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Numerical analysis of the dislocation density in
n-type 4H-SiC

Sheng'ou Lu, ac Hongyu Chen,a Wei Hang,a Rong Wang, bc Julong Yuan,*a

Xiaodong Pi, *bc Deren Yang bc and Xuefeng Han*bc

A 4H-SiC single crystal is a substrate material for high-frequency and high-voltage power devices.

Dislocation density is a fundamental criterion for evaluating the quality of 4H-SiC single crystals. 4H-SiC

single crystals grown by the physical vapor transport (PVT) method generally have high dislocation density.

To investigate the effect of nitrogen doping on dislocation proliferation in SiC crystals, the thermal field of

the ingot during PVT growth was calculated by COMSOL Multiphysics, and thermal stress was calculated

by thermal elastic theory. Finally, the dislocation density of the crystal was calculated based on the

Alexander–Haasen model for inhomogeneous nitrogen doping. By comparing the calculation and

experimental results, we proposed a possible value of the effective stress to evaluate the effect of a

nitrogen dopant on dislocation density, which helps calculate the dislocation density in the n-type SiC.

1. Introduction

Silicon carbide (SiC) is one of the wide-bandgap
semiconductors which has received much attention due to its
excellent properties, such as a high breakdown field strength,
high thermal conductivity, and high carrier saturation
mobility.1–3 There are more than 200 different polytypes of
SiC crystals, of which 4H-SiC has received considerable
attention due to its excellent electrical properties.4 The
effective n-type doping of 4H-SiC can be readily carried out by
doping nitrogen (N) because the ionization energy of N is
relatively tiny (∼0.06 eV).3 The first technological milestone
was the introduction of the SiC Schottky diode by Infineon in
2001, followed by rapid market growth leading to the
development of a family of diodes with voltage ratings
ranging from 600 V to 3 kV.1 Then, the release of CREE's first
SiC MOSFET in 2011 definitively accelerated the adoption of
SiC devices in numerous applications, such as electric
vehicles, photovoltaics, and high-speed rail transportation.
Physical vapor transport (PVT) is the current mainstream
method for growing single SiC crystals. However, there are
still many dislocations in the crystal prepared by this method,

which will seriously affect the yield of the devices. Therefore,
the dislocation density is one of the most important criteria
for assessing the quality of the crystal.

To better understand the dislocation behavior in the
n-type SiC, researchers employed the Alexander–Haasen5,6

(AH) model to accurately calculate time-dependent plastic
deformations of III–V compound7 semiconductor materials
over a wide range of stresses and temperatures. B. Gao et al.8

have demonstrated through simulations and experiments
that the AH model also applies to the plastic deformation of
IV–IV compound semiconductor materials such as SiC. Some
studies use the AH model to calculate the dislocation density
in the SiC without impurities.8–12 However, there is no
reflection on calculating the dislocation density in n-type 4H-
SiC.

In this work, we apply the AH model to calculate the
dislocation density of n-type 4H-SiC by considering the
pinning effect of nitrogen impurities on the dislocation. The
experiment of intended nitrogen doping is used to validate
our calculation. By comparing the calculation and
experimental results, we propose an effective stress suitable
for calculating the dislocation density at a certain doping
concentration. This method provides a basis for predicting
the dislocation density of n-type SiC.

2. Modeling and experimental
2.1 Geometric model

Fig. 1a is a 2D axis-symmetric global model for the PVT
growth of a SiC single crystal with a crystal diameter of 100
mm. Crystal growth was conducted in an induction-heating
furnace. Induction heating coils with a frequency of 10 kHz
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were used to heat the SiC powder, and cooling water pipes
with a temperature of 300 K were inside the induction
heating coils. The furnace was filled with argon gas at a fixed
pressure of 1000 Pa. The graphite crucible is wrapped in
graphite felts, which are excellent insulation materials.
Fig. 1b shows the meshing of the finite element
computational model using the built-in physical field control
mesh in the program. A free triangular mesh is used to mesh
the solution domain.

We first calculate the thermal field of crystal growth, then
calculate the stress distribution in SiC ingots based on
thermoelastic theory and finally calculate the dislocation
density in the crystal based on the Alexander–Haasen model.
Fig. 2 shows the sequence of the calculation procedure. In
the following subsections, the principles for modeling the
thermal, stress, and dislocation fields, as well as the
corresponding governing equations and boundary conditions,
are presented in turn.

2.2 Heat transfer

It is essential first to examine the strength of various
parameters in a SiC growth system. The physical meaning of
the Grashof number is the ratio of the buoyant force to the
viscous force, which is expressed as follows:

Gr ¼ gαvΔTL3

v2
(1)

where g is the gravitational acceleration; αv is the isobaric
expansion coefficient of an ideal gas; ΔT is the temperature
difference; L is the characteristic length representing the
inner diameter of the crucible; v is kinematic viscosity.

The Grashof number is estimated to be between 3 and 24
for a crucible with an inner diameter of 50–100 mm (for the
growth of 25–75 mm diameter crystals, current industry
standard). The heat transfer by buoyancy flow in the present
industrial growth system can be considered negligible.13

Global heat transfer processes include thermal conduction,
convection, and radiation. Thermal conduction generally
occurs in solids and gases, thermal convection manifests as
the heat exchange of fluids due to natural or forced
convection, and thermal radiation includes surface-to-surface
and surface-to-environment radiation. The following equation
describes the physical phenomenon of heat transfer:

∇·q = Q (2)

q = −k∇T (3)

where T is temperature; q is local heat flux; k is thermal
conductivity; Q is volumetric heat source.

Most experiments and simulations13,14 have demonstrated
that the contribution of thermal convection to the heat
transfer in the PVT method can be neglected, so this model
does not consider the effect of fluid flow on heat transfer.

The heat flux for the boundary conditions is calculated as
follows:

qw ¼ λ
Tw −Tc

dx
(4)

where λ is the thermal conductivity of the wall; Tw is the wall
temperature, and Tc is growth chamber temperature.

The radiative heat flux at the wall is calculated under the
heat transfer wall boundary condition as follows:

qw = εσ(Tamb
4 − Tw

4) (5)

where σ is the Stefan–Boltzmann constant; Tamb is the
ambient temperature; Tw is the wall temperature and ε is the
wall emissivity.

The values in the above formula can be found in Table 1.15

2.3 Thermal stress

The governing equations for calculating thermal stresses
include mechanical equilibrium equations, strain compatibility
equations, geometric equations, and the constitutive relation.
Continuous temperature variations within a solid generally
generate thermal stresses. According to the linear thermal stress
theory, the components of the strain tensor are a linear function
of the stress tensor, and the temperature variation generates the
components of the strain tensor.

Hooke's law and stress–strain relations for elastic and
thermal strains are given by:

σij = Cijkl(εkl − αθδkl), (θ = T − T0) (6)

where σij is the stress tensor; Cijkl is the elastic constant
tensor which depends on the crystal structure; α is theFig. 2 Operation flow chart of the simulation calculation.

Fig. 1 The crystal growth system in finite element calculations: (a)
global model for PVT growth of the 4H-SiC single crystal. (b) The
meshing of the calculation model.
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thermal expansion coefficient; εkl and δkl are the strain tensor
and Kronecker delta tensor, respectively.

SiC crystals grown by sublimation have a cylindrical shape
and can be approximately identified as axisymmetric. Thus,
the relation between strain and displacement can be
expressed as:

εrr ¼ ∂ur
∂r ; εθθ ¼

ur
r
; εzz ¼ ∂uz

∂z ;

εrz ¼ ∂ur
∂z þ ∂uz

∂r ; εrθ ¼ εθz ¼ 0
(7)

where ur and uz are the displacement in the radial direction
and the displacement in the axial direction, respectively.
Based on the assumption of symmetry, the displacement in
the angular direction is zero, therefore σθz and σθr are not
calculated.

The stress balance equation in cylindrical coordinates in
the axisymmetric case can be expressed as:

∂σrr
∂r þ ∂σrz

∂z þ ∂rr − σθθ
r

¼ 0

∂σrz
∂r þ ∂σzz

∂z þ σrz

r
¼ 0

(8)

The 4H-SiC single crystal has a hexagonal structure, so its
elastic matrix has only five independent components.
Assuming T0 = 293.15K, the stress–strain relation in
cylindrical coordinates can be represented as:

σrr

σθθ

σzz

σrz

0
BBB@

1
CCCA ¼

C11 C12 C13 0

C12 C11 C13 0

C13 C13 C33 0

0 0 0 C44

0
BBB@

1
CCCA

εrr −α T −T0ð Þ
εθθ −α T −T0ð Þ
εzz −α T −T0ð Þ

εrz

0
BBB@

1
CCCA (9)

The von Mises stress is used to show the thermoelastic
stress in a crystal. The von Mises stress is calculated by:

σvon ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σrr − σzzð Þ2 þ σrr − σθθð Þ2 þ σzz − σθθð Þ2 þ 6σrz2

2

s
(10)

And the equivalent force used to calculate the dislocation
density is expressed in terms of the second invariant of the
stress bias:

ffiffiffiffi
J2

p ¼
ffiffiffi
3

p

3
σvon (11)

For the calculation of the thermal stress field in SiC
crystals, the boundary conditions are described as follows:

(a) There is no stress from the seed and seed holder at the
top of the crystal; (b) neglecting the interaction of the
equidistant rings on the sides of the crystal. Both above
boundary conditions can be described as ·n→ = 0.

The thermophysical properties used for simulations are
listed in Table 2.10

2.4 Dislocation dynamics

The Alexander–Haasen model describes the time evolution of
the mobile dislocation density Nm and plastic strain
components εpij:

dNm

dt
¼ KvNmτ

λ
eff (12)

dεpij
dt

¼ bvNm

2
ffiffiffiffi
J2

p Sij (13)

v ¼ k0τmeff exp − Q
kbT

� �
(14)

where v is the slip velocity of dislocation; τeff is the effective
stress representing the contribution of stress from the
dislocation; b is the Burgers vector; Sij is the deviatoric stress
tensor; J2 is the second invariant of the deviator stress tensor;
Q is the activation enthalpy; kb is the Boltzmann constant;
and K, λ, m, and k0 are constants related to materials.

The expression for the effective stress can be expressed as
a function of the maximum value

τeff ¼ max
ffiffiffiffi
J2

p
−D

ffiffiffiffiffiffiffi
Nm

p
− τcrit; 0

� �
(15)

where D is the hardening factor which depends on the
materials;18 an additional term τcrit was introduced, which

Table 1 Major physical properties for the temperature calculations

Properties Value and unit

Density of the graphite crucible 1730 kg m−3

Density of the insulation layer 200 kg m−3

Density of the 4H-SiC crystal 3220 kg m−3

Heat capacity of the graphite
crucible

2250 J kg−1 K−1

Heat capacity of the
insulation layer

1000 J kg−1 K−1

Heat capacity of the 4H-SiC crystal 1281 J kg−1 K−1

Thermal conductivity of the
graphite crucible

22.3 + (2.3 × 107)/
(1 + (T/0.00056)) W m−1 K−1

Thermal conductivity of the
insulation layer

0.193 × exp(0.00079 × (T – 273))
W m−1 K−1

Thermal conductivity of the
4H-SiC crystal

4.517 × 105/(T1.29) W m−1 K−1

Emissivity of the wall 0.8
Emissivity of the graphite crucible 0.8
Emissivity of the insulation layer 0.8
Emissivity of the 4H-SiC crystal 0.8

Table 2 Parameters for the thermal stress calculations

Symbol Description Value and unit

T0 Reference temperature 293.15 K
α Thermal expansion coefficients 4.5 × 10−6 1/K
C11 Elasticity constants −0.025 GPa × T + 486.6 GPa
C12 Elasticity constants −0.011 GPa × T + 101.3 GPa
C13 Elasticity constants −0.011 GPa × T + 59.02 GPa
C33 Elasticity constants −0.025 GPa × T + 528.9 GPa
C44 Elasticity constants −0.007 GPa × T + 150.3 GPa
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represents the stapling effect of impurity atoms on
dislocations;16,17 the magnitude of the stress was described
in the literature as being influenced by the concentration of
impurities. In a sense, if

ffiffiffiffi
J2

p − D
ffiffiffiffiffiffiffi
Nm

p − τcrit ≤ 0 then the
dislocation multiplication rate in the A–H model dNm/dt = 0.
Reference values for the τcrit magnitudes in the specific cases
will be given in the subsequent discussions. The boundary
condition of dislocation calculation is set to zero flux, the
initial dislocation density N0 is set to 1 (cm−2) and the initial
dislocation multiplication rate dNm/dt = 0. The parameters
used for dislocation calculations are listed in Table 3.9

2.5 Calculation error

In this paper, the authors separately solve the thermal field,
thermal stress field, and dislocation density, and this section
will analyse the error of these three parts.

The heat transfer calculation part was mainly verified by
grid sensitivity. We used different sizes of grids for the
calculation of the thermal field. We found that the difference
in the global temperature distribution was tiny or could be
considered no different when the grid number is larger than
19 904. By verifying grid sensitivity, we believed that the
calculation error of the heat field was within the acceptable
range and did not affect the subsequent calculations.

The thermal stress calculation is based on the
thermoelastic theory, and we solve the thermal stress field by
the magnitude of the temperature gradient. We consider the
result as the analytical solution rather than the numerical
solution because the stress field is solved by associating the
overall stiffness matrix with the load matrix to solve the
displacement of each node and then solving the stress by the
elastic equation. The mesh size only affects the accuracy of
the solution and does not introduce numerical errors.

The magnitude of the dislocation density is directly related
to thermal stress. The dislocation density solved in the form
defined by the equation is also considered an analytical rather
than a numerical solution. However, since the parameters of

the Alexander–Haasen model are taken from the literature,9

researchers fit these parameters through experimental and
simulation results, they should deviate from the actual
situation, so we consider that the solution results do not have
numerical errors but parameter errors.

2.6 Experimental

A 4-inch SiC crystal was grown by the PVT method, during which
nitrogen was used for n-type doping. The monocrystalline
substrate was fabricated from the grown crystal ingot through
processing processes such as wire cutting, grinding, and
polishing. The wafer resistivity was measured by non-contact
measurements using a low resistance tester model LEI-1510EA,
which measures the resistivity distribution by fully automatically
sampling 49 points on the wafer surface. The substrate was
etched with molten KOH at 540 °C for 20 minutes, and the
density of the dislocation distribution was scanned and counted
using an automatic dislocation scanner (LFM-SiC I).

3. Results and discussion
3.1 Calculated dislocations

The crucible heating system was inductively heated with
electromagnetic heat as a heat source for SiC crystal growth, the
coil power was set to 10.9 kW, and the thermal field calculations
for the global model were performed using COMSOL frequency-
domain steady-state studies at 10 kHz. Fig. 3 shows the
temperature distribution of the global model of the SiC crystal
grown by the PTV method. The highest temperature is 2530 K at
the bottom corner of the crucible. The lowest temperature is the
temperature of the cooling water in the cooling pipe of the
copper coil at 300 K. The heat is transferred from the growth
chamber to the exterior by thermal conduction and radiation,
and the temperature field stabilizes when the interior and
exterior reach thermal equilibrium. The axial temperature
gradient in the growth chamber is the primary driving force of
the SiC crystal growth. In contrast, the radial temperature
gradient on the surface of the seed crystal is the underlying
cause of thermal stress.

Table 3 Parameters for the dislocation calculations

Symbol Description Value and unit

b Burgers vector 3.073 × 10−10 m
λ Stress exponential factor 1.1 at T > 1000 °C

0.6 at T < 1000 °C
m Stress exponential factor 2.8
Q Activation enthalpy 3.3 eV at T > 1000 °C

2.6 eV at T < 1000 °C
v Dislocation velocity m s−1

K Multiplication constant 7.0 × 105

Nm Mobile dislocation density m−2

τeff Effective stress Pa
τcrit Doping stress Pa
D Hardening factor b C11 −C13ð Þ

4π 1 − vð Þ
T Temperature K
k0 Material constant 8.5 × 10−15

kb Boltzmann constant 8.615 × 10−5 eV K−1 Fig. 3 Temperature distribution in the global model.
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The generation and proliferation of dislocations during PVT
growth are attributed to the nonlinear interaction between
thermal stress and dislocations. The temperature, stress, and
dislocation density distribution of the ingot during the growth
of the SiC crystal were calculated by numerical simulation and

shown in Fig. 4(a)–(d). Fig. 4a shows the temperature field in
SiC ingots, with the lowest temperature appearing at the center
of the bottom of the crystal due to cooling from the pedestal.
The highest temperature occurs on the side at the top of the
crystal due to the excellent thermal insulation of the side of the
crucible. It can be seen that the stress level is relatively steep, as
a curved isotherm appears inside the crystal and the maximum
temperature difference reaches 78 K.

Fig. 4b and c show the distribution of thermal stresses in
the ingot, with the maximum stress occurring at the edge of
the crystal due to the most significant radial temperature
gradient. The minimum stress occurs near the axisymmetric
line at the lower part of the crystal.

Fig. 4d shows the dislocation density distribution in the
crystal, and the distribution of dislocations follows the same

Fig. 4 Temperature, stress and dislocation fields in the SiC ingots: (a) temperature distribution, (b) von Mises stress distribution, (c) 0.5th power of
the second invariant of the deviator stress tensor:

ffiffiffiffiffi
J2

p
, (d) dislocation density distribution.

Fig. 5 Computed dislocation density at the locations of the
experimental slices.

Fig. 6 Dislocation density distribution of SiC wafers at different coil powers: (a) P = 10.0 kW, (b) P = 10.9 kW, (c) P = 11.8 kW, (d) P = 12.7 kW.
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trend as the distribution of thermal stresses. The results
imply that the heating flux near the edges of the crystal
should be reduced to decrease the dislocation density during
the growth process.

3.2 Effect of temperature on dislocation density

Fig. 5 shows the position of the SiC wafer slices during the
experiment through a 3D view, with A10 in the figure
representing the tenth slice counted from the bottom of the
crystal, which shows the dislocation density of the pieces. It
should be noted that the dislocation density calculated here
does not yet consider the effect of nitrogen impurities on
dislocation density. To investigate the effect of temperature
on the dislocation density distribution, Fig. 6a–d show the
temperature and dislocation density distribution on the
surface of the SiC wafer at different coil powers. As the coil
power increases, the temperature of the wafer surface

increases. The calculated results show that the maximum
and minimum values of dislocation density increase with the
temperature rise, and the dislocation cloud at the edge of the
wafer gradually changes from green to red.

This phenomenon can be explained as follows: an increase
in the coil power leads to a rise in the global temperature and
the wafer surface temperature. Fig. 7 shows the radial
temperature gradient distribution pattern along the radius
direction for different coil powers. The coil power is positively
correlated with the value of the temperature gradient, which
differs less at the center and more at the edges. The
minimum value of the dislocation density near the center
differs by only about 1000 cm−2 for the four heating powers,
while the maximum value at the edges differs by nearly 30 000
cm−2. The larger the temperature gradient, the larger the deal
of thermal stress, which increases dislocations.

3.3 Effect of nitrogen doping on dislocation density

In the experiment, SiC crystals were grown in an atmosphere
of nitrogen, which was adsorbed onto the growing surface to
form the n-type SiC. Fig. 10a clearly shows the nitrogen
doping during the experiment and can be seen to create a
uniquely colored circle at the edge of the wafer. The interface
between nitrogen-doped and undoped states is visible.

To consider the effect of nitrogen impurities on
dislocation proliferation, we consider the stress term τcrit
associated with the impurity atoms in the AH model and
consider this term in the region corresponding to the
experimental results. The distribution of dislocation density
was output by taking different τcrit values employing COMSOL
parametric calculations as shown in Fig. 8.

Fig. 8a–f shows that the dislocation density on the surface
of the SiC wafer decreases as the value of τcrit increases. The

Fig. 7 Radial temperature gradient at different power.

Fig. 8 Dislocation density distribution of SiC wafers at different τcrit: (a) τcrit = 1 MPa, (b) τcrit = 2 MPa, (c) τcrit = 3 MPa, (d) τcrit = 4 MPa, (e) τcrit = 5
MPa and, (f) τcrit = 6 MPa.
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AH model can explain: τcrit represents the contribution of the
impurity atoms to the effective stress of the dislocation
motion, and as τcrit increases, the stress required to generate
dislocations increases, and the dislocation density decreases
as τcrit increases for the same stress level. It can also be seen
from the dislocation cloud diagram that the initial red color
at the edge gradually changes to blue color, and when τcrit is
taken to more than 5 MPa, the overall dislocation density at
the border is less than 6000 cm−2.

Fig. 9 shows more clearly the variation of the dislocation
density magnitude along the radius for different values of
τcrit. The dislocation density undergoes a sudden shift at the
doped and undoped interface, and the impurity atoms play a
hindering role in dislocation proliferation.

3.4 Experimental comparison

Fig. 10 shows the experimental and calculation results of the
SiC wafer, where all results correspond to the A10 slices in
Fig. 5. Fig. 10a shows the interface between the doped and
undoped nitrogen atoms, with a clear color difference
between the wafer edge and the center. Fig. 10b shows the
distribution and magnitude of the EPD density on the SiC
wafer. The color legend indicates that the overall EPD density
at the doping boundary (undoped nitrogen atoms) is more
than 10 000 cm−2. In the doped region, the EPD density is
reduced due to the impurity pegging effect on the
dislocations and is less than 6000 cm−2 overall. The resistivity
measurements show that in the nitrogen-doped region (wafer
edge region), the resistivity magnitude is below 3 mΩ cm,
while in the undoped region, the resistivity magnitude is
between 5 mΩ cm and 19 mΩ cm. Fig. 10c shows the
dislocation density distribution on the wafer surface obtained
from simulations considering impurity doping when τcrit is
taken to be 5 MPa. Based on the curve results in Fig. 9
combined with Fig. 10, when τcrit is assumed to be 5 MPa,
the simulation results are similar to the experimentally
measured data. It is also clear from the simulation results
that at the nitrogen-doped interface, the dislocation density
undergoes a spatially abrupt decrease from above 10 000
cm−2 to below 6000 cm−2.

Conclusions

In this work, the temperature field and stress distribution
have been calculated. Based on the thermal stress
distribution, the dislocation density distribution has been
calculated. To better calculate the dislocations in n-type 4H-
SiC, we introduced an effective stress of nitrogen and
calculated the stress drop due to the nitrogen doping. Since
there is no relevant literature on the effective stress of
nitrogen, we performed several calculations of dislocation
density with different values of effective stress. Through the
experimental comparison, an effective stress of 5 MPa is
proposed, which is applicable to the calculation of the
dislocation density of 4H-SiC at a certain doping
concentration (resistivity less than 3 mΩ cm). This work
provides a basis for the calculations and predictions of n-type
4H-SiC crystals in the future.
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