized. However, in more common materials, such as GaAs, much more 

accurate methods of determining |M|? exist [9-13]. The inaccuracy of (A8.14) 

stems from the fact that the contribution from higher-lying energy bands 

can be significant, and thus, m* is not always a very good approximation 

(A8.14) g° 
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to the true effective mass, m,. For example, in GaAs, m* is approximately equal 

to 0.0502m, compared to the true effective mass, 0.067m,. Thus, using the true 

effective mass in (A8.14) leads to an underestimation of the matrix element by 

about 26%. Many previous calculations have failed to recognize this correction 

(see Yan et al. [14] for a discussion of this) implying that both calculated 

spontaneous emission (and hence, calculated radiative current density) and 

optical gain will be underestimated by 26%, a significant factor. The most 

accurate estimates of |M|? have actually been obtained using electron spin 

resonance techniques [9-13]. In Table 4.1, we have tabulated the most 

accurately reported values of |M|? in several material systems commonly 

used in semiconductor laser applications. 

A8.4 BAND STRUCTURE IN QUANTUM WELLS 

With the Bloch functions now defined, we need to concentrate on defining and 

solving for the envelope functions in the conduction and valence bands. 

A8.4.1_ Conduction Band 

For a nondegenerate energy band (aside from spin), such as the conduction 

band, it has been shown most notably by Luttinger and Kohn [4] (using a k-p 

formalism) that an “effective mass equation” or Schr6édinger-like equation for 

the envelope function, F,, as defined in (A8.3) can be derived. It can be given as 

(H, + V)F, = E,(k)F; (A8.15) 

where the Hamiltonian for the conduction band is simply 

h? . 
H, = ———V’? > aye + k} + k2). (A8.16) 

mM, 

The arrow indicates the form of the Hamiltonian for plane wave solutions (when 

V is constant). The potential, V, in this case corresponds to the variation in 

the material band edge, and the total energy of the electron, E,(k), is measured 

relative to the bottom of the conduction band. What is extremely appealing 

about the effective mass equation as compared to Eq. (A8.1) is that the Bloch 

functions have been removed from the equation, and the effect of the periodic 

potential arising from the crystal lattice (and hence, the coupling to other energy 

bands) is now replaced by a conduction band “effective” mass, m,. In this 

approximation, the quantum well created by the interfacing of three materials 

_ of different bandgap truly becomes a textbook particle-in-a-box problem with 
F as the wavefunction, and the material band edges as the potential, V. The 
solutions to Eqs. (A8.15) and (A8.16) for a quantum welk are considered in 
Appendix 1. 
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A8.4.2. Valance Band 

A8.4.2.1 Degenerate Effective Mass Equation The simplicity of the band 
structure in the conduction band of a quantum well relies on the assumption 
that the interaction with other energy bands is weak enough that we can 

treat it perturbatively by replacing that interaction with a conduction band 

effective mass. However, for bands degenerate in energy, the assumption of 

weak interaction is a poor one and cannot be used. Therefore, the effective 
mass equation (A8.15) must be modified to include the strong degenerate 
band interaction explicitly. 

A modified derivation for the degenerate band effective mass equation has 
also been treated by Luttinger and Kohn [4]. In this case, we still obtain an 

effective mass equation for each degenerate band similar to (A8.15), however, 

as a result of the degeneracy, a coupling term is introduced which couples 

the equations together. For the degenerate HH and LH bands near the band 

edge (see Fig. A8.1), this implies that we must work with four coupled 

effective mass equations (we must include the spin degeneracy)! We can 

actually include as many energy bands in the coupled set of equations as we 

desire (two equations for each spin-degenerate band). For example, in addition 

to the HH and LH bands, Eppenga et al. [15, 16] have included the SO band 

as well as the conduction band in their four-band model, leading to eight 

coupled equations! However, interaction between the HH and LH bands is by 

far the strongest, and we do not pay a large penalty by neglecting the other 

bands. Only when we consider energy levels deep into the valence band (energies 

comparable to the spin—orbit splitting energy, A), do we need to include the 

SO band explicitly. In GaAs and InGaAs, A > 300 meV, implying that for most 

gain calculations with these materials, we can neglect the SO band entirely. In 

InP, A = 100 meV, however, the well material typically used in this system is 

closer to lattice-matched InGaAs where again A is closer to 300 meV. 

The four coupled effective mass equations can be greatly simplified using a 

method first suggested by Kane [2] and later by Broido and Sham [5]. They 

pointed out than an appropriate linear combination of the four Bloch functions 

(Unh> Urns Unn> Um), into four new Bloch functions (u4, Ug, Uc, Up), decouples the 

four equations into two identical sets of two coupled equations. Thus, we 

actually only need to consider two coupled equations in our analysis. However, 
a price must be paid for this luxury. We must now restrict our attention to 

analyzing E,(k,,) in a given plane in the crystal (the direction of k,, must be 

specified). Furthermore, the equations remain completely general only for the 

{100} and {110} planes. However, for the present purposes, these represent 
only minor restrictions. 

The two coupled effective mass equations for the degenerate bands can be 

expressed as 

(Ayn + V) Fin + Wy, = E.(kK) Fu, (A8.17) 

(Ay, + V)Fin + WtF,, = E,(k)Fi, (A8.18) 
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where Fi, ;, are the heavy- and light-hole envelope functions corresponding 

to two new Bloch functions u, , to be defined in the next section. These 

replace the generic valence band envelope function F, in this coupled case. 

E,(k) is the total energy of the hole measured from the valence band edge. 

Also, Wt is the Hermitian conjugate of W. The main difference between the 

degenerate (A8.17) and (A8.18) and nondegenerate (A8.15) effective mass 

equations lies in the coupling term, W. The energy, E,(k), is what we would 

like to solve for, but because of W, we must now solve two equations 

simultaneously to find it. 

The form of the Hamiltonians, H,,, ,, are also slightly different from 

(A8.16). Let us define k, and k, to be two perpendicular k-vector components, 

with k, directed along a 100) direction, and k, directed either along a ¢100) 

direction or a (110) direction within the k,—k, plane. With these definitions, 

we can write (assuming plane wave solutions) 

Ayn = (1 — 2y2)k2 + (1 + ¥2)k?, (A8.19) 

Hy, = (1 + 2y2)k2 + (v1 — Ya)k?, (A8.20) 

where 

2 2 

V1 — 272 = » +272 =—. (A8.21) 
2My), 2myp, 

In writing H), ,, we are assuming for convenience that E,(k) measures 

positive into the valence band. Note that the form of (A8.19) and (A8.20) is 

very similar to (A8.16). The only surprising feature is the different effective 

masses used along k, and k,. As we shall see in the next section, inclusion of 

the coupling term compensates for this apparent asymmetry in bulk material. 

However, in quantum-well material, this asymmetry produces a much lighter 

HH mass in the plane of the well than along the confinement axis. The 

material constants y, , are referred to as the Luttinger parameters [17], and 

are easily related to the HH and LH effective masses, m,, and m,,, through 

(A8.21). A third Luttinger parameter, y3, exists in the coupling term, W. The 

coupling term takes a slightly different form when k, is directed along <100) 
and <1 10> directions. We can define the two forms as 

W = ./3k(y2k, — i2y3k,) for {100} planes, (A8.22) 

W = /3k(y3k, — i2y3k,) for {110} planes. (A8.23) 

The Hermitian conjugate is given by 

Wt = ./3ki(yaa)k, + i2y3ke), (A8.24) 
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independent of whether or not k, is complex, (ie., we do not take the 
complex conjugate of the hermitian operator k, in defining W*). For either 
of the above forms, it is interesting to note that with k, = 0, the coupling term 

disappears, and the effective mass equations decouple! Thus, in a quantum 
well, we can independently solve each of the effective mass equations (A8.17) 

and (A8.18) for the quantized E,,(0) of the HH and LH valence bands, just. 

as was done for the conduction band in the previous section. However, for 

finite k, (i.e., away from the band edge), the equations become coupled and 

the solutions for E,,(k,) become more complicated. 

A8.4.2.2_ Bulk Solutions As in the conduction band, our first step in solving 

the quantum-well problem is to find the bulk solutions within each material. 

To find a general relation for E,(k) in bulk material, it is convenient to cast 

the effective mass equations (A8.17) and (A8.18), into matrix form: 

ee V W [|= ao] P| (A8.25) 

Whe Hyeh Vile 9 

For the bulk solutions we take V to be a constant, Y%). Then in looking at 

Eqs. (A8.19) and (A8.20), we find that for a given k-vector, the 2 x 2 

Hamiltonian matrix consists of simple constants. The eigenvalue problem in this 

case is easily solved for the eigenenergies. In general form, the bulk E,(k) 

relations for the HH and LH bands are given by 

E(k) — Vo = 4(Hin + Hin) + 3H — Hn)? + 4WtW?, (A8.26) 

Using Eqs. (A8.19) through (A8.24), E,(k) can be given explicitly in terms of 

k within any {100} plane, by 

E,(k) = y,(kZ + k?) + [4y3(kz + ke)? + 12(y3 — y2kek?e "7, (A8.27) 

where we have set % = 0. A similar equation can be found for E,(k) in any 

{110} plane. Figure A8.2 illustrates the constant energy contour curves of 
(A8.27) for both the HH band solution (negative root) and the LH band 

solution (positive root). From these curves, we see that the third Luttinger 

parameter, ), can be related to the effective mass anisotropy along the ¢100> 

and <1 10) directions (because with y, = yz, the contour curves would become 

circles, from (A8.27)). Looking along either k, or k,, (along a (100) direction), 

the cross-term in Eq. (A8.27) disappears and we simply have 

E,(k) = (y, + 2y2)k?, k directed along any <100) direction. (A8.28) 

From the definition of the Luttinger parameters in (A8.21), we see that the 

standard HH and LH £,(k) relations are obtained from (A8.28). Thus, 
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-0.02 /A k, 0.02 /A  -0.02./A k, 0.02 /A 

Heavy Hole Light Hole 

FIGURE A8.2 Contours of constant energy within any {100} plane of k-space for the 

HH and LH bands in bulk GaAs. The energy spacing between each contour level is 

0.5 meV for the HH band and 3 meV for the LH band. 

contrary to what (A8.19) and (A8.20) may suggest, the effective masses along 

k, and k, are identical in bulk material (within {100} planes). 

To completely specify the bulk solutions, we also need to find the eigenvectors 

of (A8.25). With E,,(k) and £,,(k) given by the two roots of (A8.26), the 

eigenvectors, apart from a normalization constant, are found to be 

datea ye Ea s ik + Vo = a a dalan (A8.29) 

th alla LAi(k) 

Wo(k, ¥) = el s ae amd i a a mec (A8.30) 

Fin a A,i({k) 

where for either solution, the matrix notation implies 

YW = Funta + Fiy,Up- (A8.31) 

The validity of (A8.29) and (A8.30) can be checked by substituting them into 

(A8.18). In addition, the Hamiltonians in Eqs. (A8.19) through (A8.24) implicitly 

assumed plane wave solutions, so their inclusion in (A8.29) and (A8.30) is 

mandatory. Equation (A8.31) gives the wavefunctions in vector notation. The 

Bloch functions, u,4 ,, are orthogonal to each other (analogous to two 

orthogonal unit position vectors in real space) and are given by linear 
combinations of the valence band Bloch functions defined in Section A8.3. We 
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can write them as [18] 

1 
CS a: We (OU), — &* Uy), (A8.32) 

1 
ling = A (Pu,, — B*u,,). (A8.33) 

For {100} planes, «=f=1. For {110} planes, « = exp[i3z/8], and 
B = exp[—in/8]. 

A8.4.2.3  Quantum-well Solutions To solve the quantum-well problem, we 

again choose the quantum-well direction to be along z (this is not mandatory, 

but the effective mass equations would not decouple at the band edge otherwise 

(see (A8.22) through (A8.24)). In this case, k, is directed along the confinement 

axis and k, is the transverse k-vector component which lies in the plane of the 

well, as shown in Fig. A8.3(a). We now construct a general solution out of 

all bulk solutions that exist at a given energy within each material. From 

(c) 

FIGURE A8.3 (a) Coordinate system to be used in the valence band model. The 

transverse or in-plane k-vector, k,, can be directed along either a ¢100> or <110) 

direction, whereas the confinement axis must be along a <1 00) direction. (b) Illustration 

of the four plane wave states that exist at a given energy in the bulk valence band 

structure with k, = 0. (c) Quantum-well potential and the eight coefficients which are 

to be used in solving the degenerate effective mass equation (see Eq. (A8.34)). The | and 

r superscripts indicate left and right coefficients. 
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Fig. A8.3(b), we see that in general, four plane wave solutions exist at a given 

energy [19]. The general solution in each region of Fig. A8.3(c) is then given by a 

linear combination of these four waves, or 

= As Wie Kin, ky) + ¥ Bsa wW2(tky,, k,, ¥). (A8.34) 

The sums are over the plus- and minus-going waves, and the k,,, ;, are defined 

in Fig. A8.3(b). The four coefficients, A, , By, are unknown constants. Equation 

(A8.34) is the valence band analog of (A1.6) in the conduction band. In this 

sense, Eq. (A8.27) is the more complicated valence band analog of Eq. (A1.7).] 

Both w, and yy, are two-component vectors, from their definitions in (A8.29) 

and (A8.30). The general solution, ‘, is also a two-component vector. Each 

component can be written as 
\ 

Fun = Sa PY, A, Ay CE ky, ker + y BL AWK Eky Ke OY, (A835) 

Fy, = e'"[)) As Ay (thy, ken +, By Aol thy, k,Je~™"7], (A836) 

where we have pulled out the common transverse plane wave component. Thus, 

in the case of the valence band, there are four unknown coefficients, A,, B, 

in each region, as shown in Fig. A8.3(c), as opposed to just two, as was the 

case in the conduction band. 

To find the coefficients, we match the general solutions within each region 

at both well—barrier interfaces. The boundary conditions for the degenerate 

effective mass equation involve matching the four following quantities [19] 

across the interface 
dF, 

FR fand 4G, — 27) + 3 walkie (A8.37) 

dF, 
Fy and (1 + 2y2) saeco a Ne (A8.38) 

With k, = 0, the above boundary conditions are identical to those given in 

Appendix | for the nondegenerate case. In addition, for any k,, if the Luttinger 

parameters are the same on both sides of the interface, the second boundary 

conditions reduce to the simple slope continuity conditions. The generalized 

slope continuity conditions (A8.37) and (A8.38) can be derived by integrating 

Eq. (A8.25) over an infinitesimal thickness which straddles the interface. 
However, we must first symmetrize the Hamiltonian which involves setting 
(v1, & 2ya)k? > ky, + 2y.)k, in Eqs. (A8.19) and (A8.20), and setting y3k, > 

. (73k, + k,73)/2 in Eqs. (A8.22) through (A8.24), before setting k, > —id/dz, 
since );, 72, 3 all depend on z. These symmetrizing substitutions guarantee 
that the Hamiltonian in Eq. (A8.25) remains hermitian ‘for any arbitrary 
z-dependence of y,, yz, 73. It should be noted that the above boundary 
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conditions hold for both {100} and {110} planes. Caution should be issued 
here that the above boundary conditions apply only when the Bloch functions 
of the two materials are similar (this similarity should be mirrored in the values 
of the Luttinger parameters). 

Applying the four boundary conditions at each interface gives us a total of 

eight equations. There are four unknown coefficients in each of the three regions, _ 

or twelve in total. However, requiring the envelope functions to go to zero at 

infinity leaves us with a total of eight unknown coefficients as shown in Fig. 

A8.3(c). Thus, our problem is now completely specified and we can solve the 

eight homogeneous equations by numerically finding the roots of the 8 x 8 
determinant. 

The general procedure for obtaining E,(k,) is then as follows: (1) find the 

E,,(0) of a particular HH or LH band edge energy level using the conventional 

method of Appendix 1; (2) increment k, and guess at the new energy of the 

state; (3) find k,,, », from the two E,(k) relations given in (A8.26) within 

each material (each material having its own Vy and its own set of Luttinger 

parameters); (4) evaluate the A’s within each material from their definitions in 

(A8.29) and (A8.30); (5) evaluate the 8 x 8 coefficient determinant; (6) if it is 

not equal to zero, use Newton’s method to repeat the process until the energy 

root is found for that given k,; and (7) increment k, and repeat the entire process 

to find the new energy root, using an educated initial guess. The entire E,,(k,) 

can then be traced in this way. The rate of convergence is very good for this 

type of problem. For example, for each k,, the energy root can be found in 

typically 2-3 iterations (Fig. A8.4 was generated in less than 30 seconds 

on a Macintosh Quadra 650). 

Our description of the valence subband structure is now complete and we 

can move on to an example. The one-dimensional quantum confinement in the 
conduction band gives rise to a set of parabolic subbands in the plane of the 

well. In the valence band, coupling between the HH and LH subbands changes 

the situation drastically, giving rise to a much more interesting band structure. 

Figure A8.4 shows the valence subband structure for an 80A GaAs/Al,Ga, _,As 

quantum well with x = 0.2 in the barrier regions, calculated using the procedure 

outlined above. The subband structure is seen to be far from parabolic, and in 

some regions, the band curvature is even inverted, leading to a negative “local” 

hole mass. 
With respect to predicting the optical gain achievable in a material with the 

subband structure shown in Fig. A8.4, we are particularly interested in the 

density of states of the subbands, also shown in Fig. A8.4. The density of states is 

important because it determines the relationship between carrier density and 

the quasi-Fermi level of the band as discussed in Appendix 2. From Fig. A8.4, 

we see that p, is roughly 2.5p, near the band edge, but rapidly becomes very 

large as mixing between the bands starts to become significant. The mismatch 

between p, and p, as well as the overall large p, reduces the performance of the 

quantum well, increasing transparency levels and reducing the differential gain 

(ideally the DOS curve in Fig. A8.4 would be a straight line of magnitude one). 
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<<110> <100> —> 

Energy (meV) 
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FIGURE A8.4 Plotted on the left is the valence subband structure of an 80A 

GaAs/Al, »Gag gAs quantum well (Vo ~ 95 meV). On the right is the total (solid curve) 

and H1 subband (dashed curve) density of states plotted relative to the density of states 

in the first conduction (C1) subband. 

Because the energy bands are different along the <110> and <100) 

directions within the quantum well, the density of states at any given energy 

should in principle be calculated by averaging over all in-plane k-vector 

directions. Fortunately, this procedure can be approximated by calculating the 
density of states for just one set of energy bands which is some appropriate 

average between the <100) and ¢<110) dispersion curves shown in Fig. A8.4. 

These average energy bands can be found by using a coupling term of the form 

Wire = (Wiroo + Wi10)/2 in the band calculation. This approach is commonly 

known as the axial approximation [3]. We use it to calculate the density of 

states in Figs. A8.4 and A8.6 as well as for all quantum well gain calculations 

presented in Chapter 4. For the “bulk” barrier regions, the energy bands (the 

HH and LH effective masses) are found using a “spherical average” of the 

effective masses along all directions in the crystal. It basically involves replacing 

y with (2y. + 3y3)/5 in Eq. (A8.21), and is known as the spherical approximation 
[£9]; 

In the next section, we consider ways in which p, can be modified, in 

beneficial ways, by the introduction of strain. 

A8.4.3. Strained Quantum Wells 

It was originally suggested by Yablonovich and Kane [20] and independently 

by Adams [21] that the introduction of compressive strain into the crystal 

lattice of a semiconductor could lead to enhanced performance in semi- 

conductor lasers. To understand why, we need to examine the effects of 
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Oygne daaney 
«| ELE} * = oo ss 

HEEHH z 
FSS ay\ 

ay = 
| (= a) < ao cx ay 

In Ga,_,As on GaAs 
(b) 1) 

1.3 

3 
= 

g & g 
0.9 > 

& 0.7 = 

2 ao 

2 wo 0 
0 0.2 0.4 0.6 0.8 1 

Indium Mole Fraction 

(c) 

Vv LH 

| Stot 

FIGURE A8.5 (a) Crystal lattice deformation under compressive strain. (b) Bulk band- 

gap of In,Ga,_,As, when the in-plane lattice constant is compressed to that of GaAs. 

(c) The modified potential profile in the valence band of a quantum well, when the well 

material is under compressive strain. 

strain, particularly in a quantum well. Introducing compressive strain into a 

quantum well configuration is particularly simple; just grow the well layer out 

of a material with a larger native lattice constant than the barrier layers. 

Because the quantum-well layer is typically very thin, instead of forming misfit 

dislocations, the lattice actually compresses in the plane of the well to match 

that of the barrier layers. In addition, the lattice constant in the direction normal 

to the plane becomes elongated (in an effort to keep the volume of each unit 

cell the same), as shown in Fig. A8.5(a). 

Because the energy gap of a semiconductor is related to its lattice spacing, 

we might expect that distortions in the crystal lattice should lead to alterations 
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in the bandgap of the strained layer (putting aside for the moment the changes 

created simply by quantum confinement). In fact, there are two types of 

modifications which occur as discussed in more detail in Appendix 11. The first 

effect produces an upward shift in the conduction band as well as a downward 

shift in both valence bands, increasing the overall bandgap by an amount, H 

(which is positive for compressive strain and negative for tensile strain). The 

H indicates that this shift originates from the hydrostatic component of the 

strain. The second more important effect separates the HH and LH bands, each 

being pushed in opposite directions from the center by an amount, S. The S 

indicates that this shift originates from the shear component of the strain. Thus, 

the band edge degeneracy of the two valence bands is removed and two energy 

gaps must now be defined. The total strained bandgap can be written as 

E, + H + S, where the upper sign refers to the C-LH bandgap, E,(LH), and 

the lower sign refers to the C-HH bandgap, \E (HH). In Fig. A8.5(b) we have 

plotted the unstrained bulk bandgap as well as ‘the two compressively strained 

bulk bandgaps of InGaAs on a GaAs substrate (which has a smaller lattice 

constant than InGaAs). Note that S as defined above is positive for compressive 

strain, since E,(LH) > E,(HH). For tensile strain, S would be negative and the 

bandgap ordering would be reversed. 

The two energy shifts, H and S, increase linearly with the lattice constant 

mismatch, which in turn increases linearly with indium mole fraction. We should 

expect then that the bandgap difference, E,(LH) — E,(HH), defined in the plot 

as S,,,, Should be a linearly increasing function of indium mole fraction, since 

from the above discussion, S,,, = 2S. For small indium mole fractions, we see 

from the plot that this is true. However, as the indium mole fraction increases, 

S,o, begins to saturate. This is a result of the interaction between the LH band 

and the SO band. When taken into account, this interaction introduces a 

correction term into the expression for the strained LH bandgap such that to 

second order, S,,, = 2S(1 — S/A), where A is the spin-orbit splitting energy. A 

more detailed discussion of strained bandgaps is given in:Appendix 11. 

In a quantum well, the splitting of the HH and LH bands can have dramatic 

consequences, since the large nonparabolicity of the subband structure in Fig. 

A8.4 is a direct result of the HH and LH band mixing. If we place the strained 

bandgaps shown in Fig. A8.5(b) into a quantum well, the situation becomes as 

shown in Fig. A8.S(c), where the depth of the quantum well as seen by light 

holes is reduced by the splitting energy, S,,,. To predict the valence subband 

structure of the strained quantum well in Fig. A8.5(c), we simply need to add 

a potential offset to the effective mass equation describing the LH band in the 
well. Equation (A8.25) in the previous section now simply becomes 

Fy, + W ie Fin | 
k A8. 

Whe ig VS gl Lt ee beatin 
where V is zero inside the well and S,,, is zero outside the well. The pro- 
cedure for solving (A8.39) in a strained quantum well is entirely analogous 
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to the procedure presented in Section A8.4.2 for an unstrained quantum 

well. Thus, we can immediately turn to an example calculation using Eq. 
(A8.39). 

For direct comparison, we take the GaAs/AlGaAs 80A quantum well used 

in the example of Section A8.4.2 and simply add a bit of indium to the well 

layer. InGaAs has a larger native lattice constant than GaAs, thus sandwiched . 

between two AlGaAs layers, it will be compressed in the plane of the well. For 

an indium mole fraction of 20%, the resulting HH—LH splitting energy, S,,,, is 

approximately 80 meV, or 1.4°% compressive strain. 

Figure A8.6 shows both the valence subband structure and the density of 
states of the 80 A Ing »Gay gAs/Alp >Gay gAs strained quantum well calculated 

from Eq. (A8.39) [22]. Immediately we see that the LH bands have been pushed 

deep into the band (the full depth of the well is not shown). As a result, the 

band warping has been greatly reduced. Comparison with Fig. A8.4 reveals that 

the density of states in the strained quantum well is reduced significantly and 

matching between p, and p, is greatly improved. Both of these features translate 

into lower transparency levels and higher differential gain as calculations of 

gain presented in Chapter 4 reveal. 

Equation (A8.39) not only applies to quantum wells, but can also be applied 

to bulk strained material. The E(k) relations in bulk material are obtained by 

finding the eigenenergies of Eq. (A8.39) as we did for Eq. (A8.25) in the last 

section (see (A8.26) and (A8.27)) (the definitions for H and W given in Section 

<<110> <100> — 
0 

INg 2Gap gAs/ 

Alp 2Gaq gAs FI 
oe 80A QW F 

> Be 
= -40 
= 
Oo) 

® -60 
c 
wi 

-80 

-100 
-0.1 -0.05 0 0.05 OFS 10,15 20725 30 

In-Plane k vector (1/A) p(E\/p (E) 

FIGURE A8.6 Plotted on the left is the valence subband structure of an 80A 

Ing >Gag gAs/Alp >Gao.gAs strained quantum well (Vo ~ 175 meV). The LH bands have 

been pushed further out of the well as a result of the strain and cannot be seen with the 

energy scale shown. On the right is the total (solid curve) and H1 subband (dashed 

curve) density of states plotted relative to the density of states in the first conduction 

(C1) subband. 
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A8.4.2 apply here as well). The general bulk solutions for the eigenenergies of 

(A8.39) can be obtained in closed form, but are somewhat messier than Eq. 

(A8.27). We leave it as an exercise for the reader to show that to first order in 

y,k?/S (i.e. in the large-strain regime where S > y,k*), the eigenenergies of 

(A8.39) can be expressed as [23] 

E, (ky) = (71 ¥ yadke £ Stoe/2; (k, = 9) (A8.40) 

E(k) = (y1 £ 2y2)ke £ Stor/2, (kK, = 9) (A8.41) 

The upper signs refer to the LH band solutions while the lower signs refer to 

the HH band solutions (we have thrown away any common shifts in the band 

edges to concentrate on the difference between the LH and HH bandgap 

energies). The parallel (in-plane) and perpendicular (normal to the plane) 

k-vectors refer to the notation used in Fig. A8.5(a). Note that the above relations 

are also obtained by setting W = 0 (as seen by combining (A8.19) and (A8.20) 

with (A8.39)). This makes sense because in the large-strain regime we are 

basically saying that S > W, allowing us*to neglect the coupling between the 

bands altogether. The modified band structure given by (A8.40) and (A8.41) is 

shown to scale in Fig. A8.7. Thus, even in bulk material, strain serves to 

reduce the effective mass of the HH band dramatically within the “plane of 

compression.” Perpendicular to the plane, it is interesting to note, however, that 

apart from the splitting of the HH and LH bands, the dispersion relation (A8.41) 

remains unchanged compared to (A8.28). 

We have thus far not mentioned the effects of strain on the conduction band. 

The reason for this is that due to its relative isolation from other bands, the 

conduction band curvature remains relatively unaffected by the shifting energy 

gaps. Equation (A8.13) would suggest that the increase in the bandgap should 

increase the conduction band effective mass slightly. However, we must be 

careful here because the third parameter which ties into:this equation, |M|?, 

No Strain Compressive Strain 

E E 

HH 

LH 

eS ky ki KI Le = a= 

FIGURE A8.7_ Effects of compressive strain on the bulk valence band structure. The 

relative band curvatures are drawn according to Eqs. (A8.40) and (A8.41), which are 

derived under the large-strain limit (the true dispersion curves would not cross each 
other as suggested in the figure). 
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does not necessarily remain constant (for example, it is conceivable that |M|? 
could increase proportionally with the bandgap, leaving m* unaffected). In any 

case, the change in the conduction band curvature should be slight. 
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APPENDIX NINE 

ee EEE 

Fermi’s Golden Rule 

A9.1 INTRODUCTION 

This appendix derives a general-expression for the rate of decay from an initial 

quantum mechanical state into a continuum of final states in the presence of 

a harmonic perturbation. The resulting expression for the transition rate is 

referred to as Fermi’s Golden Rule, since it is a general result applicable to many 

quantum mechanical systems. Here we concentrate on the interaction between 

light and matter. 

In physical terms, radiative transitions occur because the oscillating field of 

the photon alters the oscillating phase of the electron wavefunction in such a 

way that it becomes similar to the oscillating phase of another electron 

wavefunction typically in a different energy band. This phase-matching in time 

results in a strong coupling between the two electron states, analogous to the 

coupling of waveguide modes considered in Chapter 6. In the latter case, the 

coupling causes the energy initially in one mode to be transferred back and 

forth between the two modes. If only two electron wavefunctions were involved 

in the coupling, the electron would also oscillate between the two states (known 

as Rabi oscillations in the quantum world). However in most cases, a density 

of states are coupled to the initial electron wavefunction, and as a result, the 

electron transforms with an exponential decay from its initial wavefunction to 

one of many resonant wavefunctions. This electromagnetically induced phase- 

matching and subsequent transformation of an electron from one state to 

another is the fundamental mechanism of radiative transitions. The following 
treatment quantifies these physical arguments. 

_ A922 SEMICLASSICAL DERIVATION OF THE TRANSITION RATE 

To characterize the electronic system and its interaction with light, we make 

use of two Hamiltonians: one that describes the electronic system in isolation, 

508 
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Hy, and a second that describes 4 classical perturbation created by the 

electromagnetic field, H’(t). The wavefunction in Dirac notation, |‘¥(t)), 

provides a description of the state of the electron. Its evolution in time is 
governed by Schrédinger’s equation: 

d 
ih \¥O) = {Hp + H'(t)}|¥()>. (A9.1) 

The problem we wish to solve using (A9.1) is the process of absorption 

(stimulated emission is analogous to absorption and hence leads to the same 

result, while spontaneous emission is treated separately in Chapter 4). To model 

an absorption event, we assume the electron initially occupies some ground 

state of the system, |W)». The presence of the time-varying field excites a change 

in the state of the electron. Under the appropriate conditions, the electron can 

be excited to any number of higher energy final states, |,>, where the sth state 

has energy hw, above the ground state. This situation is depicted in Fig. A9.1. 

Which state the electron eventually occupies is unknown, so we hypothesize 

a time-dependent superposition of the initial and possible final states of the 

electron: 

|'P()> = co |Wo> + Vee "|W, (A9.2) 

with the initial conditions: 

CoO a1 and CAD) = 0: (A9.3) 

The time-dependence of the unperturbed wavefunctions, e's, is included 

explicitly to remove the rapidly oscillating phase from the time dependence of 

the expansion coefficients (|W > and |w,> are assumed to be independent of 

time). Note that (A9.2) satisfies (A9.1) with no perturbation present since 

Hy|W,> = ha,|W,> and Ho|Wo> = 9. ; 

To obtain a set of useful equations, we begin by substituting (A9.2) into 

(A9.1). To move forward we recognize that all states are orthogonal to each 

other such that <Wo|W,>=0 and <W,4,|W,> =0. Furthermore, we have 

continuum of final states 

===> 541) 
ly) 

Wo 

E=0 = |Wo) 
initial ground state 

FIGURE A9.1 Model assumed for the process of absorption. 
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WolWo> = 1 and <W,|W,> = 1. If we multiply (A9.1) from the left with <Wol, 

we obtain one equation for the coefficient cy. Multiplying (A9.1) from the left 

with <y,|, we obtain an additional set of equations, one for each c,: 

d 
ih == = Higoco ty, Hoge 

; (A9.4) 
dc \ 

ih i ead aa oie We RO Amen hm a 

where the following shorthand notation is used: 

so = Wel "Iho. (A9.5) 

To simplify (A9.4) further, we need to express the time dependence of the 

perturbation explicitly. For a harmonic perturbation, we can set 

H(t) H'(ei* + @~ ior), (A9.6) 

where @, is the oscillation frequency of the incident electromagnetic wave. The 

amplitude of the wave is contained in H’, however, we will not need to know 

the explicit details of H’ for the purposes of this appendix. 

The set of equations contained in (A9.4) is exact. The first approximation 

we make is known as the rotating wave approximation which involves ignoring 

all terms that oscillate at frequencies comparable to or greater than either @, 

OF Wo. The reasoning is that these terms will oscillate positive and negative 

much faster than the time scales involved with changes in c(t) and hence, will 

average out to zero net contribution as time increases. Placing (A9.6) into 

(A9.4), the following combinations of angular frequencies appear: @o, @, + Wo, 

(@, — @,) + Mo. If we assume w, ~ Wy and w, ~ w,, then all combinations 

except @, — Wo are comparable to or greater than either w, or Wo. 

Ignoring all terms in (A9.4) except those which contain the difference 

frequency between the electronic and electromagnetic frequencies, w, — Wo, we 
obtain the central equations of motion: 

,4€ 0 aaec = 
= d Picea 

(A9.7) 
Pde: te in = = Hye, ell@s @o)t 

dt 

' These equations are known as the Wigner—Weisskopf equations within the 
rotating wave approximation. 

To solve (A9.7) we integrate the second equation from 0 to t, using the initial 
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conditions expressed in (A9.3) to obtain 

. t 

c,(t) = arts | Colt’ elles 20" dy" (A9.8) 
(0) 

Inserting (A9.8) into the first equation of (A9.7), we obtain 

t d t 1 * ’ col) eure a a" | Coll Jen eee ee aes (A9.9) 
dt h s (0) 

where we have made use of the fact that H4, = (H{,.)*. We can convert the sum 

over final states to an integral with the assumption that the states are so closely 

spaced that they form a continuous distribution characterized by a density of 
states function in energy: 

ees [urenro ean do,. (A9.10) 

The matrix element |H’(E,)|* represents an average of |H{,|? over all final s 

states existing with energies close to E, above the ground state. Also, the final 

density of states function, p,, represents the total number of states per unit 

energy. 
Substituting (A9.10) into (A9.9) and reversing the order of integration, we 

can identify one portion of the equation as the inverse Fourier transform of 

the matrix element—density of states product: 

fo-t)= {| {IH'(E)Ip(E,Je- term de, (A9.11) 
—-o 

With this definition, (A9.9) becomes simply 

dco(t) =i { Colt’) f(t — t’) dt’. (A9.12) 
dt 0 

Under certain circumstances, this integro-differential equation can be solved 
exactly. Its solution depends critically on the Fourier transform of the product 

|H’(E,)|?p ,(E,), represented by the time-domain response function, f(t — t’). 

We will examine three such solutions here, the first of these leading to the famed 

Fermi’s Golden Rule. 

A9.2.1. Case I: the Matrix Element-Density of Final States Product is a Constant 

If the density of final states is distributed evenly over a large energy range, and 

if the matrix element does not vary over this range, we can set |H’(E,)|7p,(E,) 

to a constant. Taking the Fourier transform we find that f(t — t’) becomes a 
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delta function in time, as is evident from the following relation: 

| er erTOol-*) dane, 2nd(t.=\t ). (A9.13) 

The integro-differential equation for this case reduces to a simple first-order 

differential equation % 

|H'(E,)I?p (Es) > |? py 

fGS) = | HP py 2n8(¢ 254) (A9.14) 

Z : i dco(t) pee Poy | co(t’)d(t » t') dt’ = — us |H'|?p5°co(t). 
dt h 0 h 

The factor of 2z representing the total area under the delta function is reduced 
to in the last equality because the time integration terminates in the center 

of the delta function such that only half of the area is included. The solution 

to (A9.14) is a decaying exponential: 

ene PSH lee 2 ee (A9.15) 

where the decay rate is given by 

W = . |H’ |? pp. (A9.16) 

We can also solve for the final state probability coefficients to determine where 

the electron ends up after making the transition. Using (A9.i5) in (A9.8), we 

obtain 

| Hol? = 2 — 
Gin an 

(A9.17) 

If we sum this probability over all final states (i.c., multiply (A9.17) by p, dE, 

and integrate over all energies), the total probability will equal one. Thus, the 

electron will eventually appear somewhere in the continuum, we just don’t know 

exactly where. The peak probability occurs at the state with energy E, = hay. 

The electron can appear at other states as weil, however, the probability of this 

happening declines away from the peak with a distribution characterized by a 
Lorentzian with AErwyy = hW. 

Equation (A9.17) also tells us that the electron only interacts with final states 

clustered around E, = ha. In other words, states that are not within hW/2 of 

_ the resonant energy effectively do not participate in the transition. Therefore, 

our earlier assumption that |H’|?p, must be constant over a large energy range 

can be refined to state that as long as |H'(E,)|*p,(E,) is flat over energies for 

which (A9.17) has significant amplitude, the solutions of Case I can be applied. 
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This translates into evaluating | H’(E,)|?p,(E,) at E, = hay, and requiring that 

it be constant for energies > hW. In semiconductor applications, |H py is 

usually a smooth enough function of E, to easily meet this requirement. 

Therefore, interactions between light and semiconductor materials will typically 

induce exponentially decaying solutions for the initial state of the system. 

Fermi’s Golden Rule. Our ultimate objective is to obtain a transition rate that — 

can be used in a rate equation. The above analysis allows us to determine how 

quickly photons are being removed from the electromagnetic field. For example, 

each transition event decays with the decay rate, W. If we resupply the ground 

state with a new electron every 1/W seconds, then the ground state will remain 

filled and every 1/W seconds on average, a photon will be absorbed. We can 

therefore view W as the rate at which photons are absorbed in the active region, 

or the transition rate. If N, is the photon density and V, is the mode volume, 

then N,V, photons exist in a given mode. The rate at which these photons 
disappear can be expressed as 

pw LW, (A9.18) 

Dividing by the mode volume and introducing the confinement factor, the 

photon density rate equation becomes 

(A9.19) 

where I(=V/V,) is the optical confinement factor, and R,(= W/V) is defined 

as the radiative transition rate per unit volume of active material. If we absorb 

the 1/V into p,, such that the final density of states is interpreted as a density 

per unit energy and volume (as is customary), then the transition rate per unit 

volume becomes 

2n 
R, = ry (HCE) IP Es) le, teva: (A9.20) 

This result and its interpretation as a transition rate is known as Fermi’s Golden 

Rule. The evaluator bar reminds us that the product |H’|*p, must be evaluated 

at E, = haw, for reasons discussed in reference to Eq. (A9.17). 

The derivation presented here assumes the electron is making an upward 

transition to model absorption. However, we could just as well assume the 

electron is making a downward transition by setting @, ~ —a,, allowing us 

to model stimulated emission. This substitution requires that we use the 

opposite time harmonic in the perturbation Hamiltonian (A9.6), however, aside 

from this simple change the rest of the derivation is identical. Therefore, R, has 

the same form for both absorption and stimulated emission. The difference 

between the upward and downward transition rates appears only when we 
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include the probability of finding an electron in the initial state and no electron 

in the final state. The theory of gain given in Chapter 4 elaborates on this issue 

in some detail since the balance between absorption and stimulated emission 

provides the key to understanding optical gain in any material. 

A9.2.2. Case II: the Matrix Element-Density of Final States Product is a Delta 

Function i 

Assume that only a single final state exists as opposed to a continuous density 

of final states, as might exist in an atomic transition from one energy level to 

another. We can model this situation by replacing the density of final states 

with a delta function in energy to represent the solitary energy level, E,. To 

simplify matters, we will assume that w, =, such that perfect resonance 

between the electronic and electromagnetic systems exists (see Problem A9.2 

for the more general solution). Taking the Fourier transform of the delta 

function, we find that f(t — t’) is a constant independent of time, which allows 

us to again solve (A9.12) exactly. Summarizing the results, we have 

1 
p,(E,) a 7 0(@, <a @) 

1 
(it j= 1 Wee (assuming E, = hao) (A9.21) 

dco(t) | 

dt 

1 1 
=a |H’|? | Co(t’) dt’ > c¢(t)=cosQt, Q?2= 5 |H’ |. 

(0) 

Using (A9.8) with @, = @o, the final state probability amplitude is given by 

c,(t) = sin Qt. In words, when the electron interacts with only one possible final 

state, the probability amplitude oscillates back and forth sinusoidally between 

the initial and final states. The oscillation frequency depends on the magnitude 

of interaction, |H'(E,)|?. Physically, the energy is continually shifting back and 

forth between the electromagnetic field and the electron. 

In a more general sense, we can view f(t — t’) as a memory function that 

represents how strongly previous events are coupled to current changes in c,(t). 

With only one final state to interact with, the system has infinite memory 

(f(t — t’) is independent of time), and the interaction continues indefinitely in 

the same periodic fashion. This periodic exchange of energy between the 

electromagnetic field and the electron is characteristic of Rabi oscillations, 

which occur whenever the coupled system exhibits a strong memory of 
interaction. 

In contrast, the system considered in Case I (Fermi’s Golden Rule) has no 

memory of previous events (f(t — t’) is a delta function in time). The existence 

‘of numerous equally probable transition pathways destroys the system memory, 

such that the interaction only depends on the present state of the electron. 

From another point of view, the probability amplitudes of the various pathways 
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combine in such a way as to make the process irreversible causing the initial 

state to decay exponentially toward a final state (rather than oscillating back 

and forth indefinitely). The next case bridges the gap between Case I and 

Case II, producing a system with finite memory and oscillatory decaying 
exponential solutions. 

A9.2.3 Case Ill: the Matrix Element-Density of Final States Product is a Lorentzian . 

This situation can occur when analyzing the spontaneous emission process of 

a two-level system placed in a highly resonant cavity. In general, the analysis 

of spontaneous emission leads to an equation identical to Eq. (A9.12), with the 

exception that the density of final electronic states is interpreted as the density 

of free-space optical modes, and the field strength within the matrix element is 

set equal to the vacuum-field strength of the free-space mode at E,. When the 

two-level system is placed in a cavity, the vacuum-field strengths of the 

free-space optical modes become enhanced near the cavity resonances, which 

in turn enhances the matrix element. For a highly resonant cavity, this 

enhancement has a Lorentzian lineshape about each resonance. 

With |H’(E,)|"p (Es) set to a Lorentzian, its Fourier transform, f(t — t’), 

becomes a decaying exponential in time. In other words, the memory of the 

system decays exponentially as it recedes away from the present. One way of 

viewing this is that the spontaneously emitted photon only has a finite lifetime 

in the cavity before it escapes, limiting the memory of the system to a finite 

duration. In any case, (A9.12) can again be solved exactly, however, the solution 

is not as obvious as it was in Case I or II (see Problem A9.3). Summarizing, 

we have 

1 
Hi(E,)?p(E,) > |Hi Pe, K- |H"(Es)"p (Es) > |A'|" ps 1+ Qhor,)? 

f(tt-t)= =o e ltt I/2tp 
ron 

. Pp 

WwW, {' 
5 

ool a “ 0 | Coll jen |/2tp dt’, where Wo = = fH |p, 

Pp 0 

In the above equations, Aw = w, — Wo, T, is the photon lifetime of the cavity 
(note that A@pyymt, = 1), K is the enhancement of the vacuum-field strength 

within the cavity at the resonance peak (K «t,), and Wo is the decay rate 
found in Case I (with p, in this case representing the density of free-space 

optical modes). Using the initial conditions expressed in Eq. (A9.3), the function 

satisfying (A9.22) can be written as 

> 

Yh @peae p+t 
1 

co(t) = 2+ a where ps = ——[1+(1 —41,KM)"””]. 
p+ — p= 4t, 

(A9.23) 
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If the memory of the system characterized by the photon lifetime, t,, is very 

short such that 4t,K Wo <« 1, the solution reduces to 

1 — p_% —-1KW, and |eo(t)|? x e7K¥°", (A9.24) 
p 

pa ® 

The last equality is valid for all but very short times, which can be verified from 

(A9.23) and the fact that p, > p_. In words, when the photon escapes much 

quicker than the time it takes to make a transition (represented by the inequality 

41, KW, « 1), the initial state decays exponentially as was found in Case I for 

a system with no memory. From another point of view, the inequality 

4t,K Wo « 1 allows us to treat | H’ Ip, as a constant for energy ranges > hK Wo, 

making this case equivalent to Case I. However in the present case, the decay 

rate is enhanced by the vacuum-field strength enhancement inside the cavity, 

K. This enhancement of the decay or emission rate was first postulated by 

Purcell many years ago. 

If we go to the other extreme and assume that the system has a strong 

memory (the photon lifetime in the cavityis very long) such that 4t,K Wo > 1, 

the roots become 

1 KV ance 
pi ® + ( ) rai (A9.25) 
ir 4t, 4t, 

Complex roots suggest that |co(t)|? exhibits damped oscillatory behavior. Rabi 

oscillations of this nature are again the result of the system having a strong 

memory. In other words, the lifetime of the fields in the cavity is long enough 

to induce additional absorption and re-emission.of electromagnetic energy. 

However, contrary to Case II, |co(t)|? does eventually reduce to zero at a decay 

rate ~ 1/2t, (which corresponds to the decay rate of the field amplitude within 
the cavity). 

Case III is perhaps the most interesting theoretically because it bridges the 

gap between the first two cases showing clearly how the oscillating solution 

transforms to the exponentially decaying solution as the photon lifetime of the 

cavity is adjusted from infinity to zero, respectively. 
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_ PROBLEMS 

A9.1 Determine f(t — t’) in Case I assuming |H'|?p, is constant for energies 
within E, + AE/2, but zero everywhere else. Using this expression for 
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A9.3 
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f(t —t’), describe qualitatively the range over which the solution for 

Co(t) is expected to behave like a decaying exponential. In your description, 
be sure to consider 

(i) AE in relation to W, and 

(ii) E, in relation to hao. 

Qualitative plots of f(t — t’) superimposed on the expected dependence ~ 

of c,(t’) may prove useful in developing your answer. 

Solve for co(t) and c,(t) in Case II without assuming that E, = hag. Plot 

both as a function of time, assuming the energy difference (E, — ha)? 

is equal to 

(a) |H’|? and 

(b) 12|H’|?. 

Can you make a comment about the significance of tuning E, to hw)? 

Using the initial conditions in Eq. (A9.3), derive Eq. (A9.23) in Case III 

assuming the solution is the sum of two exponentials with constant 

coefficients. Numerically plot co(t) as a function of t/t, for 4t,KW 

equal to 

(a) 100, 

(b) 1, and 

(c) 0.01. 

Plot any other cases that may seem interesting to you. Can you explain 

this behavior? 



APPENDIX TEN 

——————O—o—le— oa 

Transition Matrix Element 

A10.1 GENERAL DERIVATION 

As derived in Chapter 4 the matrix element |H’,,|? can be written in terms of 

a transition matrix element |M,|*. We begin by repeating this equation, Eq. 

(4.21), . 

A, Z A 

ce (=) |[M;|?, where = |My |? = |<u,|@-plu, >|? (Fal Fi>|?- 
0 

(A10.1) 

As discussed in Appendix 8, the momentum matrix element, |M|? can be 

estimated from experiment. We now need to determine | M,|* in terms of |M|?. 
The difference between the two matrix elements is that |M|? determines the 

transition probability between u, and the basis functions (u,, u,, uz, or 

collectively u;), whereas |M,|? determines the transition probability between 

u.(=u,) and the valence band Bloch functions (uj), uj,, Uso, Or collectively u,). 

By expanding the u, in terms of the u; using Eqs. (A8.11), we can express | M,|? 

in terms of | M|?. Before we do this, however, we need to discuss spin degeneracy 

and how to include it here. 

In Appendices 1 and 8, a simple factor of 2 for spin degeneracy was included 

in the definition of the density of states function. However, there are subtleties 

involved which are often overlooked when we simply inciude a factor of 2 in 

our equations. For example, to include the spin degeneracy in our evaluation 

of |M,|*, we must obviously sum over both u, > u, and u, > a, transitions. 

However, what is not so obvious is that in our sum we must also include #, > u, 

and u, > u, transitions! This is necessary because the LH and SO valence band 

_ Bloch functions are made up of both spin-up and spin-down basis functions, 

as seen from their definitions in Eqs. (A8.11). Therefore, a total of four 

transitions must be considered, as shown in Fig. A10.1. Because spin is already 

accounted for in the density of states function, we will sum over these transitions 

518 
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Uc Uc 

uy Uy 

FIGURE A10.1_ The four possible transitions between the spin-degenerate C and V bands, 

which must be considered when estimating the transition matrix element. 

and then divide by 2 to remove the spin degeneracy. Thus, the reader should 

be aware that spin degeneracy has been removed from all expressions for the 

transition matrix element |M,|* derived in this appendix. 

Summing over the four transitions shown in Fig. A10.1, the transition matrix 

element defined in Eq. (A10.1) becomes 

IMrie =~ >» lXuelé-plu,>?, , (A10.2) 
1 

2 Uc, Uc Uy, Uy 

where the factor of 1/2 is to remove the spin degeneracy. We have set the 

envelope function overlap integral, |<F, | F,>|*, equal to unity because for the 
moment we will be interested in transitions between two bulk plane wave 

electron states. Later on, we will return to a more general form of Eq. (A10.2) 

which does include the envelope function overlap integrals. 

To simplify Eq. (A10.2), we can first of all replace the dot product between 

the unit polarization vector and the electron momentum operator, é-p, with 

the expansion, e,p, + €,p, + e,p,. Then by using the selection rules given in 

Eqs. (A8.8) through (A8.10), in combination with the expansions of the valence 

band Bloch functions given in Eqs. (A8.11), we can reduce the expression for 

|M,|* to a very simple form. To aid the reader in following the derivation, we 

give here the intermediate step in simplifying | M,|? for the three valence band 

transitions: 

[Mr lin = 41M? {| pe exT as ie, |? 0 er |e, ia ie,|?}, 

[Mr li, = 1z|M|?{|2e,|? + le, — iey|? + |—e, — iey|? + [2e,|7}, (A10.3) 

|Mrls = é1M|7{| —e,| 3% |e, = ie, |? 8 fer = ie, |? a | —e,|7}. 

Each of the terms within brackets corresponds to one of the four spin- 

degenerate transitions (the ordering of terms from left to right corresponds to 
the numbering shown in Fig. A10.1). Note that in every case, the first term is 

equal to the fourth and the second term is equal to the third (leading to the 

standard factor of 2 for spin degeneracy). 
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To make the final expression as general as possible, we first replace every 

occurrence of e2 + e? with the equivalent expression, 1 — e7 (since é is a unit 
vector). This substitution places everything in terms of e,. We can then interpret 

e, as the component of é which is parallel to the electron k-vector, since k is 

directed along z (an assumption made in defining (A8.11)). In other words, we 

can set e, =k-é, where k is a unit vector. directed along k. Using these 

substitutions, we find that \ 

4(e2 + e?) =4(1—|k-@|?) for HH band, —(A10.4) 

|M,|2/|M|? = § 4(e2 + e? + 4e2) = 44+ |k-@|?)  forLH band, —(A10.5) 

(2 +e +e?) =5 for SO band. (A10.6) 
ay . 

C—HH C-LH 

FIGURE A10.2_ Dependence of the transition strength, |M;|?, on angle between the 

electron’s k-vector and the incident electric field vector, E, for C-HH and C-LH 

‘ transitions (C—SO transitions are independent of angle). For C-HH transitions, |M,|? 
is zero when E||k and becomes a maximum of 4 x |M|? when E Lk. For C-LH 
transitions, when E || k, |M;|* has a peak value of } x |M|? and is‘reduced to 4 x |M/? 
when E 1 k. 
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The relative transition strengths given in Eqs. (A10.4) through (A10.6) allow 

us to relate the transition matrix element, |M,|?, needed in our gain calculations 

to the experimentally measurable matrix element, | M|?. Note that the use of a 

dot product has allowed us to drop any reference to a coordinate system, and 

hence, drop the constraint that the electron k-vector be directed along z (in 

other words, the physics does not lie in the coordinate system we choose, but . 

in the relative orientation between the field polarization é and the electron 
k-vector). 

To examine the dependence of Eqs. (A10.4) through (A10.6) on the field 

polarization in a more visual fashion, we have plotted the relative transition 

strengths for C-HH and C-LH transitions in Fig. A10.2 as a function of the 

angle between the electron k-vector and the electric field polarization, é. These 

three-dimensional renderings reveal that the strength of interaction between 

each electron plane wave state and photon is highly polarization dependent. 

However, the striking features of Fig. A10.2 do not reveal themselves in bulk 

material because photons of a given polarization interact with a great number 

of electrons, all with k-vectors pointing in different directions. The average over 
all these interactions transforms the interesting shapes in Fig. A10.2 into 

uniform spheres. In fact, the average of |k-é|? for k sweeping over all three 

dimensions is equal to 1/3. Thus, for all three valence band transitions, the bulk 

material transition matrix element is just equal to 1/3 x |M|? (spin excluded) 

for any electric field polarization. 

A10.2  POLARIZATION-DEPENDENT EFFECTS 

The derivation presented above assumed plane wave states for the envelope 
functions, which then led to the polarization dependence illustrated in Fig. 

A10.2. In quantum-confined structures, the envelope functions are typically 

constructed from two (or more) plane wave states. The magnitude squared of 

the transition matrix element in (A10.2) will, in general, then contain cross-terms 

between the various plane waves that make up the confined state. In the 

following discussion we will ignore these cross-terms, making the analysis 

simpler. Later, we will see that in quantum wells, the conclusions derived 

here are consistent with the band-mixing model for transitions near the band 

edge. 
Neglect of the cross-terms in (A10.2) implies that we can treat the plane 

waves that make up the confined states as independent from each other. In this 

approximation, each plane wave’s k-vector direction will then have a corre- 

sponding polarization dependence similar to that derived in Section A10.1 and 

shown in Fig. A10.2. Near the band edge in quantum-confined structures, the 

k-vectors are quantized along certain directions, and the situation will be as 

shown in Fig. A10.3 for a typical quantum well and quantum wire. In the 

quantum well, all k-vectors point along the same axis and the polarization 

dependence is simply proportional to Fig. A10.2. However, in the quantum-wire 
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Perspective 

End View 

[oon 
Quantum Well Quantum Wire 

FIGURE A10.3_ Illustration of how quantum confinement in a quantum well and a 

quantum wire serves to “polarize” the momentum of band edge electrons along certain 

directions. The C-HH transition strength is superimposed on each electron’s k-vector 

in the quantum-well case. The end view of the quantum-well suggests that C-HH 

interactions with light are strongest when the light is polarized in the plane of the well. 

In the quantum-wire case, the C—LH transition strength is used. The end view shows 

two possible k-vector directions for electrons. The average C—LH transition strength is 

indicated by the dashed curve. 

case, we must average over the polarization dependence of each plane wave (as 

indicated by the dashed curve in the lower right side of Fig. A10.3). To quantify 

the average polarization dependence, we choose our coordinate system along 
the confinement axis (axes) of the structure. It is then possible to evaluate the 

average transition strength along the three orthogonal field polarizations, é,, 

é,, and é,, simply by replacing k in Eqs. (A10.4) through (A10.6) with some 

appropriate average k-vector direction, k,,,.. 

We leave it to the reader to justify that ee is obtained simply by finding 

the average direction of all allowed k-vectors within the first octant of our 

coordinate system (if we included all octants in our average, en: would always 

be zero!). Below we list k,,,. for bulk and various quantum-confined structures 

for band edge states (where “band edge” implies that the total k-vectors are 

simply equal to the quantized k-vectors): 

Kee 0c ok ok) bulk 

Kove = k>, quantum well (L,) 
: x5 i (A10.7) 
beg (hin eee): quantum wire (L, = L,) 

Kove = (1/,/5)(k, + 2k,). quantum wire (L, = 2L,) 
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FIGURE A10.4_ Relative band edge transition strengths for various quantum confinement 

structures. The coordinates referred to in the text are indicated in (a). The magnitude 

of the transition matrix element is found by multiplying the relative numbers by |M|?. 

For example, with light polarized along the wire direction of (c), the band edge C-LH 

transition strength |M,|? = 2 x |M|?. 

The prefactors are normalization constants since ke is a unit vector. The last 

equation was obtained assuming k oc 1/L (which is exactly true only for an 

infinitely deep well). 

Figure A10.4 illustrates the band edge transition strengths for the three 

orthogonal polarizations in the four structures listed above, obtained by 

substituting the ke defined for each structure into (A10.4) through (A10.6). 

When multiplied by |M|?, the numbers in Fig. A10.4 give the magnitude of the 

transition matrix element, |M,|*, for each particular case (spin excluded). Note 

that the sum of the transition strengths over the three polarizations for each 

type of transition is always equal to |M|?, as is the case in bulk material. Thus, 

the “total” transition strength for band edge transitions is always conserved. 

The difference is that in quantum-confined structures, a redistribution of the 

transition strength among the three polarizations occurs due to the nonuniform 

distribution of k-vector directions. 

To treat arbitrary polarizations, we can always break the field up into the 

three orthogonal components shown in Fig. A10.4. The transition matrix 
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element is then simply given by the trigonometric sum of the three components, 

or 

|Mri? =|M|? Sie?S?, i=x,y,z (A10.8) 

where the S? are the transition strengths determined from Fig. A10.4. As an 

example use of (A10.8), we examine the polarization-dependent characteristics 

of a quantum-wire structure. From Fig. A10.4(c), the ratio of the transition 

matrix element between the C-LH and C-HH transitions is 3 when é is parallel 
to the wire and 3 when @ is perpendicular to the wire. In general, from Fig. 

A10.4(c) and Eq. (A10.8), we have 

|Mrlin _ 300s” 0+ 3 sin’ 0 (A109) 

\Mr|z, cos? 6+ 4 sin? 6 ” , 

where @ is the angle between é and the axis of the wire. 

A10.3. INCLUSION OF ENVELOPE FUNCTIONS IN QUANTUM WELLS 

As shown in Appendix 8 quantum confinement changes the valence band 

structure through the interaction and mixing of the envelope functions. That 

is, the general valence band wavefunction in (A8.31) consists of both HH and 

LH envelope function components. Thus, the transition matrix element in Eq. 

(A10.1) must be modified and is now expressed as 

IMrle = » |<u,|€-pluy>< Fol Fin > + <u,|@*p|up><Fp | Fin) (2. (A10.10) 
Uc, Uc 

Equivalent terms summing over the spin degenerate counterparts of u, and ug 

(the uc and up Bloch functions) increase the sum by a factor of two. This is 

accounted for by the removal of the factor of + appearing in Eq. (A10.2) 

(throughout this appendix, the spin degeneracy is removed from the transition 

matrix element and included in the reduced density of states function in 
Chapter 4). 

The transition matrix element in (A10.10) can be placed in a more elegant 

form by following a procedure similar to that outlined in Section A10.1. 

However, in the present case we must average the transition matrix element 

over all in-plane k-vector directions to remove the cross-term which results 

from squaring Eq. (A10.10). With the help of Eqs. (A8.32), (A8.33), and (A8.11), 
the transition matrix element reduces to 

IMrle = |MI?C31<Fo | Fin? 171, TM (€||2) (A10.11) 

|M |? M 
|M;|2 = 5) Cl<Fol Fadl? +31¢ Fol Fn>l?], TE (12) (A10.12) 
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FIGURE A10.5_ Relative transition strengths for both TE and TM light polarization for 

the two lowest subband transitions in an unstrained GaAs/Aly Gay gAs 80A QW. The 

dashed curves represent what one would calculate assuming parabolic subbands. The 

transition strength as plotted here is defined as | M,|*/|M|? (bulk value is 1/3). 

where z is assumed to be the quantization direction. At the band edge (where 

F, = 9 for HH states, and F,,, = 0 for LH states), the above expressions give 

the same transition strengths as those in Fig. A10.4 assuming the overlap 

integrals are close to unity, (which is true to within 5—10% typically, and would 

be true exactly if the effective mass in the C and V bands were identical). 

However, as we move away from the band edge, band-mixing occurs such that 

both F,, ;, are present in any one wavefunction, altering the transition strengths 

from those shown in Fig. A10.4. Sample calculations of the transition strength 

which illustrate this effect are plotted as a function of transverse k-vector, k, in 

Fig. A10.5. 
In finding the envelope functions and evaluating the overlap integrals 

numerically, we must make sure they are properly normalized. Normalization 

of the wavefunctions is obtained through the following relations 

i F, 
F;(norm) = : where Non.tn = <Fan| Fan> + Fin | Fins UN, 

~ 

Ny CFy).E5y. (A10.13) 

The above envelope functions refer to the functions along the confinement 

direction, and hence the brackets indicate integration along z. The in-plane 

envelope functions are simple plane waves. Thus, we require k conservation 

in the plane of the well, which then yields an in-plane overlap integral of 

unity, justifying our conversion of a volume integral into an integral along 

z only. 
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APPENDIX ELEVEN 

ee 

Strained Bandgaps 

In this appendix, the details of how strain affects the bandgap of III-V 

semiconductors is considered. To provide some background, we will begin by 

reviewing concepts of stress and strain in a crystal lattice [1]. 

A11.1 GENERAL DEFINITIONS OF STRESS AND STRAIN 

A crystal lattice which feels an external force will react by distorting in some 

fashion. The force per unit area, or stress, is usually defined by a stress tensor, 

g;;, as depicted in Fig. Al1.1. Shear components of stress (i 4 j) will cause the 

crystal to rotate unless equal and opposite components exist (for example, if 

023 = 03>). If equal and opposite components do exist, the shear stress will 

deform a cubic lattice into a nonrectangular shape (i.e., the crystal axes will 

become nonorthogonal). In typical semiconductor applications, these types of 

deformations are rare, and for the present purposes, we will assume that o;; = 0 

for i 4 j. Normal components of stress (i = j) will cause the crystal to expand 

or contract along the crystal axes, but in contrast to shear stress, the deformed 

lattice remains rectangular. The six faces of a cubic crystal can be acted upon 

by three normal forces: o,;, 022, and 033. Because we are only considering 

normal components, the notation can be abbreviated to o,, 0, and a3. As 

suggested in Fig. Al1.1, the o; are defined as positive for outward directed forces. 

The next consideration involves the mathematical description of the lattice 
distortion. The strained state of the lattice is usually defined by a strain tensor, 

¢,;. Each component of the strain tensor defines some aspect of the distortion 

of the lattice away from its unstrained shape. Restricting our attention to the 

effects of normal forces on the lattice, we only need to consider the three 

diagonal components of the strain tensor: €,,, 22, and &33 (since the crystal 

axes remain orthogonal to each other). Again using the abbreviated notation, 

these can be written as €,, €,, and ¢,. The ¢; measure the fractional increase 

(e; > 0) or decrease (¢; < 0) of the crystal lattice along the ith axis as illustrated 
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FIGURE A11.1 Components of stress tensor, o; 

tensor, ¢;, within the y—z plane. 

ij> and examples of the abbreviated strain 

in Fig. A11.1. For example, if the description of the lattice distortion is given as 

€, = 0, e, = 0.01, and e, = —0.01, then we know that the lattice is undistorted 

along x, is larger by 1% along y, and is smaller by Ialong z, as qualitatively 

illustrated in the figure within the y—z plane. 

With the stress and strain tensors defined, we now need to relate them to 

predict how a particular stress or set of external forces leads to a particular 

strain or lattice deformation. In a uniform material, the strain is proportional 
to the magnitude of the applied stress, as long as we remain within the elastic 

limits of the material. Hooke’s law in an isotropic medium expresses this scalar 
relation as o = Ce, where the constant, C, is Young’s modulus. In a crystal, one 

type of stress may lead to more than one type of strain, implying that the 

different components of both stress and strain tensors are potentially related. 

The more general form of Hooke’s law excluding shear components of stress 

can be written as 

O71 Cit Ciz Cyr fy 

Or} =| Ciro Cir Cra |] & J. (A11.1) 

03 Cin Cyn Cy &3 

The C;; are referred to as the elastic stiffness coefficients or the elastic moduli. 

The expression written here assumes the crystal has cubic symmetry such that 

all off-diagonal elements are equal, and all diagonal elements are equal, leaving 

us with only two elastic moduli, denoted C,, and C,,. For crystals with less 

symmetry, more C;; components may need to be specified (if we include shear 

stress, an additional C,, is required to complete the description of stress and 

‘ strain in cubic crystals). In common semiconductors, C,,, C;,>0 with 
C,, > C,2, and both are usually described in units of 101! dyn/cm?. 

Some relevant examples using Eq. (A11.1) are shown in Fig. A11.2. In the 
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FIGURE A11.2 Examples of the relationship between stress and strain. 

first two examples shown on the left, stress is applied to all four x and y faces 

of the cube such that 0, = a3, and no stress is applied to the z faces, such that 

o3 = 0. For both of these cases, the crystal is under biaxial strain. When the 
stress is directed outward (a, > 0), the resulting strain is referred to as biaxial 

tensile strain, while inward stress (0, < 0) gives rise to biaxial compressive strain. 

The resulting lattice deformation can be calculated using (A11.1). By symmetry, 

with o, = 0), the strain in both x and y directions must be equal and we can 

set €; = €,. With 0, = 0 and ¢, = €,, the first and third equations in (A11.1) 

reduce to 

1 = Cy 18) + Cy2& + Cy2s, (A112) 

O= Coe, tt Cis + C1 183- 

These equations are valid for both tensile and compressive biaxial strain. The 

relationship between the strain components is immediately obtained from the 

lower equation: 

2C 
ep Stee (A11.3) 

C, 1 

Since C,,, C,, > 0, we conclude that under biaxial strain, the lattice deformation 

along z will be opposite to the deformation along either x or y, as depicted in 

Fig. Al1.2. This effect is similar to squeezing a balloon—as the sides are 
compressed, the top and bottom expand as the balloon attempts to maintain 

the same volume of air. Using (A11.3) in the first equation of (A11.2), we then 

find 

G, = Cy €, [1 + Cy2/Cy, — 2(Cy2/C,1)7]. (A11.4) 



530 STRAINED BANDGAPS 

This equation gives us the absolute measure of the stress required to achieve 

a given strain. Note that if C,, = 0, the strain perpendicular to the stress plane 

(i.e., along z) reduces to zero, and Hooke’s law reduces to the scalar relation: 

O, = Cy 48). 

The example shown on the right side of Fig. Ai1.2 corresponds to a uniform 

stress applied equally to all sides of the crystal. If we define this inward-directed 

stress as a differential pressure change, dP, surrounding the crystal, then we 

can set o, = 0, =0, = —dP. Adding up all three equations in (A11.1), we 

immediately find 

Neglecting cross-terms between the ¢;, the fractional change in the volume of 

the crystal lattice is given by 

AV/V = &, + &. + €3. (A11.6) 

Therefore, (A11.5) allows us tosdetermine the change in the crystal volume in 

response to a change in the uniform pressure surrounding the crystal. This 

relationship will be used later to relate the experimentally measured pressure 

dependence of the bandgap to the strain of the lattice. 

A11.2 RELATIONSHIP BETWEEN STRAIN AND BANDGAP 

With an understanding of how a particular stress leads to a particular strain, 

we are left with the task of determining how a particular strain affects the 

bandgap of the semiconductor, the main topic of this appendix. Pikus and Bir 

[2] in 1959 provided the fundamental theory necessary to describe how lattice 

deformations affect the Hamiltonian which describes the interaction between 

the three valence bands: the heavy-hole (HH), light-hole (LH), and split-off 

(SO) bands. Their analysis involved transforming the coordinate system 

describing the crystal potential and the hole wavefunctions into a new deformed 

coordinate system, making use of the strain tensor. To first order in the strain, 

it was shown that a Hamiltonian identical in form to the Luttinger-Kohn (LK) 

valence band Hamiltonian described in Appendix 8, must be added to account 

for the strain. This new Pikus and Bir or strain Hamiltonian can be found 
directly from the LK Hamiltonian using the following substitutions: 

kik; > &4;, 

Nit 2: 
Al11.7 ving Gtk (A117) 

= 2/395 > d. 
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In these substitutions, the k; are the various wavevectors appearing in the LK 
Hamiltonian and the y,; are the Luttinger parameters, both of which are 
discussed in Appendix 8. The ¢,; are the components of the strain tensor 
describing the lattice deformation and a, b, and d are lattice deformation 

potentials which relate shifts in the valence bands to the strain tensor. An 

additional strain-dependent spin-orbit interaction Hamiltonian [3,4] also 

exists, however, the deformation potentials associated with this interaction are 

generally more than an order of magnitude smaller [3] than those associated 
with the Pikus and Bir Hamiltonian, and will therefore be neglected here. 

In this appendix, only normal components of the stress tensor are 

considered and we can set ¢;; = 0 for i ¥ j. Furthermore, if we concentrate on 

biaxial strain then we can also set ¢, = ¢,. Under these conditions, the 6 x 6 

strain Hamiltonian [4,5] relating the three twofold spin-degenerate valence 

bands is block-diagonalized into two identical 3 x 3 Hamiltonians (the inter- 

action between states of opposite spin is removed). We can write the 3 x 3 

strain Hamiltonian as 

HH LH KX6) 

H-S 0 0 HH 
(A11.8) 

0 H+S was LH 

Ov ©) .4/2S') H+iA\J SO 
where 

H = a(é, ar 2) aF £3), (A11.9) 

S = bG(e, + €2) — £3), (A11.10) 

and A is the spin—orbit energy which separates the SO band from the HH and 

LH bands. The energies, H and S, are related to the strain tensor through the 

aand b deformation potentials (the deformation potential, d, appears only when 

shear components of stress are considered). 
Equation (A11.9) reveals that H is proportional to the change in volume of 

the crystal lattice created by the strain (compare with (A11.6)). It is referred to 

as the hydrostatic component of the strain. Because H appears with the same 

sign in every diagonal term of the Hamiltonian (A11.8), we conclude that 

changes in the crystal volume result in a rigid shift of all three valence bands 

either up or down in energy, depending on whether the volume change is 

positive or negative. 
Equation (A11.10) defines the shear component of the strain, S. The shear 

strain energy is proportional to the asymmetry in the strain parallel and 

perpendicular to the stress plane (the shear strain should not be confused with 
shear stress which is zero in this case). The dependence of the Hamiltonian on 

S is more complex than its dependence on H. The HH band is isolated from 

the other two bands, however, the LH and SO bands are coupled through the 
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FIGURE A11.3 Qualitative band energy shifts of the conduction band and three valence 

bands for biaxial compressive and tensile strain. The magnitude of the energy shift is 

indicated next to each shift. The gray energies include LH—SO band coupling. 

/28 term. If S « A, the LH-SO band coupling can be neglected, and the 

dominant contribution from S shows up in the HH and LH diagonal terms, 

where it is seen to split the HH and LH bands in opposite directions. 

The strain Hamiltonian is written in terms of the hole energy, such that 

positive energy moves further into the valence band. For biaxial compressive 

strain, H and S are both positive, indicating an increase in the bandgap. For 

biaxial tensile strain, H and S are both negative. Figure A11.3 illustrates the 

band edge shifts of the three valence bands for both types of biaxial strain. The 

conduction band experiences a shift due to the hydrostatic component of strain 

only. In fact, we can define a separate H’ with a corresponding deformation 

potential a’ associated with the movement of the conduction band. However, 

it can be difficult to experimentally separate H’ from the total bandgap shift 

[6]. A common approach is to interpret H in the strain Hamiltonian (and 

deformation potential a) as the total energy shift of the bandgap resulting from 

hydrostatic strain, and not worry about how the total shift is divided up between 

the conduction and valence bands. In fact, to estimate strained bandgaps, the 

division of H into H’ and H — H’ is irrelevant. For heterointerface applica- 

tions (including strained QWs), the division of H into H’ and H — H’ can 

indicate how the conduction band offset, Q., is affected by strain. However, in 

practice Q, is measured experimentally by other means, implying that again we 

do not need H’. As a result, the strained bandgap and its lineup with 

_ other material bandgaps is typically defined using H and measured values 
of Q.. 

To quantify the energy shifts depicted in Fig. A11.3, we need to evaluate H 

and S. The strain components within the stress plane, ¢, and ¢5, are easily 
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identified as the fractional change in the in-plane lattice constant of the strained 
material. The strain perpendicular to the stress plane, ¢,, was discussed earlier 

in reference to Fig. A11.2, and can be related to ¢, and ¢, using Eq. (A11.3). If 

we assume the in-plane lattice constant, a), of the strained material is strained 

to match the substrate lattice constant such that a) = a,,,, we can define the 
strain as 

a 5 a 

ge neinels sub? (A11.11) 
a i native 

where Gygiye 1S the native unstrained lattice constant of the strained material. 

The various strain components are related to this definition as follows: 

Ht bere 
= é. &; =€) = —€ and &3 C 

11 

(A11.12) 

The lattice-mismatch parameter, ¢, is defined negative to the in-plane strain 
components by convention such that ¢ > 0 for compressive strain, and ¢ < 0 

for tensile strain. Plugging these into the definitions of H and S, we find 

Comair 
He(esa) lee (A11.13) 

Ci 

Chae 
Seep apy eee (A11.14) 

Ci 

The parentheses around the deformation potentials are used because in 

common semiconductors, a, b < 0. The parentheses therefore enclose positive 

numbers, and the sign of ¢ determines the sign of both H and S. 

The change in the HH, LH, and SO bandgaps for S « A can be approximated 

by the diagonal terms of Eq. (A11.8). However, for larger strains, the matrix 

must be diagonalized. Since the HH band is isolated, the problem is reduced 

to finding the eigenvalues of the 2 x 2 submatrix which couples the LH and 

SO bands. Performing this procedure, the bandgap shifts become 

AEuy = H —S, 

AE, 7 =H+S—6, 

AEsg = H+A+ 0, 

= 4A{[1 — 2(S/A) + 9(S/A)7]!/? — (1 — S/A)} © 287/A. 

(A11.15) 

The energy, 6, represents an additional repulsion between the LH and SO bands 

which increases approximately quadratically with S and hence is positive for 

both tensile and compressive strain. This LH—SO band-coupling energy shift 

is indicated by the gray energy levels in Fig. A11.3. The band edge energy shifts 
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in (A11.15) are all relative to the unstrained direct bandgap of the material, 

E,o. Once E,o is added to the energy shifts, the strained bandgaps are completely 

defined. The material parameters that we must know to predict the strained 

bandgaps (aside from the unstrained bandgap and lattice-mismatch parameter) 

are dsp nG 4 Cy, ands A: 
Values for all of the required strain parameters can be found in the literature. 

However, the hydrostatic deformation potential, a, is a bit more difficult to 

track down. The division of a between the valence and conduction band is not 

well standardized. As a result, a sometimes refers to the conduction band shift 

and sometimes the valence band shift, or sometimes the sum of these two (which 

is what we are interested in). Unfortunately, it is often difficult to know which 

definition is being used in any given citation. For this reason it is common to 
estimate a based on measurements of the, pressure dependence of the bandgap. 

The strain example given earlier in reference to Fig. A11.2 showed that a 

uniform pressure is related to the volume change as follows: 

—3 dP — (Gag + 2C,2)(E; + €2 =to £3). (A11.16) 

Furthermore, for a uniform pressure we can set S = 0, implying that the shift 

in the HH and LH bandgaps is caused solely by H. Thus, the differential change 

in bandgap in response to a differential change in pressure is simply 

dE = a(é, + &2 + £3). (A11.17) 

Dividing (A11.17) by (A11.16), we find 

dE 
a= —4(C,, i ate pee (A11.18) 

Because dE/dP > 0, we conclude that a <0, as stated earlier. This formula 

allows us to determine a for any bandgap once the pressure dependence of the 

gap is known. The pressure dependence of the energy gap is commonly quoted 
in units of 10~° eV/bar or sometimes 10° © eV cm?/kg (1 bar = 1.019 kg/cm). 
In defining a this way, a useful conversion factor to keep handy is 

10~° eV/bar x 10!! dyn/cm? = 0.1 eV. (A11.19) 

Strain-related parameters of III-V semiconductor materials are summarized 

in Table A11.1. The strain parameters related to shear stress, d and C,,, are 

included for completeness but are not required in the calculation of biaxially 

strained bandgaps. The hydrostatic deformation potential, a, was calculated 

from other parameters in the table using (A11.18); the values of dE/dP in the 

table correspond to the direct bandgap change with pressure. The first five 

entries were taken primarily from Adachi [7, 8] while the rest were taken from 
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TABLE A11.1 Strain Parameters in III—V Semiconductors. 

Lattice Deformation Potentials Elastic Moduli (10-° 
Constant (eV) (101! dyn/cm?) eV/bar) 

Material a(A) a b d Gry «Gru Gay dE/dP* A(eV) 

GaAs 5.6533 —8.68 —1.7 —455 11.88 538 5.94 iMilesy (sv! 

InAs 6.0583 —5.79 —-1.8 — 3.6 8.329 4.526 3.959 100 0.371 

AlAs* 5.6611 —7.96 —1.5 —3.4 LOD yO 95289 10.2. 0.30 

GaP* 5.4512 —9.76 —1.5 —4.6 P42 16:25935 07.04 78~ 110) ) O10 

InP 5.8688 —6.16 —2.0 —5.0 10.22 5.76 4.60 8.5 0.10 

AEs 5.4635 —8.38 —1.75 —48 13.2 6.3 6.15 9:75 0.10 

GaSb 6.0959 —8.28 —1.8 —4.6 8.842 4.026 4.322 147 08 

InSb 6.4794 —7.57 —2.0 —48 6.47 3.65 3.02 16.5 0.98 

AlSb* 6.1355 2.04 —1.35 —43 8.769 4.341 4076 —3.5 0.75 

* Indirect gap. 

Landolt—Bornstein [9]. Complete data for AIP could not be found. Thus, blank 

entries in this row were filled with the average value of the other two phosphides. 

If we wanted to know, for example, the strained bandgap of InGaAs grown 

on GaAs as a function of indium mole fraction, we could determine the strain 

parameters for the InGaAs ternary by linear interpolation between the GaAs 

and InAs values listed in Table A11.1. For most ternaries this procedure works 

well. For quaternaries, Vegard’s law [7] can be applied to provide reasonable 

estimates. 

A11.3. RELATIONSHIP BETWEEN STRAIN AND BAND STRUCTURE 

The energy shifts discussed in this appendix refer to the band edge shifts 

exclusively. To predict the band structure away from the band edge, the strain 

Hamiltonian must be added to the LK Hamiltonian and the combination must 

be diagonalized. In Appendix 8, this combined Hamiltonian uses the band edge 

of the HH band as the zero-energy reference. Thus, H — S should be subtracted 

from all diagonal terms of the strain Hamiltonian. The net result once the 

strain Hamiltonian is diagonalized is that the difference between the HH and 

LH band edges should be added to the LH diagonal term in the LK 

Hamiltonian. In Appendix 8, this total splitting energy between the HH and 

LH bands was defined as S,,,. Using Eq. (A11.15), we can write 

Stoo = Era — Eng = 2S — 6% 2S(1 — S/A), (A11.20) 

where the latter approximation expands 6 to second order in S. 
In Appendix 8, the LK Hamiltonian used for the subband structure 
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calculations ignores any coupling to the SO band. Chao and Chuang [5] have 

analyzed the consequences of this approximation and found that significant 

differences do exist between the subband structure with and without SO band 

coupling. However, their calculations without SO band coupling assume 

Stor = 2S (ie., they ignore the SO band coupling entirely). By assuming 

Stor = 2S — 6, the SO band coupling can at least be partially included since we 

obtain more accurate estimates of the LH subband energies at the zone center 

(i.e., at the subband edges). This procedure should improve the accuracy of 

strained subband structure calculations which ignore SO band coupling in the 

LK Hamiltonian. 
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APPENDIX TWELVE 

MU 

Threshold Energy for Auger 
Processes 

A12.1 CCCH PROCESS 

For the CCCH process in Fig. 4.15, we can write the momentum and energy 

conservation laws (i.e., initial = final) as 

k, +k, =k, + ky, (A12.1a) 

AE, + AE, = —(E, + AE3) + AE,, (A12.1b) 

where the k’s are vectors in k-space, and E. has been used as the energy reference 

level in the latter equation. Rearranging the energy conservation law, we find 

From Eq. (4.76), it follows that the most probable transition corresponds to 

the minimum possible energy of state 4. This minimum value for AE, is referred 

to as the threshold energy, E,, of the Auger process. 

To determine the threshold energy, we need to minimize (A12.2). If we 

assume that all bands are parabolic, we can set AE; « k;:k;/mc for the three 

conduction band states and AE, « k3;°k3/my = wk,-k;/mc, for the valence 

band where = m-/my. At the minimum, AE, will be independent of variations 

in any of the k-vectors. The differential of any one term is d(k;-k;) = 

k;-dk; + dk;-k;. Taking the total differential of Eq. (A12.2) and setting it to 

zero, we obtain 

k,‘dk, = k, dk, + k,-dk, + wk;-dk, = 0, (A12.3) 

537 
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The second equation follows from taking the differential of the constraint 

(A12.1a). Replacing dk, in (A12.3) using (A12.4), we find 

(k, ar pk): dk, AP (k, ar yk,)- dk, = uk,-dk, — 0. (A12.5) 

The last term is zero when k;||k,, since k,-dk, = 0 from (A12.3). The remaining 

two terms are zero for any dk, and dk, when k, =k, = —yk3. Substituting 

this into Eq. (A12.1a), we can determine k,. To summarize, we have 

kk, ks, (A12.6) 

k, = —(1 + 2k, (A12.7) 

where , = mc/my. Thus, the most probable Auger transition occurs when all 

four k-vectors are colinear, with k, pointing in the opposite direction to the 

rest. The Auger transitions in Fig. 4.14 reflect this conclusion. Using (A12.6) 

and (A12.7) in Eq. (A12.1b) and solving for k3, we obtain 

2 
3 =: : 2, (A12.8) 

(1 + 2u)(1 + pw) 

where k, is corresponds to E, = h’k;/2mc. The energies of the four states 
involved are then easily found using (A12.8): 

2 mM 
AE = AES = AE. ke A12.9 

Lan Miah = Ge ZOE M: ” ee, 
142 

Apes die e (A12.10) 
l+yp 

The threshold energy for the CCCH process is therefore given by 

1+2 2mMc + Beisih Ryedent Sly gant Mow' Cia, (A12.11) 
LE Mc + My 

The most probable CCCH Auger transition is now completely defined. 

A12.2 CHHS AND CHHL PROCESSES 

For the CHHS process in Fig. 4.14, we again start by writing the momentum 
and energy conservation laws: 

k, ae k, = k,; aa ky, (A12.12a) 

—(AE, + AE,) = E, + AE; — (A,, + AE,). (A12.12b) 
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In this case, E,, has been used as the energy reference level in the latter equation. 

Rearranging the energy conservation law, we find 

AB = (By Ay,) = ABy+ AE, + AER (A12.13) 

Again, we wish to minimize AE, to maximize the transition probability. Using 

the same procedure as outlined above, the minimum k-vectors are found to be 

ky =k, = —ks/ug, (A12.14) 

k, = —(1 + 2/uy)k;, (A12.15) 

where Ly = mMc/my. Again, all four k-vectors are colinear, with k, pointing in 

the opposite direction to the rest. The energies of the four states involved are 

found to be 

UsAE, = psAE, = AE, 

& Is (ESAS): (A12.16) 
(1 + 2/uq)(1 + 2/uy — 1/us) 

2 guna ME cite abit cues (A12.17) 
aie Dugaibins) 

where ls = m-/ms. The threshold energy for the CHHS process is therefore 

given by 
2my SF Me 

E,=AE, (FAS) (A12.18) 7 9 
2my + Mc — Ms 

The equations for the CHHL process are found by setting A,, > 0 and ms > m;,. 
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Langevin Noise 

\ 

This appendix gives a more detailed account of the Langevin noise sources used 

in Chapter 5. It is divided into three main sections. The first section considers 

basic properties of Langevin noise sources and covers the general definition 

and evaluation of the correlation strength between two Langevin noise sources. 

The second section considers the specific Langevin noise correlations between: 

(1) the photon density and carrier density Langevin: noise sources, (2) the 

photon density and output power Langevin noise sources, and (3) the photon 

density and phase Langevin noise sources. The final section makes use of the 

specific correlation strengths to evaluate the noise spectral densities of the 

photon density, output power, and carrier density, using the formulas developed 

in Chapter 5. Practical approximations to these lengthy expressions are also 

discussed. 

A13.1 PROPERTIES OF LANGEVIN NOISE SOURCES 

A13.1.1 Correlation Functions and Spectral Densities 

One of the defining characteristics of a Langevin noise source, F(t), is its 

completely random nature. In fact, the best analogy to F(t) is a random number 

generator that generates a new number between +00 every At seconds in the 

limit of At > 0. In mathematical terms, this characteristic is described as a 

memoryless process which means that the value of F(t) at time t has absolutely 

no correlation with any previous value F(t — t) including t > 0*. Now because 

F(t) is just as often positive as it is negative, the average value over time is 

zero: <F(t)> =0.' Furthermore, since F(t) and F(t — 1) fluctuate randomly 

' The brackets < > actually refer to a statistical average over many similarly prepared systems at 

the same time t. However, we can obtain the same result by averaging a single system over extended 

‘ time intervals if the statistical processes involved are both stationary and ergodic, which we assume 

to be the case here. Thus, whether we define ¢ > asa statistical average or time average is a matter of 

conceptual convenience. In the time domain, it is often convenient to think in terms of a time 

average, whereas in the frequency domain, a statistical average is usually more appropriate. 

540 
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relative to each other, they have the same sign just as often as they have opposite 

signs over time. As a result, the average of the product of the two over time t is 

also zero: (F(t)F(t — t)> =0. The only exception is when t = 0, in which 

case the product is always positive: (F(t)F(t)> = <F(t)*> = oo (the magnitude 

is infinite because F(t)? can take on any value between 0 and oo, which 

when averaged is infinite). As a function of t then, the correlation function 

<F(t)F(t — t)> displays a delta function-like behavior. Generalizing this result, 

we can define the correlation function between any two (memoryless) Langevin 

noise sources as 

CFOE(t — t)*> = S,;°6(2). (A13.1) 

The proportionality constant S;; defines the correlation strength between the 

two noise sources (it has units of (seconds) x (fluctuating variable units)?). 

When i = j, S;; defines the autocorrelation strength. When i # j, S,; defines the 

cross-correlation strength which is nonzero only if the fluctuations of one noise 

source are in some way correlated with the fluctuations of the other noise 

source. The complex conjugate is included in the definition of the correlation 

function to account for possibly complex Langevin noise sources (such that at 

t = 0, the autocorrelation function reduces to <|F(t)|*>). 

It is interesting to point out that according to Eq. (A13.1), a Langevin noise 

source has an infinite mean-square value: <|F,(t)|*)> = oo. However, this would 

only be observable by a detection system which had infinite bandwidth. In 

practice, the fluctuations observed on an oscilloscope are never infinite because 

they are limited by the system rise time or measurement bandwidth. The actual 

measured mean-square noise is found from the overlap of the measurement 
bandwidth with the spectral density of the noise source as worked out in Eqs. 

(5.103)—(5.105) in Section 5.5. 
We can relate the spectral density to the correlation function by examining 

the frequency domain correlation function as follows: 

(F(a) F(o')*> = (| remem ae: [ Rone" it) 

2 | (F(t + DE()*>e eI 8 t de 

= | (F(t + E(t)" de: | pho o'r dy 

= | CF) F(t — t)*>e-/° dt-22d(@ — a’) 

= §,(@)-276(@ — a’). (A13.2) 

The first step in this derivation uses Eq. (5.102) to transform to the time domain. 

The second step sets t >t +1 (with dt =dt) and regroups, confining the 
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statistical average (see footnote 1) to the statistically varying processes. The 

third and fourth steps assume that <F(t + t)F(t)*> only depends on the relative 

time delay t between the two functions and not on the absolute time t. This 
characteristic is described as a stationary process and is not limited to Langevin 

noise sources but applies to all statistical processes considered in this book. 

For stationary processes then, we can separate out the integration over t in the 

third step, and shift the time origin to t > t — t.in the fourth step. The fourth 

step also recognizes the integration over t to be a delta function of strength 27. 

The final step in Eq. (A13.2) defines the correlation strength of the frequency 

domain delta function as the spectral density S;(@) (compare with Eq. (5.104)), 

where 

S,(@) = | CF(t)F(t — 1)*>e7 3 dr. (A13.3) 

In words, the spectral density is just the Fourier transform of the correlation 

function. This fundamental relation is known as the Wiener—Khinchin theorem 

and it applies to all types of stationary processes (not just Langevin noise). For 

example, when discussing linewidth in Section 5.5.6, we stated that the power 

spectrum was equal to the Fourier transform of the electric field autocorrelation 

function. Equation (A13.2) is the proof of that statement. However, here we 
are interested in applying this result to Langevin noise. 

Plugging the Langevin noise correlation Eq. (A13.1) into Eq. (A13.3), we 

find 

S;(@) = Si | 5(t)e#" dt =S,,. (A13.4) 

Thus, the Langevin noise spectral density is simply equal to the correlation 

strength and is independent of frequency—it is a “white” noise source (this is 

in fact true for any memoryless, stationary process). Since the Langevin noise 

spectral density and correlation strength can be used interchangeably, we adopt 
a common notation for both: 

(FF;> = S,;(@) = S;;. (A13.5) 

In some cases it is more meaningful to interpret (F,F,> as the noise spectral 

density while in other cases the correlation aspect is more relevant. In this 

appendix, we will generally refer to (F,F;> as the correlation strength. Note 

that both the spectral density and the correlation strength have units of 

(seconds) x (fluctuating time domain variable units)?. 

‘ A13.1.2 Evaluation of Langevin Noise Correlation Strengths 

The Langevin noise sources discussed here and in Chapter.5 are based on a 
shot noise model advanced by McCumber [1] and others such as Lax [2] as 
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a method of simplifying the rigorous quantum description of noise in lasers. 

Within this model, the laser noise is assumed to originate from shot noise 

associated with the discrete random flow of particles into and out of the carrier 

and photon reservoirs. It can be shown that the spectral density of shot noise is 

constant and proportional to the average rate of particle flow. With this in mind, 

consider a reservoir where particles are flowing into and out of the reservoir 
by a host of discrete random processes. In the Langevin formalism, each of 

these discrete processes contributes shot noise to the overall noise in the 

reservoir. Therefore, to determine the total Langevin noise spectral density or 
correlation strength < F; F,>, we simply sum over all shot noise contributions—or 

over all rates of particle flow into and out of reservoir i. To determine the 

cross-correlation strength <F;F,;> between two reservoirs i and j, we sum only 

over particle flows which affect both reservoirs simultaneously. However in this 

case, when one reservoir gains a particle (F; > 0), the other loses a particle 

(F; < 0). Hence the product <F;F;> is always negative, and the noise between 

the two reservoirs is said to be negatively correlated. 

Within the shot noise Langevin model then, the correlation strengths 

between the various Langevin noise sources are found by simple inspection of 

the rates into and out of the various reservoirs: 

(FF) =) Ri +R, (A13.6) 

(EF) al¥Lisnmapodsiat (A13.7) 

The reservoir Langevin noise sources, F; and F;, as well as the rates of 

particle flow into, R;*, out of, R;, and between the two reservoirs, R;; 

and R,; are all in units of numbers per unit time. For single-sided spectral 

densities, an additional factor of 2 would be required on the RHS of these 

definitions. 
As an example use of Eq. (A13.6), let’s consider a simple and perhaps familiar 

example: shot noise in a detector. The shot noise associated with the current 

generated by discrete random absorption events? is given by: <iy(t)*> = 2qIAf, 

where I is the average current, and Af is the bandwidth of the detection system. 

We can arrive at this same result by defining the current noise in terms of a 

Langevin noise source: i(t) = I + F,(t). After converting to pure numbers per 

unit time (i.e., I/q and F,/q), we can use Eq. (A13.6) to determine the spectral 

density of the noise or the correlation strength <F,F,>: 

1 I 
Fak Sele cx egau a: (A13.8) 

2 If the absorbed photons do not arrive in an entirely random fashion, it is possible to generate a 

noise current smaller than the standard shot noise level. Such a nonrandom, or sub-shot-noise- 

limited photon stream can be generated by semiconductor lasers (see Section 5.5.4 for details). 
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Multiplying this double-sided spectral density by 2Af (see Eq. (5.106)) gives 

the shot noise expression for <iy(t)*>. The main point of this exercise is to show 

the importance of first converting to numbers per unit time in order to get the 

correct proportionality constant (in this case, q). 

A13.2 SPECIFIC LANGEVIN NOISE CORRELATIONS x 

A13.2.1 Photon Density and Carrier Density Langevin Noise Correlations 

Figure 5.1 displays all rates into and out of both carrier and photon reservoirs. 

The associated density Langevin noise sources for each reservoir, Fy and Fp, 

when converted to units of numbers per unit time are VFy and V,Fp. Using 

Fig. 5.1 in combination with Eqs. (A13.6) and (A13.7), we immediately obtain 

Vi<FpFp> = IN, Vers + (R>; + R,2 + RAV (A13.9) 

V?< Fy Fy> = nt/q + (KS + Kt Roget i) hs (A 13.10) 

VVC Fp Fy > = —(R,,+ Ry. + Rok (A13.11) 

The current term 7,;1/q in (A13.10) may be smaller or larger depending on the 

noise characteristics of the current pumping source [3]. 

We can simplify the correlation strengths using the following substitutions. 

From the steady-state relations, we can set N,V,/t; = (Ro; — Ri2 + Rj,)V in 
Eq. (A13.9). From the fundamental relations (4.32) and (4.48), we can also set 

R,, = R2, — v,gN, and R2, = R,,N, V,. Finally with R,, — Ri, + Ra, = Nil n/qV 
from Eq. (5.18’), we obtain 

; 1 
(Fp Fp > = 2P RN aF mal (A13.12) 

Pp 

2R’,N 1 N, (+l 
CF) = “Rael |-“ py ME + to) 413.13) 

2NL I V qV? 

1 v,gN 
<(FpFy> = —2R; mar + |+ ee A13.14 P nN? Paap 2N, V, V, ( ) 

_ For lasers putting out milliwatt power levels above threshold, the photon 
number in the cavity is typically ~10° or more. Thus it is generally safe to 
assume N,V, > 1. For this reason, Eqs. (5.127) through (S.129) are written 
without the terms in square brackets. 
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R= 30% 

FIGURE A13.1_ Illustration of partition noise created by a partially reflecting mirror. 

The key point is that a negative correlation exists between the partition noise reflected 
and transmitted at the mirror facet. 

A13.2.2 Photon Density and Output Power Langevin Noise Correlations 

In Chapters 2 and 5, we simply used P, = (hvV,v,a,,F)N, or equivalently 

Py = (nohvV,/t,)N, to convert from photon density to output power. However, 

when considering the noise inside and outside of the cavity we must be careful. 

To understand why, consider a perfectly uniform stream of photons incident 

on a partially reflecting mirror as sketched in Fig. A13.1. While on average 

30% of the photons are reflected, each individual photon must either be 

completely transmitted or completely reflected. This random division into 

reflected and transmitted photons leads to partition noise in the stream of 

both reflected and transmitted photons. 

The partition noise reflected back into the cavity is accounted for in < Fp Fp) 

by the term N,V,/t, in Eq. (A13.9), which is equivalently the shot noise created 

by photons escaping the cavity. The partition noise transmitted outside the 

cavity however is different from that reflected back in. In fact, it is the exact 

inverse of the reflected noise, as Fig. A13.1 reveals. When added to the other 

noise contributions, the overall noise associated with the power outside the 

cavity is not the same as the overall noise associated with the photon density 

inside the cavity. This perhaps subtle point was first brought out by Yamamoto 

[4] using more fundamental quantum mechanical arguments.* 

3 Yamamoto describes the partition noise as vacuum-field fluctuations incident on the mirror facet 

from outside the cavity. In this case, the vacuum fields transmitted into the cavity have a negative 

phase relationship to those reflected off of the mirror facet and this is what provides the negative 

correlation between the facet noise inside and outside of the cavity. Despite this difference in 

interpretation, Yamamoto’s derivation produces the same result for output power noise considered 

in this appendix (however, Yamamoto’s derivation requires a high mirror reflectivity resonator). 
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We can again use the Langevin method to determine the effect of this 

negativity correlated partition noise by treating the stream of output photons 

as another reservoir with its own associated Langevin noise source (similar to 

the detector current considered initially). Adapting Eq. (5.118), we have for the 

output power fluctuations: 

5P(t) = (NohvV,/t,)Noi(t) + Fol). \ (A13.15) 

As we did in deriving Eqs. (5.124) and (5.125), we convert to the frequency 

domain, multiply both sides by dP(w’)*, take the time average, and integrate 

over w’ to obtain 

Ssp(@) = (nohvV,/t))?Sy,(@) + 2 Re{(nohvV,/t,)<NoiFo>} + <FoFo)- 
(A13.16) 

The first term in this equation is what we would naively expect the relationship 

to be. However, the partition noise at the mirror facet creates two additional 

noise contributions which are important to consider, particularly at high output 

powers. 
Using Eq. (5.121) for N,,(@), we can set 

H (NF) = - Ca Oe He eect RL RUN CWERI) 
R 

Thus, to evaluate (A13.16) we need to know the various correlations between 

the three noise sources, Fy, Fp, and Fy. First of all, there is no correlation 

between the carrier noise and the phenomenon depicted in Fig. A13.1. 

Therefore, we can immediately set (Fy Fy> = 0. For the other two correlation 

strengths we can apply Eqs. (A13.6) and (A13.7) using Fo/hv and V,Fp 

to obtain 

{Fo Fo> = noN,V,/tp‘ (hv)? = hvPo, (A13.18) 

(Fp Fo) = —NoN,V,/t, (hv/V,) = mata (A13.19) 

(Fy Fo> = 0. (A13.20) 

Using these in combination with Eqs. (A13.12) through (A13.14), we can 

evaluate Sy (@) (5.125) and <N,,Fo> (A13.17) from which we can ultimately 

_ obtain the output power spectral density function S;,(w) (A13.16). The com- 

plete expression is deferred to the next section where we evaluate all three 
photon density, output power, and carrier density noise spectral density 
functions. 
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A13.2.3. Photon Density and Phase Langevin Noise Correlations 

The phase Langevin noise source F,(t) and its related correlation strengths are 

found by studying the electric field in the laser cavity. To begin, we assume the 

noise on the electric field contains fluctuations in-phase and out-of-phase 

with the average field as shown in Fig. A13.2. Defining the in-phase and 

out-of-phase random fields as A&(t) and Aé&(t), the total instantaneous field 

and associated complex Langevin noise source become 

E(t) = 6 + AG (t) + jAE (0), 
n (A13.21) 
F(t) = E(t) + jR(0). 

Here F,(t) models the in-phase field fluctuations and F(t) models the out-of- 

phase field fluctuations. 

The power and phase fluctuations and their associated Langevin noise 

sources can be related to the in-phase and out-of-phase noise components as 

follows: 

E*E ~ E32 + 2A, and LE = AE,/E, 

Fp(t)  2,/N, F(t) and ~——F,(t) = F(t)/./N,. 

The approximate equalities are valid for Aé,, Aé; « &. For the latter relations, 

the fluctuating portion of &*& translates into photon density fluctuations, Fp(t), 

while &§ translates into average photon density, N, (and hence, & translates 

into ANE): Now if we assume the spectral density of the in-phase and 

out-of-phase components of the field noise are equal in magnitude (ie., 

(FF,> = ¢F,F,>), we obtain 

(A13.22) 

1 TR: 
Pip a= (heres arene A13.23 is yy, 4n, < pip? 5 ( ) 

1 1 PR’ 
Rr 2 Rr ye Seepr yes A13.24 Cae, or » me b; N, ( ) 

Im{#} 

LE = hE,/E \ 

% AE, —- Re{&} 

FIGURE A13.2 Vector illustration of the relationship between the instantaneous field 

magnitude and the quadrature (in-phase and out-of-phase) noise components. 
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The first equation uses Eq. (A13.12) to set <FpFp> = 21D'R,,N, assuming 

INEM coal 

To determine the cross-correlations, we note that (F,Fp> = 2(F,F,> from 

Eq. (A13.22). Assuming Aé&(t) and Aé,(t) are completely uncorrelated, we can 

set (F,F,> = 0. As for (Fy Fy>, we note that phase fluctuations due to changes 

in carrier density are accounted for separately with the linewidth enhancement 

factor, a (see Eq. (5.138)). Thus, the inherent phase fluctuatigns which exist even 

when « = 0 are unrelated to carrier noise. From these arguments, we conclude 

that 

(F,Fp> = (F,Fy)> = 0. (A13.25) 

Finally it should be noted that a difference appears between the phase 

fluctuations inside the cavity and outside the cavity as discussed by Yamamoto 

[4]. However, the difference in this case is relatively minor and will not be 

considered here (it is only important to consider at frequencies comparable to 

or greater than 1/r,). 

A13.3. EVALUATION OF NOISE SPECTRAL DENSITIES ~ 

A13.3.1 Photon Noise Spectral Density 

For reference, the spectral density of the photon density noise derived in 

Chapter 5 is given by 

H(a)|? ) 
Sy) =! cm [G2y ato) CELES) pyar ioky)- + JenC ini >I 

f (5.125) 

Using the rate coefficients defined in Eq. (5.35) and the Langevin noise 

correlation strengths defined in Eqs. (A13.12) through (A13.14), the photon 
density noise becomes 

N.* a, 4502 
5 @) = - igi tna |H(w)|?, (A13.26) 

2) R 

where 

a: 2 (I +1 
nie = a w ir of ul) fe |, 

TAN Tantp st 

a, = 
meee Nate is 1 I 

Tp Np V, 

and (Av)s7 = 'R;,/42N,, I = QN,V,/t,. To simplify the expression, we have 
neglected the dependence of the single-mode spontaneous emission rate on N 
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by setting 1/t,y > 0. Also, in defining a’, we have set v,4N,/t, = OR. Thus 

within aj, the resonance frequency is by definition: w?, = v,aN,/Tp- 

The three terms comprising a, form a power series in w2, or equivalently 

in N,. At very low powers the first term dominates, while at moderate-to- 

high powers the last wk term dominates. In fact at very high powers, the w4 
term in a; dominates the entire numerator of (A13.26) and its coefficient in 

square brackets reduces to 2 (for a shot noise-limited current source). At very 

high powers, we can also set |H(w)|? + (1+ @*t?)~' if we neglect gain 
compression (with gain compression, t, is replaced by y/mg). In this limit then, 

Sy,(@) © (2N,/V,)-t,/(1 + 713). Using Eq. (5.105), we can estimate the mean- 
square photon number fluctuation. Integrating Sy (@) V* over all frequencies, 

we obtain <|6N,(t)V,|*> = N,V,. This result reveals that in the limit of high 

powers, the statistics of the photon number inside the cavity converges toward 

a Poisson distribution, indicative of a coherent state (in the language of quantum 

optics) [4]. 

A13.3.2 Output Power Noise Spectral Density 

For reference, the spectral density of the output power noise derived earlier is 

given by 

Ssp() = (NohvV,/tp)?Sy,() + 2 Re{(nohvV/t,)XNpiFo>} + <FoFo)- (A13.16) 

Using the expression for ¢N,,Fo> given in Eq. (A13.17) and the Langevin noise 

correlation strengths defined in Eqs. (A13.18) through (A13.20), the output 

power noise becomes 

2 

So bop, | oe |H(o)|? + | (A13.27) 
MR 

where 

8n(Av) er P ieee a neice 
hy N,V, one ee 

1 - oil 08 + | 
81(Av) sr Pi 1 Ta, 4n(Av 

a, = SateMsrte 1+ a7 — 2nooi| P4 e )sr , 
hy NOV a ORTp 

and (Av)s7 = Rj, /4aN,, In = 4Po/nohv. To simplify the expression, we have 

neglected the dependence of the single-mode spontaneous emission rate on N 

by setting 1/t,y > 0. Also, in defining a, and az, we have set v,aN,/t, = wae 

Thus within a, and a,, the resonance frequency is by definition: w% = v,aN,/Tp. 

The remainder of terms comprising the exact expression for the resonance 

frequency are sectioned off into the variable: Wh = YupYpw + YwnYpp — V,4N,/Tp- 
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Within a,, the first term is independent of power and dominates at very low 

powers. The second term is oc P{ and dominates at moderate-to-high powers 

even though 7,(I + I,,)/I approaches one at high powers (for a shot noise- 

limited current source). The third m% term can be neglected for all but very 

small power levels since the difference between v,aN,/t, and the actual w? is 

usually negligible. Within a,, the first term is independent of power, but 

nevertheless dominates for all but very high powers. The second term is o Pp, 

so it eventually becomes comparable to the first term. However, gain compression 
limits w; to a maximum value, such that the second term never actually grows 

larger than the first term. Within the square brackets of the second term, Ia,/a 

dominates for all but very small powers since 4(Av)57/@gt, is 0c1/P6. 

In comparing S;p(@) to Sy (@), note that in addition to the slightly more 

complex frequency coefficients, a new “+1” factor appears in S;p(@). This factor 

insures that the output power spectral density never drops below the shot noise 

limit of hvPo for all frequencies (unless the current source has sub-shot noise 

characteristics). Because the shot noise is included implicitly in S;p(q), it is in 

principle not necessary to explicitly add a shot noise term to the noise 

current in a photodetector [4]. However in practice, the partition noise created 

by the random loss of photons in getting from the laser to the detector 

contributes a shot noise-like term oc(1 — 7,,,) that should be added to the 

detector current noise (see Eq. (5.137) for details). . 

The expression for S;p(@) given in Chapter 5 (5.130) neglects the wi term of 

a,, and the second term within square brackets of the m2 term in a,. The first 

set of square brackets in both a, and a, are also set equal to one, assuming 
N,V, > 1 above threshold. 

A13.3.3 Carrier Noise Spectral Density 

For reference, the spectral density of the carrier density noise derived in 
Chapter 5 is given by . 

5,(0) = HO? 
Lynp<FpFp> — 2yppynp<FpFy> + (yep + @?)XFyFy>]. (5.124) 

R 

Using the rate coefficients defined in Eq. (5.35) and the Langevin noise 

correlation functions defined in Eqs. (A13.12) through (A13.14), the carrier 
density noise becomes 

8nN? 
Sy(@) = 2a F (Ars + IHC), (A13.28) 

5 — —_2NplMsp ee alann, ine tlw) 
(1 + eN,)? Fama I 

st 

Li? oral < Ls we tideyi) me ‘ 

x 20 Ie : 

where 
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and (Av)s7 = ['R;,/42N,, I = 4N,V,/t,. To simplify the expression for this 

case, we have set the gain equal to the loss (T'v,g = 1/t,) and assumed N, V, > 1. 

We have also written out a, explicitly using Eq. (5.32) and set Ri,Vt, > n,p. 

For practical uses, it turns out that 6 does not need to be considered. For 

example at low powers, the entire first term reduces to —eN,/n,, which is 

negligible in comparison to one (n,, ~ 1 above threshold). At very high powers, 

it reaches a maximum of —1/4n,, when eN, = 1 (n(I + I,)/Ig 21 at high 

powers for a shot noise-limited current source). Thus, gain compression can 

reduce the low frequency carrier noise by as much as 25% at very high powers, 

however, we neglect this contribution in Chapter 5. The second term is small 

in comparison to one for w « 1/t,, so unless we are interested in very high 

frequency carrier noise, we can neglect it as well. 

The expression for Sy(@) given in Chapter 5 (5.124) neglects 6 in (A13.28) 

and sets wR = v,aN,/T,. 
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PROBLEMS 

A13.1 Assume the output power of a laser with a given noise spectral density, 

S;, is split by a beam splitter and fed into two photodetectors. Use the 

Langevin method to determine the detected noise spectral densities. 

Start by defining reservoirs for the incident and detected photon 

streams, with associated Langevin noise sources (F;, F,,, and Fj). For 

the incident photon reservoir, assume an in-flow from the laser, J, and 

two out-flows, 7] and (1 —yn)J. For the detector reservoirs assume 

only in-flows from the incident photon reservoir (a flow chart is useful 

here). Next, define all auto- and cross-correlation strengths between 

the three Langevin noise sources, considering the in-flow correlation 

term in the incident photon reservoir to be S, instead of shot noise, 

I (assume photon number flow rates in all reservoirs for convenience). 

Finally, using a small-signal analysis, show that the spectral density of 

the first detected photon stream <J,,/,,> is equal to the product 

<(nF; + Fi,)(nF; + Fy,)>, and then evaluate the product for both de- 
tectors. Interpret how this result applies to Eq. (5.137). How and why 

does the beam splitter affect the detected noise? 
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A13.2 For the arrangement described in Problem A13.1, show that the spectral 

density of the sum of the detected photon streams reproduces the noise 

of the incident photon stream, independent of 7. What spectral density 

does the difference between the two detected photon streams yield in 

general, and for y = 0.5? Can you use the results for the sum and 

difference spectral densities to suggest.a measurement technique which 

calibrates the measured intensity noise ofa laser to the shot noise floor? 

This type of configuration is in fact known as a balanced detector pair 

and is commonly employed to determine whether or not a laser is 

operating below the standard quantum limit for noise. 
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a 

Derivation Details for Perturbation 

Formulas 

In Chapter 6 several calculations involve deriving an approximate solution to 

a perturbation on a known waveguide problem. This typically involves inserting 

a trial field into the wave equation, dropping out second-order terms, multiplying 

through by a complex conjugate of a transverse-mode eigenfunction of the 

unperturbed problem, integrating over the cross section, and using modal 

orthogonality as well as other arguments to drop additional terms, so that a 

simple analytic formula can be derived. 

During the course of these calculations we repeatedly come upon a collection 

of terms composed of the transverse-mode perturbation acted upon by the wave 

equation. The first such instance is given in Eq. (6.8), which is the result just 

after multiplying times U* and integrating over the cross section. That is, 

apap | |W? dA = | ackgiur? ad 

+ | uvzauye + ek2AUU* — B?AUU*] dA. (6.8) 

The terms in question are contained in the second integral on the right side of 

the equation (second line). We need to show that the integral is zero or negligible 

in the cases of interest. 
First, we multiply the complex conjugate of the transverse wave equation, 

Eq. (6.5), by AU to get 

AU(V2U*) + AU[e*(x, y, z)k2 — B*2]U* = 0. (A14.1) 

Thus, the last two terms in the last integral in Eq. (6.8) can be replaced by 

—AU(V2.U*) + (¢ — e*)k3 U* — (B? — B*?)U*. If ¢ and B were real, then we 
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would only need —AU(V7U*). Making the replacement, 

| uvzauvyus + eke AUU* — B?AUU*] dA 

= | [(V2AU)U* — AU(V2U*)] dA 
~ 

AF | tc — e*)k2 AUU* — (B? — B**)AUU*] dA. (A14.2) 

Now, the first integral on the right is identically zero because 

[ evzavyus — AU(V2U*)] dA = | v-t@raune — AU(V,U*)] dA 

= } é,-[(V;AU)U* — AU(V,U*)] ds = 0. 

(A14.3) 

The latter equality uses Green’s Theorem to convert the integral over the 

cross-sectional area to a line integral around the perimeter of the cross section 
(in this case, at infinity). The vector é, is the unit vector normal to the contour 

of integration. The contour integral at infinity is zero because both U and AU 

must vanish at infinity for any guided mode. The second integral on the right 

side of Eq. (A14.2) also is identically zero for ¢ and £ real. In fact, even for 

complex ¢ and f, it tends to be negligible in comparison to the first integral on 

the right side of Eq. (6.8) in most cases, since AU « U, and because the loss or 

gain of the unperturbed problem can usually be chosen to be sufficiently small. 

Only in the extreme case where the gain provides most of the waveguiding 

effect (as in gain-guided lasers) will this term be nonnegligible. In this rare case, 

the use of the Af formula is questionable. 
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The Electro-Optic Effect 

For many tunable lasers and photonic integrated circuits it is desirable to 

change the index of refraction by the application of a dc (or rf) electric field. 

In certain crystals that do not possess inversion symmetry this is possible 

through what is known as the electro-optic effect. Because the index changes 

virtually instantaneously with the field, this effect can be used in very high 

modulation bandwidth modulators and tunable filters. 

The electro-optic effect is somewhat more complex than one might at first 

expect, because the change in index is generally different for different polariza- 

tions of the optical field for a given applied dc field orientation, and moreover, 

it is usually associated with anisotropic crystals that have different indexes for 

different optical polarizations initially [1]. Thus, it is necessary to use the full 

dielectric tensor in relating the displacement, D, to the electric field, &, of the 

lightwave. That is, the displacement might not be parallel to the electric field 

for all orientations. Also, the applied dc or rf field generally has still another 

orientation, so we have three orientations to keep track of in this process. 

The displacement field is related to the optical electric field via the dielectric 

tensor, D = ¢&, or 

D, Exx Exy Exz é. 

|B Sy Ia ar ae eM a (A15.1) 

D, Ezx Ezy E22 é, 

If we choose axes to diagonalize the matrix, then we have found the principle 

dielectric axes of the medium. Switching to the optical index, we then have 

D,. 

D,| =e | 0 nz, 01/4]. (A15.2) 

D, 
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We continue to allow for anisotropy of the index, but we have defined an 

index ellipsoid with axes along the material’s principle axes. When the field is 

polarized along one of these directions, D will be parallel to &. In most materials 

at least two of these indexes are equal. These are called the ordinary index, 

while the third is called the extraordinary index. Rays with their electric field 

aligned along these directions are also referred to as the ordinary or extra- 

ordinary rays. By convention we label n,, as the extraordinary index, and the 

z-axis is called the optic axis. Materials with two such ‘indexes are called 

birefringent. In the III-V semiconductor materials considered in this book, the 

index is isotropic when no additional dc or rf field is applied. Thus, all of the 

indexes are the same with no applied field. However, with the application of a 

field, these materials become birefringent also. 

The general index ellipsoid from Eq. (A15.2) is 
\ 

ges es (A15.3) 
pale a 

The index of any propagating wave can be found by constructing a plane 

perpendicular to its k-vector that passes through the origin of the ellipsoid. The 

wave’s electric field direction is then constructed as a line from the origin on 

this plane. The index is given by the distance to the surface of the ellipsoid. 

Figure A15.1 illustrates this construction. Note that for GaAs or InP this 

ellipsoid is just a sphere in the absence of any applied dc or rf field. 

With the application of a dc or rf field to an electro-optic material this 

ellipsoid is distorted, so that generally off-diagonal terms appear in (A15.2). 

The electro-optic tensors are defined from the perturbation to each of the terms 
in the index ellipsoid. That is, 

1 . 

n ij k 

where r is the linear electro-optic tensor and &, is the applied dc electric field. 

Three subscripts are necessary to account for the relative orientation of the 

crystal axis, the optical electric field, and the de electric field. It is also possible 

that quadratic effects are important, so we can also define a similar equation 

where & is replaced by & and r is replaced by s, the quadratic electro-optic 

tensor. Quadratic effects are important for wavelengths near the absorption 

edge in bulk and MQW waveguides, where an electric field can move the 

effective absorption edge [2,3]. Also, in depletion regions of pn-junctions 

quadratic effects become dominant if a significant carrier density is being 

_ depleted at the same time [4]. We will come back to this topic after completing 
the linear effect. 

In order to simplify the notation somewhat, an abbreviated subscript 

notation is usually introduced, so that the three-dimensional tensor can be 
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(optic axis) 

x 

FIGURE A15.1 Plot of index ellipsoid [1] (From Optical Waves in Crystals, A. Yariv and P. Yeh, 

Copyright © 1984 John Wiley & Sons, Inc. Reprinted by permission of John Wiley and 

Sons, Inc.) 

expressed in two dimensions. The notation involves using numbers from | to 6 

for the first two subscripts, where 1 = xx, 2 = yy, 3 =2z,4= yz, 5 = xz, and 

6 = xy. The final subscript, which refers to the applied dc or rf electric field 

orientation also is given a numerical subscript, where 1 = x, 2 = y, and 3 =z. 

Thus, Eq. (A13.4) becomes 

3 

(5) =), rj65 1 =1,2,...,6 (A15.5) 
Wi j= 

With the application of a dc or rf field, the distorted index ellipsoid takes 

on the form, 

=) (ar +), Ga) A) A) Sete Se | +{—]) 2° +2|—] yz+2| —] xz+2|—] xy=1, 
(el @E n’/, n? “ n’/. n’]¢ 

(A15.6) 
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where the additional terms are solely due to (A15.5) and the original terms may 

also be changed if nonzero perturbation terms are generated by (A15.5). To 

determine the change in index for a propagating optical wave, we again must 

diagonalize the index matrix, or equivalently, find the new principle axes for 

the distorted index ellipsoid. This generally involves a rotation in space of the 

original axes. Once this new principle axis set (x’, y’,z’) is found, the index 

ellipsoid will again have the form of (A15.3). The coefficient of x’? will give the 

reciprocal of the square of the perturbed index, n,., for an optical field polarized 

along the x’-axis, and similarly for the other components. 

In the case of GaAs, InP, or their alloys, the process of finding the perturbed 

principle axes and the related indexes is somewhat simplified, since for crystals 

of this zinc blende class (cubic-43m) only r4,, 57, and r¢3 are nonzero for x, y, 

and z aligned with the crystal axes. Also, these all have the same value, so we 

set them all equal to r,,. Thus, for a dc field ‘in the z-direction, or [001], Eq. 

(A15.6) becomes 

2 2 2 

on eye (A15.7) 
No, 

where ny is the unperturbed index for the isotropic semiconductor in all 

directions. That is, in the x—y plane, the index ellipsoid is somewhat squashed 

in the first and third quadrants and somewhat stretched in the second and 
fourth quadrants. To put Eq. (A15.7) in the form of (A15.3), it can be shown 

that a rotation of the coordinate system about the z-axis by 45° is required. 
Mhavis,. 2 = 2. and 

x = x’ cos 45° + y’ sin 45°; 
(A15.8) 

y = —x’ sin 45° + y’ cos 45°, 

so that the new (primed) axes become x’ = [110] and y= [110]. Plugging 
this into (A15.7), we obtain 

1 1 1 
(5 2 ra)? + (5 - rab)? + (= Jz? =1. (A15.9) No No No 

Thus, 

3 

(A15.11) 
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The result of the above calculation is that the index for an optical field 

polarized along the [110] direction (ie., x’-direction) will be increased by 

(n3/2)r4,€,, while the index for an optical field polarized along the [110] 

direction (i.e., y’-direction) will be decreased by (n3/2)r,,6,. There will be no 

change in index for a component of optical field along the direction of the 

applied field [001]. Thus, for a waveguide on a (001) wafer aligned per- 

pendicular to the natural (110) cleavage planes in these III-V materials, 

the application of a surface-normal field will cause the index of a TE mode to 

change, but it will not change for a TM mode. 

In GaAs, ry, varies from 1.1 to 1.5 x 107~'? m/V in the 0.9 to 1.3 pm 

wavelength range. In other materials the electro-optic coefficient can be much 

larger than this. Of course, it is really the product n*r,; which gives the best 

measure of the index change for a given applied field. In GaAs, n°r4, ~ 
55 x 107'* m/V. Thus, for fields ~400 kV/cm, obtainable in pin undoped 

regions (as well as in the depletion regions of pn-junctions), An/n ~ 0.001. 

Outside of the semiconductor regime, the most popular material for photonic 

integrated circuits is lithium niobate, LiNbO,. In this trigonal-3m material 

several terms in the electro-optic tensor are nonzero. At 1.3 um, 7,3; = —r23 ~ 7; 

Pep ig Srey ~ 3. gg 0S ands rs, = 775/126 % 10° m/Vi "The 
ordinary and extraordinary indices of refraction are 2.22 and 2.14, respectively. 
Also, ngr33 ~ 328 x 1071? m/V. 

In certain III-V device configurations the quadratic electro-optic effect is 

larger than the linear effect. This can happen if the wavelength of the lightwave 

is close to the absorption edge in bulk or quantum-well material. When a field 

is applied the absorption edge moves to longer wavelengths via either the 

Franz—Keldysh (FK) in bulk or quantum-confined Stark effect (QCSE) in 

MQwWs. Since the index of refraction is decreasing roughly as 1/A above the 

absorption edge, the application of a field also increases the index at some 

wavelength in this region. The combined effect is nearly quadratic with electric 

field [4]. Also, if free carriers are depleted when a field is applied, e.g., in the 

depletion region of a pn-junction, the index will increase due to the removal of 

the index reduction associated with the existence of free carriers as well as the 

shift in absorption edge due to a removal of band filling. This effect again is 

approximately quadratic with the applied field. 

Analogous to the linear effect, the quadratic index change in all cases can 

be written as 

3 

An, = = 5&2, (A15.12) 

The difficulty in these cases is that the quadratic coefficient, s, also decreases 

with increasing distance away from the absorption edge, and therefore, it is 

difficult to effectively parameterize the problem as with the linear electro-optic 

effect. With the QCSE, associated with absorption due to excitons in MQWs, 

the index shift per unit field change can be larger than in bulk GaAs, but the 
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effect also decays more rapidly with increasing wavelength. For example, the 

effect becomes less than the linear effect ~40 nm from the absorption edge, 

whereas in bulk materials the quadratic effect due to the absorption edge alone 

is larger than the linear effect 100 nm away. The depletion of charge also only 

works effectively in bulk materials, since the charge will tend to screen the 

excitons in quantum wells. Thus, it is unclear whether or not quantum wells 

can offer a significant practical advantage in electro-optic modulators. 

Figure A15.2 plots the phase modulation available in a doped GaAs 

waveguide under reverse bias. This device has a pn-junction in the center of the 

doped waveguide, and the waveguide is oriented along the [011] direction so 

that the quadratic effects add to the linear effect. A separate curve is plotted 

for each physical effect. The net phase shift Ad, in a device of length L, is 

obtained from the plotted phase-shift efficiency, 7,,, from 

Ag = n,,L(AV), (A15.13) 

where AV is the applied voltage shift. 

In all cases the proximity of the operating wavelength to the absorption edge 

is limited by loss. That is, although the amount of*index change available 

increases as the absorption edge is approached, so does the loss and the loss 

change. As a consequence, it is important to limit the residual loss and loss 

change to some values when comparing different kinds of index modulation. 

As defined in Chapter 2, the ratio of the changes in the real to the imaginary 

8 
NnpP N =5E17cm-3 

i) 
8 

Efficiency (°/Vmm) 

1.0 a2 1.4 

Wavelength (uum 

FIGURE A15.2 Calculated and measured (data) phase-shift efficiency vs. wavelength 
with L,, = 740 pm, and equal n- and p-type doping to the center of the 0.25 um thick 
GaAs waveguide [5]. The AlGaAs cladding material contains 40% Al. PL, BF, ER and 
LEO refer to the plasma, band-filling, electro-refractive, and linear electro-optic effect 
respectively. All except LEO are approximately quadratic with applied reverse bias in 
this configuration. 
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FIGURE A15.3 Calculated and measured phase-shift efficiency (top) and chirp (bottom) 

for undoped material vs. wavelength deviation from the zero-bias absorption edges at 

0.87 pm for bulk and 0.855 um for the MQW waveguides [5, 6]. The waveguide regions 

(MQW separate-confinement region) are 0.25 um wide clad by Aly Gay ¢As. The bulk 

guide is undoped GaAs; the MQW region has either 1, 4, or 17 GaAs wells, 10-nm-thick, 

separated by Aly ,Gao As barriers. In all cases the phase-shift efficiency and chirp are 

calculated between 0 and —4 V. For the bulk case (a) the TE mode measurements are 

given by circles; the TM mode by squares. The calculated net quadratic electro-refractive 

(ER) effect is shown with the short dashed line, the net linear electro-optic (LEO) effect 

is shown with the long dashed line, and the total with a solid line. For the MQW case 
(b) only the TE mode is measured. 

parts of the refractive index is called the chirp parameter, «. Thus for good 

phase modulation with low loss this parameter should be large. As a rule of 

thumb, we prefer « > 10 for reasonably low-loss phase modulation. Figure 

A15.3 shows the calculated and measured phase modulation efficiency and the 

chirp parameter for undoped bulk and MQW waveguides for comparison. 
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APPENDIX SIXTEEN 

A 

Solution of Finite Difference 

Problems 

A16.1 MATRIX FORMALISM 

In Section 7.3.8, the finite-difference technique was introduced to solve for the 

effective index and field profiles of an arbitrary channel waveguide structure. 

The scalar wave equation was discretized to provide the following linear matrix 

equation: 

Rel GUS Helo et . 
= (ni) )U} + Pe+—t~ =n Ui. (A161) 

Ue mols i ig? 2 
Na eeh Se 

Es EE 
AX? AY? ~\AX? Ay? 

where U§ and n‘ are the normalized electric field and refractive index at the 

gridapoint: (7,7) for t= 0; I, 2inc600 lands = Ol, 2. wwe JL Also, 

AX =k, Ax and AY = k,Ay are the normalized coordinate steps between grid 

points, and ni is the effective index of the waveguide mode. 

To complete the problem we need to specify boundary conditions. While 

different choices exist, the simplest choice is simply to set the fields to zero 

around the border of the computational window. This approximation is valid 

as long as we are far enough away from the guiding layers that the true field 

solutions are essentially zero. Experimentation with the size of the computa- 

tional window can determine the validity of this approximation. So our 

boundary conditions are U? = Uj*! = Ug = Uj, = 0, and we are left solving 
for the fields within the window. In other words, we need to solve all equations 

for i= 1 to I and j = 1 to J, or a total of I x J coupled equations. 

Defining coefficients for terms with common j indices, Eq. (A16.1) becomes 

Llane i iyyi i BAe 
AX? ae [bUj-1 + aU; + bU541] i AX? = Ui, (A 16.2) 
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where 

2 2) 

AX? AY?’ 

ee 
ie (Hie 

\ 
We can compact the y-direction into matrix notation by defining a vector which 

encompasses y for each x position, i: 

Oey (asia (A16.3) 

Then, by vertically listing all J equations (A16.2) for a given i, we can group 

common i indices into a matrix-difference equation along x: 

BU! + A‘U! + BU*1 = 7°U;, (A16.4) 

where 

fe ee OT | 0 0 

bulvasn ab: 0 0 

; OF b> Va eb 0 : 

i 0 oo 0013 
0 0 b aye Db 

O70 0 ba; 

1 
= Wie 

and I is the J x J identity matrix. The second b does not appear in the top 

and bottom rows of the A‘ matrix because U}, = 0 and U4, =0 (this is in 

fact the reason we need to set the fields to zero at the boundaries). 

Now writing all J equations (A16.4) along x in matrix form, we obtain 

A! B 0 3 0 0 U! U! 

A? B @) (@) U2 U2 

0 B:A> B 0 v oh eu 
0 : hea & +1) 1(A165) 

0 0 B AP? Bu ue 
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where again the second B does not appear in the top and bottom rows because 

U®° = 0 and U!*! = 0. We can write this equation symbolically as 

U! 

AU=H=77U- with -U =| >|. (A16.6) 
U! 

This is the matrix equation to be solved for the eigenvalue, i”, and eigenvector, 

U. In this compact form, A represents an I x J matrix with elements that are 

themselves J x J matrices, and U is an J length vector with components that 

are themselves J length vectors. To solve the equation, we expand each element 

of A into a J x J block, so that A becomes an (IJ) x (JJ) matrix with scalar 

elements. Likewise, we expand the component vectors of U, so that U becomes 

an (IJ) length vector with scalar components. Various matrix methods are then 

available for determining the eigenvalues and eigenvectors. 

A16.2 ONE-DIMENSIONAL DIELECTRIC SLAB EXAMPLE 

To illustrate the basic numerical technique, we consider the most simple slab 

waveguide problem. In this case the scalar wave equation correctly describes 

the TE mode with its electric field polarized along the y-direction as illustrated 

in Fig. A16.1. 

In this case the eigenvalue equation (A16.5) reduces to 

2 1 
( ra AX? ‘ : _ Ot 

I ae’: 1 
AX? ( 3-55) AX? : P| erst [ace 

0 

1 2 
0 0 isa (7-45) U; U, 

(A16.7) 

where we have simplified the notation in this one-dimensional case, in which 

there is no variation of the index in the y-direction, by letting, n; = nj, and 

U;, = Uj, since j only takes on a single value. 
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FIGURE A16.1 Schematic of dielectric slab waveguide assuming propagation in the 

z-direction. ' 

Computational 
Window 

FIGURE A16.2 One-dimensional slab waveguide example. 

Figure A16.2 shows an illustrative one-dimensional problem. To demonstrate 

the importance of the grid size, we solve the problem for several different 

finite-difference step sizes and two different slab thicknesses. The results are 

given in Tables A16.1 and A16.2. 

TABLE A16.1_ Results of Finite Difference Calculation of Slab Waveguide in Fig. A16.2.* 

Air Guide Sub. Matrix Effective Error 

Ax (um) Grid Pts Grid Pts Grid Pts Size Index (CA) 

0.25 2 2 4 8 x 8 S851523 1.081 

0.125 4 4 8 16 x 16 3.292 13 0.376 

0.0625 8 8 16 BY) se Se 3.283 29 0.107 

0.03125 16 16 32 64 x 64 3.280 70 0.028 

* Slab waveguide thickness d = 0.5 um (single transverse mode). Exact effective index is Ny = 
3.279 790. 
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TABLE A16.2 Results of Finite Difference Calculation of Slab Waveguide in Fig. A16.2.+ 

Air Guide Sub. Matrix Effective Error 

Ax (um) Grid Pts Grid Pts Grid Pts Size Indices (%) 

0.25 Z 4 4 10 x 10 3.365 83 0.242 

3.21223 1.234 
0.125 a 8 8 20 x 20 3.360 46 0.082 

3.245 07 0.394 
0.0625 8 16 16 40 x 40 3.358 49 0.021 

3.235 82 0.108 
0.031 25 16 ae SZ 80 x 80 S192 0.006 

323322 0.028 

+ Slab waveguide thickness, d = 1.0 1m (two modes allowed). Exact effective indices are fig = 

3.357718 and n, = 3.232 331. 

READING LIST 

B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes: Art of Scientific 

Computing, Cambridge University Press, Cambridge, UK (1986). 



APPENDIX SEVENTEEN 

OO —O—O—oone—oea— aes 

Optimizing Laser Cavity Designs 

A17.1_ GENERAL APPROACH 

The focus of this appendix will be on how to minimize the laser current given 

by either Eq. (2.36) or Eq. (5.19): 

P. eae 
hv nq 

(A17.1) 

The cavity parameters we can use to minimize this equation include the active, 

passive, and cavity lengths (L,, L,, and L), the mean mirror reflectivity 

R= iin, the cross-sectional area of the active region, A, and the optical 

confinement factor, l =I,,1,. Other more “independent” cavity parameters 

include the active and passive section internal losses «;, and «;,, the injection 

efficiency of the active region ;, and the fraction of light coupled out of the 

desired mirror facet, F. These latter parameters are referred to as independent 

since they can usually be optimized regardless of other design choices. Figure 

AS.1 illustrates the relevant cavity geometry for a typical in-plane laser. 

In order to write Eq. (A17.1) more explicitly in terms of the cavity 

parameters, we first define a threshold current density per unit volume, J,, such 
that I, = J, AL,. From Eq. (3.31), we can also set 1/n, = [1 + «;L/In(1/R)]/(n;F). 

With these substitutions, the laser current becomes 

-L 
[= AL, + I(t + = i (A17.2) 

In(1/R) 
where 

q Po 
Ip = — —. A17.3 
Phy nF ( ) 

Equation (A17.3) translates the output power into injected current, including 

568 
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the penalty in current when n; and F are less than unity. In designing the laser, 

we should always attempt to maximize n; by clever design of the carrier 

confinement region, and maximize F by setting all mirrors aside from the output 

coupler as close to unity as possible within practical limits. 

If we had the flexibility to vary every cavity parameter, our optimization 

procedure would inevitably produce a design with unity mirror reflectivity and 

zero cavity length, since this design eliminates internal losses and creates the 

smallest possible mode volume. However, in practice one or more constraints 

are placed on the cavity design. For example, we might have a phase-shifter 

passive region with a fixed length, or we might want to maintain a desired 

mode spacing implying a fixed overall cavity length. Or else we may only want 

to optimize one cavity parameter for any given combination of other parameters, 

such as optimizing the number of quantum wells to use in the active region. 

In the following, we will summarize the relevant equations for many (but 

(a) 

— a 

be iki Ue 

A In(1/R) 
acres v 

Ipa@ J opt J 

A In(1/R) 

(b) 

FIGURE A17.1 Optimum operating points on the gain curve. (a) For Case Al and Case 

E the knee of the gain curve represents the optimum design. (b) For all other cases, the 

optimum design slides away from the knee depending on the internal loss and the desired 

output power. The internal loss « in (b) takes on different forms for each particular 

design constraint. Also note that the plot is material gain vs. volume current density. 
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not all) of the constraints typically encountered in designing lasers. The first 

three cases optimize the active length of an in-plane laser for (A) a fixed total 

cavity length, (B) a fixed passive length, and (C) a fixed passive-to-active length 

ratio. The final two cases optimize the number of quantum wells to use in (D) 

an in-plane laser, and (E) a VCSEL. For each case, three equations are provided. 

The first equation expresses the laser current using some form of the current- 

to-gain conversion factor. The second equation expresses the parameter to be 

optimized in terms of the optimum operating point on the gain curve g,,, as 

illustrated in Fig. A17.1. The third equation expresses the optimum reflectivity 

for any given choice of fixed parameters. 

A17.2 SPECIFIC CASES 
\ 

A17.2.1_ Case A1: Optimize L, for a Fixed L (a;, = &;,) 

Using the threshold gain condition for an in-plane laser (with T’,,,, = 1), we can 

replace L, in Eq. (A17.2) with L, = [a,L + In(1/R)]/(T,,g). Rearranging, we 

obtain 

af, 
p= 1(%) eRe if eee ), (A174) 

9) Ty, in(i/R) 

1/R 
i 2 (A17.5) 

De Gop 

Tr 
Rion = exe} — |ipat Te /(2) . \ (A17.6) 

The second and third equations will be explained in a moment. For now let’s 

concentrate on the first equation. First of all, note that the laser current does 

not explicitly depend on L,. The only effect L, has on the laser current lies 

implicitly in the first term, J,/g. Thus, to minimize the laser current we should 

adjust L, so as to minimize J,/g. This is accomplished by using L, to adjust 

the threshold gain to the optimum operating point on the gain curve as 

illustrated in Fig. Al7.1a. This optimum operating point, g,,,, maximizes the 

slope, g/J,, and hence minimizes J,/g. Once we know g,,, from the gain curve 

of the active material, we can use Eq. (A17.5) to determine the optimum L,. 

For a fixed R, that’s all there is to our optimization procedure. However, if 

we have the freedom to adjust R, then Eq. (A17.4) reveals a tradeoff in the 

dependence on R. The first (threshold) term suggests that we should set R —> 1, 

while the last (power out) term suggests that we should set R > 0. The minimum 

for the sum of these terms occurs when the two terms are equal (e.g., 

(ax + b/X) min > Xmin = ./b/a). Solving for R we obtain Eq. (A17.6). Thus, for 

a fixed cavity length, L, and a given power out, Ip, we can determine the 

optimum R to use from Eq. (A17.6). This value of R can then be used in Eq. 
(A17.5) to determine the optimum L,. 
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A17.2.2 Case A2: Optimize L, for a Fixed L (a,;, 4 aj.) 

For this more general version of Case Al, we must consider the dependence of 
the internal losses on the active length. With «;L = «,,L, + a;,L, and L fixed, 
we must first set L, = L—L,. Defining Aw = a,, —a;,, we can set a, = 
Aol, + 4;,L in Eq. (A17.2). Collecting terms involving L, and using the 
threshold gain condition (again with T,,,, = 1) to set L, = [a;,L + In(1/R)]/ 
(T,,g — Ax), we obtain 

TpAa 

”  Aln(1/R)| A Wi; 
i CL era aoe (: + cer), (A17.7) 

Aa Ps In(1/R) 
g ———— 

i 

a,,L + In(1/R 
Lalopt = = a ) (A17.8) 

LGon — Ao 

TpAa 

if ”  Aln(1/R 
Rie exp i pu) (A17.9) 

A Aa 

Vy min 

When the active and passive losses are not equal, the minimum ratio in Eq. 

(A17.7) no longer corresponds to the knee in the gain curve suggested in Fig. 

A17.1(a). Instead, the optimum operating point is shifted along the gain curve 

with the origin of the line tangent to the gain curve being shifted up by Aa/T,, 

and to the left by Ip A«/A In(1/R), as illustrated in Fig. A17.1(b). When «,, > «;, 

(Ax positive), the optimum operating point slides up the gain curve favoring a 

shorter active section than Case Al. When «;, < «;, (Ax negative), the optimum 

operating point slides down the gain curve favoring a longer active section. Both 

of these operating point shifts reflect the tendency to reduce the total internal 

losses. As we increase output power, the shift in the operating point away from 

the knee in the gain curve becomes more extreme, reflecting the increasing 

importance of reducing «; L as opposed to maintaining a low threshold current. 

Once we have located the optimum operating point on the gain curve, g,,1, 

which now depends on the desired output power and mirror reflectivity, we can 

determine the optimum L, using Eq. (A17.8). If we wish to optimize R in 

addition to L,, wé again need to minimize Eq. (A17.7) with respect to R. 

However the dependence of g,,, on R complicates the matter. If we use an 

initial guess for R to determine g,,, and assume that the term in square brackets 

in Eq. (A17.7) is relatively insensitive to changes in R then we can concentrate 

on the two In(1/R) factors outside the square brackets. Minimizing the current 

with respect to these factors in the same manner as Case Al, we obtain Eq. 

(A17.9). The optimum R obtained in this way is not exact but should be 
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reasonably close for small output powers. At high output powers it may be 

necessary to iterate through the procedure once or twice to obtain more 

accurate estimates of both R and g,,,. 

A17.2.3. Case B1: Optimize L, for a Fixed L, (L, = 0) 

For this case, we have no passive section and we are essentially asking what 

the optimum cavity length is. We can first of all set L,=L and a;, = 4%. 

Collecting terms in Eq. (A17.2) involving L and using the threshold gain 

condition (with I,,,, = 1) to set L = In(1/R)/(T',,g — «;), we obtain 

pd; J+ 24 |. 
A ne A In(1/R) ‘n(1/R) Heelies (A17.10) 

ie a; xy 

jae 

bine ain 
Dons — OG; 

Ran (A17.12) 

With no internal losses, the optimum operating point is again at the knee of 

the gain curve as we found in Case Al. However with finite internal losses, the 

operating point slides up the gain curve in favor of shorter cavity lengths which 

reduce a; as illustrated in Fig. A17.1(b)—the shift in operating point increasing 
with increasing output power. This situation is similar to Case A2. 

Once g,,, is determined, the optimum cavity length can be found using 

Eq. (A17.11). If we also wish to optimize R, we should recognize that the second 

1/In(1/R) term present in both Case Al and Case A2 does not appear in Eq. 

(A17.10). As a result, the optimum R is found by-setting R > 1. Using this in 

Eq. (A17.11), we find that the optimum cavity length is found by setting L — 0. 

This optimum (L = 0, R = 1) cavity design defines the lowest possible required 

current, however, it does not represent a practical design (although VCSELs 

venture toward this limit). Thus, it does not make sense to simultaneously 

optimize the cavity length and the mirror reflectivity when L, = 0, since the 

best design will always approach L > 0 and R => 1. At some point, practical 

limits on either one of the parameters will define a design constraint which can 

be used to optimize the other parameter. 

A17.2.4 Case B2: Optimize L, for a Fixed L, (L, # 0) 

For this more general version of Case B1, we must separate out the fixed portion 

of the internal losses. We begin-by setting «,;L = a,,L, + a;,L,. Collecting 

terms in Eq. (A17.2) involving L, and using the threshold gain condition 
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(with T’,,, = 1) to set L, = [a;pLp + In(1/R)]/(T,y9 — %ia), we obtain 

4 Ip Gig 

TiurAAnCt/R):| OA +s 
I Se Reet (14. cate =| (A17.13) 

gia xy In(1/R) 

Te 

Lint R 
Dylan & 2 Bale ds (A17.14) 

| Mea ee 

ie i+ ee 
Rion = exp, — | Ipa,,L, — ng) SWiK (NET. 15) 

A Qia 
(8 fie 

rs min 

The operating point on the gain curve is the same as Case B1 with «;, used to 

define the shift away from the knee in the gain curve. The optimum active 

length is found using the determined g,,, and Eq. (A17.14). For this more general 

case, we can define an optimum R which does not reduce to unity as it did in 

Case B1. The residual loss in the passive section «;,L, prevents us from 

removing the internal loss completely, implying that the optimum R must 

always be less than unity for finite output powers. For zero output power 

corresponding to threshold, Ip = 0 and the optimum R — | as it does in every 

other case. As with Case A2, Eq. (A17.15) must be iterated a couple of times 

(updating g,,, On each iteration) to determine an accurate estimate of the 

optimum R at high output powers. 

A17.2.5 Case C: Optimize L, for a Fixed L,/L, 

For this case we set a,L = (a, + ;,L,/L,)L,. Collecting terms in Eq. (A17.2) 

involving L, and using the threshold gain condition (with I,,,,= 1) to set 

L, = In(i/R)/(T x9 — %a — %ipL,/L,), we obtain 

Ip( Gig is O;,Lp/La) Jat 
, Aln(1/R A ce no In(1/R) + Ip, (A17.16) 

Mig + 4,,L,/L, | Ra 
g r., 

1/R 
Lalon = mak, ; (A17.17) 

| Bars Ee — Gig — Cap h ig hig 

Ree (A17.18) 

In this case, the shift away from the knee of the gain curve is governed by the 

internal loss term 0%, + %;,L,/L,. The optimum active length is found using 
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Eq. (A17.17) once g,»; is determined. The optimum R in this case again reduces 

to unity due to the absence of the second 1/In(1/R) term, as we found in Case 

B1. Thus, here again it does not make sense to consider optimizing both the 

active length and the mirror reflectivity. We should simply be aware that the 

best design is found by approaching L, > 0 and R = 1. 

A17.2.6 Case D: Optimize N,, for Fixed L, and L, (In-Plane Laser) 

For in-plane quantum-well lasers we can set A = wN,, d,, where w is the lateral 

active width, N,, is the number of quantum wells, and d, is the well width. We 

can also set I, = II’, N,, where I’, is the transverse optical confinement per 

well. For the internal loss, we can define a material free-carrier loss per well 

Gia, and write the total active loss as Gig = Gigg t+ TT yigiNy with aL = 
Miao La + %,L,. Collecting terms in Eq. (A172) involving N,, and using the 

threshold gain condition to set N, = [ajo L + In(1/R)I/LT, 0 L(g — %ia1)], we 

obtain 

IpD Ty Oia 

i R d hy 
es ORE) Pet Rye (: mete ), (A17.19) 

J — iat ls ie 7 In(1/R) 

1/R 
Nel eet cotati) ' (A17.20) 
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LG e d, In(1/R 
Rlop = €XP¢ — | Ipdign Lh — : ee Pi AALT 21) 

wd, J — Kigi 

min 

If «4; 1s small, we can simply choose the number of quantum wells to align the 

threshold gain to the knee of the gain curve using Eq. (A17.20). The optimum 

R for a given cavity length can also be readily determined using Eq. (A17.21). 

If the free-carrier loss in each quantum well is not negligible, then the 

optimum operating point slides up the gain curve away from the knee, favoring 

fewer wells. This shift is illustrated in Fig. A17.1(b). The optimum R and 

Jon Must also be iterated once or twice to obtain accurate estimates of 
both. 

Another issue we can resolve using Eq. (A17.19) is how to optimize the 

transverse and lateral optical confinement. Clearly it is beneficial to maximize 

the transverse optical confinement per well per unit well width, ',/d,, so we 

_ Should work hard at providing a tightly confining transverse optical waveguide— 

a factor of 2 improvement in confinement translates into a factor of 2 reduction 
in the threshold current. For the lateral confinement, we can typically assume 
a simple three-layer waveguiding structure of width w. To minimize w/T y» we 
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use Eq. (A3.23) in Appendix 3 to obtain an approximate expression for Li 
Forming the ratio we obtain 

ye : Ke (A17.22) — & SS SW |, ; 
|e kaAnw "ky V An 

where An is the difference between the transverse effective index of the central 

guiding region and the transverse effective index of the lateral cladding region. 

For large w, we have good optical confinement and w/T, ~ w, implying that 

we should attempt to minimize w. However as w becomes very small, we lose 
optical confinement and w/T, actually begins to increase with further decreases 

in width. The minimum in w/T, occurs at w,,, when the two terms comprising 

w/T’, are equal. Hence we should keep w > w,,,. For a small index difference 
of 0.01 and a wavelength of 1 um, w,,, = 2.25 um. For a larger index difference 

of 0.1, w,,, = 0.7 ym. Thus, in practice w,,, is quite small and for most cases 

we should simply attempt to make w as small as possible. 

From a more general perspective, we can picture the ratios d,/I’, and w/T, 

as the mode widths in the transverse and lateral dimensions just as V/T defines 

the mode volume. In fact we can define the cross-sectional area of the mode as 

A, = A/T ,,. In this context, we see from Eq. (A17.19), or any one of Eqs. 

(A17.4)-(A17.16), that it is not the cross-sectional area of the active region itself 

but more fundamentally the cross-sectional area of the optical mode that is 

important in minimizing the threshold current of the laser. 

A17.2.7 Case E: Optimize N,, for Fixed L (VCSEL) 

For a quantum-well VCSEL, the active length becomes L, = N,,L,, where L, 

is the well width. We must also include standing wave enhancements such that 

I =TY,,,I°,,. For this case we will also make the simplifying assumption that 

Denn] xy %ia1 NyL, is much smaller than other internal losses in the cavity, which 

is generally a very good assumption. Within this approximation «,L can 

be assumed independent of N,. Replacing L, in Eq. (A17.2) with L,= 

[o,L + In(1/R)]/CenT.)9) and rearranging, we obtain 

Jy a 
a;L 

f= 1(%) TF. In(1/R) + i + | (A17.23) 

a, L + In(1/R) 

I ak | ere ee ae 
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As with Case A1, we find that to minimize the laser current we simply want to 

Nolo (A17.24) 
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minimize J,/g. This is accomplished by choosing the number of quantum wells 

which align the threshold gain with the knee of the gain curve as illustrated in 

Fig. A17.1(a). In practice, the design of the VCSEL starts with the evaluation 

of the internal losses of the cavity which we should attempt to minimize since 

the total laser current, J, scales directly with «;L. Once this is known we can 

use Eq. (A17.25) to determine the optimum R for a desired output power. 

Finally we can use Eq. (A17.24) to find the number of wells to use. 

The only difficulty in evaluating Eq. (A17.25) lies in the implicit dependence 

of I’,,,, on N,, which is in principle an unknown quantity before we know R. 

To get around this snag, we can use an educated guess for N, to estimate a 

value to use for I’,,,,. Evaluating Eqs. (A17.25) and (A17.24) to determine R and 

N,, we can determine whether our initial guess for N,, was accurate. If our first 

guess was not accurate, we can update I’,,, and reevaluate Eqs. (A17.25) and 

(A17.24) to obtain more accurate estimates of R and Ne 

A17.2.8 Summary of Cases A through E 

The general form of the laser current, optimum active length (Cases A through 

C only), and optimum reflectivity for all cases considered above can be 

TABLE A17.1| Summary of Optimum Design Parameters. 

Constraint a QoL 

Vary L, 

(Xia sa Qi») 0 a; L 

Fixed L 

(aig = a, + Aa) Ac OipL 

(L, = 0) Qa; 0 

Fixed L, 

(L, # 0) Xia tipL, 

Fixed L,/L = Pp a 
Qia at Kip i 0 

L, 

Vary N,, 

In-plane laser 
DPV yaa Ny Aig L 

VCSEL (a9, ¥ 0) = 0 aL 
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written as 
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The only difference between the various cases lies in the terms a and aL. « is 

the loss whose loss-length product scales with the design variable, while «)L 

is the fixed background loss of the cavity. The specific forms for these two terms 

are summarized in Table A17.1 for all Cases A through E. Also, I,,,, = 1 for 

all cases other than the VCSEL. Note that when « = 0, the optimum design 

occurs at the knee in the gain curve (see Fig. Al7.1a). When a,L = 0, the 

optimum reflectivity is one and the optimum active length is zero. 

A17.3. OPTIMUM OPERATING POINT ON THE GAIN CURVE 

The knee of the gain curve (where g/J = dg/dJ) which defines the optimum 

operating point for many design constraints can be determined for the gain 

curve fits given in Chapter 4: g = gg In[(J + J,)/(J,, + J,)]. If the linearity 

parameter J, is zero, the solution to g/J = dg/dJ is given by 

J5pt = eS, Jon = Jo> 

and (J, =) (A17.29) 

(*) _ dy 
J / min Jol, 

The well width L, appears in the denominator since J, is a current per unit 

volume. Thus, for many designs, we simply want to make sure that the 

threshold gain is near go. 
When the linearity parameter is not zero, we cannot solve for the knee in 

the gain curve explicitly, however we can still write 

= (J, + J,etlG t4sors) — Je 

ss (J, £0) (A17.30) 
Jo 
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In the first equation, J,,, appears on both sides. To solve this, we can use 

Jon = ed, as a first guess on the right-hand side and iterate a couple of times. 

Once we know J,,,, we can readily find g,,,. 

The knee in the gain curve can alternatively be found graphically. One 

method is demonstrated in Fig. A17.1(a). Simply plot the gain curve and 

draw a tangent line from the origin. A much more insightful method however 

is to plot J,/g directly as a function of material gain. This is shown in Fig. 

A17.2 for the three GaAs based active materials considered in Chapter 4. 

The plot in Fig. A17.2 reveals a number of insights about the three active 

materials. For example, the penalty for operating too close to transparency 

or too far into gain saturation is immediately clear. Also in comparing the 

minimum J,/g for the three active materials we immediately see that the 

InGaAs QW provides about a factor of 2\improvement over the GaAs QW, 

while bulk GaAs is only 25% more than the GaAs QW. In addition, we can 

immediately determine where the minimum J,/g occurs and how broad the 

minimum is. The plot therefore allows us to quickly determine the optimum 

threshold material gain as well as the tolerance we have in choosing other 

operating points. The relevant features of the three active materials can be 
summarized as follows: 

s 

1.4 mA/um? at 1250 cm~! (650-2100 em>!) (InGaAs QW) 
i (*) = 2.9 mA/ym? at 1450 cm~! (750-2500 cm!) (GaAs QW) (A17.31) 
g min 

3.8 mA/um? at 1000 cm~! (450-1900 cm~!) (bulk GaAs) 

The range over which J,/g remains within 20% of the minimum value is 

8 

7 

= 6 

g 5 

Sy 
@ 3FY ~ GaAs/AlGaAs | 
+ 5 80A QW 

1 | ~~ InGaAs/GaAs 80A QW 

0 1000 2000 3000 4000 £5000 

Material Gain (cm-1) 

“FIGURE A17.2_ Plot of the calculated current-to-gain conversion factor as a function 
of material gain for three GaAs based active materials. For the bulk GaAs, an 80A 
thickness is assumed (for details on these materials see Section 4.6). For ; < 1, the 
J,/g axis should be divided by n;. 
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indicated in parentheses for each case. So, for example, while designing an 
InGaAs QW laser to have 1250 cm™~' threshold material gain provides the 
lowest J,/g, we could alternatively pick the threshold gain anywhere in the 
range 650-2100 cm~* and not pay a high price. Thus in general, the design of 

the laser threshold gain is extremely flexible as long as we stay within certain 
boundaries. 

The reason J,/g is relevant is that it is the only active material-dependent 

term in the expression for threshold current. For example in Cases Al and E, 
the threshold component of the current is given by 

ie (=) a [o;L + In(1/R)]. (A17.32) 
enh* xy 

Porras 10>q10him eV CSELawith, Ij = 1.8.15 =-1,.o,J2= 03%, In/R)i= 
0.6%, the coefficient relating I, to J,/g is 0.5 um?. Thus, aside from surface 

recombination and the internal quantum efficiency, threshold currents of 

~0.75 mA, ~ 1.5 mA, or ~2 mA can be expected if we use InGaAs QW, GaAs 

QW, or bulk GaAs active regions. This is true as long as we choose the number 

of QWs such that the threshold material gain falls somewhere within the J,/g 

minimum plotted in Fig. A17.2. When n; < 1, the actual J,/g is related to the 

theoretical estimate via: J,/g = (J,/9):neory/Ni- Thus, threshold currents estimated 

using (J,/9)ineory 1 Eq. (A17.32) should be divided by y; to account for a 
less-than-unity internal quantum efficiency. 

A17.4 SHIFTED OPTIMUM OPERATING POINTS ON THE GAIN CURVE 

For cases Al and E, the minimum J,/g determines the optimum laser design. 

However, for all other cases we wish to minimize [J, + Ipa/A In(1/R)]/ 

(g—a/I,,), where a takes on different forms depending on the particular 

case, as summarized in Table A17.1. For such cases, the best approach is to 

plot the ratio as a function of material gain in order to determine the optimum 

gain operating point. Figure A17.3 illustrates this procedure for a single 

quantum-well in-plane laser at different output powers with an assumed loss 
of 10cm~?. At threshold (0 mW), the internal loss shifts the minimum to the 

right by ~a/I,,. For finite output powers the minimum is pushed to even 

higher gains and higher values. This shift toward higher gains was qualitatively 

shown in Fig. A17.1. However, with Fig. A17.3 we can quantitatively estimate 

the best operating gain to use. 

For example, if we are trying to pick a cavity length (Case B) which minimizes 

the laser current at 20 mW of output power, Fig. A17.3 tells us that we should 

adjust the cavity length to provide a ~2800cm~' threshold material gain. 

Using parameters in the caption and Eq. (A17.11), we find L = 110 wm. The 

value of the minimum can then be used to evaluate the laser current via Eq. 

(A17.26) with « = 10 cm~' and a, L = 0 (assuming there is no passive section). 

Using the parameters given in the caption, we find Jp = 15.81 mA. Taking 
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FIGURE A17.3_ Plots of the shifted current-to-gain conversion factor for different output 

powers as a function of material gain for the InGaAs/GaAs 80A QW. In the vertical 

axis caption, J,) = Ipa/A In(1/R). The assumed parameters are: « = 10cm‘, T,, = 

4%, R = 0.32, A =2 um x 80A, and hv/q = 1.265 mW/mA. For n; <1 and/or F <1, 

the power levels should be interpreted as P)/n;F and the vertical axis should be divided 

by ni. 

6 mA/pm? as the minimum value of the curve, we obtain J = 18.54 mA from 

Eq. (A17.26). 
We can summarize the general laser optimization procedure as follows. First 

we must determine the gain vs. current curve (either theoretically or experi- 

mentally) and apply a curve fit such as the two or three parameter fits discussed 

in Chapter 4. To optimize the laser for a given set of constraints, we use Table 

A17.1 to define both « and «)L. With the output power chosen, we then plot 

[J, + Ipa/A In(1/R)]/(g — «/T,,) as a function of material gain, and choose 

an operating gain for our laser which minimizes this curve. We can then adjust 

either the active length or the quantum well number to achieve this material 

threshold gain. The laser current is then found from Eq. (A17.26). If we want 

to simultaneously optimize the mirror reflectivity, then we should evaluate Eq. 

(A17.28) and compare it to the value of R assumed initially. If different, then 

we should plot (J, + Ipa/A In(1/R)]/(g — «/T,,) again using the optimized 

value of R. The new minimum in the curve defines a new design with a new 

optimum R. We should iterate until the new value of R is close to the old value. 

When the value of R is self-consistent, we have found the design which requires 
the minimum laser current. 

A17.5 OTHER DESIGN CONSIDERATIONS 

‘A17.5.1 High-Speed Designs 

For high-speed lasers, in addition to minimizing the laser current, we also want 

to maximize the differential gain in order to enhance the relaxation resonance 
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FIGURE A17.4_ Plot of the current-to-gain conversion factor and differential gain as a 

function of material gain for the InGaAs/GaAs 80A QW. 

frequency as discussed in Chapters 2 and 5 (see Eq. (2.56) for example). 

However, it turns out that the maximum differential gain occurs at transparency 

which from Fig. A17.2 is far from ideal for minimizing the threshold current. 

Thus a tradeoff exists between obtaining low threshold current and high 

differential gain. 

Figure A17.4 plots both J,/g and dg/dN as a function of material gain for 

the InGaAs QW active material. This plot immediately quantifies the tradeoff 
between the two. For example, we can see that reducing the threshold material 

gain from 2000 cm~! to 1000cm~? has little effect on the threshold current, 

while it increases the differential gain by close to a factor of 2. Reducing the 

threshold material gain much below 500 cm“? leads to large increases in the 

threshold current without much increase in differential gain. Thus, we conclude 

that a reasonable compromise operating point exists somewhere in the range 

500-1000 cm~}. 

A17.5.2 Heating Effects 

In general, the internal losses are an independent parameter of the cavity which 

we should attempt to minimize. However in VCSELs there is a tradeoff involved 

with the amount of internal loss associated with doping. For low doping the 

internal losses are low and therefore a lower laser current is required to achieve 

a given output power. However, lower doping can also mean higher resistance 

in getting current to the active region, which results in heating of the device. 

For cw operation, heating effects limit the maximum output power possible in 

a VCSEL, and therefore we should increase the doping to minimize heating 

and increase the maximum output power. This tradeoff in design of the doping 

profile depends on the particular geometry of the VCSEL and its associated 

thermal impedance. However, generally speaking the doping should be sufficient 
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to limit the series voltage drop to less than 1—2 V, regardless of how much 

internal losses are generated by the doping profile. 

Heating effects can also be a problem for in-plane lasers, causing them to 

die prematurely or degrade rapidly. The maximum output power is also 

dependent on how hot the laser gets (in addition to other factors such as 

catastrophic optical damage at the mirror facets). The heat generation is related 

to the current density injected into the laser. So in addition to minimizing the 

total current, keeping the total current density below a certain level can also 

be important. While the design procedures discussed in this appendix do 

minimize the total current, such designs might not actually be the best, 

particularly if tens of kA/cm? are required for a laser which does not have 
adequate heat sinking. For these cases, it is best to use the maximum current 

density as a cap for the design and to modify the operating gain accordingly 

if the optimum design calls for too much currént density. Chapter 8 considers 
these issues further. 
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Ambipolar Diffusion, 150, 182-184 
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double-heterostructure, 29 
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Acousto-Optic 

modulator, 237 

tunable filter (AOTF), 375-376 

Aging of Lasers, 147 

Alloy Scattering, 56 

Atomic Orbitals, 3, 490-491 

Attenuation Constant 

for antiguide, 332-334 
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Auger Recombination (also see 

Recombination Rate) 

coefficient, 159-160 

in quantum wells, 158, 160 

phonon-assisted, 157-158 
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threshold energy for, 156, 537-539 
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relation to frequency spectrum, 237 
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129, 399-405, 460-461, 490-502 

Feynman model of, 399-403 

Kronig-Penney model of, 399 
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Band-Mixing Effects, 495-507, 524-525 

Bandgap Shrinkage, 136-139 

Barrier States, 163, 169 

Beam-Propagation Method (BPM), 
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Birefringent Materials, 556 

Bit-Error Rate, 222-223 
Blackbody Radiation, 443, 464-465 

Bloch Functions, 117, 119-120, 158, 489-492, 

498-499 

Boltzmann Approximation, 145, 154, 157, 

171, 415-420 

Bowing Parameter, 11 

Bragg Condition, 85, 88, 268, 271-272, 473, 
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Brillouin Zone, 402 
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Carrier (Density) 

clamping of, 28, 40, 190, 193, 218, 220, 

425-427 
confinement of, 6-9 

diffusion of, 21, 30, 150, 152-153, 186-187, 

422-424 

effective diffusion velocity of, 152 

fluctuations, 221, 225, 228 

gain vs., 44-45, 163-168 

curve fits, 45, 167 

large-signal, 216 

leakage, 30, 31, 53, 186-187, 421-425 

drift, 424, 427 
temperature dependence of, 58, 178, 

422-424 

lifetime, 31, 195, 217-220, 471 

differential, 195, 217-220, 244 

single-mode differential, 196 

spontaneous, 471 

stimulated, 193 

recombination current vs., 31, 169-171, 

173-174 

curve fits, 167, 173 

relation to Fermi energy, 412-420 

in bulk, 415-420 
in quantum wells, 414 

approximate expressions for, 415-420 
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thermionic emission of, 30, 187, 422-424 

threshold, 28, 40, 45, 48, 189 

shift due to feedback, 247 

transparency, 6, 37, 44, 162, 163, 166-167 

temperature dependence of, 57 

transient solution of 

small-signal, 205-208 

tuning of lasing frequency via, 101, 

211-213 
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active/passive, 38-39, 95-101, 79-85, 

343-366, 374-380, 452-457 

cold 

linewidth of, 226 

response of, 226 

optimum design of, 44-48, 568-582 

external, 79-85, 241 

round-trip phase of, 80, 246 

four-mirror, 65, 83-85 

in-plane, 17, 35, 96 

lifetime (see Photon/lifetime) 
loss, 28 

optimum value for net external, 82 

multisection, 69, 343-354 

optical, 441-442 

power flow curves in a laser, 454 

Q, 81-82, 188 

resonance(s), 76-77, 82-83, 85 

round-trip time of, 247 

enhancement of spontaneous emission, 

515-517 
three-mirror, 65, 79-83, 246-248 

vertical, 17, 35, 96 

volume, 34-35, 186 

Chaotic Behavior, 255 

Charge Neutrality, 30, 128-130, 161-162, 

175-177, 181, 465, 472 
Chemical Beam Epitaxy (CBE), 16 

Chirp Parameter, 560-561 

Codirectional Coupler Filter, 290-296, 

374-380 

Coherence 

collapse, 255 

length, 237 

time, 236-240 

Coherent State, 229, 549 

Confinement Factor, 34-35, 265, 449-455 

axial, 451-455 

standing wave enhancement of, 451 

in active/passive cavities, 455-457 
field, 280 
lateral, 437 

optimum, 46-48, 568-582 

transverse, 329-330, 432-433, 451-452 

Correlation Function, 386, 540-542 

Coupling Constant, 93, 268-271, 348, 483 

for gratings 

closed-form expression for, 278-280 

for square wave profile, 93, 278-279, 483 

for directional couplers, 286-287 

for sampled gratings, 352 

Coupling Length, 289, 291-293 

Coupling of Modes, 73 

codirectional, 282-287 

exact interpretation of, 298-299 

contradirectional, 266-272 

exact interpretation of, 85-95 

Coupled Mode Theory, 93, 266-296 

Covalent Bonds, 3, 394 

Critical Angle, 304, 310 

Current(s) 

clamping of leakage, 425-427 

confinement of, 8, 17-24 

gain vs., 171-174 

curve fits, 173, 175 

leakage, 8, 53, 60, 423-425 

minimization of laser, 46-48, 568-580 

modulation bandwidth dependence on, 51, 

203 : 

spontaneous emission, 143, 472 
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temperature dependence of, 20, 57-59 

threshold, 28, 42, 45, 46, 53, 190, 579 

nonradiative component of, 48 

shift due to feedback, 247 

transparency, 171-177 

vs. carrier density, 31, 169-171, 173-174 
curve fits, 167, 173 

Current-to-Gain Conversion Factor, 569-582 

for different active materials, 578 

Damping Factor, 52, 200-203, 204-205, 257 
offset, 202, 257 

with transport effects, 244 

Dangling Bonds, 145, 148, 153 

Deep-Level Traps, 146 

Defects, 9, 11, 145, 161 

dark-line, 147 

Density of States, 113, 119, 405-410, 413-414, 
461 

for different dimensions, 125 

optical, 141, 171, 441-443, 465, 467-468 
in a resonator, 515 

quantum-well, 125, 128-129, 408-410 

reduced, 113, 123-126, 134-135, 179-180, 
460-462, 468 

standing wave and plane wave, 408 

Detuning Parameter 

for gratings, 88, 90, 269, 271, 479 

for directional couplers, 287 
Dielectric Constant, 263, 428 

Fourier decomposition of, 267, 269 

Dielectric Interface 
reflection and transmission of, 71-72 

for guided modes, 71, 86 

Dielectric Perturbations, 263-266, 282-285, 

553-554 
periodic, 266-269, 282, 293 

Dielectric Waveguide(s), 8, 17, 21, 66, 

302-338, 428-437 

analysis of, 306-331 

standing wave, 306-309 

transverse resonance, 309-310, 332-333 

antiguide, 331-332 

ARROW, 333-334 
bending losses in, 334-338, 369, 372-373 

channel, 322-327, 433-437 

cutoff and quasi-modes of, 310-312 

field-induced, 361-362 

five-layer, 298-299 

modes 

characteristic equation for, 308-310, 

313, 318, 430-431 
orthogonality between, 263 
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radiation, 312-315 

slab, 306-310, 429-433, 434-437, 565-567 

multilayer, 314-315 

numerical techniques for, 325-327, 

380-387, 563-567 
parabolic, 319-322 

power and effective width of, 327-331 

power transferred from one into another, 

296-298 
radiation losses in, 331-338 

separate-confinement heterostructure 

(SCH), 241-245, 265, 424-426 
confinement factor in, 330 

three-layer, 279, 306-312, 329, 429-433 

normalized solutions of, 431-432 

WKB method for arbitrary, 315-322 

zigzag ray picture of, 307, 317, 321, 330-332 

Differential Quantum Efficiency (see 

Efficiency) 

Dipole Moment, 127 

Directional Coupler(s), 282-296, 299, 

366-370, 371-372 
filters and switches, 290-296 

four-port, 287-291 

coupling length of, 289, 291-293 

grating-assisted, 293-296, 374-380 

vertical, 292 

Dispersion Curves 

coupled waveguide, 291 

codirectional coupler filter, 294 

grating, 272 
waveguide, 311, 315 

Distributed 

Bragg reflector (DBR) (see Gratings) 

laser, 66, 95-101, 343-354 
feedback (DFB) laser, 66, 102-105, 277-282 

gain-coupled, 103, 105 

quarter-wave shifted, 103, 356 

unshifted, 102-103 

with cleaved mirror, 103, 105, 280-282 

Edge-Emitting 
cavity (see Cavity/in-plane) 

laser (see Laser/in-plane) 

Effective 

index (see Index of Refraction) 

index technique, 322-325, 433-437 

length, 81, 93-95 

mirror (see Mirror) 

number of mirror periods, 90-91, 476-477 

width of mode, 278-279, 328-331 

Effective Mass, 11, 12, 117, 125, 156-157, 394, 

403-405, 490 

conduction band, 492-494 



586 INDEX 

Effective Mass (Continued) 

equations, 494-497, 504 

reduced, 125-126 

with strain, 161-162, 181, 506 

Efficiency 
collection, 32, 44 

differential quantum, 42-43, 81, 188, 455 

from each facet, 78-79, 457 
in active/passive cavities, 455-457 

methods of measuring the, 52-54 

temperature dependence of, 20, 58 

external LED quantum, 33 

internal quantum/injection, 29, 32, 174, 

186, 425-427, 569 
methods of measuring, 53-54 

temperature dependence of, 58 

optical, 187, 188 

power conversion, 55, 212 

radiative, 32, 171, 188, 426 

wall-plug, 55, 212 

Einstein A and B Coefficients, 116, 126; 

462-465 
Elastic Moduli, 528 

Electro-Optic 

coefficients, 559 

effect, 83, 96, 101, 292, 343, 361, 
555-561 

modulation, 292, 295 

switches, 290-293 

tensor, 556-559 

Eneigy 

bands, 2-3, 399-405, 494-507 
Feynman model of, 399-403 

Kronig-Penney model of, 399 

conservation of, 4, 114, 119, 155-156, 158, 

460, 537, 538 
density, 447, 459 

gap, 9-12 

levels, 2-3 

uncertainty, 114, 130-134, 462-463, 512 

Envelope Function, 116-117, 119-123, 403, 

489-490, 494-501, 524-525 
approximation, 489 

Excitons, 136-137 

Expected Value, 392 

External Quantum Efficiency (see Efficiency) 

Fabry-Perot 

etalon, 73-77 

asymmetric, 77 

scattering matrix of, 75 

symmetric, lossless, 76 

transmission matrix of, 76 

laser, 77-79 

resonator, 309, 312 

Far Fields, 438-440 

Feedback 
dependence of linewidth on, 234, 252-257 

dependence of noise on, 252-257 

effects of, 246-257 
from a cleaved fiber, 246 

from substrate-air interface, 248 

in-phase, 246,254 

level, 246 

critical, 255 

method of measuring, 248 

out-of-phase, 254 

phase, 247-250, 254-256 

rate, 247 

‘method of measuring, 248 

regimes of, 252-257 
Fermi (also see Quasi-Fermi Level) 

factors, 114, 128, 139, 154, 158, 468-470 
function, 6, 115, 126, 154, 412, 414, 460 

levels, 115, 146, 412-420 
occupation probability (see Fermi function) 

Fermi-Dirac 

distribution (see Fermi function) 

integral, 415 

Fermi’s Golden Rule, 116, 118-119, 123-124, 

126, 127, 136, 158, 508-516 
Filter(s) 

acousto-optically tuned (AOTF), 375 

bandwidth, 224 

codirectionally coupled filters, 290-296, 

374-380 
directional coupler, 290-296 

grating-assisted coupler, 293-296, 374-380 

enhanced tunability of, 295-296, 375-376 

low-pass, 244 . 

narrowband, 223-224 

passband, 378-379 

tunable, 343-353, 374-380 

wavelength-selective, 290-296, 344, 351-354 

Finite-Difference Technique, 325-327, 

382-385, 563-567 

Franz-Keldysh (Eiectro-Absorption) Effect, 

355-359, 559-561 
Frequency 

Bragg (see Bragg Condition), 85, 88, 268 

chirping, 207-213, 220-221, 355, 560-561 

noise (see Noise/frequency) 

normalized, 280, 324-325, 329-330, 338, 
431-432 

response (see Modulation Response) 

shift due to carrier density, 209, 250 

shift due to current injection, 349 
shift due to temperature, 211-213 
shift due to feedback, 249-252 

small-signal modulation of, 210 



Gain, 5, 28, 36, 126-139, 465-469 
band edge, 130 

bandwidth, 82, 134 

characteristics of, 128-130, 134-136, 
468-469 

clamping of, 40, 82, 190, 193, 220 

compression, 48, 50, 195, 196, 202, 203, 

206, 244, 426, 550, 551 

intermodal, 199, 215 

method of measuring, 211-212 

definition of material, 36, 127-128 
dependence on 

doping, 162, 175-177 

temperature, 177-178 

well width, 174-176 

differential, 37, 44, 50-51, 167-168, 196, 

209, 244, 469 

increase due to strain, 162 

nominal, 196 

temperature dependence of, 57 

Einstein’s approach to calculating, 465-469 

in microcavity lasers, 467-468 

including lineshape broadening, 131 

margin, 105-107 

modal, 37, 39, 265, 446-458 
optimum, 569, 577-582 

peak, 82 

relation between spontaneous emission 

and, 140-142, 467-468, 470 
spectrum, 134-136, 162-165, 468 

broadening of, 131-135 

modelling of, 214-215 

redshift due to bandgap shrinkage, 138 

threshold, 28, 38-39, 40, 53, 189 

of DBR lasers, 97 

shift due to feedback, 248 

vs. carrier density, 44-45, 163-168 

curve fits, 45, 167, 469 

vs. current density, 53-55, 171-174 

curve fits, 173, 175 

Gap Factor, 85 
Gaussian Spot Size, 320, 336, 438 

Goos-Hanchen Shift, 330-331 

Grating(s), 17, 65-66, 85-95, 266-277, 473-485 

average loss of, 88, 95, 452 

average propagation constant of, 88 

coupling constant of, 93, 268-271, 348, 483 

closed-form expression for, 278-280 

for square wave profile, 93, 278-279, 483 

decay constant of, 271, 483 

detuning parameter, 88, 90, 269, 271, 479 

diffraction efficiency of, 279 

effective length of, 93-95, 480 

effective mirror model of, 93-95 

passband, 90 
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penetration depth of (see Penetration 

Depth) 
physical length of, 275 

reflectivity, 91-93, 273-276, 476-477 

bandwidth of, 275-276 

coupled-mode limit of, 276, 482-484 

Fourier limit of, 93, 481-482 

including arbitrary input and output 

layers, 275, 276, 484-485 

numerical determination of, 95 

phase, 274 

spectrum, 91-93, 275-276, 477-481 

sampled, 350-354 

coupling constant of, 352 

stopband, 90, 272, 275-276 

transmission, 277 

with terminations, 275, 276, 484-485 

GRINRODs, 321-322 

Group Velocity, 36, 40, 127, 141, 188, 209, 
331, 344, 448, 457-458 

Guide/Antiguide Modulator, 361-362 

Hamiltonian, 118, 393 

Luttinger-Kohn (LK), 494-497, 504, 

535-536 

perturbed, 509 

Pikus and Bir, 530-531 

Heat 

effects of, 46, 51, 61, 581-582 

flow , 56 

Hermite-Gaussian polynomials, 320, 

335-336 
Heterodyne Receiver (see Receiver) 

Hooke’s Law, 528 

Huygen’s Principle, 439 

Ideality Factor, 61 
Index Ellipsoid, 556-558 

Index of Refraction 

carrier density dependence of, 39-40, 101, 

207, 209, 235, 559-560 

change in, 7, 21, 101, 209, 265-266, 292, 
295, 343, 361-362 

quadratic, 559-561 

relative to change in gain, 209, 225 

using the electro-optic effect, 555-561 

complex, 209, 428 
dispersion of, 39-40, 272, 291, 294, 311, 315 

effective, 37, 71, 86, 326-327, 428-429, 
436-437, 457-458 

closed-form expression for, 280 

change in, 101, 209, 265-266, 292, 348, 

353, 363 
periodic perturbation of, 269, 278 

group, 40, 209, 443, 458 
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Index of Refraction (Continued) 

group effective, 40, 276, 295, 344, 458 

ordinary and extraordinary, 556 

Interference Fringe, 237 

visibility, 237 

Internal Modal Loss (see Loss) 

Internal Quantum Efficiency (see Efficiency) 

Intraband Relaxation Time, 132, 462-463, 

468 

Joyce-Dixon Approximation, 417-419 

K-Factor, 202-203, 255 

with transport effects, 244 

k-Selection Rule, 119, 121-123, 124, 126 

exceptions to, 123 

Langevin 

correlation strengths, 541-548 

between photons and carriers, 544 

between photons and power, 546 

between photons and phase, 547 

method, 227-230, 233-234, 542-544 

noise sources, 227-228, 235, 540-551 

as white noise, 228, 542 

negatively correlated, 229, 543, 545-546 

noise spectral densities, 228-229, 540-542 

Laser 

coupled-cavity, 84-85 

diode, semiconductor, 1-3 

distributed Bragg reflector (DBR), 66, 

95-101 

multisection, 343-354 

distributed feedback (DFB), 66, 102-105, 

277-282 

gain-coupled, 103, 105 

quarter-wave shifted, 103, 356 

unshifted, 102-103 

with cleaved mirror, 103, 105, 280-282 

Fabry-Perot, 65, 77-79 

gain-guided, 19 

gas, solid-state, YAG, HeNe, CO2, 1-3 

heterostructure 

buried (BH), 23 

double-channel planar (DCPBH), 23 

etched mesa (EMBH), 23 

semi-insulating planar (SIPBH), 23 

double (DH), 6-9, 241, 422, 424 

separate confinement (SCH), 9, 241-245 

graded index (GRINSCH), 9 

in-plane (IPL), 17, 35, 95-105 

characterization of, 52-54 

index-guided, 21 

micro-cavity and thresholdless, 142, 

190-191, 467-468, 472 

oxide stripe, 19 

proton-implanted, 19 

ridge, 19 

ring, 367-370 

tunable, 66, 85, 96 
DBR, 343-354 
grating-assisted codirectional, 350, 

374-380 
Y-cavity, 350 

typical parameters for, 198-199 

V-groove, 24 

vertical-cavity surface-emitting (VCSEL), 

17, 35, 95-101 
characterization of, 54-55 

Lasing 
threshold (see Threshold) 

transition to, 191-193 

wavelength, 39 

Lattice 

constant, 9-12 

deformation potentials, 531-532 
matching, 11, 13 

mismatch parameter, 533 

strained, 11, 13, 147-148, 161-162 
critical thickness of, 148, 161 

Lifetime 

carrier, 31, 195, 217-220, 471 
differential, 195, 217-220, 244 

single-mode differential, 196 

spontaneous, 471 

stimulated, 193 

photon/cavity, 35, 37, 39, 50, 187, 188, 225, 
515-516 

dependence on feedback, 246 

effective, 226 . 
Light-Emitting Diode (LED), 5, 28, 32-34 

Lineshape 

broadening, 130-134, 143, 462-463, 

466-471 

function, 132-134, 386-387, 462-463, 
466-471 

Lorentzian, 132, 444, 468, 512, 515 
Linewidth 

enhancement factor, 209, 225, 241, 249, 

560-561 

method of measuring, 211-212 

narrowing with external cavity, 257 

spectral, 221, 225-227, 236-241, 542 

dependence on noise, 252-257 

method of measuring, 237-238 

Schawlow-Townes, 225-227 

modified, 227, 236, 241 

with satellite peaks, 240, 255 
Liquid-Phase Epitaxy (LPE), 13-14, 147 
Local Oscillator, 370-374 
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Loss(es) 

bending, 334-338, 369, 372-373 
free carrier, 187 

in gratings, 88, 95, 452 

margin, 82, 99, 107 

mirror (see Mirror) 

modal, 37, 39, 187-188, 451-452 

methods of measuring the, 53-55 

temperature dependence of, 57 

modulation, 82 

optical, 28, 187-188 

waveguide radiation, 331-338 
Luttinger Parameters, 496-498 

Mach-Zehnder Interferometer, 237-238 

Many-Body Effects, 136-139 

Material 

parameters, 12 

quaternary, 10 

semi-insulating (SI), 19, 24 

strained (also see Strain), 11-13, 147-148, 

161-162 

ternary, 10 

Matrix Elements 

Energy (H',), 119-120, 510-513 

Momentum (M), 121-123, 490-494, 518-521 

Transition (M7) (also see Transition), 

119-123, 127, 135-136, 518-525 

quantum-well, 524-525 

polarization dependence of, 119, 

121-122, 521-525 

Maxwell-Boltzmann Distribution, 412, 443 

Memoryless Process, 540 

Metal-Organic Chemical 

Vapor Deposition (MOCVD), 13-15, 147 

Mirror(s) 

cleaved, 17, 39 

facet damage of, 51, 582 

effective, 65, 79-80, 84-85, 93-95, 97-99, 

246-247, 281 

grating (see Gratings) 

loss, 39, 52, 188 

dependence on feedback, 246-247 

in DBR lasers, 98 

in active/passive cavities, 39, 455-456 

modulation of, 197, 199 

optimum, 47, 363-365, 568-577 

variation with wavelength, 65, 99-100, 

107 

multilayer (see Gratings) 

Modal Excitation, 296-298 

Modal Gain, 37, 39, 265, 446-458 

Mode(s) 

alignment with gain spectrum, 57, 139, 194, 

215 
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external cavity, 250-251 

multiple, 255 

spacing of, 251 

transition from single to multiple, 
251-252 

Fabry-Perot, 76-77 

feedback, 250-252 
hopping, 60, 234, 254 

impedance, 66, 296, 298 

internal cavity, 250 

lasing, 28, 38 

numbers, 441-443 

optical, 8, 21, 34, 37, 113, 141-142, 193-194, 
214-217 

density of, 141, 171, 441-443, 465, 
467-468 

in a cavity, 515 

quantum mechanical description of, 139 

pulling, 248 

repeat, 82-83 

saturation of side, 194 

single, 65-66, 82, 99, 106 
tuning, 345-347 

transition rates, 113 

spacing, 40, 81, 97, 378 

suppression of side, 82 

suppression ratio (MSR) 

dynamic, 215 

in grating-assisted coupler-laser, 378 

static, 66, 99, 106-108 
tuning of (see Wavelength/tuning) 

waveguide (see Dielectric Waveguide) 

Modulation 

bandwidth, 51, 201-203, 355 
ways to maximize the, 51-52 

doping, 123, 162, 175-177 
electro-optic, 292, 295 

index 

frequency, 210 

intensity, 210, 222 

measuring the FM-to-IM, 210-212 

phase, 560-561 

response, 29 

comparison of FM and IM, 210 

damping of, 50 

FM, 207-213 
laser, 48-52, 199-204 

LED, 33-34 
low-frequency roll-off of, 244-245 

with RC parasitics, 259 

transfer function, 50, 200-204 

natural roots of, 204-205 

Modulator 

absorption, 355-359 
amplifier, 359-361 
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Modulator (Continued) 

directional coupler, 292, 295 

Franz-Keldysh, 355-359 

guide/antiguide, 361-362 

laser combined with, 353-366 

length, 357 
phase, 560-561 

Molecular Beam Epitaxy (MBE), 13, 15-16, 

147 

metal-organic (MOMBE), 16 

Momentum 

conservation of, 4, 5, 114, 121, 155, 157, 

158, 460, 537, 538 

density of states, 408 

matrix element (see Matrix Element) 

operator, 118, 119, 392, 488, 491, 519 

Near Fields, 438, 440 

Noise 

carrier, 228, 235-236, 241, 550-551 
correlation strengths, 229, 235, 541-548 

current source shot, 229, 232-233, 544, 550 

dependence on feedback, 252-257 

detector, 233-234, 543-544, 550 

excess intensity, 230-231 

field, 237 
figure of optical amplifiers, 361 

floor, 221, 232 

frequency, 225, 235-236, 239 

inherent quantum, 230 

Langevin (see Langevin) 

mode partition, 234 

negative correlation between reflected and 

transmitted, 229 

output power, 229, 549-550 

partition, 232-234, 545 

photon, 228, 548-549 

quadrature components of, 227 

relative intensity (RIN), 221-225, 227-235 

low frequency, 231 

low power, 230 

multimode, 234-235 

peak, 231 

per unit bandwidth, 224-225, 231 

spectrum, 229-233 

shot, 229, 233-234, 543-544, 550 
sources, 197, 221 

sub-shot, 232-234, 543 

thermal, 233 

Noise-Free Operation, 232-234 

Obliquity Factor, 439 

Operator, 392 

Optic Axis, 556 
Optical 

amplifier, 359-361 

efficiency, 187, 188 

heterodyne receiver, 366-367, 370-374 

isolator, 237, 257 

loss, 28, 187-188 

modes (see Modes) 

Optimum Laser Designs 

for low current, 44-48, 568-580 

for high speeds, 51-52, 580-582 

Optimum Operating Point on the Gain 

Curve, 569, 577-582 

Organometallic Vapor-Phase 

Epitaxy (OMVPE), 13-15 

Orthogonality 

of electromagnetic waves, 263 

of particle waves, 122, 395-396 

Output Power (see Power) 

Parameters 

internal laser, 52-55 

material, 12 

Pauli Exclusion Principle, 3, 442 
Penetration Depth, 90, 275, 276 

energy, 94, 330-331, 480, 486-487 
loss, 95, 480, 487 

phase, 94, 479-480 

Perturbation Theory, 263-266, 553-554 

Phase 

noise (see Noise) 

round-trip, 246, 249 

change in, 249 

Photon (Density) 

confinement of, 6-9,18-19 

fluctuations, 221, 228 

in terms of the field strength, 127 

large-signal, 216 + 

lifetime, 35, 37, 39, 50, 187, 188, 225, 
515-516 

dependence on feedback, 246 
effective, 226 

modulation bandwidth dependence on, 50 

recycling, 33 

relationship to output power, 42 

small-signal, 49-50, 200, 203, 242-243 

steady-state 

above-threshold, 42,106,190 

below-threshold, 44, 189 

transient solution of 

small-signal, 206-208 

Photonic Integrated Circuits (PICs), 342-387 

Population Inversion, 113, 129-130, 134, 470 
factor, 139-140, 361, 470 

curve fit, 191, 199 

Potential Well (1-D), 393-398 
Power 

dependence of linewidth on, 226 

dependence of RIN on, 228-231, 550 



dissipation, 56 

flow curves in a laser cavity, 454 

flowing into a port, 66 

fluctuations, 223 

fraction from each facet, 43, 46, 78-79, 188, 
569 

in a DBR laser, 98 

in an active/passive cavity, 457 

modulation bandwidth dependence on, 51 

normalized flow of, 66-68 

propagation in a waveguide, 327-331 

output of laser, 42, 188, 190 

saturation in amplifiers, 360 

small-signal, 50, 203, 244 

spontaneous (LED), 32-33, 188, 190 

saturation of, 195 

vs. current, 40-44, 191-193 

derivative analysis of, 59 

experimental characterization of, 52-55 

linearity of, 43, 59, 60, 192 
shift due to feedback, 248 
spectrum of laser, 240, 542 

Prepatterned substrate, 23-24 

Principle Dielectric Axes, 555-557 
Propagation 

constant, 37, 303-305, 317, 428-429, 448 

discrete, 89, 475 

grating-induced replicas of, 271-272 

numerical determination of, 325-327, 
386-387 

perturbation of, 263-266 

vs. frequency, 272, 291, 294 

delay, 73 

loss (see Attenuation Constant) 

vector components, 303-305, 317 

Quantum-Confined 

regime, 406 

Stark Effect (QCSE), 357-358, 559-561 
Quantum Efficiency (see Efficiency) 

Quantum Noise Floor, 229 

Quantum Numbers, 396-399, 406, 409-410 

Quantum Well (QW), 8, 393-399 
absorption spectrum, 136-137, 164-165, 

357-358 
band structure, 494-505 

method of calculating, 501 

characteristic equation for, 395, 397 

dependence of gain on width of, 

174-176 
gain, 128-130, 134-136, 160-178, 468-469 
optimum number to use, 568-577 

strained, 11, 13, 147-148, 160, 161-162, 
502-505 

subbands, 122-123, 128-130, 134 
Quantum Wires, 117, 122-123, 125, 521-524 

INDEX 591 

Quarter-Wave Dielectric Stacks (see 

Gratings) 

Quasi-Fermi Level(s), 115, 128-130, 413, 

422-423, 460-461, 465-466, 471-472 

clamping of, 426 

effect of doping on, 161-162, 175-177 

effect of strain on, 161-162 

separation, 56, 115, 128-130 

required to achieve gain, 115, 129-130, 

134, 467 

Rabi Oscillations, 508, 514, 516 

Radiation 

spectral density, 126, 462 

equivalent for spontaneous emission, 
443, 465 

Rate Coefficients, 197, 199 

with transport effects, 242 

Rate Equations, 28, 36, 187, 255 

carrier, 28, 30-34, 217 

above-threshold, 42 

differential analysis of, 195-213 

including transport effects, 242 

large-signal, 214-217 

multimode 

large-signal, 214-217 

small-signal, 199 

steady-state, 193-195 

numerical solutions to, 214-217 

phase, 235 

photon, 28, 34-37, 220, 513 

small-signal, 28, 49-50, 195, 197, 200, 242 
with Langevin noise driving terms, 227 

steady-state, 32, 42, 189-195 

Receiver 

optical heterodyne, 366-367, 370-374 

bandwidth, 380 
Recombination Rate 

Auger, 6, 37, 48, 153-160, 170-172, 219, 350, 
426, 537-539 

bandgap dependence of, 155-157 

temperature dependence of, 58, 155, 158 

bimolecular, 31, 45, 170-171, 219, 471 
clamping of, 42, 44, 190, 193 

defect and impurity, 6, 37, 144-148 

in SCH regions, 424-426 

interface, 6, 148-153 

leakage, 30-31, 425-427 

linear, 146, 149-150 

nonradiative, 6, 15, 21, 28, 31, 48, 144-160, 

186, 350 

radiative, 5-6, 31, 116-119, 139-143, 
169-171, 186, 349, 460-472 

surface, 6, 21, 148-153 

Reference Planes, 38, 71, 72, 74, 80, 102, 

273-275, 277 
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Reflection 
coefficient, 38, 68, 304, 318 

of gratings (see Gratings) 

of plane waves, 303-306 

phase angle, 305-306, 331 

Reflectivity 

mean mirror, 39, 52, 568 

grating (see Gratings) 

of Fabry-Perot etalon, 76-77 

Regrowth, 19, 23-24, 96, 148, 153 

Relaxation Resonance 
frequency, 48-51, 167, 200-205, 228, 240 

ways to maximize the, 51-52 

with transport effects, 244 

description of, 49-50 

Reservoir 

analogy, 30, 40 

model, 186, 542-543 

Resistance 

series, 56, 59, 61 

shunt, 61 

Resonant Cavity, 8, 38, 225 

Resonance Condition, 39, 249 

Ringing Frequency, 204-205 

Rotating Wave Approximation, 510 

Scattering 

coefficients, 67-77, 78, 84-85, 95 

relations between, 68-70 

junctions, 67, 71 

dielectric interface, 71-72 

Fabry-Perot etalon, 73-77 

transmission line, 72-73 

loss, 72 

matrices, 65, 67 

four-port, 289-291 

theory, 66-70 

Schrédinger’s Equation, 116, 118, 393, 488, 

509 
time-dependent expansion of, 509-511 

normal mode expansion of, 400-403 

Section 

active, 38 

passive, 38 

Self-Heterodyne Technique, 238 

Self-Pulsations, 252 

Semiconductor Amplifier, 359-361 

Shockley-Read-Hall Recombination Theory, 

145-146, 148-149 

Shot Noise Floor, 229-234 

‘ Signal-to-Noise Ratio (SNR), 221-223 

Single Frequency Operation, 66, 96, 99, 102, 

106, 343-354 : 

Snell’s Law, 303-304 

Spectral Density 

carrier, 228, 235 

current, 232 

definition of, 223 

frequency, 236 

Langevin noise (see Langevin) 

output power, 229 

photon, 228 

single-sided and double-sided, 224 

units of, 224 

Spin Degeneracy, 3, 125, 407, 442, 518-519, 

524 

Spin-Orbit 

energy, 491-492, 531, 539 
interaction, 492 

Spontaneous Emission, 5, 28, 31, 32, 37, 

112-116, 139-144, 169-171, 186-187, 

460-472 

amplified, 227, 361, 379 

as a noise source, 113-114, 225-226, 235, 

241 

Einstein’s approach to calculating, 469-472 

factor, 35, 106, 108, 143-144, 186, 188, 
190-191,444-445 

curve fit, 191,199 

in microcavities, 142, 467-468, 472, 515-516 

lifetime, 471 

relation between gain and, 140-142, 

467-468, 470 

relation between stimulated emission and, 

115-116, 139, 465 

single-mode, 113-116, 139-141, 188, 191 

curve fit, 191, 199 

spectrum, 142-143, 169, 444 

broadening of, 132, 143, 470 

using the metal box assumption, 142 

Standard Quantum Limit, 229, 230, 232-234 

Standing Wave Effects, 39, 448-455 

Stationary Process, 542 

Step Response (see Transient Response) 

Stimulated Emission, 5, 28, 31, 34, 36, 39, 40, 

49, 112-116, 186-187, 226, 359-360, 

460-472 

net rate of, 115 

relation between gain and, 36, 127-128 

relation between spontaneous emission 

and, 115-116, 139, 465 

Stimulated Rate Constant, 116, 126, 462-465 

Strain, 11, 13, 44, 147-148, 160, 161-162, 

502-507, 527-536 

band edge shifts created by, 504, 530-535 

biaxial, 529 

compressive and tensile, 13, 161-162, 
164-172, 502-507, 529 



critical thickness of, 11, 148 

effect on effective masses, 161-162, 

181-182, 506-507 

effect on performance of active material, 
160-178 

hydrostatic and shear components of, 504, 
531-533 

tensor, 527-530 

Stress 

normal and shear components of, 527-530 

tensor, 527-530 

Surface 

passivation, 153 

recombination (see Recombination Rate) 

equivalent velocity for diffusion, 
152-153, 182-184 

velocity, 149-153, 182-184 

states, 148 

Table of 

approximations for N and E,, 416, 417 

density of states for different dimensions, 

125 

gain vs. carrier density curve fits, 167 
gain vs. current density curve fits, 173 

material parameters, 12 

strain parameters, 535 

transmission and scattering matrices, 69, 

70, 74 
typical laser parameter values, 198-199 

Temperature 

characteristic, 58, 177 

dependence of laser parameters on, 57-59, 

177-178 

rise of, 56 

tuning, 211-213 

Thermal 

conductivity, 56 

effect on lasing frequency, 211-213 

impedance, 56-57, 212 

time constant, 212 

Thermionic Emission, 30, 187, 422-424 

Threshold 

carrier density, 28, 40, 45, 48, 189 

shift due to feedback, 247 
condition in active/passive cavities, 38-39, 

455-456 
characteristic equation defining, 38, 281 

for DFB lasers, 103, 104, 277-278, 281 

for three-mirror cavity, 80 

current, 28, 42, 45, 46, 53, 190, 579 

nonradiative component of, 48 

shift due to feedback, 247 

definition of lasing, 38, 78 

INDEX 593 

in DBR lasers, 97 

in DFB lasers, 103 

gain, 28, 38-39, 40, 53, 189 

shift due to feedback, 247 

numerical determination of, 78 

in DFB lasers, 104-105, 277-278, 281 

Threshold Energy (see Auger Recombination) 

Transient Response 

small-signal, 204-207 
Transition(s) 

allowed and forbidden, 119-123, 135, 137 

Auger, 154 

matrix element (see Matrix Element) 

nonradiative, 144-160 

radiative, 5, 112-126 

band-to-band, 112, 123 

band-to-bound and bound-to-bound, 

123 

band-to-exciton, 136 

rate of, 116-119, 169-171 

relations between, 115 

Transmission 

coefficient, 71-72, 298 

for Fabry-Perot etalon, 76-77 

line, 72-73 

matrices, 65, 68-77 

applied to gratings, 87-93, 473-485 

multiplying, 68, 73, 75, 86-87, 89 

relations between coefficients, 70, 

473-477 

Transparency 

carrier density, 6, 37, 44, 162, 163, 166-167 

temperature dependence of, 57 

condition, 134 

current, 171-177 

Transport 

effects, 48, 50, 241-245 

factor, 243 

Transverse 

electric (TE) and magnetic (TM) modes, 

121 

coupling between, 282-284, 376 

reflection coefficient for, 304 

Tunable 

filters, 290-296, 343-354 

lasers (see Lasers) 

Turn-On Delay, 215, 217-220 

Two-Port Networks, 67-68 

cascading, 68, 73, 75, 86-87, 89 

properties of, 70 

reciprocal, 70 

Uncertainty Principle, 392 

Unger Approximation, 416-420 
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Vacuum Fields, 112-116, 139-140, 515-516 
Vector Potential, 118 

in terms of the electric field, 127 

Vegard’s Law, 11 

Vertical Cavity 
geometry of, 17, 35 

Voltage 

ideal diode, 56 

series, 56 
threshold, 56, 212 
vs. current 

derivative analysis of, 60-61 

Wali-Plug Efficiency (see Efficiency) 

Wave Equation, 3 

electromagnetic, 263, 428 

electron, 393 

numerical solutions of, 325-327 

paraxial, 381 

scalar, 316, 326, 563 

transverse, 263, 316, 553 

Wavefunction, 116-117, 119, 392, 488-490 

quantum-well, 122 

Waveguide (see Dielectric Waveguides) 

Wavelength 

Bragg (see Bragg Condition) 

chirp, 207-213, 220-221, 355, 560-561 

division multiplexing M), 344, 

371 

fine tuning and channel changing of, 353, 

379 

modal, 39 

spacing between modes (see Mode) 

tuning, 66, 83, 85, 96, 99-101, 207-213, 

348-354, 375-376 

WKB approximation, 316-319 

Wiener-Khinchin Theorem, 542 

Wigner-Weisskopf Equations, 510 
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