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Abstract 
 
The goal of the project work has been to study the symmetry of the phonons in 4H and 

6H-SiC for different measuring geometries by using two experimental techniques, Raman 

and infrared absorption (IR) spectroscopy, and a theoretical model. The Raman spectra 

were measured in different scattering configurations in order to obtain experimental data 

for detailed investigation of the phonon symmetries. 

  

The gross features of the spectra obtained in different geometries can be explained using 

general group-theoretical arguments. Using a lattice-dynamics model, we have also 

calculated the angular dependence of the phonon energies near the centre of the Brillouin 

zone, as well as the phonon displacements in some high-symmetry directions. The 

theoretical results are used to interpret the Raman lines in different configurations, and it 

was possible to estimate that if ionicity of the bonding of 12% is taken in the theoretical 

model for 4H-SiC, the splitting of the polar TO mode and the shift of the polar LO mode 

observed in our spectra are well reproduced theoretically. It was also observed that these 

polar modes have to be classified as longitudinal and transversal with respect to the 

direction of phonon wave vector, while the rest of the modes remain longitudinal or 

transversal with respect to the c-axis of the crystal. The Raman lines in the case of 4H 

SiC have been tentatively labelled with the irreducible representations of the point group 

of the crystal (C6v). 
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Motivation 

 

Lattice Dynamic Models (LDM) usually predict the energies of phonons correctly but not 

the phonon displacements. We want to investigate to which extent the IR absorption and 

especially the Raman spectroscopy can be used to probe these atomic diplacements in 4H 

and 6H-SiC. Consequently, we need analysis of phonon symmetries for different 

scattering configurations measurements in IR and Raman. 

 

The main goal of this diploma work is to label the Raman lines obtained experimentally 

by using theoretical arguments. The symmetry labels for these Raman lines, which 

correspond to phonon modes (in 4H and 6H-SiC in our case), used in literature are often 

very confusing and need justification. 

 

Thus one of the main task  was to collect a detailed experimental data  (for Raman and IR 

of 4H and 6H-SiC), which will be used for much more detailed comparison with the 

theory (development in progress) in the future. 
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1. Silicon Carbide 
 

1.1. Introduction  
 
Silicon carbide is a ceramic compound of silicon (Si) and carbon (C), which was first 

observed in 1824 by Jöns Jacob Berzilius, a Swede.  Silicon carbide (SiC) is also known 

as carborundum or moissanite. Natural SiC was found in meteorites and was discovered 

for the first time by Moissan in 1905. SiC is the only compound that exists in the Si-C 

system. The compound is hard and stable maintaining its mechanical properties at 

temperature above 10000C. It is the hardest and most resistant material after diamond. It 

has good thermal and chemical stability that make it resistant to corrosion.  

 

       SiC is known to be wide (indirect) band gap semiconductor and has also very 

fascinating and extraordinary electronic properties. The important electronic properties of 

SiC, which make it attractive for electronic devices, are high electron mobility, high 

breakdown field, high thermal conductivity and good radiation resistance. Due to its 

material properties, SiC is an excellent candidate for high temperature electronics. Device 

operation at higher temperatures than silicon (Si) and gallium arsenide (GaAs) based 

devices is possible. Systems utilizing SiC can operate with high current densities and 

require reduced external cooling. In addition, individual devices can operate at higher 

voltage reducing the number of components needed. This results in cost saving in high 

power systems. Some important device applications of SiC are sensor operating in 

ultraviolet region, nitride based LED’s using SiC as substrate, cutting tools, RF and 

microwave devices such as base state transmitter or transmitter for digital TV, ultra fast 

Schottky diodes, used in air crafts and nuclear reactors, used as cutting tool, as substrate 

for GaN epitaxial growth etc.  
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The limitations of the SiC technology are due to defects characteristics for SiC, such as 

point defects, line defects or two dimensional plane defects.  The most common defect in 

SiC is micropipes, which is very bad for the devices. Different methods have been 

employed to grow SiC. The growth can be divided into boule (bulk) growth and  epitaxial 

growth. For boule growth the seeded sublimation growth method is widely used. Because 

of the phase equilibrium in the Si and C materials system (specifically, the material 

sublimes before it melts) the technique is based on Physical Vapor Transport (PVT). The 

technique is also called modified-Lely method or seeded sublimation growth and was 

invented in 1978 by Tairov et al [2]. It is used today for commercial fabrication of SiC 

wafers. Although the sublimation technique is relatively easy to implement, having in 

mind the high growth temperatures needed, the processes are difficult to control, 

particularly over large growth areas. Due to the low stacking fault energy it is difficult to 

restrict syntax (parasitic polytype formation) during bulk crystal growth and to grow a 

single polytype material. For example, 4H polytype falls within the same temperature 

range of occurrence as 6H polytype, while 3C can be formed over the whole temperature 

range used for SiC growth. Another alternative growth technique is High Temperature 

CVD (HTCVD) where transport of the growth species to the seed crystal is directly 

provided by high purity gas precursors containing Si- and C-species. The thermal 

environment and the growth rates achievable in this technique are to a large extent close 

to the PVT method. 

 

        Sublimation epitaxy has proven to be a suitable technique for growth of thick (up to 

100 µm) epitaxial layers with smooth as-grown surfaces. Reproducible quality of these 

surfaces is obtained with growth rates ranging from 2 to 100 µm/h in the temperature 

range from 1600 to 1800°C. The structural quality of the epilayer improves compared to 

the substrate. The surface roughness is diminished in the sublimation epilayer.  Another 

simple and elegant technique  is Liquid phase epitaxy (LPE)  with several advantages 

such as low process temperature, relatively high growth rate, easy for technical 

implementations in various geometries, doped layers and multiplayer structures. The 

main advantage, however, is that the process is carried out at relatively low temperature 
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and close to thermodynamic equilibrium conditions, which presumes a low concentration 

of point defects in the epitaxial layers. Hence, the quality of the grown material is mainly 

limited by morphological features. LPE is particularly interesting for SiC because it has 

been found that  micropipe closing takes place by this growth method. Micropipe closing 

for this technique was reported by Yakimova in 1995 [4]. 

 

1.2. Crystal Structure of SiC 
 

SiC has strong bonding with a short bond length (1.89 Å) between a Si and C atom. The 

slight difference in electronegativity between these two atoms gives 12% ionicity to the 

otherwise covalent bonding, with the Si atom slightly positively charged. The basic 

building block of the crystal is a tetrahedron consisting of a C (Si) atom in the middle and 

four Si (C) atom at the four corners (fig .1.1). 

  

 

 
Fig.1.1. Si and C atoms arranged in a tetrahedron, which is smallest building block of crystal 

structure. 

 

        An important property of SiC is that it exhibits polytypism. Thus we can say that 

SiC is not a single semiconductor but a family of semiconductors. There are more than 

200 polytypes of SiC and all but the simplest ones can be considered as natural 

superlattices. All SiC polytypes can be viewed as a stacking of close packed planes of 

double layers of Si and C atoms, as shown in fig.1.2.  
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Fig.1.2. Arrangement of Si and C atoms in closed-packed double layer. 

 

 

Different polytypes are formed by different stacking order of the close-packed double 

layers. Consider a single closed double layer of atoms on top of the first layer, the most 

stable configuration is formed if the atoms of the second layer are placed in the valleys of 

first layer. However there are two different possibilities to stack the second layer as 

depicted by fig. 1.3.  

 

 
Fig.1.3.  The second close-packed double layer can be placed in two different positions on top of the 

first close packed double layer. 
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The freedom to choose between two different positions of the second layer and by 

creating an ordering in the stacking sequence of the layers, gives rise to a variety of 

different polytypes. The stacking of double layers is most conveniently viewed in a 

 

 
Fig.1.4. The hexagonal system to describe different polytypes and the three different positions, A, B, 

and C, respectively, of the double layers. 

 

 

 
Fig.1.5. One stacking period of three common polytypes 3C, 4H and 6H-SiC 
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hexagonal system, as shown in fig.1.4, with three different position of the atom pair 

labeled A, B and C. The c-axis is perpendicular to the basal plane, which lies in the plane 

of the close packed double layer. The three most common and important polytypes of SiC 

are 3C, 4H and 6H, although 15R and 21R are also fairly common. Here the Ramsdell 

notation is used, where the number represent the number of bilayers per unit cell and the 

letter represents the type of Bravais lattice, i.e. H stands for hexagonal, C for cubic and R 

for rhombohedral. Consequently, there is no difference between the polytypes within the 

basal plane. It is the stacking sequence of double layers along the c- axis that gives rise to 

different polytypes. 

        If the stacking sequence of the different polytypes is projected in the )0211(
−

plane as 

indicated in fig. 1.6, we can observe difference in the local environment for different 

atomic sites. In the turning point the local environment is hexagonal (h) and between the 

the turning points, the local environment is cubic (k). 3C polytype has cubic structure 

since there is no turning point , the 4H polytype has one cubic and one hexagonal site 

(h,k) and the 6h polytype has one hexagonal and two cubic sites (h,kB1B,kB2 B). For the cubic 

and the hexagonal lattice site in 4H and 6H polytypes, the arrangement of surrounding 

atoms differs from the second neighbours while the two cubic lattice sites kB1B and kB2 B differ 

first in the third neighbours. 

 

 

Fig.1.6. The ( 0211
−

) plane of the three polytypes 3C, 4H and 6H. 



 

 

 

 

2. Infrared Spectroscopy in Solids 
 

Infrared spectroscopy is one of the most popular spectroscopic techniques in solid-state 

physics. The simple reason for this is that nearly all materials exhibit a more or less 

expressed structure of absorption in the IR spectral range. Absorption process due to 

transition across the energy gap, from excitons or from impurity states, is found in the 

visible spectral range as well as in the IR. Important additional sources for absorption and 

reflection are the IR active phonons or vibrational modes, which can give valuable 

supplementary information to results from Raman scattering. We will only be concerned 

with the absorption (and Raman scattering) due to the vibrational modes of crystal. 

 

         This chapter contains review of the principle of the Fourier transform infrared 

spectroscopy (FTIR), instrumentation, active phonon modes in IR energy range in solids 

and the classical theory of IR spectroscopy and IR bands in silicon carbide. 

 

2.1. Basic Principle and Set-up for Fourier Spectroscopy. 

 

Analysis in the Fourier spectroscopy is based on the absorption of IR light by the lattice-

phonon modes. A Fourier spectrometer consists of Michelson interferometer, as shown in 

fig2.1. The white light from the source, which is a lamp, located at the focus of lens L1 is 

separated into two beams of equal intensity by the beam splitter, which is half polished 

KBr mirror in our case. One of the beams is reflected from the mirror M1 (fixed in 

position) and the other beam by the mirror M2. Mirror M2 is movable and can glide along 

its axis in a controllable way. After the beam splitter the two beams with different time 

delay (depending on the momentary position of M2) will interfere and are focused on the 

detector after passing through the sample and a lens. The introduced time delay between 
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beams reflected from mirror M1 and M2 would give different interference of beam for 

every position of mirror.  

 

 
Fig. 2.1. Optical path in a Michelson Interferometer-; M: mirrors; BS: beam splitter; LS: light 

source; D: detector. 

 

        Hence the interferometer disperses the light in different wavelength by a totally 

different method as compared to prism. The light passing through the sample is then 

focused by the lens L2 on the detector. The detector in our case was Deuterium Triglycine 

sulphate (DTGS). The electrical signal from the detector is amplified by a lock-in/analog 

to digital converter (ADC) system. The interferogram is registered on a recorder and 

Fourier transformed by a dedicated computer in order to obtain the spectral distribution 

of the received light. 

 

        It is always important to record two interferograms; one for the sample and another 

for a reference (i.e. a mirror) and later division of the background spectrum by the 

spectrum obtained with sample will give the desired spectrum. Fig.2.2 shows an example 

of the raw spectrum (sample plus background) together with the processed transmission 

spectrum for 6H- SiC. 
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Fig. 2.2. a) The transmission spectrum for 6H-SiC with background. b) Transmission spectra after 

subtraction of background. The reference sample used was silver mirror. The region plotted in figure 

(b) is shown in fig(a) by a circle. 

 

 

2.2. Infrared active phonons 

 

As we know all atoms in solids hold in their equilibrium position by the forces that hold 

the crystal together. When atoms are displaced from their equilibrium positions, they 

experience restoring forces, and vibrate at characteristics frequencies (see fig 2.3a, 2.3b).  

 

 
 

        These vibrational frequencies are determined by the phonon modes of the crystal. 

The energies of the atomic vibrations are comparable to those of photons in the mid to far 

infrared range (typically 10-1000 cm-1). Some of the vibrations are associated with the 

appearance of induced dipole moment (see fig.2.3a) and can interact directly with the 

electric field of incident light. They are called infrared active modes.  
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Only optical phonons can be observed in IR spectrum and the reason behind this is that 

when photon of certain energy is absorbed with in a solid and a phonon is created, the 

conservation laws require that the photon and the phonon must have the same energy and 

momentum. This condition is only satisfied by optical modes. 

 

        We can explain this by the dispersion curves of optical and acoustic phonons in a 

simple crystal shown in fig2.4. The angular frequency ω of the optical and acoustic 

phonons is plotted against the wavevector k in the positive half of the first Brillouin zone 

(BZ). At small wave vectors the slope of the acoustic branch is equal to νBsoundB in the 

medium, while the optical modes are dispersionless near k ≅0. The dispersion of light 

waves (shown by dotted line) in crystal has constant slope of ν= c/n, where n is the 

refractive index. The requirement that the phonon and photon both should have same 

frequency and wave vector is satisfied when the dispersion curves intersect. Since c/n >> 

νBsoundB, the only intersection point for the acoustic branch occurs at the origin, which 

corresponds to the response of the crystal to a static electric field. For optical branch, 

intersection occurs at finite ω, which is shown in fig.2.4 by circle.  

 

        Electromagnetic waves are transverse and therefore couple more strongly with 

transverse optical modes of crystal. But we cannot neglect longitudinal optical (LO) 

modes as we will see later that they play important role in the infrared properties of 

crystals. Coupling of the phonon with the photon is due to the driving force exerted on 

   b 



crystal by the oscillating electric field of the wave. It can only happen when the crystal 

has polar character. The polar character of compound solid mainly depends on the nature 

of bonding. In covalent crystals with predominant covalent bonding, different size and 

charge of the constituting atoms will introduce polar character.  

 

 
Fig. 2.4. Dispersion curves for the acoustic and optical phonon branches in a typical crystal with a 

lattice constant of a. the dispersion of photon is shown by dotted lines. 
  

2.3. Classical theory of IR absorption and transmission. 

 

The interaction between electromagnetic waves and transverse optical (TO) phonons can 

be treated by classical oscillator model. Consider a linear chain of unit cell, which consist 

of negative (grey) and positive (black) ions as shown in fig2.5. If the direction of 

propagation of the electromagnetic wave is along the z direction, then the displacement of 

atoms will be in x or y direction for the transverse modes. Furthermore, for optic modes 

the atoms will move in opposite directions with fixed ratio between their displacements. 
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        As we are interested in TO phonons with k ≈ 0 and an infrared photon of the same 

frequency and wave number, this implies that we are considering phonons of very long 

wavelength ~ 10 P

-4
PcmP

-1
P matched to that of an infrared photon. This wavelength is quite 

long when we compare it with the dimensions of a lattice.  For such long wavelength, the 

behavior of propagation of TO modes within a crystal is almost identical.  

 

         
Fig.2.5. Interaction of a TO phonon mode propagating in the z direction with an electromagnetic 

wave of the same vector. The black circles represent positive ions, while the grey circles represent the 

negative ions. The solid line represents the spatial dependence of the electric field of the 

electromagnetic wave. 

 

        We can write equations of motion for the displacement of ions as a result of 

interaction of TO phonons with the oscillating electric field of the light waves. 

 

 )()(2
2

teExxCdt
xdm −++ −−= , 

 

)()(2
2

teExxCdt
xdm +−− −−= ,                                                                    (2.1)                               

where mB+ Band mB- Bare the masses of two ions, C is the restoring constant of the medium, 

E(t) is the electric field due to the light wave and 'e’ is the effective charge per ion and is 

taken as ±e. 
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After following simple arithmetic steps, eq 2.1 can be written as  

 

)(2
2

2
tEexdt

xd
TO µ

ϖ =+  ,                                                                                (2.2) 

 

 where  

 

 
−+

+=
mm
111

µ
 ,      defines the reduced mass,             

 

 −+ −= xxx    ,                   

 

 and 

 

 .2

µ
ϖ C

TO =  

 

Eq.2.2 represents the undamped oscillation of the crystal lattice in response to the 

oscillating electric field of light but as the lattice modes or phonons have finite lifetimes 

we should introduce also a damping term γ in eq.2.2. 

 

)(2
2

2

tEex
dt
dx

dt
xd

TO µ
ωγ =++                                                                                (2.3) 

 

 

Eq.2.3 now represents the response of a damped TO mode to resonant light wave.  

Substitute )exp()( 0 txtx ιϖ−=  and )exp()( 0 tEtE ιϖ−=  in eq.2.3. We get, 
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)( 22
0

0 ιγϖϖϖ −−
−=

TOm
eEx .                                                                              (2.4)         

 

as a steady state amplitude of the forced oscillation. 

 

        The oscillation of ions within crystal will produce a time varying dipole moment 

 p (t) = -e x(t) as shown in fig.2.3b. This gives a resonant contribution to the polarization 

of the medium. If N is the number of atoms per unit volume, the resonant polarization is 

given by  

 

 NpPresonant = , 

  

)( 22
0

2

ιγϖϖϖ −−
=−=

TO
resonant m

ENeNexP    .                                                   (2.5)        

 

From eq.2.5, we can see that the resonant polarization has largest magnitude when ωB Bis 

equal to ωBTOB. This is also one of the properties of forced oscillations in classical 

mechanics. 

  

The electric displacement D of the medium can be related to the to the electric field E and 

the polarization P through, 

 

 resonantbackground PPED ++= 0ε , 

 

resonantPEED ++= χεε 00 .                                                                           (2.6) 

 

where PBbackgroundB represents the non-resonant term and accounts for all the contribution to 

the background susceptibility χ of medium arising from the polarization due to all other 
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oscillators at high frequency.  To simplify the mathematics, we will assume that the 

material is isotropic so we can write, 

 

ED rεε0=  .                                                                                                            (2.7) 

 

Combining eqs 2.5 – 2.7, we obtain, 

 

)(
1)( 22

0

2

ιγϖϖϖµε
χϖε

−−
++=

TO
r

Ne
,                                                 (2.8) 

 

 

where  BrB (ω) is the complex dielectric constant at angular frequency ω. Eq 2.8 can be 

written in terms of static (ε BstB) and high frequency (ε B∞ B) dielectric constant respectively. In 

the limits of low and high frequency, we obtain from eq 2.8, 

 

2
0

2

1)0(
TO

rst
Ne
µωε

χεε ++=≡  ,                                                                               (2.9) 

 

χεε +=∞≡∞ 1)(r .                                                                                                        (2.10) 

 

Thus eq. 2.8 can be written as 

 

,
)(

)()( 22

2

ιγωωϖ
ϖεεεϖε

−−
−+= ∞∞

TO

TO
str                                             (2.11) 

 

where  B∞ Brepresents the dielectric function at frequencies well above the phonon 

resonance but below the next natural frequency of crystal due to (for example) the bound 

electronic transition in the visible/ultraviolet spectral region.  
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If we take the damping constant γ equal to zero at certain frequency ω′then we can write 

eq. 2.11 as  

.
)(

)(0)( 22

2

ωϖ
ϖεεεϖε

′−
−+==′ ∞∞

TO

TO
str                                                      (2.12) 

 

Thus the dielectric constant can fall equal to zero 

 

From eq.2.12 we find  

 

.)( 2
1

TO
st ϖ
ε
εω
∞

=′
                                                                                            (2.13) 

 

For a medium with no free charges, the total charge density is equal to zero and we can 

write  

 

0).(. 0 =∇=∇ ED rεε  

where  

 

).(exp),( 0 trkEtrE ϖι −=  

 

If  Br B≠ 0,B Bwe can conclude that k.E = 0 and this tells us that the electric field must be 

transversal (perpendicular to the direction of the wave) and, therefore, the coupling is 

strong between TO phonons and the transverse electric field of photon, but if we take  

 BrB = 0, we can satisfy eq.2.13 with waves in which k.E ≠ 0, that is, longitudinal waves. 

Thus we conclude that the longitudinal electric field is present at frequencies for which 

 BrB(ω) = 0. In the same way the TO phonon modes generate a transverse electric field 

wave, the LO phonon modes generate a longitudinal electric field wave. Thus the waves 
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at ω = ω′ correspond to LO phonon waves, and we identify ω′ with the frequency of the 

LO mode at q = 0, namely, ωBLOB.  

 

This allows us to write eq 2.13 as  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∞ε
ε

ω
ϖ st

TO

LO
2

2

                                                                                                        (2.14) 

 

This result is known as Lyddane-Sachs- Teller (LST) relation. The validity of the LST 

relation can be checked by comparing experimental values of 
TO

LO

ω
ω

 for some experiment 

as Raman scattering with the one calculated from eq 2.14 using known values of the 

dielectric constant. 

 

An interesting result form eq 2.14 is that when  Bst B= B∞ B, the LO and TO modes are 

degenerate. Hence we can say, Bst B=  B∞ B, when there is no infrared resonance which is the 

case for non-polar elementary crystals as Si, Ge etc.  

 

2.4. IR Absorption coefficients 
 

The Lattice absorbs very strongly whenever the photon is in resonance with the TO 

phonon. Actually the polar solids have such high absorption coefficients in the infrared 

region that, unless the crystal is less than 1µm thick, no light at all will be transmitted. It 

is important to have thin film samples to observe lattice absorption in this case. 

 

We can calculate the absorption coefficient from eq.2.11, using the imaginary part of the 

dielectric function. From the relation given in eq.2.15, 

 

  21)( ιεεϖε +=r ,                                                                                               (2.15) 
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    we obtain 
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=k   ,                                                                               (2.16)            

 

where k is the extinction coefficient. The absorption coefficient α can be calculated from 

k using the relation given in eq.2.17, 

 

λ
πα k4

= .                                                                                                                 (2.17)                               

 

If we analyze eq.2.14 in more detail we can observe some important features.  

 

For γ = 0, the eq.2.11 can again be written as  
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)()( 22

2

ωϖ
ϖεεεϖε
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TO
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str                                                        (2.18)                              

 

        Lets consider concrete values, νBTOB = 10THz, νBLOB = 11THz, Bst B = 12.1 and B∞ B = 10. 

The frequency dependence of dielectric constant can be calculated and plotted as well. 

All the angular frequencies are divided by 2π here, so that we can compare the 

predictions with experimental results. From the fig.2.6(a), we can see that for ν 0,  Br = 

B BstB. But as ν starts increasing there is a gradual increase of  BrB and it start to diverge when ν 

approaches νBT0 B.  
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Fig.2.6. a) Frequency dependence of the dielectric constant. b) Frequency dependence of reflectivity 

of a crystal, where 1THz = 10P

12
P Hz . 

 

The value of ε BrB is negative between ν BT0 B and νBL0 B. Precisely at ν = ν BL0 B, Br Bis zero and then 

positive again, increasing asymptotically towards the value of  B∞ B. We can see that in the 

region between νBT0 B and νBL0 B, the reflectivity is 100%, (see fig. 2.6), because the 

reflectivity is given by 
1

1

+

−
=

r

r
R

ε

ε
, and rε  is purely imaginary. This frequency 

region is called Restrahlen band. 

 

 
Fig.2.7. Infrared reflectivity of 4H- SiC with a pronounced Restrahlen region.  A wave number of 

1 cmP

-1
P is equal to a frequency of 2.998 x 10P

10 
PHz. P

 

 

        In the Restrahlen band, we expect high frequency and approximately zero 

transmission for real crystals. Fig.2.7 shows the experimental data for the reflectivity and 

transmission measurement in the 4H polytype of SiC. On comparing these experimental 

results (fig.2.7) with the theoretically calculated one shown in fig.2.6 (b), we see that 
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there is general agreement between the model and the experimental data but the 

maximum reflectivity in the experimental curve is not 100%. This is due to the fact that 

we ignore the damping constant (γ) during our theoretical calculation.  

            

            

            

            

            

            

            

            

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

         

 

 

 



 

 

 

3. Light Scattering Spectroscopy 

hen light interacts with inhomogeneous medium, it undergoes many processes. It can 

e absorbed, scattered, diffracted or reflected. It is well known that a perfectly 

omogenous medium does not scatter light; the elementary beams re-emitted from 

re destructively and cancel each other in all 

directions, except for the forward direction. However, scattering does occur in reality due 

rmal fluctuations of the atoms in the media, leading to density fluctuations, so the 

scattering, or Rayleigh scattering. For time-

ogeneties periodic in time, the scattering may also be inelastic such as 

energy is given. In contrast to the absorption spectroscopy, it is the modulation of the 

 

W

b

h

different points of such a media interfe

to the

media cannot be considered as perfectly homogenous anymore. If the inhomogeneties are 

of the size of the light wavelength, scattering will occur into arbitrary or well-defined 

direction.  

 

        For purely geometrical or local inhomogeneties with no time dependence, the 

scattering is elastic, which means without a change of the light energy and can occur in 

arbitrary directions. Depending on the size and nature of the optical inhomogeneties, the 

processes are called Tyndall scattering, Mie 

dependant inhom

those caused by phonons, sidebands to the excitation line occur. This is the case for 

Brillouin scattering and Raman scattering. Such scattering experiments give valuable 

information on the vibrational properties of the material. 
 

3.1 Raman spectroscopy 
 

The Raman effect arises when a photon incident on crystal is scattered inelastically due to 

creation or annihilation of phonon (vibrational excitation) to which a part of phonon 
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response of the system by vibrations, rather than the contribution of vibronic oscillators 

themselves.  

 

        These inelastic scattering processes can be of two types.  When incident 

monochromatic light source of frequency ωBLB interacts with crystalline material, it can 

excite a lattice mode or phonon state with initial population nB1 B to some virtual state but as 

this virtual state does not correspond in general to any stationary state, it dissipates 

immediately, so that the phonon population remains nB1 B and photon of frequency ωBL B is 

emitted. As this emitted photon is of the same energy as the incident photon, it will 

correspond to elastic scattering process and is known as Rayleigh scattering as depicted 

in fig.3.1a. But it is also possible that the phonon will relax down to nB2 B vibrational state 

and hence the emitted photon will have energy ωBsc B= ωBLB-ωBs B where ωBs Bcorresponds to 

energy of phonon. This process is known as Stokes process as shown in fig.3.1b. The 

photon scattered in this process has energy shift and we call this energy shift Raman shift 

and the photon scattered by this process Raman scattered photon. 

 

 

 
Fig.3.1. Incident photon scattered in three ways, a) Rayleigh scattering, b) first-order Stokes 

scattering, c) first order anti-Stokes scattering. 
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There is also another possibility that the phonons are already present in excited 

vibrational level nB2 B and relax down to nB1 Blevel when incident photons of frequency ωBL B 

interacts. Hence the photon emitted has frequency shift of ωBscB = ωBLB+ωBs B. This process is 

known as anti-Stokes process (fig.3.1c). 
 

        The anti-Stokes process is usually weaker than the Stokes process because the 

probability of phonons being in the higher populated state is lower than in the ground 

level. However at room temperature, there is still small probability of finding these 

phonons in excited states. In the Stokes process, the emitted photon has lower Raman 

shift than the one emitted in anti-Stokes process. The final energy of the photon is lower 

in the Stokes process than in anti-Stokes process (fig.3.2). Clearly the Raman scattering 

process can be viewed as either creation or annihilation of (one or more) phonons during 

the interaction of the light with the media. 

 

 
Fig.3.2. Stokes and anti-Stokes Raman spectrum (schematic). The strong line at ωBLB is due to Rayleigh 

scattering. 

 

        Raman scattering can be of first order or higher order( if more than one phonons are 

involved).  First order Raman scattering involves only one phonon and these phonons are 

only from the center of Brillouin zone due to momentum conservation and similar to the 

IR absorption.  In Raman scattering, the incident light is scattered with relatively larger 
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frequency shifts, independent of the scattering angle, which implies that the scattering is 

due to the phonons of high frequency that corresponds to optical normal modes in solids.  

 

3.2. Instrumentation and Setup for Raman Scattering Experiment 
 

In light scattering experiments the spectral distribution of the scattered light is analyzed 

relative to the spectrum of the incident light. In the case of Raman spectroscopy the 

changes in the spectrum are very close in energy to the energy of the incident light and 

many orders of magnitude smaller in intensity. Therefore a very good suppression for the 

elastically scattered light is required. Double or triple monochromators or Fabry- Perot 

interferometers can be used to filter the elastically scattered laser light. Our Raman setup 

consists of double monochromator, which is also quite efficient. 

 

 
Fig. 3.3.  Raman Setup 

 



        The Raman set up comprises also on Argon laser as excitation source, which is 

tunable to different wavelengths. The highly monochromatic laser light passes through an 

interference slit or a small grating monochromator that rejects the spurious lines and 

background from the laser source. The light beam is focused by lens and mirror on 

sample. We can use polarization rotator to change the polarization of laser light incident 

on the sample, but in our experiments, we rearrange the mirror position in order to get 

different polarizations of the incident laser light. Light scattered from the sample is 

focused by lens and passes through the polarizer.  After the polarizer, the light is focused 

onto the entrance slit of the double monochromator. The resolution and suppression of 

light is highly improved compared to single monochroomator. Light leaving the exit slit 

of the monochromator is focused on the cathode of the photomultiplier whose output is 

processed with the photon counting electronics. The output is converted into digital 

signal and is then finally displayed on the computer. The instrumentation for Raman 

measurement is shown in fig.3.3. 

 

3.3. Scattering Configuration 
 

The intensity of Raman scattering generally depends on the mutual orientation of the 

direction and polarization of received light as well as of the incident light relative to the 

principal axes of the crystal. The variation of the scattering intensity with the 

experimental geometry gives information about the symmetry of the lattice vibration 

responsible for the observed line. Thus if the only changing component in the 

susceptibility tensor are xy and yx for a given lattice vibration, to observe the Raman 

lines due to this phonon we must arrange the polarization of the incoming laser radiation 

parallel to the x-axis and observed the scattered light with its polarization in the y 

direction and vice versa. One thus determines the Raman-active phonons with each of 

which we can associate a susceptibility tensor and a definite symmetry. By choosing 

different geometries and observing the variations in the intensity of lines due to different 

phonons one can in principle determine the symmetries of those phonons. 
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        Different scattering geometries are possible for Raman experiment. The most 

common one is the normal back scattering (BS) configuration i.e. the laser light is made 

incident on the surface of the sample and the scattered light collected from the same 

surface as well. For uniaxial crystals back scattering geometry can be applied not only in 

the direction of the crystal axis but also in direction perpendicular to c-axis, which 

provides new information as will be seen later (see also fig.3.4).  

 

 
        Fig.3.4. Some possible scattering geometry, we employed in Raman experiment. 

 

        There are some other scattering geometries as well like near forward scattering 

configuration but it is used to observe polariton and for this reason we have not used this 

geometry. Fig.3.4 illustrates the scattering configurations we used in our experiments. To 

describe a particular scattering configuration it is convenient to use the notations as 

described in the book by Peter Bruesch [7]. Thus for the back scattering configuration in 

fig.3.4, we can write XYYX )( , where X represent the propagation direction of the wave 

vector k of incident light with polarization along Y direction. Similarly
−

X  represents the 

propagation direction of scattered light along negative X direction with polarization along 

Y direction. 
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3.4. Classical Theory of Raman scattering 
 

In an anisotropic medium, such as an uniaxial crystal, the polarisation field TPT is not 

necessarily aligned with the electric field of the light TET. In a physical picture, this can be 

understood, because the dipoles induced in the medium by the electric field have certain 

preferred directions, related to the physical structure of the crystal. Thus in general case 

the above two vectors are related by a tensor:  

 

T

EP χε 0= ,T                                                                                                            (3.1)                               

 

where T the tensor χ T is the susceptibilty of crystal and it can be defined as a response of 

crystal as a result of interaction between electric field of photon and crystal. 

 

        Let light beam with electric field E(t)=EB0 BcosωBLBt is incident on the crystal. The light 

field will mainly interact with the electrons in the crystal, because they are much lighter 

than the nuclei. Thus the main contribution to the susceptibilityT χ is due to the electronic 

polarizability.T However the latter depends on the instantaneous position of the nuclei. Let 

us consider the situation when only one normal coordinate QBs B is excited in the lattice. If  

sϖh  is the phonon energy corresponding to this mode, then QBs B= QB0sBcosωBs Bt and the nuclei 

oscillate with frequency ωBs B. We have also that χ=χ(QBs B) and this function can be expressed 

in Taylor series as 
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                         (3.2) 

 

where in the eq.3.2, we are restricted to the first term linear in QBs. BThe polarization 

induced by the media can thus be written as 

 

 tEttP Ls ωωχχ cos)cos()( 010 += .                                                        (3.3) 
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In the general case, the motion of the nuclei can be represented as a linear combination of 

normal coordinates. Thus more generally 
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where the sum runs over all normal coordinates.  

 

The first term in eq.3.4 represent first-order Raman effect while the second order Raman 

effect is given by the second term, which is quadratic in QBk B. In the following discussion, 

we will confine ourselves to first order Raman effect. T 
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Equation 3.5 shows that the induced polarization P oscillates not only with the frequency 

ωBL B of the incident light, but also with the frequency ωBLB±ωBs B. These latter frequencies arise 

from the modulation of susceptibility by the crystal lattice oscillations. 

 

        The intensity and power spectrum of Raman scattered light is also predicted by 

classical radiation theory. The intensity of radiation emitted by induced polarization P(t) 

into the solid angle is given dΩ = sinυdυdϕ is given by  
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where  
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The power spectrum illustrated by eq 3.6 is shown in fig.3.5. Thus classical theory 

correctly predicts the occurrence of Stokes and anti-Stokes process but leads to an 

incorrect ratio of intensities. 

 

                        
Fig.3.5. Intensity of Stokes and anti-Stokes line                                  

              by classical theory.                                                                 

 

 

The ratio of intensity of Stokes and anti-Stoked process calculated by classical model is  
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which will be less than one and where as experiment shows that Stokes lines are more 

intense than the anti-stokes ones. This inconsistency is eliminated by Quantum theory of 

Raman scattering, which lead to intensity ratio 
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Fig.3.6 Polarization of the radiation emitted by 
an oscillating electric dipole P(t). E and H are the 
field vectors of the radiation propagating 
in direction of observation 
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where kBB B is the Boltzmann constant and T is the temperature. The ratio given in eq.3.9 is 

considerably larger than unity in contrast to eq (3.8) for the classical case. 

 

3.4.1. Classical determination of the Raman Tensor 
 

The relation P(t) = χ B0BE(t) is vectorial relation and in general the direction of P does not 

coincide with the direction of the electric field E. If we consider only first order Raman 

scattering,  
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        Here ∂χ BjlB/∂QBk Bis a component of derived susceptibility tensor. This tensor is also 

known as Raman tensor and often written as χBjlk, B(χBjlB) Bk B or χ Bjl,k B. The component of the 

Raman tensor has three indices. j and l  extends over the coordinates 1 to 3 and k runs 

over the the 3N-3 normal coordinates of the vibrations, where N is the number of atoms 

per unit cell. In other words k run over all modes with wave vector k = 0. The Raman 

tensor which refers to all zone center vibrations thus has rank three. For an individual 

mode this tensor is given by a matrix with three rows and three columns whose 

components are the derivatives of the susceptibilty. So in matrix form we can write: 
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or 
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l

ljlj EP χ    ,                                                                                                    (3.10a) 

where χ is a symmetrical tensor, that is  
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It can be further shown as well that there exists a coordinate system with axes (x′,y′,z′ ) 

such that the relation between P and E, when reffered to these axes, assumes a simple 

form. 
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                                                                    (3.12) 

or  

 

EP ′′=′ χ                                                                                                             (3.12a) 

 

where χ′ is a diagonal matrix. Such axes are called principle axis of the susceptibility. 

One of the principle axis of the susceptibilty always coincides with the symmetry axis of 

symmetrical system and is always perpendicular to a plane of symmetry. 

 

The transformation from one coordinate system (x,y,z) to another (x′,y′,z′ ) takes place 

through an orthogonal matrix R, where RP

-1
P=RP

T
P, and we can write 
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or 

 

RRTχχ ′= . 



 

If we consider a system in equilibrium configuration, then the components of χ are 
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,z), identical with the laboratory system and principal axes system of 

is the dipole moment induced by the electric field E of the light. 

 

tuations the system is in a distorted configuration there will 

(x′,y′,z′ ) shown in fig.3.7 which in general will not coincide 

m we can expand χBjl Bin terms of normal B Bcoordinates QBk B as in 

∑
′′′

′′′′′′ ++
kk

kkkkjl QQ ............
2
1

,χ ,                              (3.13) 

eptibility of the system in equilibrium. 

inate QBk Bwe may define the changes in susceptibility 

                                                                                         (3.14) 



 50

and a matrix with elements 
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If we replace χ (susceptibility) by α (polarisability) these expressions can be considered 

as a generalization for a molecule. From the previous considerations, we can deduce that 

the lattice mode will be Raman active if one of the six components of χBjl,k Bof matrix δχ P

k
P is 

different from zero. If this is the case, the mode QBk B is Raman active. The appearance of 

Raman mode in any experiment is dependant upon the symmetry of  the equilibrium 

configuration and of the modes QBk B. Active and inactive Raman modes in Silicon carbide 

are dicussed in next chapter. 

 

3.5. Quantum Theory of Raman Scattering 
 

The complete quantum theory of Raman scattering is complex and rather lengthy. This 

section presents just a basic review with respect to the first order Raman scattering. 

According to the corpuscular theory of light, Rayleigh scattering corresponds to an elastic 

collision process between photon and the crystal whereas the Raman scattering 

corresponds to the inelastic collision of photons with crystal with the emission (Stokes 

process) or absorption (anti-Stokes) of phonons.   
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3.5.1. First- Order Raman Scattering 
 

In first-order Raman scattering, only one phonon is involved; this correspond to term 

linear in QBk B in eq.3.3. Fig 3.1 shows the transition for Rayleigh scattering and for first -

order Stokes and anti-Stokes scattering. Let ωBLB, kBLB be the frequency and wavevector of 

incident photon and ωBs B, kBs B be frequency and wavevector of scattered photon and ω, k of 

the optical phonon. Energy and momentum are conserved between initial and final state 

of system.  

 

For Rayleigh scattering, 

 

  ωBL B= ωBs B, 

 kBL B= kBs B.                                                                                                                         (3.17) 

 

For Raman scattering the conservation of energy and momentum yields: 

 

ωBL B= ωBs B ± ω ,                                                                                                                 (3.18) 

 

 kBL B= ks ± q .                                                                                                                (3.19) 

 

where the (+) sign indicates that phonon ω(q) is created in Stokes process while in the 

anti-Stokes process the phonon ω(q) is annihilated.  

 

        The two processes are shown schematically in fig.3.1. Since ωBLB>>ωBs B = ω(k) it 

follows from eq.3.18 that ωBL B≅ ωBs B. since kBLB and ks are the wavevectors within the crystal, 

we have kBLB= 2π/λBLB, kBs B= 2π/λBs B where λBLB=λBvac B/n (ωBLB), λBs B=λBvac B/n (ωBs B) (λBvacB: wavelength in 

vacuum). Since ωBL B≅ ωBs,B it follows that kBL B≅ kBs B. In addition, since λBL Band λBs B are much 

larger than the lattice parameter a, hence kBL Band k Bs B are much smaller than π/a, the 

magnitude of wavevector at the zone boundary. Therefore from eq.3.11 it follows that 
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q<<π/a, that implies that optical modes with q ≅ 0 can only be involved in first order 

Raman scattering. 
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4. Group Theoretical Consideration of the 4H and 6H Polytypes of SiC 
 

In this chapter, we will provide in more detail the group theoretical analysis necessary to 

understand the experimental results. We will be concerned with the symmetry analysis of 

the phonons near the Γ and M point of the Brillouin zone, zone folding in higher 

polytypes, theoretical prediction of modes in different scattering configurations and 

assignment of representation to Raman and IR absorption lines in spectra obtained 

experimentally by theoretical arguments. 

 

 

 
                                            (a)                                             (b) 

 
 

Fig.4.1. a) unit cell of 6H-SiC, b) unit cell of 4H-SiC. The atoms in 4H-SiC unit cell are enumerated in 
such a way that the pair of subsequent numbers (1,2), (3,4), (5,6), (7,8) denote equivalent atoms. 
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4.1. Classification of Symmetry of Phonons for different directions of 

the wave vector KBpnononB in the Brillouin Zone of 4H & 6H-SiC. 
 

4H-SiC has 8 atoms per unit cell while 6H-SiC has 12 atom in one cell (see fig 4.1). In 

fig 4.1, the atoms are labeled in such a way that subsequent numbers (e.g. 1 and 2) 

correspond to equivalent atoms. 4H and 6H-SiC, both hexagonal polytypes of SiC belong 

to 4
6vC  space symmetry group, which contains altogether 12 operations which will satisfy 

the symmetry condition for these crystals as described in table.4.1. We will consider 

table.4.1 in detail in later paragraphs. 

 
        In general, the number of phonon branches in any crystal is 3N where N is number 

of atoms per unit cell. Out of these 3N modes, three are acoustic modes and 3N-3 optical 

modes. Some of these optical and acoustic modes are degenerate in certain directions of 

the Brillouin zone. They are usually classified into transverse and longitudinal modes. 

Only the optical modes have non-vanishing energies at the centre of the Brillouin zone (k 

≈ 0). The hexagonal and rhombohedral poltypes of SiC have well defined c-axis. So the 

longitudinal modes (along c-axis) are also termed as axial modes and transversal modes 

(⊥ to c-axis) as planar modes. This classification of modes into axial and planar modes is 

quite specific and is valid only for particular scattering geometry. Later we will see that 

this classification of modes requires modification for different scattering geometries. But 

now for the moment, we will consider this classification of modes as described above.  

 

 
                                                 

Fig.4.2. First Brillouin zone of 4H and 6H-SiC 
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        These axial and planar modes are long wavelength modes corresponding to wave 

vector k≈0 or phonon modes at the centre of the Brillouin zone (Γ-point). The Brillouin 

zone (BZ) of 4H and 6H-SiC is shown in fig.4.2. In fig.4.2, the Γ- point represents the 

centre of BZ where Γ to A - point represents the direction along c-axis (parallel to z-axis) 

in the BZ.  Γ to K and Γ to M point represent directions in the x-y plane of crystal (i.e. 

the basal plane). So the axial modes are along Γ- A and planar modes are along Γ-M or 

Γ-K direction in BZ (general case). 

 

        The total number of lattice modes, according to the above discussion, is 24 for 4H 

and 36 for 6H. Out of these 24 modes in 4H, 21 will be optical modes and 3 will be 

acoustic modes. However, not all optical modes are active in IR absorption or Raman 

scattering. Our purpose will be to classify the phonons near the zone center Γ by 

symmetry, and then find the symmetries of the phonons active in IR and Raman. 

Subsequently, we will use the specific tensors representing the susceptibility derivatives 

for the phonons of each allowed symmetry in order to label the lines experimentally 

observed in our Raman and IR spectra. 

 

        It is well known using group theory that the phonons at a certain point in BZ can be 

classified by symmetry, that is, every phonon can be labeled with one of the irreducible 

representations of the group of the wavevector k. The group of wave vector KBAB in the 

direction Γ- A of the Brillouin zone is CB6v B but in the direction Γ- M, the group of 

wavevector is CB2vB. By definition, this is the subgroup of the point group of the crystal 

(CB6vB in our case), which contains those operations, which leave the wave vector invariant 

possibly changing only its direction from 
→→

− KtoK . Thus it is easy to see, that if the wave 

vector is in direction towards the M point (KBMB), the group of the wave vector is C B2vB.   

 

        KBphononB denotes the wave vector of phonon created or annihilated in Raman Stokes 

and anti-Stokes process. Using the conservation of energy and momentum laws, we can 

draw the directions of the phonon wave vector for different scattering geometries. The 

different directions of the phonon wave vector have to be analyzed using different point 
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groups, which will then correspond to modes with different symmetries in certain 

measured geometries for these polytypes. For example, for certain geometry, if the 

direction of resultant or phonon wave vector is along c-axis (Γ- A), the CB6v B point group 

can predict the crystal modes but if the resultant wave vector is perpendicular to the 

crystal axes (in Γ-M or Γ-L direction), the point group is CB2v B.We will discuss the 

direction of phonon wave vector for different measuring geometries in detail in later 

paragraphs.  

 

 
Fig.4.3. Reflection operation σ Bv B and σ Bv´ B 

 

        Let us consider table.4.1 in detail first. In table.4.1, the first row represents the 

rotational operation (3x3) matrices included in the CB6v B point group. The first operation 

‘E` is identity operation, 2CB6 B represent the rotations operation by 180P

0
P and (180P

0
P) P

-1
P, 2CB3 

Bare rotations by 120P

0
P, CB6 B by 60P

0
P. All rotations are about the ΓkBzB axis, corresponding to c-

axis direction in the direct space. 3σBv B and 3σBv´B are six reflection operations across planes 

rotated by 120P

0
P from each other about the c-axis of the crystal as shown in fig.4.3. The 

operation σBv B is equivalent to the AΓML plane and σBv´B is ⊥ to ΓkBxB.   

σBv 

σBv2B 

σBv3B 

aB1 B⏐⏐σBv´B 

aB2 B⏐⏐σBv´B 

aB3 B⏐⏐σBv´B 
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        The E, 2CB3 B and 3σBv B operations alone will bring the crystal into itself, and are totally 

symmetric operations however the operations, 2CB6 B, CB2 B and 3σBv´B require an additional 

translation by half the height of the unit cell along the c-axis, i.e.τ = ½ c in order to bring 

to bring the crystal into itself. The total number of operations is equivalent to the order of 

group. Hence the order of group for CB6v B is 12. The group has six irreducible 

representations among which four are one dimensional, and two-2 dimensional. The 

column on the left side of the table.4.1 represents the notations for these irreducible 

representations. The remaining columns represent the characters of the representations 

for different operations. For example AB1 B modes has character 1 for all operations, while 

EB1 Bmodes have character 2 for identity operation, etc. 
                                          

 
Table.4. 1.  Character table of CB6v B point group. 

 
 

 
 
 
 
 
 
 
 
 
 

 

        

          The point group C B2v B is a subgroup of CB6v B and contains four of the 12 symmetry 

operations of CB6v B, namely, E (the identity transformation), C B2 B, σBv B and σBv´B. CB2 B is equivalent 

to the ΓkBzB axis, σBvB equivalent to AΓML plane, and σBv´B is ⊥ ΓkBx B. The four irreducible 

representations of CB2vB are all one-dimensional and are listed in table.4.2. Thus, there is no 

symmetry-based degeneracy of the phonon energies in the Γ-M and Γ-K direction, and 

the matrix representations are identical to the characters. 

 
 

 

 

 
CB6v 

 

 
E 

 
2CB6 
 

 
2CB3 
 

 
CB2 
 

 
3σBv 
 

 
3σBvPB

´
P 

AB1 B +1 +1 +1 +1 +1 +1 
AB2 B +1 +1 +1 +1 - 1 - 1 
BB1 B +1 - 1 +1 - 1 +1 - 1  
BB2 B +1 - 1 +1 - 1 - 1 +1 
EB1 B +2 +1 - 1 - 2    0   0 
EB2 B +2 - 1 - 1 +2    0   0 
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Table.4. 2.  Character table of CB2v B point group. 

 

 
 
 
 
 
 
 
 
 

        The group-theoretical technique for determination of the number of phonons of 

given symmetry at Γ point (AB1 B, AB2 B, BB1B, BB2 B, EB1 B, EB2B) and M point (AB1 B, AB2 B, BB1B, BB2 B) is 

described in detail in ref [13,14]. So here we will give a brief summary of the application 

of that technique to our particular case. 

 

        For the 4H polytype, a 24-dimensional representation ΓP

disp
P (called the displacement 

representation) can be constructed in the following way. Let us consider a 24-

dimensional vector ‘c’ for 4H-SiC, (for 6H-SiC, it will be 36 dimensional), the first three 

components of which are the x, y and z projections of the displacement of atom No 1, the 

next three components are the corresponding projections of the atom No 2, etc. Let us 

think of each symmetry operation as acting on the displacements of atoms, instead of on 

the atoms themselves. Then the result of the symmetry operation T on the vector c will be 

another vector c´, which can be written as c´= ΓP

disp
P(T).c. Obviously, the set of matrices 

{ΓP

disp
P(T), T∈CB6vB or CB2vB} forms a (reducible) representation of the group of  the wave 

vector (CB6v B or CB2v B in our case), and it is quite straightforward to see that this 

representation can be presented as a direct matrix product 

 

( ) )()( TRTpTdisp ⊗=Γ                                                                               (4.1)               

 

where p(T) is the so called permutation matrix for the operation T (the permutation 

matrix is a matrix containing 0’s and 1’s, and storing information about where each atom 

 
CB2v 

 

 
E 

 
CB2 

 

 
σBv 
 

 
σBvPB

´
P 

AB1 B +1 +1 +1 +1 
AB2 B +1 +1 - 1 - 1 
BB1 B +1 - 1 +1 - 1 
BB2 B +1 - 1 - 1 +1 
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is going when the crystal is subjected to the operation T). The permutation matrix has 

NxN dimension generally, where N is the number of atoms per unit cell.  R(T) is the 

ordinary 3x3 orthogonal matrix representing the rotation corresponding to the operation 

T. Both sets {p(T)}(eight dimensional for 4H-SiC and 12 dimensional for 6H-SiC), and 

{R(T)} (three dimensional) form also representations called permutation and vector 

representations, respectively. 

 

The matrices for the rotational operations of CB6v B (and CB2vB) groups are as follow: 
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For rotational operations E, CB3 B and σBvB, which do not involve translations, the unit cell 

together with each atom position remain unaltered and the permutation matrix for 4H-SiC 

has the form 

 

⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞
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⎜

⎝

⎛

=

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

),,( 3 vCEp σ , 

 

where 1’s at the diagonal represent position of atoms in 4H-SiC after applying rotational 

operation. Thus atom 1 remains in the position of atom 1,etc. 

 

The permutation matrix for the rotational operations CB2 B, CB3 B and σBv´B, which require 

translation by half of the length of  ‘c’ afterwards to bring the crystal into itself position 

has the form: 
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⎝
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01000000
10000000
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00100000
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00000001
00000010

),,( 62 vCCp σ , 

 

According to it, atom 1 goes to the position of atom labeled 2 and vice versa. It is also 

true for other subsequent pair of atoms (see fig.4.1).  The rotational matrices described 

before can be written in place of the non-zero entries in the permutation matrix to form a 

24 dimensional displacement representation ΓP

disp
P for 4H-SiC. We can also write the 
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permutation matrices for 6H-SiC, which will have the same forms. The only difference 

will be the dimension of matrix (i.e.12x12 matrix) because of 12 numbers of atoms in the 

unit cell of 6H-SiC.  

 

Hence after applying the operation T, we can say that the c-axis will transform into itself, 

i.e. 

 

cTc disp ).(Γ=′                                                                                                       (4.2)       

 

where dispΓ have the form given in eq.4.1 for operations E, CB3 B and σBv B and this is true for 

all operations T of the point group CB6v B. 

 

We can now calculate the number of phonons (nBp B) transforming as each of the irreducible 

representations of either CB6v B (for Γ-A) or CB2v B (for Γ-M, Γ-K phonons) by using the well-

known magic counting formula [9]. 

 

∑
∈Τ

∗=
vv CC

pdisp
p TT

g
n

26 ,
)()(1 χχ                                                                             (4.3)           

 

where nBpB is the number of phonon modes of symmetry ΓBp B(any of the irreducible 

representation),  g is the order of the group, which is 12 for CB6v B and 4 for CB2vB. χP

disp
P(T) is 

the character of ΓP

disp
P(T) and χP

p
P(T)P

*
P is the complex conjugate of the characters of the 

irreducible representations of CB6v B and or CB2v B. In our case all characters of irreducible 

representations for both groups are real and hence the complex conjugate has no effect. 

 

The total number of phonons at Γ point for CB6vB group is  

 

2111 4444 EEBAdisp +++=Γ
                                                                     (4.4)          
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        Hence there are 16 distinct modes but since E B1 B and EB2 B modes are double degenerate, 

the total number is 24, as expected. Among these, three are acoustic, describing 

translation of the unit cell (or of the crystal) as a whole, that is, the displacements of all 

atoms are in the same direction and equal. Since a single vector represents all 

displacement for the acoustic modes, it must transform in accord with the rotational 

representation defined by the matrices R(T). Using eq.4.3, we obtain by analogy with 

eq.4.4 that R(T) decomposes into irreducible representations in the following way: 

 

 
11 EAR +=

                                                                                                            (4.5)                  

Consequently, one of the four AB1 B modes and one of the EB1 B modes are acoustic (three in 

total as EB1 B modes are doubly degenerate). Thus, for the optic modes one obtains: 

 

2111 4343 EEBAoptical ++++=Γ
                                                              (4.6)                               

Modes allowed in IR spectroscopy are: 

 

11 33: EAActiveIR +−
                                                                                     (4.7)                            

Similarly, it can be shown that the Raman active modes are those whose symmetries can 

be found in the decomposition of the direct product R⊗R that leads to the result 

 

 
211 433: EEAActiveRaman ++−

                                                          (4.8)                               

The total number of phonons at M point for CB2v B point group calculated using magic 

counting formula given in eq.4.3 is 

 



 63

2121 8448 BBAAdisp +++=Γ
                                                                      (4.9)                     

Out of these 24 modes for CB2v B group 21 will be optical and 3 will be acoustic modes, 

which can be found to have AB1 B+ BB1B+BB2 B symmetries, therefore, 

 

The IR active optical modes are  

 

 
211 737: BBAActiveIR ++−

                                                                         (4.10)                               

and the Raman active optical modes are  

 

2121 7347: BBAAActiveRaman +++−
                                               (4.11)                               

Eq.4.11 depicts that all modes are Raman active, if the experimental geometry is such 

that the phonon wavevector is along the Γ-M direction. So the general relation can be 

formulated to calculate the number of modes in NH polytype (N=4,6 for 4H and 6H-SiC 

respectively). 

 

The total number of IR active optical modes for CB6v B is 

 

))(1( 11 EAN +−                                                                                                     (4.12)                               

 

For Raman Spectroscopy, the total number of Raman-active optical modes for CB6vB group 

is  

  

211 )1()1(35 NEENANNnp +−+−=−=                                          (4.13)                              
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Similarly we can formulate a general formula for CB2vB point group. IR optical modes in 

CB2v Bare 

 

121 )1())(12( BNBAN −++−                                                                         (4.14)                              

 

Allowed optical Raman modes can be calculated by the general formula 

 

1221 )1(4))(12( BNABAN −+++−                                                               (4.15)             

 

4.1.1. Zone Folding 
 

Different polytypes of SiC have different lattice periods along the c-axis and the polytype 

with the shortest period is 3C-SiC (β-SiC), which has the zinc-blende structure. The 

notation α-SiC is often used to denote the NH or 3NR polytypes that contain N formula 

units (Si-C). The unit cell length of these α-type polytypes along the c-axis is N times 

larger (corresponding to the <111> direction of zinc-blende structure) than that of the 

basic polytype (3C-polytype). Hence the BZ in Γ-L is reduced to the 1/N of the basic 

Brillouin zone, i.e., minizone. The phonon dispersion curves of 3C, 4H and 6H-SiC in the 

<111> direction, corresponding to Γ-A direction in the BZ is shown in fig4.4, illustrating 

the zone-folding concept.  

 

        The dispersion curves of the phonon modes propagating along the c-direction in 

higher polytypes are approximated by folded dispersion curves in the basic Brillouin zone 

as shown in fig.4.4 This zone folding along the [00ξ] direction provides a number of new 

phonon modes at the Γ point (k=0), which correspond to the phonon modes inside or at 

the edge of the basic Brillouin zone. The phonon modes arising from the zone folding are 

called ´folded modes’. The unit cell of 3C-SiC contains one formula unit and there is one 

LO mode and a doubly degenerate TO mode in the optical branches (see fig.4.4). A 

folded mode corresponds to a phonon mode with a reduced wave vector x = k/kBB B = 2m/N 

along the <111> direction in the basic Brillouin zone of the 3C-SiC, where m is an 
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integer less than or equal to N/2 (m ≤ N/2) and k BB B is a wave vector of the zone edge in the 

basic Brillouin zone. 

 

 

 

 

 

 

 

 

 
Fig.4.4.The phonon dispersion of: a 3C-SiC in the Basic (large)  BZ;  b & c) 2H and 6H-SiC in the 

corresponding minizones, showing the folded modes [15]. 
 

4.1.2. Geometrical Considerations 
 

The direction of the resulting KBphonon B wave vector is very important to be considered for 

different geometry. When the wave vector of the phonon is exactly parallel to the c-axis 

of the crystal, i.e. KBphonon B⎥⎥  Γ-A direction in BZ, the group of the wave vector is CB6v B and 

it is CB2vB when the wave vector KBphononB is perpendicular to the c-axis, i.e. KBphononB⎥⎥ Γ-M or  

 Γ-K directions in the BZ. When the KBphononB is neither parallel nor perpendicular to c-axis 

but has some intermediate angle with respect to c-axis, i.e. KBphononB⎥⎥ Γ-A-M plane in BZ, 

the wave vector group is CBs B for 4H and 6H-SiC. It can be seen from fig 4.5 that wave 

vector KBphonon Bis parallel to c-axis i.e. θ = 0P

0
P (along z-axis) only in the case of back 

scattering geometry from surface and is perpendicular i.e θ = 90P

0
P (along x-axis) for back 

scattering geometry from edge. KBphonon B has intermediate angle with c-axis in both cases of 

rectangular geometry i.e. θ = 45 P

0
P (zx-plane). Hence different point groups for different 

geometries will predict the modes. 

 

        

Energy Gap 
≈610 -730 cm P

-1
P 



 66

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.4.5. Four different experimentally measured geometries a) Rectangular geometry(EBL Bthrough 

surfaceB, BEBr B through edge), b) Rectangular geometry(EBL Bthrough edgeB, BEBr B through surface), Back 

Scattering (edge), Back Scattering (surface). 

 

        We have already discussed the point group CB6v B and CB2v B. The point group CBs B is quite 

simple group and the characters are given in table.4.3. The two symmetry operations for 

this point group are the identity operation E and the reflection operation σBv B, where σBvB is 

equivalent to AΓML plane. The order of the group is 2. The two, one dimensional, 

representations for this point group are either AB1 B and AB2 B or BB1 B and BB2B in Γ-A-M plane so 

we simply labeled them as ΓB1 B and ΓB2 B species. 
                                              

Table.4. 3.  Character table of CBsB point group. 
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        Now we will consider atomic displacement and behavior of modes in all four 

geometries with respect to phonon wave vector KBphononB in detail. Let us first consider the 

back scattering (BS) geometry from the surface (see fig4.5). As we already discussed that 

KBphonon B⎥⎥  Γ-A direction so phonon modes can be predicted by C B6v Bpoint group and the 

number of allowed Raman and IR modes are given by eq.4.13-4.14. In fig.4.6 the atomic 

displacement of atoms in unit cell of 4H-SiC in Γ-A direction is shown, simulated by 

computer aided lattice dynamic model (LDM) with important parameter, i.e. ionicity of 

12% for SiC [17].  

 

 
Fig.4.6 Atomic Displacement of atoms of 4H-SiC unit cell in Γ-A direction, simulated by  Lattice 

Dynamic Model (LDM). 

 

        In this figure, atomic displacements corresponding to phonons of different energies 

are shown and labeled with the irreducible representations of CB6v B, i.e. AB1 B, BB1 B, EB1 B and EB2 B. 

We can observe from fig.4.6 that E modes are double degenerate. Each E mode has two 

atomic displacements in two directions because these are planar modes and it’s not 

possible to show planar displacements only in the xoz or yoz plane. The first three modes 
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in fig.4.6, i.e. AB1 B at 0.35023 cmP

-1
P and EB1 B at 0.44025 cmP

-1
P are acoustic modes and all the 

rest are optical modes. The B-modes are forbidden in Raman and IR spectroscopy. Hence 

the total number of observable modes is ten as given by eq.4.8. 

 

        The optical modes AB1 B and EB1 B are polar modes, which means that there exists an 

associated dipole moment and macroscopic electric field with these modes. EB2 B modes are 

non-polar in nature. The strong polar modes are TO modeB Bat 774 cmP

-1
P and LO mode at 

1239 cmP

-1
P of symmetry EB1 B and AB1 B respectively. We can also see from fig.4.6 that for 

these modes i.e. EB1 B(774 cmP

-1
P) and AB1 B (1239 cmP

-1
P), the net dipole moment per unit cell is 

maximum, which implies that the net polarization also has non-zero value. Due to the 

non-zero polarization, the splitting is large for this EB1 B (774 cmP

-1
P) polar mode when the 

direction of the wave vector KBphononB with respect to c-axis changes. The AB1 B mode does not 

split of course, but its energy also depends on the direction of K BphononB. Hence polar modes 

frequencies strongly depend upon the direction of the KBphononB due to the contribution of 

the macroscopic field.  

 

        For any scattering geometry we can classify the polar modes as longitudinal and 

transversal modes with respect to direction of KBphononB in BZ, as shown in our lattice 

dynamic calculation. The rest of the modes do not change significantly their atomic 

dispacement patterns therefore they remain purely axial or planar, see fig.4.8. Hence, the 

AB1 B and BB1 B modes remain longitudinal modes and EB1B and EB2 B modes are transversal, also 

with respect to c-axis. 

 

        In back scattering geometry from edge KBphonon Bis parallel to Γ-M direction in BZ, i.e. 

perpendicular to c-axis of crystal and the modes are predicted by CB2vB point group. The 

displacement of atoms in Γ-M direction in unit cell of 4H-SiC is simulated by LDM (see 

fig.4.7). If we compare fig.4.6 and fig.4.7 [17], we observe that EB1 B modes split into BB1 B 

and BB2 Bmodes and EB2 B modes decompose into AB1 B and AB2 Bmodes in back scattering 

geometry from edge. The acoustic modes are AB1 Bcorresponding to 0.39074 cmP

-1
P, BB1 B 

corresponding to 0.30665 cmP

-1
P and BB2 B at 0.20083 cmP

-1
P where BB1 B and BB2 B correspond to 
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planar acoustic mode EB1 B. But these acoustic axial modes, BB1 B and BB2 B, in CB2vB symmetry are 

at higher energy than the planar acoustic EB1 B in BS (surface). 

 

        In this geometry we can assign modes as longitudinal and transversal modes 

depending upon their direction with respect to KBphononB. For example the LO mode (AB1 B) at 

1239 cmP

-1
P in BS (surface) is shifted to wave number 767 cmP

-1
P and in this scattering 

configuration it is TO mode (AB1 B) as atomic displacement are along y-axis. Similarly the 

TO mode EB1 Bat 774 cmP

-1
P in BS (surface) geometry transformed into LO mode BB1 B at 1243 

cmP

-1
P in BS (edge). One can see from fig.4.7, the strong polar modes are LO mode (BB1 

Bat1243 cmP

-1
P), and TO modes (AB1 Bat 767 cmP

-1
P, BB2 Bat 774 cmP

-1
P). 

 

 
Fig.4.7. Atomic Displacement of atoms of 4H-SiC unit cell in Γ-M direction, simulated by  Lattice 

Dynamic Model (LDM). 

 

k=kBM B/500 
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              In rectangular geometries, the modes can be explained by the CBs B point group. 

The character table of CBs B point group is shown in table 4.3. In fig.4.8, the atomic 

displacement for 4H-SiC in Γ-A-M plane is shown [17]. The wave vector KBphononB is in xz 

plane at θ = 45 P

0
P with respect to c-axis. If we look at fig.4.8, the first three modes are 

acoustic while the rest are optical modes. The classification of modes as longitudinal and 

transverse modes is also with respect to direction of wave vector KBphononB in this geometry. 

We can observe that the strong polar mode (ΓB1 B at 1241 cmP

-1
P) is parallel to KBphononB, hence 

it can be classified as LO mode and the other two strong polar modes (ΓB1 B at 771 cmP

-1
P and 

ΓB2B at 774 cmP

-1
P) are perpendicular to c- axis, so can be classified as TO modes. Thus 

indeed in all configurations the frequency of the polar LO mode is shifted up very 

sensibly by the association with it macroscopic electric field, as predicted by the theory. 

 

 
Fig.4.8. Atomic Displacement of atoms of 4H-SiC unit cell in Γ-A-M direction, simulated by  Lattice 

Dynamic Model (LDM). 
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        We have plotted the dependence of the energies of phonons near the Γ- point on the 

direction of the wave vector KBphononB, to investigate the angular dependence of phonons 

(fig 4.9). The angle θ = 0 P

0
P, corresponds to KBphononB along Γ-A direction (BS from surface 

i.e. CB6v B group) and the final angle θ = 90P

0
P correspond to KBphononB along Γ-M direction (BS 

from edge i.e. CB2v B group). The intermediate angles correspond to KBphonon Bin Γ-A-M plane 

(Rectangular geometry i.e. CBs B group). If we observe the AB1B mode at 1239 cmP

-1
P at θ = 0P

0
P in 

fig.4.9, we can conclude that it has rather strong angular dependence and it has shift of ≈ 

4 cmP

-1
P at θ = 90P

0
P. Another important point is that this AB1 B mode now has to be classified as 

BB1 B mode of CB2v B symmetry at θ = 90P

0
P, which confirms that KBphononB has different group in 

different directions of BZ for 4H and 6H-SiC. EB1 B mode at 789 cmP

-1
P at θ = 0P

0
P also exhibit 

large energy shift ≈ 7 cmP

-1
P at θ = 90P

0
P, which also confirm strong polar nature of this 

mode. 

 

        When we consider direction from Γ-A to Γ-M point, we can observe another point 

that splitting is large for polar AB1B and EB1 B modes and EB2 B modes have very negligible or no 

splitting at all. The scale in fig.4.9 is highly exaggerated around some energy in order to 

see the splitting of modes. This actually explains why the number of modes observed 

experimentally is less than the number of the theoretically predicted modes. The reason is 

that the splitting between modes is very small and it is hardly possible for even very good 

spectrometer to resolve this splitting. 

 

        Note that only one TO mode and one LO mode show significant angular (or 

directional) dependence, namely, the TO modes of EB1 B symmetry with energies around 

775 cmP

-1
P and the highest energy LO mode of AB1 B symmetry (at θ = 0°). On the other hand, 

all the modes of AB1 B and EB1 B symmetry are polar modes. However, the remaining polar 

modes are associated with vibrations stemming from the edge or other non-zero wave 

vector points of the large zones (Jones zone), i.e., they can be considered as appearing at 

the zone center due to the zone folding. Consequently, the displacements of the atoms are 

paired two by two for atoms of same species but with opposite signs, which leads to near 

cancellation of the polarization contributed by the unit cell. 
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Fig.4.9. Angular dependence of the phonon energies of the optical phonons in 4H-SiC calculated with 

a lattice dynamical model. θ is the angle between the Γ-A direction of the Brillouin zone (BZ) and the 

phonon wave vector. The amplitude of the latter is constant chosen to be 1/500 of the extension of the 

BZ in the Γ-M direction. Note the breaks on the energy axis and the very different energy scales for 

the different phonon branches chosen so as to make visible all the splittings of the branches with EB1B 

symmetry (and also of one branch of EB2B symmetry). The classification of the phonons by symmetry is 

done within CB6vB at θ = 0° (Γ-A direction), CB2v B at θ = 90° (Γ-M direction), and CBsB for arbitrary θ 

between these limits, because these are the groups of the wave vector for the corresponding 

directions 
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         Only the original (not folded) modes, which are common for all polytypes, 

contribute strongly to the polarization of the unit cell, because the four (in the case of 4H-

SiC) atoms of each species vibrate in phase, creating vibration of the silicon and carbon 

sublattices against each other. This yields the maximum possible value for the 

polarization of one unit cell. This is illustrated very well by the displacements patterns of 

the atoms presented in Fig. 4.6 and Fig.4.7 for the cases of the phonon wavevector along 

the Γ-A and Γ-M directions, respectively. Note that the places of one of the polar 

transversal modes and the longitudinal polar mode with highest energy are interchanged. 

This is easily understandable in view of the fact that the phonon wave vector has different 

direction for these two figures, the important issue being that the polar modes (but not 

any other mode) can be classified as longitudinal and transversal with respect to the 

direction of the wave vector for arbitrary direction of the latter. 
                         

                      Table.4.4. Compatibility table for phonon modes in different direction of BZ. 

 

 

 

 

 

 

 

 

        Hence we found out that the polar modes have very strong dependence on the 

direction of wave vector K BphononB and the phonons have totally different symmetry and 

character in different geometries as well as there is large splitting and energy shift for 

polar modes. So here we can formulate a compatibility table, which can explain the 

transformation of phonon in different symmetry point group. The theoretical analysis for 

6H-SiC can be done in similar way and the modes in 6H will follow the same behavior as 

in 4H-SiC. The only difference is that it has larger number of modes as it has 12 atoms 

per unit cell. Table.4.4 gives the compatibility relations of phonon modes in three point 
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groups i.e. CB6v B, CB2v B and CBs B, which correspond to three different directions of KBphononB in 

BZ. 

 

4.2. Classification of Phonons with respect to Polarization Vectors of 

Incident and Scattered Raman light. 
 

As we discussed before that the mode symmetry and appearance depends on many 

factors, especially on the direction of the wave vector KBphononB. The sample geometry 

measured is also very important to be considered to study the symmetry of phonons. The 

prediction of intensity I(k) of each mode can be made theoretically using the simple 

relation, i.e., 

  

2)()( iks eekI χ=                                                            (4.16) 

 

where eBi B and eBs B are the polarization vectors of incident and scattered light and χBk B is the 

Raman tensor and has different form for modes of different symmetry. The form of the 

Raman tensor for back scattering  (surface) geometry, which correspond to CB6v B group, are 

given below: 
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Note that the two tensors 1Eχ  and 2Eχ  correspond to each of the two-dimensional 

representation.B 

       

     The polarization vectors can have four different forms for BS (surface) geometry 

i.e. zyyzzyxzzxyzzxxz )(,)(,)(,)( , where z and z  represents the direction of wave 

vector k for incident and scattered light respectively and alphabets in bracket represent 

the polarization vector eBi B and e Bs Bfor incident and scattered light respectively for all four 

cases of BS (surface) geometry.  We did calculations, using eq.4.16 to see which mode is 

appearing with strong or weak intensity for all the four cases (mentioned in above lines) 

of BS (surface) geometry. We can compare the intensity of modes obtained theoretically 

and experimentally and this will help us to identify the modes in our experimental 

spectra.  

 

        Here is an example to understand how triple product from eq.4.16 can be calculated. 

For example, for zxxz )(  case of BS (surface) geometry, the polarization vector, eBi Bfor 

incident laser light and eBs B for scattered light has the form given in eq.4.18.  
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Solving eq.4.16 for the polarization vectors given in eq.4.17, we found out that for 

scattering configuration zxxz )( , the Raman lines of axial AB1 Band planar EB1 B and EB2 B species 

can be observed proportional to aP

2
P, d P

2
P and we found that EB1 B modes are not allowed in this 

geometry.  
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 Table.4.5.1. Theoretical prediction of modes for BS (Surface) geometry calculated by eq4.17. 

Back scattering 
(Surface)     

−

zxxz )(       
−

zxyz )(      
−

zyxz )(        
−

zyyz )(  

         AB1 B         aP

2
P         0         0          bP

2
P
 

         EB1 B         0         0         0          0 
         EB2 B         e P

2
P         f P

2
P
         f P

2
P
          e P

2
P 

 

        Similarly we did calculation for the other three BS (surface) configurations and 

results are summarized in table.4.5.1. We also observed that in the BS (surface) 

geometry, the AB1 B modes are polarized parallel to the polarization of laser light, the EB1 B 

modes are forbidden in this geometry for all configurations and the EB2 Bmodes are also 

polarized both in the direction of polarization of incident light and perpendicular to it, 

i.e., they are depolarized. 

        In the BS (edge) geometry, the Raman tensors for the modes are given below for CB2vB 

symmetry group. The component to which intensity of species is proportional, is 

calculated using eq.4.17 for the four BS (edge) configuration 

i.e. .)(,)(,)(,)( xyyxxyzxxzyxxzzx  The AB1 B species appear only when the scattered 

intensity is polarized along the polarization direction of incident light, AB2 B and BB1B modes 

are forbidden in this geometry, while the BB2 B modes appear only when the polarization 

vector of scattered light is perpendicular to polarization vector of incident light. 
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In addition, we can say about these modes is that the AB1 B modes are polarized parallel to c-

axis of crystal in xzzx )(  scattering configuration, and perpendicular to c-axis in 
−

xyyx )(  

scattering configuration. The results are summarized in table.4.5.2. 
            

 

Table.4.5.2. Theoretical prediction of modes for BS (Edge) geometry calculated by eq4.17. 

 

 

  

 

 

Cs group gives the mode symmetry in rectangular geometries. Hence the Raman tensors 

for CBs Bgroups are given below. 
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        The four scattering configuration for rectangular geometry (EBLB through surface, EBr B 

through edge) are xyyzxyzzxxyzxxzz )(,)(,)(,)(  while for the other rectangular geometry 

(EBLB through edge, EBrB through surface), the four scattering configurations are 

zyyxzyxzzzyxzzxx )(,)(,)(,)( . By using eq.4.17 for different scattering configurations 

for both the geometries, we found out that these two are equivalent geometries. Both ΓB1 B 

Back 
scattering 
(Edge) 

    
−

xzzx )(       
−

xzyx )(     
−

xyzx )(  
      

−

xyyx )(  

         AB1 B         c P

2
P           0           0           bP

2
P
 

         AB2 B         0           0           0           0 

         BB1 B         0           0           0           0 

         BB2 B         0           f P

2
P
           f P

2
P
           0 
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and ΓB2 B modes are allowed in these geometries in certain configurations. The summary of 

results is given in the table.4.5.3. 

       Table.4.5.3. Theoretical prediction of modes for Rectangular  geometry calculated by eq.4.17. 

 

         After all this discussion, we should keep this in mind that the CB2 B and CBs B are low 

symmetry group for these geometric configurations so the polarization vectors should be 

compatible to our geometries in this case. Hence it might be possible that in geometries 

which are govern by CB2 B and CBs B point groups, the modes, which are not predicted 

theoretically, can be observed experimentally. But it should not be confused with wave 

vector KBphononB, as CB2 B and CBs B are group of the wave vector KBphononB in different directions of 

the BZ of crystal.  

 

4.3. Experimental Details and Interpretation of Observed phonons 
 

In this section we will compare the experimental results of Raman and Infrared 

absorption of 4H-SiC with the theoretical results and provide an overview of the results 

for 6H-SiC. We also tried to assign the representations to these Raman and infrared 

absorption lines based on the theoretical knowledge but this assignment for some of the 

lines has to be considered as tentative, before a more detailed theory giving explicit 

expressions for the Raman tensors in various symmetries is built. Such a theory is now in 

process of development.  
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        For the Raman measurements we used 4H and 6H-SiC samples of thickness ~ 55 

µm with c-axis nearly perpendicular to the surface (8P

0
P off). All the measurements were 

done at room temperature. The excitation source used is Argon laser, which is tunable to 

different discrete wavelengths. The laser wavelength we used is 458nm. This laser 

wavelength is well below the electronic band gap of SiC and the material is transparent 

for it ensuring good signal to noise ratio. Some researchers have used higher wavelength 

like 514 nm but we did not use it just because photomultiplier of Raman setup has better 

sensitivity at shorter wavelengths. Raman spectra measured were averaged over 10-20 

scans with integration time of one second.  It is always better to have small integration 

time with large number of scans than a single scan with long integration time because any 

spike can be averaged out easily. Similarly set up can have some minute vibrations so it 

is always good idea to have more scans with small integration time.   

 

        We will first discuss the most common back scattering geometry (surface), see 

fig.4.10, which correspond to CB6vB group of wave vector KBphononB. Although the total 

number of the Raman modes predicted theoretically are ten (eq.4.8), the total number of 

the Raman lines appearing are roughly seven in all spectra of the scattering 

configurations of the back scattering (surface) geometry. The reason behind this can be 

that it is difficult to resolve the modes close in the energy even with a very good 

spectrometer.  If we consider fig.4.4 in detail, we can observe an interesting feature. The 

dispersion curves of the three polytypes displayed in the fig.4.4 has about the same 

energy gap between acoustic and optical modes, ranging from ~ 610 cmP

-1
P to 730 cmP

-1
P. 

 

          Our theoretical prediction, (see fig.4.9), underestimates the energy gap, i.e., from ~ 

400 cmP

-1
P to 650 cmP

-1
P. The reason is that we use the non-modified force constant as given 

by the Tersoff [19]. The adjustment of force constant may provide a better fit to the 

experimental energies and may lead also to re-ordering of the states. Therefore, we will 

discuss only model-independent theoretical features such as the existence of energy and 

the number of phonons above and below it. There are two, i.e. LO and TO, modes above 

the energy gap, and two, i.e. TA and LA, modes below this energy gap in the basic BZ of 
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3C-SiC. Hence from fig.4.9, we can say that 4H-SiC has five optical modes, i.e. 

2AB1 B+2EB1 B+2EB2 B above the energy gap and four optical modes, i.e. 1AB1 B+1EB1 B+2EB2B, below it.  

This classification of the modes below and above the band gap will be very useful to 

label the Raman lines with the specific representation 

 

        The Raman line at 966 cmP

-1
P is the high energy LO mode (as LO modes are always at 

higher energies) and it is assigned as AB1 B species in the fig.4.6. (However the energy given 

in fig.4.6 does not match the experimental one as explained above). Therefore the Raman 

line at 966 cmP

-1 
Pcan be labeled as AB1 B and later we will justify our assignment when we 

will analyze the experimental results for other geometries. For the moment, we assign the 

Raman line at 799 cmP

-1
P as EB1B, the line at 778 cmP

-1
P and shoulder at 785 cmP

-1
P as the EB2 

Bmodes. Here we can question the appearance of the EB1 B mode at 799 cmP

-1
P, as it is not 

allowed in the BS (surface) geometry (see table 4.5.1). The appearance of EB1 B mode in this 

geometry is most probably due to imperfect geometry. There should be another AB1 B mode 

above the energy gap according to our above classification but it might be overlapping 

one of the strong lines. By imperfect geometry we mean that the orientations of geometry 

in the measurement are not as accurate as shown in fig.4.5. 

 

        Below the energy gap, we should assign the 610 cmP

-1
P line as EB1 B mode according to 

our theoretical result given in fig.4.9, (as it is just below the energy gap). But it is also 

observed that when we use the different ionicity parameter in our LDM model, the 

ordering of modes as shown in fig.4.9 and fig.4.6 is different and the mode just below the 

band gap is AB1 B instead of EB1 B. Similar reordering of the states is expected with changing 

the short-range force constants in our LDM, as explained before. Therefore, we will base 

our assignment on the intensity behavior of the line in different scattering geometries 

rather than on the ordering of the states predicted by the model. We note, however, that 

ionicity of 12% (as used in the model in agreement with previous work [17]) correctly 

predicts the shift of the polar LO mode and the splitting of the polar TO mode in different 

geometries, as will be seen. This is so because the shift and the splitting mentioned above 

are entirely due to the long-range coulomb interactions between the ions, which in term is 

determined by a single parameter, the effective charge of the positive/negative ion (Si and 



 81

C, respectively). The Raman lines at 194 cmP

-1 
Pand at 204 cmP

-1
P are assigned as the E B2B 

modes and line at 266 cmP

-1
P as the EB1 B mode. We will observe the behavior of these modes 

in other geometries and try to justify this assignment of Raman lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig.4.10. Raman Spectra of 4H-SiC for back scattering (surface) geometry, where a) represents 
−

zyyz )( configuration and b) represents 
−

zyxz )( configuration and c) represents 

−

zxxz )( configuration. 

         

        Back scattering from the edge is another measurement geometry, which reveals 

important results. As we know the group of the wave vector KBphononB is CB2v B in this case but 

here we should understand that it is the local symmetry group of crystal and CB6v B represent 

the real symmetry point group of the crystal. The Raman spectra for all four 

(a)  (b) 

          (c) 
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configurations of back scattering configuration (edge) for 4H-SiC are shown in fig.4.11. 

The Raman lines appearing in this geometry are not more than nine even though the 

theoretically predicted number of lines is twenty-one. As we know that in CB2v B group, all 

the representations are one-dimensional but we will label the modes using the notations 

of the irreducible representations of CB6v B in order to show from which mode, originates 

one or more Raman line. 

  

        The 971 cmP

-1
P Raman line is the polar LO mode and can be labeled then as AB1 B mode. 

This mode has energy shift of ~ 4 cmP

-1
P in this geometry, which is consistent with our 

theoretical results given in fig.4.9. Hence it confirms that this is the longitudinal axial 

mode (LA). There is another new mode at 839 cmP

-1
P, which does not appeared in BS 

(surface) geometry. We can assign this 839 cmP

-1
P line as EB1 B mode because these (EB1 B) 

modes are not allowed in BS (surface) geometry according to our theoretical results (see 

table.4.5.1). If we compare the intensity of 266 cmP

-1
P line in both BS (surface) and BS 

(edge) geometries, this mode is also a good candidate for EB1 B mode as it is also 

significantly enhanced in BS (edge) geometry. 

 

According to theory, this EB1 B(266 cmP

-1
P) mode must also exhibit splitting in this geometry 

but it is not observable because this splitting is very small to be resolved, i.e. of the order 

of 0.014 cmP

-1 
Paccording to our model (fig.4.9). The EB1 B mode at 799 cmP

-1 
Psplit into BB2B and 

BB1 B mode but as BB1B mode are not allowed in this geometry (see table.4.5.2) we cannot 

observe this counterpart. 

 

        If we compare all the four scattering configurations for BS (edge) geometry, we can 

see that the AB1 B mode at 971 cmP

-1 
Pis stronger in all configurations except the xyyx )(  

configuration, which is not consistent with our result given in table.4.5.2.  The one reason 

can be that as we said that the CB2vB is just local group for our crystal system and the forms 

of Raman tensor for CB2vB used for theoretical treatment is not fully compatible with our 

crystal system and a more detailed microscopic theory is needed. The EB1 B mode at 799  

cmP

-1
P (splits into BB1B+BB2 B at θ = 90P

0
P) is more intense in xzyx )(  and xyzx )(  and it is 

consistent with our theoretical results. The EB2 B mode at 785 cmP

-1
Pis very strong in all 
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geometry and even stronger than the E B2 B mode at 778 cmP

-1
P in the xzzx )(  configuration. 

All the other modes are consistent with theoretical results summarized in table.4.5.2 for 

this geometry. We can also observe that the xzyx )(  and xyzx )( configurations are 

equivalent (see fig.4.11)  
                                
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4.11. Raman Spectra of 4H-SiC for back scattering (Edge) geometry, where a) represents 

−

xzzx )( configuration, b) represents 
−

xzyx )( configuration, c) represents 
−

xyzx )( configuration and 

d) represents 
−

xyyx )(  configuration. 

 

 

        The Raman spectra of 4H-SiC for the four configurations of rectangular geometry 

are shown in fig.4.12 and fig.4.13. Two of the rectangular geometries are equivalent 

according to our theoretical results. Now we will study the experimental spectra and 

compare them to our theoretical results. As we know the group of KBphononB is CBs B for 

(a) (b)

(c) (d) 
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rectangular geometry and all representations are allowed in Raman and can correspond to 

AB1 B and AB2 B or BB1 B and BB2B. 

       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.12. Raman Spectra of 4H-SiC for rectangular scattering (excited via su

a) represents xyzz )( configuration, b) represents xyyz )(  configuration, 

configuration, d) represents xxyz )(  configuration. 

          

        We will consider first the rectangular geometry for which we e

and receive through edge (see fig.4.12). The LO mode, AB1 B, is shift

for the z(yz)x configuration. The EB1 B mode at 799 cmP

-1
P splits into

generally speaking into ΓB1B and ΓB2 B. This particular mode split into BB1
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no shift and it appears at 799 cmP

-1
P but the BB1 B mode at 791 cmP

-1
P exhibits a large energy 

shift of ~ 8cmP

-1
P towards lower wavenumbers.This energy shift of the BB1 B mode is also 

predicted theoretically (see fig.4.9), hence it suggests that the assigned representation for 

this doublet (corresponding to EB1 B mode at 799 cmP

-1
P in back scattering geometry from 

surface) is correct. We can see the splitting of this mode, since both BB1B and BB2 B modes are 

allowed in this geometry. Another important feature to note about the EB2B mode at 785  

cmP

-1
P is that it is significantly weaker in nearly all configurations of this geometry      

 

        The other case of rectangular geometry measured experimentally is when we excite 

the sample through the edge and received from the surface (see fig.4.13). The LO mode 

appeared at 971 cmP

-1
P while this mode in later case of rectangular geometry has energy 

shifted to 969 cmP

-1
P in x(yz)z and x(yy)z, while in x(zx)y and x(zy)y configurations it is 

shifted to 971 cmP

-1
P. The EB1B mode at 839 cmP

-1
P appeared only in x(zx)y and x(zy)y but 

disappeared in the other two configurations, i.e. x(yz)z and x(yy)z. The EB2 B mode at 785 

cmP

-1
P is quite dominant in all the configurations for this case of rectangular geometry, 

which was not the case for rectangular geometry with excitation through the surface. The 

EB2 B mode at 196 cmP

-1
P is also present (but weak) in all configurations. This mode also 

appeared in all the configurations of the rectangular geometry when we excite through 

surface except the z(yy)x configuration. The 778 cmP

-1
P mode is strong in all configurations 

for both cases of the rectangular geometry. 

 

        If we compare the two geometries, we found that the z(yy)x (fig.4.12) is equivalent 

to x(yy)z (fig.4.13). Similarly the z(xy)x is equivalent to x(yx)z configuration. The z(yz)x  

and x(zy)z configurations are non-equivalent because the mode at 839 cmP

-1 
P disappeared 

in z(yz)x configuration and there is large difference of  intensity for the mode at 785  

cmP

-1
P. Similarly, the two configurations x(zx)z and z(xz)x are also non-equivalent (see 

fig.4.12 & fig.4.13). Thus a more advance model is required to explain these 

observations. 

 

Now we will discuss the IR absorption result obtained experimentally for 4H-SiC. For 4H 

polytype, we used two kinds of samples; one was bulk material of thickness 0.359mm, 



and the other sample of 4H was free-standing epitaxial layer of thickness 55µm. For both 

samples the c-axis was roughly perpendicular (80 off) to the sample surface. For the 6H 

polytype we used two samples; one was bulk of thickness 3.031 mm with c-axis cut and 

polished parallel to the c-axis. The other sample was free-standing epi layer of thickness 

55µm and with the c-axis nearly perpendicular (3.50 off) to the plane. These epitaxial 

samples had negligible background doping of nitrogen. Note that the thickness of 

osen 

ppropriately for transmission measurements. 

of 4H-SiC for Rectangular (excited via Edge) geometry, where a) represents 

configuration, b) represents configuration, c) represents  

samples used for IR absorption measurement unlike Raman has to be ch

a
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Fig.4.13. Raman Spectra 

(c) (d) 

zzxx )( zzyx )(

zyxx )( configuration and d) represents zyyx )(  configuration. 
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        The infrared transmission measurements were performed on a ‘Biorad Fourier 

Transform Infrared Spectrometer’, KBr Beam splitter and a DTGS (dueterated triglycine 

sulphate) detector. Measurements were taken at room temperature with beam incident at 

angle of 30P

o
P, 0.5 cmP

-1 
Presolution and averaged over 1000 scans. The source used for IR 

light was ordinary lamp. Reference spectra for transmission measurements were recorded 

without any sample. The IR absorption spectra for 4H-SiC, bulk and epi sample are 

shown in fig 4.15a and 4.15b respectively. There is only one geometry measured for IR 

transmission measurements, as it was not possible to change the setup’s settings. The 

geometry measured is shown in fig.4.14. 

 

     

 

 

 
 

 

 

 

Fig.4.14. Sample geometry measu

30P

0
P angle. nB1B and nB2B is refract

perpendicular

 

        In fig.4.15a (transmission

at 610cmP

-1,
P which is the char

modes in Raman spectra. Thi

This line disappears in sample

i.e. E⊥c but it appears in our 

were cut and polished with c-

has incidence angle of 30P

0
P. T
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red in IR experiment. The beam is incident on sample surface at a 

ive index of air and sample respectively. The c-axis is polished 

 to surface and is taken along z-axis of crystal. 

 measurements of the 4H bulk sample), we can see the line 

acteristic axial mode, AB1 B, according to our assignment of 

s mode is also reported in Raman scattering experiments. 

 with polarization of light perpendicular to c-axis of crystal, 

measurements because our samples (bulk and epi4H-SiC) 

axis orthogonal but 8P

0
P off and moreover the incident beam 

he Restrahlen band region ranges from wBTOB=765cmP

-1
P to 
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wBLOB=970cmP

-1
P. There is a hump around 800cmP

-1
Pin the high reflectivity region, which is 

also reported in 6H [20]. The origin for this hump is unknown however it possibly has 

extrinsic nature.  

 

        In fig 4.15b (Transmission measurements of the 4H epi sample) strong line at 

610cmP

-1
Pand a line at 738cmP

-1
P also appeared. The line at 738cmP

-1
P appears in sample with 

both polarizations; E║c and EB Bc, and is also reported in 6H-SiC [22]. Line with very 

weak intensity at 747cmP

-1
P is also observed which is characteristic for a measurement with 

polarization in direction parallel to c; E║c but we observed it in our measurement due to 

not perfectly orthogonal orientation of c-axis with respect to planes. The 738cmP

-1
Pand 

747cmP

-1 
Plines cannot be seen in the 4H bulk sample due to large thickness. Restrahlen 

region lies between wBTOB=765cm P

-1 
Pand wBLO B=970 cmP

-1
P. 

 

        In the IR spectra of the epitaxial free-standing layer(see fig.4.15a-b) we can see 

interference fringes. These fringes are due to interference of the light reflected from the 

top surface of the sample with the light reflected from the bottom one and can be used to 

calculate the thickness of samples.  

 

 

 
 

 
 

 

 

 

 

                          

                                            (a)                                                                                        (b) 

Fig.4.15a. IR-absorption Spectrum for bulk 4H- SiC, b) IR-absorption spectrum for free standing epi 

sample  (4H-SiC) 
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The relation to find thickness (at normal incidence) is  

 

 )(2
1

21 kkn
d

−
=                                                                                                   (4.18) 

 

where kB1 B=1/λB1 Band kB2 B=1/λB2 B are wavenumbers according to the wavelengths of two 

subsequent fringes, and n is the refractive index in the region of these wavelengths. 

 

        The IR and Raman spectra of 6H-SiC are also shown in fig.4.16 – fig.4.20. These 

spectra are not discussed in detail but the analysis of these spectra is quite similar to 4H-

SiC spectra and same theoretical arguments can be used to label the Raman lines though 

6H-SiC has its own characteristic phonon modes. Due to the larger number of modes in 

6H-SiC, an adequate model of the susceptibility is necessary for unambiguous 

identification of the phonon symmetries. 

 

 

 

 
 

Fig.4.16. IR-absorption spectrum for free standing epi sample (6H-SiC). We were not able to observe 

transmission spectra of bulk sample of 6H-SiC due to large thickness of bulk sample,  

 

 

 



 

 

 

 

 
 
 
 
 
 
 
             
 

 
 
 
 
 
 
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
               
 

Fig.4.
                                                                        

 

                                                                        (a) 

zxxz )(
 

  

                             

17. Raman Spect

xxz )(

z(
90

                                          (b) 

ra of 6H-SiC for back scattering (surface) geometry, where a) represents 
−

z configuration and b) represents 
−

zyxz )( configuration. 

zyx)
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(b) 

Fig.4.18. Raman Spectra of 6H-SiC for back scattering (edge) geometry, where a) represents 
−

zxxz )( configuration and b) represents 
−

zyxz )( configuration.  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

                                 

                                

Fig.
4.19. Raman Spectra of 4H-SiC for Re

represents zzyx )( configuration a
(a)  
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(b) 

ctangular geometry ( excited via Edge), where a) 

nd b)  represents zyxx )( configuration. 
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Fig.4

 

 
 
 
 
 
 
       (a

 

 

 

                                                         (b) 

.20. Raman Spectra of 4H-SiC for Rectangular geometry (excited via Surface), where a) 

 

represents xxzz )(  configuration and b) represents xxyz )( configuration. 
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. Conclusions 
       

he purpose of this study was to explore the possibilities for extracting maximum 

formation about the phonon properties of 4H, 6H and possibly, higher polytypes of SiC 

om the Raman Spectra recorded in different geometries, as well as from the infrared 

flection and transmission spectra. We have shown that observation of spectra recorded 

xperimentally observed lines. Raman spectroscopy offers more flexibility than the IR 

ectroscopy in this respect without special sample preparation. In addition, Raman 

ectroscopy allows studying phonons with energies within the IR Restrahlen band and 

      Aided by the lattice dynamical model (LDM) and group theoretical considerations, 

e have been able to assign symmetries to the phonons associated with different lines in 

e Raman spectra. However, in some cases this assignment should be treated as 

ntative, because the existing theory does not explains completely the all intensity 

ariations of the lines with the experimental geometry. We believe that adequate 

escription may be obtained if the macroscopic model for the susceptibility of the crystal 

 built, and we are now in process of development of such a model using the so-called 

ond polarizability concept.  

      A rigorous identification of the mode symmetries will provide important feed back 

formation to lattice dynamic calculation. So far, such calculations employ information 

bout the phonon energies and not about associated symmetries. As a consequence, 

kno ic 

displaceme lated ployi ally-found 

 

 

5
  

T

in

fr

re

in different geometries is crucial for the assignment of phonons symmetries to the 

e

sp

sp

is, therefore, preferable technique. 

 

  

w

th

te

v

d

is

b

 

  

in

a

usually the LDM provides good description of the phonons energies, where as this is well 

wn within this field that the eigenvectors (i.e., the corresponding atom

nts as calcu by theory) are quite wrong em ng experiment
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symmetries in conjunction with the corresponding phonon energies will certainly provide 

 ground for improvement for LDM. 

ve found empirically (using our LDM) that the ionicity of the bonding 

major (if not the only) parameter of affecting the shift of LO mode and splitting of 

he perspective for future work is to build full microscopic model of polarizability of 

 

a

 

        Finally, we ha

is the 

the TO modes with changing the direction of the phonon wave vector with respect to the 

crystal axis. Since this shift and splitting can be easily measured using different Raman 

arrangements, the experiment provides a measure for the ionicity of the crystal. In the 

case of 4H-SiC, we find that the experimentally observed splitting and shift are very well 

reproduced by our LDM if ionicity of 12% is used, a value in excellent agreement with 

the literature data [29]. 

 
 
5.1. Future Directions 
 

T

lattice based on the so-called Bond-Polarizability Model. That will provide more incite 

into our experimental result. From this model we can construct explicit expressions for 

the component of polarizability derivative and we can even expect to be able to be 

synthesize the whole spectrum theoretically. The main goal of this diploma work was to 

obtain the experimental data and provide initial identification of the lines, which will be 

used for rather more detailed comparison with theory in future.  
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