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Abstract

The goal of the project work has been to study the symmetry of the phonons in 4H and
6H-SiC for different measuring geometries by using two experimental techniques, Raman
and infrared absorption (IR) spectroscopy, and a theoretical model. The Raman spectra
were measured in different scattering configurations in order to obtain experimental data

for detailed investigation of the phonon symmetries.

The gross features of the spectra obtained in different geometries can be explained using
general group-theoretical arguments. Using a lattice-dynamics model, we have also
calculated the angular dependence of the phonon energies near the centre of the Brillouin
zone, as well as the phonon displacements in some high-symmetry directions. The
theoretical results are used to interpret the Raman lines in different configurations, and it
was possible to estimate that if ionicity of the bonding of 12% is taken in the theoretical
model for 4H-SiC, the splitting of the polar TO mode and the shift of the polar LO mode
observed in our spectra are well reproduced theoretically. It was also observed that these
polar modes have to be classified as longitudinal and transversal with respect to the
direction of phonon wave vector, while the rest of the modes remain longitudinal or
transversal with respect to the c-axis of the crystal. The Raman lines in the case of 4H
SiC have been tentatively labelled with the irreducible representations of the point group

of the crystal (Cgy).
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Motivation

Lattice Dynamic Models (LDM) usually predict the energies of phonons correctly but not
the phonon displacements. We want to investigate to which extent the IR absorption and
especially the Raman spectroscopy can be used to probe these atomic diplacements in 4H
and 6H-SiC. Consequently, we need analysis of phonon symmetries for different

scattering configurations measurements in IR and Raman.

The main goal of this diploma work is to label the Raman lines obtained experimentally
by using theoretical arguments. The symmetry labels for these Raman lines, which
correspond to phonon modes (in 4H and 6H-SiC in our case), used in literature are often

very confusing and need justification.
Thus one of the main task was to collect a detailed experimental data (for Raman and IR

of 4H and 6H-SiC), which will be used for much more detailed comparison with the
theory (development in progress) in the future.

17



1. Silicon Carbide

1.1. Introduction

Silicon carbide is a ceramic compound of silicon (Si) and carbon (C), which was first
observed in 1824 by Jons Jacob Berzilius, a Swede. Silicon carbide (SiC) is also known
as carborundum or moissanite. Natural SiC was found in meteorites and was discovered
for the first time by Moissan in 1905. SiC is the only compound that exists in the Si-C
system. The compound is hard and stable maintaining its mechanical properties at
temperature above 1000°C. It is the hardest and most resistant material after diamond. It

has good thermal and chemical stability that make it resistant to corrosion.

SiC is known to be wide (indirect) band gap semiconductor and has also very
fascinating and extraordinary electronic properties. The important electronic properties of
SiC, which make it attractive for electronic devices, are high electron mobility, high
breakdown field, high thermal conductivity and good radiation resistance. Due to its
material properties, SiC is an excellent candidate for high temperature electronics. Device
operation at higher temperatures than silicon (Si) and gallium arsenide (GaAs) based
devices is possible. Systems utilizing SiC can operate with high current densities and
require reduced external cooling. In addition, individual devices can operate at higher
voltage reducing the number of components needed. This results in cost saving in high
power systems. Some important device applications of SiC are sensor operating in
ultraviolet region, nitride based LED’s using SiC as substrate, cutting tools, RF and
microwave devices such as base state transmitter or transmitter for digital TV, ultra fast
Schottky diodes, used in air crafts and nuclear reactors, used as cutting tool, as substrate

for GaN epitaxial growth etc.

18



The limitations of the SiC technology are due to defects characteristics for SiC, such as
point defects, line defects or two dimensional plane defects. The most common defect in
SiC is micropipes, which is very bad for the devices. Different methods have been
employed to grow SiC. The growth can be divided into boule (bulk) growth and epitaxial
growth. For boule growth the seeded sublimation growth method is widely used. Because
of the phase equilibrium in the Si and C materials system (specifically, the material
sublimes before it melts) the technique is based on Physical Vapor Transport (PVT). The
technique is also called modified-Lely method or seeded sublimation growth and was
invented in 1978 by Tairov et al [2]. It is used today for commercial fabrication of SiC
wafers. Although the sublimation technique is relatively easy to implement, having in
mind the high growth temperatures needed, the processes are difficult to control,
particularly over large growth areas. Due to the low stacking fault energy it is difficult to
restrict syntax (parasitic polytype formation) during bulk crystal growth and to grow a
single polytype material. For example, 4H polytype falls within the same temperature
range of occurrence as 6H polytype, while 3C can be formed over the whole temperature
range used for SiC growth. Another alternative growth technique is High Temperature
CVD (HTCVD) where transport of the growth species to the seed crystal is directly
provided by high purity gas precursors containing Si- and C-species. The thermal
environment and the growth rates achievable in this technique are to a large extent close

to the PVT method.

Sublimation epitaxy has proven to be a suitable technique for growth of thick (up to
100 um) epitaxial layers with smooth as-grown surfaces. Reproducible quality of these
surfaces is obtained with growth rates ranging from 2 to 100 um/h in the temperature
range from 1600 to 1800°C. The structural quality of the epilayer improves compared to
the substrate. The surface roughness is diminished in the sublimation epilayer. Another
simple and elegant technique is Liquid phase epitaxy (LPE) with several advantages
such as low process temperature, relatively high growth rate, easy for technical
implementations in various geometries, doped layers and multiplayer structures. The

main advantage, however, is that the process is carried out at relatively low temperature

19



and close to thermodynamic equilibrium conditions, which presumes a low concentration
of point defects in the epitaxial layers. Hence, the quality of the grown material is mainly
limited by morphological features. LPE is particularly interesting for SiC because it has
been found that micropipe closing takes place by this growth method. Micropipe closing
for this technique was reported by Yakimova in 1995 [4].

1.2. Crystal Structure of SiC

SiC has strong bonding with a short bond length (1.89 A) between a Si and C atom. The
slight difference in electronegativity between these two atoms gives 12% ionicity to the
otherwise covalent bonding, with the Si atom slightly positively charged. The basic
building block of the crystal is a tetrahedron consisting of a C (Si) atom in the middle and
four Si (C) atom at the four corners (fig .1.1).

Fig.1.1. Si and C atoms arranged in a tetrahedron, which is smallest building block of crystal

structure.

An important property of SiC is that it exhibits polytypism. Thus we can say that
SiC is not a single semiconductor but a family of semiconductors. There are more than
200 polytypes of SiC and all but the simplest ones can be considered as natural
superlattices. All SiC polytypes can be viewed as a stacking of close packed planes of

double layers of Si and C atoms, as shown in fig.1.2.
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Fig.1.2. Arrangement of Si and C atoms in closed-packed double layer.

Different polytypes are formed by different stacking order of the close-packed double
layers. Consider a single closed double layer of atoms on top of the first layer, the most
stable configuration is formed if the atoms of the second layer are placed in the valleys of
first layer. However there are two different possibilities to stack the second layer as

depicted by fig. 1.3.

O Second close packed double layer

Fig.1.3. The second close-packed double layer can be placed in two different positions on top of the

first close packed double layer.
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The freedom to choose between two different positions of the second layer and by
creating an ordering in the stacking sequence of the layers, gives rise to a variety of

different polytypes. The stacking of double layers is most conveniently viewed in a

AC-axis

=] (1120)

\; ‘ basal plane

Fig.1.4. The hexagonal system to describe different polytypes and the three different positions, A, B,
and C, respectively, of the double layers.

ABC(A)

ABAC(A)

ABCACB(A)
Fig.1.5. One stacking period of three common polytypes 3C, 4H and 6H-SiC
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hexagonal system, as shown in fig.1.4, with three different position of the atom pair
labeled A, B and C. The c-axis is perpendicular to the basal plane, which lies in the plane
of the close packed double layer. The three most common and important polytypes of SiC
are 3C, 4H and 6H, although 15R and 21R are also fairly common. Here the Ramsdell
notation is used, where the number represent the number of bilayers per unit cell and the
letter represents the type of Bravais lattice, i.e. H stands for hexagonal, C for cubic and R
for rhombohedral. Consequently, there is no difference between the polytypes within the
basal plane. It is the stacking sequence of double layers along the c- axis that gives rise to

different polytypes.

If the stacking sequence of the different polytypes is projected in the (1 liO) plane as

indicated in fig. 1.6, we can observe difference in the local environment for different
atomic sites. In the turning point the local environment is hexagonal (h) and between the
the turning points, the local environment is cubic (k). 3C polytype has cubic structure
since there is no turning point , the 4H polytype has one cubic and one hexagonal site
(h,k) and the 6h polytype has one hexagonal and two cubic sites (h,k;,k,). For the cubic
and the hexagonal lattice site in 4H and 6H polytypes, the arrangement of surrounding
atoms differs from the second neighbours while the two cubic lattice sites k; and k, differ

first in the third neighbours.

81131 L §5
8 33

6H [0001]

[1100]

[1120]
Atom| A|B | C
G olo|e
Si_[O[O|e

Fig.1.6. The (1120) plane of the three polytypes 3C, 4H and 6H.
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2. Infrared Spectroscopy in Solids

Infrared spectroscopy is one of the most popular spectroscopic techniques in solid-state
physics. The simple reason for this is that nearly all materials exhibit a more or less
expressed structure of absorption in the IR spectral range. Absorption process due to
transition across the energy gap, from excitons or from impurity states, is found in the
visible spectral range as well as in the IR. Important additional sources for absorption and
reflection are the IR active phonons or vibrational modes, which can give valuable
supplementary information to results from Raman scattering. We will only be concerned

with the absorption (and Raman scattering) due to the vibrational modes of crystal.

This chapter contains review of the principle of the Fourier transform infrared
spectroscopy (FTIR), instrumentation, active phonon modes in IR energy range in solids

and the classical theory of IR spectroscopy and IR bands in silicon carbide.

2.1. Basic Principle and Set-up for Fourier Spectroscopy.

Analysis in the Fourier spectroscopy is based on the absorption of IR light by the lattice-
phonon modes. A Fourier spectrometer consists of Michelson interferometer, as shown in
fig2.1. The white light from the source, which is a lamp, located at the focus of lens L; is
separated into two beams of equal intensity by the beam splitter, which is half polished
KBr mirror in our case. One of the beams is reflected from the mirror M; (fixed in
position) and the other beam by the mirror M,. Mirror M; is movable and can glide along
its axis in a controllable way. After the beam splitter the two beams with different time
delay (depending on the momentary position of M) will interfere and are focused on the

detector after passing through the sample and a lens. The introduced time delay between
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beams reflected from mirror M; and M, would give different interference of beam for

every position of mirror.

| M1

BS M2

L1

D
Fig. 2.1. Optical path in a Michelson Interferometer-; M: mirrors; BS: beam splitter; LS: light

source; D: detector.

Hence the interferometer disperses the light in different wavelength by a totally
different method as compared to prism. The light passing through the sample is then
focused by the lens L, on the detector. The detector in our case was Deuterium Triglycine
sulphate (DTGS). The electrical signal from the detector is amplified by a lock-in/analog
to digital converter (ADC) system. The interferogram is registered on a recorder and
Fourier transformed by a dedicated computer in order to obtain the spectral distribution

of the received light.

It is always important to record two interferograms; one for the sample and another
for a reference (i.e. a mirror) and later division of the background spectrum by the
spectrum obtained with sample will give the desired spectrum. Fig.2.2 shows an example
of the raw spectrum (sample plus background) together with the processed transmission

spectrum for 6H- SiC.
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Fig. 2.2. a) The transmission spectrum for 6H-SiC with background. b) Transmission spectra after
subtraction of background. The reference sample used was silver mirror. The region plotted in figure

(b) is shown in fig(a) by a circle.

2.2. Infrared active phonons

As we know all atoms in solids hold in their equilibrium position by the forces that hold
the crystal together. When atoms are displaced from their equilibrium positions, they

experience restoring forces, and vibrate at characteristics frequencies (see fig 2.3a, 2.3b).

B 1
Fig 2 3a. Induced dipole
moment in a solid as a
E result of interaction with
the oscillating eleciric

field (Classical Picture)

These vibrational frequencies are determined by the phonon modes of the crystal.
The energies of the atomic vibrations are comparable to those of photons in the mid to far
infrared range (typically 10-1000 cm™). Some of the vibrations are associated with the
appearance of induced dipole moment (see fig.2.3a) and can interact directly with the

electric field of incident light. They are called infrared active modes.
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. Fig2.3 ? Oscillation of a classcal dipale
consisting of a heavy positive char ge and

e gemeratea time dependant dipole
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’ : displacement o fthenegative charge
WL - - & ;: i;i . from its equilibrium position. The
= = = £ = = natural vibrations of the dipole about
+ a a " R B the equilibrium position at freguency @,

Only optical phonons can be observed in IR spectrum and the reason behind this is that
when photon of certain energy is absorbed with in a solid and a phonon is created, the
conservation laws require that the photon and the phonon must have the same energy and

momentum. This condition is only satisfied by optical modes.

We can explain this by the dispersion curves of optical and acoustic phonons in a
simple crystal shown in fig2.4. The angular frequency ® of the optical and acoustic
phonons is plotted against the wavevector k in the positive half of the first Brillouin zone
(BZ). At small wave vectors the slope of the acoustic branch is equal to Vgoung in the
medium, while the optical modes are dispersionless near k =0. The dispersion of light
waves (shown by dotted line) in crystal has constant slope of v= c¢/n, where n is the
refractive index. The requirement that the phonon and photon both should have same
frequency and wave vector is satisfied when the dispersion curves intersect. Since c/n >>
Vsound> the only intersection point for the acoustic branch occurs at the origin, which
corresponds to the response of the crystal to a static electric field. For optical branch,

intersection occurs at finite @, which is shown in fig.2.4 by circle.

Electromagnetic waves are transverse and therefore couple more strongly with
transverse optical modes of crystal. But we cannot neglect longitudinal optical (LO)
modes as we will see later that they play important role in the infrared properties of

crystals. Coupling of the phonon with the photon is due to the driving force exerted on
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crystal by the oscillating electric field of the wave. It can only happen when the crystal
has polar character. The polar character of compound solid mainly depends on the nature

of bonding. In covalent crystals with predominant covalent bonding, different size and

charge of the constituting atoms will introduce polar character.

optical branch

O L

Frequency
photon

acoustic branch

T

0 Wave vector (x) p

Fig. 2.4. Dispersion curves for the acoustic and optical phonon branches in a typical crystal with a
lattice constant of a. the dispersion of photon is shown by dotted lines.

2.3. Classical theory of IR absorption and transmission.

The interaction between electromagnetic waves and transverse optical (TO) phonons can
be treated by classical oscillator model. Consider a linear chain of unit cell, which consist
of negative (grey) and positive (black) ions as shown in fig2.5. If the direction of
propagation of the electromagnetic wave is along the z direction, then the displacement of
atoms will be in x or y direction for the transverse modes. Furthermore, for optic modes

the atoms will move in opposite directions with fixed ratio between their displacements.
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As we are interested in TO phonons with k = 0 and an infrared photon of the same
frequency and wave number, this implies that we are considering phonons of very long
wavelength ~ 10%cm™ matched to that of an infrared photon. This wavelength is quite
long when we compare it with the dimensions of a lattice. For such long wavelength, the

behavior of propagation of TO modes within a crystal is almost identical.

Fig.2.5. Interaction of a TO phonon mode propagating in the z direction with an electromagnetic
wave of the same vector. The black circles represent positive ions, while the grey circles represent the
negative ions. The solid line represents the spatial dependence of the electric field of the

electromagnetic wave.

We can write equations of motion for the displacement of ions as a result of

interaction of TO phonons with the oscillating electric field of the light waves.
2
m_d %tz = —C(x, —x )eE(t).

2
m d°X (2 = ~COU—X)eE(), 2.1)

where m; and m. are the masses of two ions, C is the restoring constant of the medium,
E(t) is the electric field due to the light wave and 'e’ is the effective charge per ion and is

taken as te.
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After following simple arithmetic steps, eq 2.1 can be written as

ra@lx=—E(t) 22
/ dr> Tt =, 22)

where

+

1 1 1
—=—+—,  defines the reduced mass,
aoomomo

and

Eq.2.2 represents the undamped oscillation of the crystal lattice in response to the
oscillating electric field of light but as the lattice modes or phonons have finite lifetimes

we should introduce also a damping term v in eq.2.2.

2
d X+y%+w$ox:%|z(t)

at> 7 dt (2:3)

Eq.2.3 now represents the response of a damped TO mode to resonant light wave.

Substitute X(t) = X, exp(—tat) and E(t) = E, exp(—tat) in eq.2.3. We get,
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ek,
M(@;, —@” —1y@)

Xo =~ (2.4)

as a steady state amplitude of the forced oscillation.

The oscillation of ions within crystal will produce a time varying dipole moment
p (t) = -e x(t) as shown in fig.2.3b. This gives a resonant contribution to the polarization

of the medium. If N is the number of atoms per unit volume, the resonant polarization is

given by
F)resonant =Np,
Ne’E
I:)resonant =—Nex = . (2.5)

2 2
My(@7o —@° —1yw)

From eq.2.5, we can see that the resonant polarization has largest magnitude when o is

equal to wro. This is also one of the properties of forced oscillations in classical

mechanics.

The electric displacement D of the medium can be related to the to the electric field E and

the polarization P through,

D=¢,E+R 4 P

ackgroun resonant ,

D=¢,E+¢g,E+P,

esonant - (2.6)

where Phackeround Tepresents the non-resonant term and accounts for all the contribution to

the background susceptibility y of medium arising from the polarization due to all other
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oscillators at high frequency. To simplify the mathematics, we will assume that the

material is isotropic so we can write,
D=g¢, ¢ E . (2.7)
Combining eqs 2.5 — 2.7, we obtain,

Ne?

eoil(@ro —@° ~1ym)”

where &; (®) is the complex dielectric constant at angular frequency ®. Eq 2.8 can be

written in terms of static () and high frequency (&) dielectric constant respectively. In

the limits of low and high frequency, we obtain from eq 2.8,

Ne?

Eqt Egr(o)zl—'_%_'_—z (2.9)

EgHro

E,=E(0)=1+y, (2.10)

Thus eq. 2.8 can be written as

2
W1o

e(@)=¢ +(c. —¢ :
(@) =¢, + (&4 w)(wﬁo—a)z—zya)) 2.11)

where &, represents the dielectric function at frequencies well above the phonon
resonance but below the next natural frequency of crystal due to (for example) the bound

electronic transition in the visible/ultraviolet spectral region.
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If we take the damping constant y equal to zero at certain frequency ®'then we can write

eq.2.11 as
-
" _ () — TO
&y (ZD’ ) =0= &t (gst _800) 2 2 (2.12)
(@0 —@
Thus the dielectric constant can fall equal to zero
From eq.2.12 we find
o L
r__ st \2
O =\—) " W+H.
(6’ ) TO (2.13)

o0

For a medium with no free charges, the total charge density is equal to zero and we can

write

V.D=V.(g¢,E)=0

where
E(r,t) = E, expi(k.r —at)

If & # 0, we can conclude that K.E = 0 and this tells us that the electric field must be
transversal (perpendicular to the direction of the wave) and, therefore, the coupling is
strong between TO phonons and the transverse electric field of photon, but if we take

& = 0, we can satisfy eq.2.13 with waves in which k.E # 0, that is, longitudinal waves.
Thus we conclude that the longitudinal electric field is present at frequencies for which
e(®) = 0. In the same way the TO phonon modes generate a transverse electric field

wave, the LO phonon modes generate a longitudinal electric field wave. Thus the waves
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at ® = o’ correspond to LO phonon waves, and we identify o’ with the frequency of the

LO mode at q = 0, namely, oro.

This allows us to write eq 2.13 as

2
ZD-LO — gst 514

0

This result is known as Lyddane-Sachs- Teller (LST) relation. The validity of the LST

relation can be checked by comparing experimental values of —2 for some experiment
Wro

as Raman scattering with the one calculated from eq 2.14 using known values of the

dielectric constant.

An interesting result form eq 2.14 is that when &4 = €5, the LO and TO modes are
degenerate. Hence we can say, €4 = €., when there is no infrared resonance which is the

case for non-polar elementary crystals as Si, Ge etc.

2.4. IR Absorption coefficients

The Lattice absorbs very strongly whenever the photon is in resonance with the TO
phonon. Actually the polar solids have such high absorption coefficients in the infrared
region that, unless the crystal is less than 1um thick, no light at all will be transmitted. It

is important to have thin film samples to observe lattice absorption in this case.

We can calculate the absorption coefficient from eq.2.11, using the imaginary part of the

dielectric function. From the relation given in eq.2.15,

s (@)=¢ +15,, (2.15)
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we obtain

1
(_ CatE e

NG , (2.16)

where k is the extinction coefficient. The absorption coefficient a can be calculated from

k using the relation given in eq.2.17,

oa=— (2.17)

If we analyze eq.2.14 in more detail we can observe some important features.

For y =0, the eq.2.11 can again be written as

2
W10
2 12

(@) =¢,+(&4-¢,) (2.18)

Lets consider concrete values, vio = 10THz, vipo = 11THz, &4 = 12.1 and &, = 10.
The frequency dependence of dielectric constant can be calculated and plotted as well.
All the angular frequencies are divided by 2m here, so that we can compare the
predictions with experimental results. From the fig.2.6(a), we can see that for v2>0, &, -
€« But as v starts increasing there is a gradual increase of €, and it start to diverge when v

approaches vry.
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Fig.2.6. a) Frequency dependence of the dielectric constant. b) Frequency dependence of reflectivity
of a crystal, where 1THz = 10" Hz .

The value of ¢, is negative between vy and vig. Precisely at v = vy, & is zero and then
positive again, increasing asymptotically towards the value of €. We can see that in the

region between vro and vy, the reflectivity is 100%, (see fig. 2.6), because the

e,
‘\/Z +1

region is called Restrahlen band.

reflectivity is given by R = , and \/Z is purely imaginary. This frequency
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Fig.2.7. Infrared reflectivity of 4H- SiC with a pronounced Restrahlen region. A wave number of

1 cm™ is equal to a frequency of 2.998 x 10'° Hz.

In the Restrahlen band, we expect high frequency and approximately zero
transmission for real crystals. Fig.2.7 shows the experimental data for the reflectivity and
transmission measurement in the 4H polytype of SiC. On comparing these experimental

results (fig.2.7) with the theoretically calculated one shown in fig.2.6 (b), we see that
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there is general agreement between the model and the experimental data but the
maximum reflectivity in the experimental curve is not 100%. This is due to the fact that

we ignore the damping constant (y) during our theoretical calculation.
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3. Light Scattering Spectroscopy

When light interacts with inhomogeneous medium, it undergoes many processes. It can
be absorbed, scattered, diffracted or reflected. It is well known that a perfectly
homogenous medium does not scatter light; the elementary beams re-emitted from
different points of such a media interfere destructively and cancel each other in all
directions, except for the forward direction. However, scattering does occur in reality due
to thermal fluctuations of the atoms in the media, leading to density fluctuations, so the
media cannot be considered as perfectly homogenous anymore. If the inhomogeneties are
of the size of the light wavelength, scattering will occur into arbitrary or well-defined

direction.

For purely geometrical or local inhomogeneties with no time dependence, the
scattering is elastic, which means without a change of the light energy and can occur in
arbitrary directions. Depending on the size and nature of the optical inhomogeneties, the
processes are called Tyndall scattering, Mie scattering, or Rayleigh scattering. For time-
dependant inhomogeneties periodic in time, the scattering may also be inelastic such as
those caused by phonons, sidebands to the excitation line occur. This is the case for
Brillouin scattering and Raman scattering. Such scattering experiments give valuable

information on the vibrational properties of the material.

3.1 Raman spectroscopy

The Raman effect arises when a photon incident on crystal is scattered inelastically due to
creation or annihilation of phonon (vibrational excitation) to which a part of phonon

energy is given. In contrast to the absorption spectroscopy, it is the modulation of the
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response of the system by vibrations, rather than the contribution of vibronic oscillators

themselves.

These inelastic scattering processes can be of two types. When incident
monochromatic light source of frequency wp interacts with crystalline material, it can
excite a lattice mode or phonon state with initial population n; to some virtual state but as
this virtual state does not correspond in general to any stationary state, it dissipates
immediately, so that the phonon population remains n; and photon of frequency g is
emitted. As this emitted photon is of the same energy as the incident photon, it will
correspond to elastic scattering process and is known as Rayleigh scattering as depicted
in fig.3.1a. But it is also possible that the phonon will relax down to n, vibrational state
and hence the emitted photon will have energy ws. = ®r-ms where ®, corresponds to
energy of phonon. This process is known as Stokes process as shown in fig.3.1b. The
photon scattered in this process has energy shift and we call this energy shift Raman shift

and the photon scattered by this process Raman scattered photon.

———===== vyirtual
_____ - — —— oy — 1 lEVEl.
! 4
hw, P, hw, hoie, huw, huws,
2 1 2 n'."r:f
1 1 Ng=
1 0 ] ihb.);; 0 _,_r_.’_hws nszo
a) Rayleigh scattering b) Stokes scattering c) anti-Stokes scattering

Fig.3.1. Incident photon scattered in three ways, a) Rayleigh scattering, b) first-order Stokes
scattering, c) first order anti-Stokes scattering.
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There is also another possibility that the phonons are already present in excited
vibrational level n, and relax down to n; level when incident photons of frequency mp
interacts. Hence the photon emitted has frequency shift of ws. = @ +ws. This process is

known as anti-Stokes process (fig.3.1c).

The anti-Stokes process is usually weaker than the Stokes process because the
probability of phonons being in the higher populated state is lower than in the ground
level. However at room temperature, there is still small probability of finding these
phonons in excited states. In the Stokes process, the emitted photon has lower Raman
shift than the one emitted in anti-Stokes process. The final energy of the photon is lower
in the Stokes process than in anti-Stokes process (fig.3.2). Clearly the Raman scattering
process can be viewed as either creation or annihilation of (one or more) phonons during

the interaction of the light with the media.

Stokes Anti-Stokes

b
b Y
R

A

W= W, W W+ W,

-—b—w

Fig.3.2. Stokes and anti-Stokes Raman spectrum (schematic). The strong line at @, is due to Rayleigh

scattering.

Raman scattering can be of first order or higher order( if more than one phonons are
involved). First order Raman scattering involves only one phonon and these phonons are
only from the center of Brillouin zone due to momentum conservation and similar to the

IR absorption. In Raman scattering, the incident light is scattered with relatively larger
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frequency shifts, independent of the scattering angle, which implies that the scattering is

due to the phonons of high frequency that corresponds to optical normal modes in solids.

3.2. Instrumentation and Setup for Raman Scattering Experiment

In light scattering experiments the spectral distribution of the scattered light is analyzed
relative to the spectrum of the incident light. In the case of Raman spectroscopy the
changes in the spectrum are very close in energy to the energy of the incident light and
many orders of magnitude smaller in intensity. Therefore a very good suppression for the
elastically scattered light is required. Double or triple monochromators or Fabry- Perot
interferometers can be used to filter the elastically scattered laser light. Our Raman setup

consists of double monochromator, which is also quite efficient.

LASER ]IB:B:DF—EE‘_';——
T
i

~——-“_“—- ------ [] PHOTOMULTIFLIER

DOUBLE GRATING SPECTROMETER

STRIP COUNT PREAMPLI-
CHART |— RATE }— DISCRIMINATOR —| FIER+
RECORDER METER AMPLIFIER

"PHOTON COUNTING'" ELECTROMICS

Fig. 3.3. Raman Setup
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The Raman set up comprises also on Argon laser as excitation source, which is
tunable to different wavelengths. The highly monochromatic laser light passes through an
interference slit or a small grating monochromator that rejects the spurious lines and
background from the laser source. The light beam is focused by lens and mirror on
sample. We can use polarization rotator to change the polarization of laser light incident
on the sample, but in our experiments, we rearrange the mirror position in order to get
different polarizations of the incident laser light. Light scattered from the sample is
focused by lens and passes through the polarizer. After the polarizer, the light is focused
onto the entrance slit of the double monochromator. The resolution and suppression of
light is highly improved compared to single monochroomator. Light leaving the exit slit
of the monochromator is focused on the cathode of the photomultiplier whose output is
processed with the photon counting electronics. The output is converted into digital
signal and is then finally displayed on the computer. The instrumentation for Raman

measurement is shown in fig.3.3.

3.3. Scattering Configuration

The intensity of Raman scattering generally depends on the mutual orientation of the
direction and polarization of received light as well as of the incident light relative to the
principal axes of the crystal. The variation of the scattering intensity with the
experimental geometry gives information about the symmetry of the lattice vibration
responsible for the observed line. Thus if the only changing component in the

susceptibility tensor are xy and yx for a given lattice vibration, to observe the Raman

lines due to this phonon we must arrange the polarization of the incoming laser radiation
parallel to the x-axis and observed the scattered light with its polarization in the y
direction and vice versa. One thus determines the Raman-active phonons with each of
which we can associate a susceptibility tensor and a definite symmetry. By choosing
different geometries and observing the variations in the intensity of lines due to different

phonons one can in principle determine the symmetries of those phonons.
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Different scattering geometries are possible for Raman experiment. The most
common one is the normal back scattering (BS) configuration i.e. the laser light is made
incident on the surface of the sample and the scattered light collected from the same
surface as well. For uniaxial crystals back scattering geometry can be applied not only in
the direction of the crystal axis but also in direction perpendicular to c-axis, which

provides new information as will be seen later (see also fig.3.4).

1) Y 2) Y
Aj\ X(YX)y A XIYZ)Y,
P % . -
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] I B "
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5) Y - | 6) Y &
X(YY)X X(ZY)X
X | X
PA Z PA Z

Fig.3.4. Some possible scattering geometry, we employed in Raman experiment.

There are some other scattering geometries as well like near forward scattering
configuration but it is used to observe polariton and for this reason we have not used this
geometry. Fig.3.4 illustrates the scattering configurations we used in our experiments. To
describe a particular scattering configuration it is convenient to use the notations as

described in the book by Peter Bruesch [7]. Thus for the back scattering configuration in

fig.3.4, we can write X (YY )Y , where X represent the propagation direction of the wave

vector k of incident light with polarization along Y direction. Similarly X represents the
propagation direction of scattered light along negative X direction with polarization along

Y direction.
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3.4. Classical Theory of Raman scattering

In an anisotropic medium, such as an uniaxial crystal, the polarisation field P is not
necessarily aligned with the electric field of the light E. In a physical picture, this can be
understood, because the dipoles induced in the medium by the electric field have certain
preferred directions, related to the physical structure of the crystal. Thus in general case

the above two vectors are related by a tensor:

P=¢g,E (3.1)

where the tensor y is the susceptibilty of crystal and it can be defined as a response of

crystal as a result of interaction between electric field of photon and crystal.

Let light beam with electric field E(t)=E¢cosm; t is incident on the crystal. The light
field will mainly interact with the electrons in the crystal, because they are much lighter
than the nuclei. Thus the main contribution to the susceptibility x is due to the electronic
polarizability. However the latter depends on the instantaneous position of the nuclei. Let
us consider the situation when only one normal coordinate Qs is excited in the lattice. If

ha is the phonon energy corresponding to this mode, then Q= Qqscosmst and the nuclei

oscillate with frequency ®,. We have also that y=y(Qs) and this function can be expressed

in Taylor series as

0
x(Q,) = x(0)+ % Q4 e ~ ¥, + 7, cosot (3.2)
s1Q, =0

where in the eq.3.2, we are restricted to the first term linear in Qs The polarization

induced by the media can thus be written as
P(t) =(x,+ 1 cosa)E,cosa t. (3.3
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In the general case, the motion of the nuclei can be represented as a linear combination of

normal coordinates. Thus more generally

2= (z;), +Z [a’é"j Q( + Z(aQ ’gQ )0QQp-vvve |, (3.4)

where the sum runs over all normal coordinates.

The first term in eq.3.4 represent first-order Raman effect while the second order Raman
effect is given by the second term, which is quadratic in Q. In the following discussion,

we will confine ourselves to first order Raman effect.

or

-1 oo 2| Qoo sol] s

Equation 3.5 shows that the induced polarization P oscillates not only with the frequency
o, of the incident light, but also with the frequency m;+ws. These latter frequencies arise

from the modulation of susceptibility by the crystal lattice oscillations.

The intensity and power spectrum of Raman scattered light is also predicted by
classical radiation theory. The intensity of radiation emitted by induced polarization P(t)

into the solid angle is given dQ = sinodvde is given by

- [Ploto, (36)
T
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where
P(@)=7AE; k(0 -0 )+ Kk 6lo - (0, -0,)]+k o -(0 +o,)]}. @7

The power spectrum illustrated by eq 3.6 is shown in fig.3.5. Thus classical theory
correctly predicts the occurrence of Stokes and anti-Stokes process but leads to an

incorrect ratio of intensities.
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Fig.3.5. Intensity of Stokes and anti-Stokes line Fig.3.6 Polarization of the radiation emitted by
i an oscillating electric dipole P(t). E and H are the
by classical theory. field vectors of the radiation propagating

in direction of observation

The ratio of intensity of Stokes and anti-Stoked process calculated by classical model is

I Stokes ( L S )
= T . 3.8
| ( ) (3.8)

anti—Stokes

which will be less than one and where as experiment shows that Stokes lines are more
intense than the anti-stokes ones. This inconsistency is eliminated by Quantum theory of

Raman scattering, which lead to intensity ratio

n
oc exp| —— |. (3.9)
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where kg is the Boltzmann constant and T is the temperature. The ratio given in eq.3.9 is

considerably larger than unity in contrast to eq (3.8) for the classical case.
3.4.1. Classical determination of the Raman Tensor

The relation P(t) = yoE(t) is vectorial relation and in general the direction of P does not
coincide with the direction of the electric field E. If we consider only first order Raman

scattering,

oy
Zjl :(Zj|)0+Z 8L(2” Qk

Here 0y;/0Qk 1s a component of derived susceptibility tensor. This tensor is also
known as Raman tensor and often written as y;u, (¥j)x or ¥jk The component of the
Raman tensor has three indices. j and ¢ extends over the coordinates 1 to 3 and k runs
over the the 3N-3 normal coordinates of the vibrations, where N is the number of atoms
per unit cell. In other words k run over all modes with wave vector k = 0. The Raman
tensor which refers to all zone center vibrations thus has rank three. For an individual
mode this tensor is given by a matrix with three rows and three columns whose

components are the derivatives of the susceptibilty. So in matrix form we can write:

P (x
Pl1=lx. %, X.|E (3.10)
P) \x

or

Pj = ZZH E, , (3.10a)

where y is a symmetrical tensor, that is
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X =X
or (3.11)
Xit = X

It can be further shown as well that there exists a coordinate system with axes (x',y’,z )

such that the relation between P and E, when reffered to these axes, assumes a simple

form.
F)x{ Zx’x’ O O Ex’
Py, = 0 Zy, y O Ey (3.12)
Pz" O 0 zz’z’ E:
or
P'=4E’ (3.12a)

where y' is a diagonal matrix. Such axes are called principle axis of the susceptibility.
One of the principle axis of the susceptibilty always coincides with the symmetry axis of

symmetrical system and is always perpendicular to a plane of symmetry.

The transformation from one coordinate system (x,y,z) to another (x',y’,z" ) takes place

through an orthogonal matrix R, where R"'=R", and we can write
P'=RP =RyE = yE' = yRE

or

x=R' 7R
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If we consider a system in equilibrium configuration, then the components of y are

X, =0,

mj

|

Fig.3.7. Coordinate system (x,y,z), identical with the laboratory system and principal axes system of
susceptibility, (X', y’,z"). P is the dipole moment induced by the electric field E of the light.

If as a result of thermal fluctuations the system is in a distorted configuration there will
be a new coordinate system (x',y’,z' ) shown in fig.3.7 which in general will not coincide
with (x,y,z). For such a system we can expand ; in terms of normal coordinates Qy as in

eq 3.3 and obtain

) 1
Zjl :ZEI) +kZZjl’ka +5;Zjl,kk”Qk’Qk” Foriiiiias , (3.13)

where }(j:)) represent the susceptibility of the system in equilibrium.

For a given normal coordinate Qx we may define the changes in susceptibility

components

8;(”

Q 3.14
Q) (3.14)

N c=2.Q =
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and a matrix with elements

[ %,
Xix = ﬁ 0 , namely (3.15)

Zxx,k ny,k zxz,k

(k) _
5Z - Zyx,k Zyy,k Zyz,k
sz,k Zzy,k Zzz,k

(3.16)

If we replace y (susceptibility) by a (polarisability) these expressions can be considered
as a generalization for a molecule. From the previous considerations, we can deduce that
the lattice mode will be Raman active if one of the six components of ;i x of matrix Sy is
different from zero. If this is the case, the mode Qy is Raman active. The appearance of
Raman mode in any experiment is dependant upon the symmetry of the equilibrium
configuration and of the modes Q. Active and inactive Raman modes in Silicon carbide

are dicussed in next chapter.

3.5. Quantum Theory of Raman Scattering

The complete quantum theory of Raman scattering is complex and rather lengthy. This
section presents just a basic review with respect to the first order Raman scattering.
According to the corpuscular theory of light, Rayleigh scattering corresponds to an elastic
collision process between photon and the crystal whereas the Raman scattering
corresponds to the inelastic collision of photons with crystal with the emission (Stokes

process) or absorption (anti-Stokes) of phonons.
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3.5.1. First- Order Raman Scattering

In first-order Raman scattering, only one phonon is involved; this correspond to term
linear in Qy in eq.3.3. Fig 3.1 shows the transition for Rayleigh scattering and for first -
order Stokes and anti-Stokes scattering. Let mr, ki, be the frequency and wavevector of
incident photon and ws, ks be frequency and wavevector of scattered photon and w, k of
the optical phonon. Energy and momentum are conserved between initial and final state

of system.

For Rayleigh scattering,

O)L: O)Sl

k.= k. (3.17)

For Raman scattering the conservation of energy and momentum yields:

oL=osto, (3.18)

kp=ksxq. (3.19)

where the (+) sign indicates that phonon w(q) is created in Stokes process while in the

anti-Stokes process the phonon ®(q) is annihilated.

The two processes are shown schematically in fig.3.1. Since or>>ws = o(k) it
follows from eq.3.18 that o = . since ki and ks are the wavevectors within the crystal,
we have k;= 2n/A;, k&= 21/As where AL=Ayac /M (®L), As=Avac /N (©5) (Avac: Wavelength in
vacuum). Since op = s, it follows that ki = k.. In addition, since Ap and As are much
larger than the lattice parameter a, hence k; and ks are much smaller than m/a, the

magnitude of wavevector at the zone boundary. Therefore from eq.3.11 it follows that
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q<<m/a, that implies that optical modes with q = 0 can only be involved in first order

Raman scattering.
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4. Group Theoretical Consideration of the 4H and 6H Polytypes of SiC

In this chapter, we will provide in more detail the group theoretical analysis necessary to

understand the experimental results. We will be concerned with the symmetry analysis of

the phonons near the I' and M point of the Brillouin zone, zone folding in higher

polytypes, theoretical prediction of modes in different scattering configurations and

assignment of representation to Raman and IR absorption lines in spectra obtained

experimentally by theoretical arguments.
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Fig.4.1. @) unit cell of 6H-SiC, b) unit cell of 4H-SiC. The atoms in 4H-SiC unit cell are enumerated in
such a way that the pair of subsequent numbers (1,2), (3,4), (5,6), (7,8) denote equivalent atoms.
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4.1. Classification of Symmetry of Phonons for different directions of
the wave vector Kgnonon in the Brillouin Zone of 4H & 6H-SIC.

4H-SiC has 8 atoms per unit cell while 6H-SiC has 12 atom in one cell (see fig 4.1). In
fig 4.1, the atoms are labeled in such a way that subsequent numbers (e.g. 1 and 2)

correspond to equivalent atoms. 4H and 6H-SiC, both hexagonal polytypes of SiC belong

to C,, space symmetry group, which contains altogether 12 operations which will satisfy

the symmetry condition for these crystals as described in table.4.1. We will consider

table.4.1 in detail in later paragraphs.

In general, the number of phonon branches in any crystal is 3N where N is number
of atoms per unit cell. Out of these 3N modes, three are acoustic modes and 3N-3 optical
modes. Some of these optical and acoustic modes are degenerate in certain directions of
the Brillouin zone. They are usually classified into transverse and longitudinal modes.
Only the optical modes have non-vanishing energies at the centre of the Brillouin zone (k
~ 0). The hexagonal and rhombohedral poltypes of SiC have well defined c-axis. So the
longitudinal modes (along c-axis) are also termed as axial modes and transversal modes
(L to c-axis) as planar modes. This classification of modes into axial and planar modes is
quite specific and is valid only for particular scattering geometry. Later we will see that
this classification of modes requires modification for different scattering geometries. But

now for the moment, we will consider this classification of modes as described above.

Fig.4.2. First Brillouin zone of 4H and 6H-SiC
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These axial and planar modes are long wavelength modes corresponding to wave
vector k=0 or phonon modes at the centre of the Brillouin zone (I'-point). The Brillouin
zone (BZ) of 4H and 6H-SiC is shown in fig.4.2. In fig.4.2, the I'- point represents the
centre of BZ where I to A - point represents the direction along c-axis (parallel to z-axis)
in the BZ. T'" to K and I" to M point represent directions in the x-y plane of crystal (i.e.
the basal plane). So the axial modes are along I'- A and planar modes are along I'-M or

I'-K direction in BZ (general case).

The total number of lattice modes, according to the above discussion, is 24 for 4H
and 36 for 6H. Out of these 24 modes in 4H, 21 will be optical modes and 3 will be
acoustic modes. However, not all optical modes are active in IR absorption or Raman
scattering. Our purpose will be to classify the phonons near the zone center I' by
symmetry, and then find the symmetries of the phonons active in IR and Raman.
Subsequently, we will use the specific tensors representing the susceptibility derivatives
for the phonons of each allowed symmetry in order to label the lines experimentally

observed in our Raman and IR spectra.

It is well known using group theory that the phonons at a certain point in BZ can be
classified by symmetry, that is, every phonon can be labeled with one of the irreducible
representations of the group of the wavevector k. The group of wave vector K4 in the
direction I'- A of the Brillouin zone is Cg, but in the direction I'- M, the group of
wavevector is Cy,. By definition, this is the subgroup of the point group of the crystal

(Cey 1n our case), which contains those operations, which leave the wave vector invariant

possibly changing only its direction from K to— K . Thus it is easy to see, that if the wave

vector is in direction towards the M point (Ky), the group of the wave vector is Cy,.

Kophonon denotes the wave vector of phonon created or annihilated in Raman Stokes
and anti-Stokes process. Using the conservation of energy and momentum laws, we can
draw the directions of the phonon wave vector for different scattering geometries. The

different directions of the phonon wave vector have to be analyzed using different point
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groups, which will then correspond to modes with different symmetries in certain
measured geometries for these polytypes. For example, for certain geometry, if the
direction of resultant or phonon wave vector is along c-axis (I'- A), the Cg, point group
can predict the crystal modes but if the resultant wave vector is perpendicular to the
crystal axes (in ['-M or I'-L direction), the point group is C,,.We will discuss the
direction of phonon wave vector for different measuring geometries in detail in later

paragraphs.
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Fig.4.3. Reflection operation o, and o,/

Let us consider table.4.1 in detail first. In table.4.1, the first row represents the
rotational operation (3x3) matrices included in the Cg, point group. The first operation
‘E’ is identity operation, 2C¢ represent the rotations operation by 180° and (180°)", 2C;
are rotations by 120°, C¢ by 60°. All rotations are about the Tk, axis, corresponding to c-
axis direction in the direct space. 3oy, and 3G, are six reflection operations across planes
rotated by 120° from each other about the c-axis of the crystal as shown in fig.4.3. The

operation oy is equivalent to the ATML plane and o, is L to I'ky.
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The E, 2C; and 3o, operations alone will bring the crystal into itself, and are totally
symmetric operations however the operations, 2Cs, C, and 3o,  require an additional
translation by half the height of the unit cell along the c-axis, i.e.t = /2 ¢ in order to bring
to bring the crystal into itself. The total number of operations is equivalent to the order of
group. Hence the order of group for Ce, is 12. The group has six irreducible
representations among which four are one dimensional, and two-2 dimensional. The
column on the left side of the table.4.1 represents the notations for these irreducible
representations. The remaining columns represent the characters of the representations
for different operations. For example A; modes has character 1 for all operations, while

E; modes have character 2 for identity operation, etc.

Table.4. 1. Character table of Cg, point group.

Cew |[E |2Cs [2C3 |C2 |30y |30,

A |+ [+ [+ [+ [+ [+
A |+l | +1 +1 +1 | -1 -1
B, +1 | -1 +1 -1 | +1 -1
B, +1 | -1 +1 -1 ]-1 +1
E; +2 | +1 -1 -2 0 0
E, +2 | -1 -1 +2 0 0

The point group C,, is a subgroup of Cg, and contains four of the 12 symmetry
operations of Cgy, namely, E (the identity transformation), C,, oy and &,-. C; is equivalent
to the 'k, axis, o, equivalent to AI'ML plane, and o, is L I'ks. The four irreducible
representations of C,, are all one-dimensional and are listed in table.4.2. Thus, there is no
symmetry-based degeneracy of the phonon energies in the I'-M and I'-K direction, and

the matrix representations are identical to the characters.
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Table.4. 2. Character table of C,, point group.

CZV E CZ Oy Gv'

Aq +1 +1 +1 +1
A +1 +1 -1 -1
Bi1 +1 -1 +1 -1
B, +1 -1 -1 +1

The group-theoretical technique for determination of the number of phonons of
given symmetry at I point (A;, Az, By, By, Ej, Ez) and M point (A;, Ay, By, By) i1s
described in detail in ref [13,14]. So here we will give a brief summary of the application

of that technique to our particular case.

For the 4H polytype, a 24-dimensional representation I'™*? (called the displacement
representation) can be constructed in the following way. Let us consider a 24-
dimensional vector ‘c’ for 4H-SiC, (for 6H-SiC, it will be 36 dimensional), the first three
components of which are the x, y and z projections of the displacement of atom No 1, the
next three components are the corresponding projections of the atom No 2, etc. Let us
think of each symmetry operation as acting on the displacements of atoms, instead of on
the atoms themselves. Then the result of the symmetry operation T on the vector ¢ will be
another vector ¢’, which can be written as ¢’= T%P(T).c. Obviously, the set of matrices
{T%P(T), TeCe, or Cy} forms a (reducible) representation of the group of the wave
vector (Cgy or Cp, in our case), and it is quite straightforward to see that this

representation can be presented as a direct matrix product

% (T)= p(T) ®R(T) @y

where p(T) is the so called permutation matrix for the operation T (the permutation

matrix is a matrix containing 0’s and 1’s, and storing information about where each atom
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is going when the crystal is subjected to the operation T). The permutation matrix has
NxN dimension generally, where N is the number of atoms per unit cell. R(T) is the
ordinary 3x3 orthogonal matrix representing the rotation corresponding to the operation
T. Both sets {p(T)}(eight dimensional for 4H-SiC and 12 dimensional for 6H-SiC), and
{R(T)} (three dimensional) form also representations called permutation and vector

representations, respectively.

The matrices for the rotational operations of Ce, (and C,y) groups are as follow:

%%

(=}

P50

R(C,) = ﬁé Voo R(C)— \f/ —/
0 0
-1 0 0

R(C,)=| 0 -1 0],
0 0 1

where

R(C3)71 = R(C3)T
R(C6)_l = R(C())T

1 0 0 f/ - f% 0
R(c,)=|0 -1 0|R(c,,)= f/ / 0,R(o,;) = \52 Voo
0 0 1 1 0 0 1
b2 / 0 / / 10 0

R(c,) = ﬁé -1 o), = 3 -0 R@)=[ 0 1 0}
0 0 1 0 0 1 0 0 1
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For rotational operations E, C; and oy, which do not involve translations, the unit cell
together with each atom position remain unaltered and the permutation matrix for 4H-SiC

has the form

p(E’C:‘,’O-v) =

S O O = O O O O
S O = O O O O O
S = O O O O o O
—_ o O O O O o O

S O O O O o o =
S O O O O o = O
S O O O O = O O
S O O O = O O O

where 1’s at the diagonal represent position of atoms in 4H-SiC after applying rotational

operation. Thus atom 1 remains in the position of atom 1,etc.
The permutation matrix for the rotational operations C,, C; and &, which require

translation by half of the length of ‘c’ afterwards to bring the crystal into itself position

has the form:

p(CZ’C(S:O_v )=

S O O O o o = O
S O O O O O o =
S O O O = O O O
S O O O o = O O
S O = O O O O O
S O O = O O O O
-_ o O O O O o O
S O O O O o O

According to it, atom 1 goes to the position of atom labeled 2 and vice versa. It is also
true for other subsequent pair of atoms (see fig.4.1). The rotational matrices described
before can be written in place of the non-zero entries in the permutation matrix to form a

24 dimensional displacement representation I'"*" for 4H-SiC. We can also write the
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permutation matrices for 6H-SiC, which will have the same forms. The only difference
will be the dimension of matrix (i.e.12x12 matrix) because of 12 numbers of atoms in the

unit cell of 6H-SiC.

Hence after applying the operation T, we can say that the c-axis will transform into itself,

1.e.
¢’ =T (T).c (4.2)

where T'™ have the form given in eq.4.1 for operations E, C; and o and this is true for

all operations T of the point group Céy.

We can now calculate the number of phonons (n,) transforming as each of the irreducible
representations of either Cg, (for I'-A) or C,, (for I'-M, I'-K phonons) by using the well-

known magic counting formula [9].

1 is *
n,=— > 7" TM)x"(T) “3)

TeCy,,Cyy

where n, is the number of phonon modes of symmetry I'y, (any of the irreducible
representation), g is the order of the group, which is 12 for Ce, and 4 for Cay. x***(T) is
the character of T™*P(T) and ¥"(T)" is the complex conjugate of the characters of the
irreducible representations of Cgy and or C,,. In our case all characters of irreducible

representations for both groups are real and hence the complex conjugate has no effect.

The total number of phonons at I" point for Cg, group is

[ =4A +4B +4E, +4E,
(4.4)
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Hence there are 16 distinct modes but since E; and E; modes are double degenerate,
the total number is 24, as expected. Among these, three are acoustic, describing
translation of the unit cell (or of the crystal) as a whole, that is, the displacements of all
atoms are in the same direction and equal. Since a single vector represents all
displacement for the acoustic modes, it must transform in accord with the rotational
representation defined by the matrices R(T). Using eq.4.3, we obtain by analogy with

eq.4.4 that R(T) decomposes into irreducible representations in the following way:
R=A+E,
(4.5)

Consequently, one of the four A} modes and one of the E; modes are acoustic (three in

total as E; modes are doubly degenerate). Thus, for the optic modes one obtains:
P —3A + 4B, +3E, +4E,
(4.6)
Modes allowed in IR spectroscopy are:
IR — Active:3A +3E,
(4.7)

Similarly, it can be shown that the Raman active modes are those whose symmetries can

be found in the decomposition of the direct product R®R that leads to the result

Raman — Active : 3A +3E, +4E,
(4.8)

The total number of phonons at M point for C,, point group calculated using magic

counting formula given in eq.4.3 is
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[ =8A +4A, +4B, +8B,
(4.9)

Out of these 24 modes for C,, group 21 will be optical and 3 will be acoustic modes,

which can be found to have A+ B;+B, symmetries, therefore,

The IR active optical modes are

IR— Active: 7A + 3B, + 7B,
(4.10)

and the Raman active optical modes are

Raman — Active: 7A +4A, +3B, + 7B,
(4.12)

Eq.4.11 depicts that all modes are Raman active, if the experimental geometry is such
that the phonon wavevector is along the I'-M direction. So the general relation can be
formulated to calculate the number of modes in NH polytype (N=4,6 for 4H and 6H-SiC

respectively).

The total number of IR active optical modes for Cgy is

(N-D(A +E) (4.12)

For Raman Spectroscopy, the total number of Raman-active optical modes for C¢, group

1S

n,=5N-3=(N-DA +(N-DE, +NE, (4.13)
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Similarly we can formulate a general formula for C,, point group. IR optical modes in

C,yare

(2N -1)(A +B,) +(N -1)B, (4.14)

Allowed optical Raman modes can be calculated by the general formula

(2N -DI)(A +B,)+4A, +(N -1)B, (4.15)

4.1.1. Zone Folding

Different polytypes of SiC have different lattice periods along the c-axis and the polytype
with the shortest period is 3C-SiC (B-SiC), which has the zinc-blende structure. The
notation o-SiC is often used to denote the NH or 3NR polytypes that contain N formula
units (Si-C). The unit cell length of these a-type polytypes along the c-axis is N times
larger (corresponding to the <111> direction of zinc-blende structure) than that of the
basic polytype (3C-polytype). Hence the BZ in I'-L is reduced to the 1/N of the basic
Brillouin zone, i.e., minizone. The phonon dispersion curves of 3C, 4H and 6H-SiC in the
<111> direction, corresponding to I'-A direction in the BZ is shown in fig4.4, illustrating

the zone-folding concept.

The dispersion curves of the phonon modes propagating along the c-direction in
higher polytypes are approximated by folded dispersion curves in the basic Brillouin zone
as shown in fig.4.4 This zone folding along the [00&] direction provides a number of new
phonon modes at the I point (k=0), which correspond to the phonon modes inside or at
the edge of the basic Brillouin zone. The phonon modes arising from the zone folding are
called "folded modes’. The unit cell of 3C-SiC contains one formula unit and there is one
LO mode and a doubly degenerate TO mode in the optical branches (see fig.4.4). A
folded mode corresponds to a phonon mode with a reduced wave vector x = k/kg = 2m/N

along the <111> direction in the basic Brillouin zone of the 3C-SiC, where m is an
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integer less than or equal to N/2 (m < N/2) and kg is a wave vector of the zone edge in the

basic Brillouin zone.

T
T

3 _ A | folded mode
; 3¢ 2H ‘ / 6H Energy Gap .
& — S S ¥ 610 -730 cmv
3 La " - L .
c | / N E
/A > |
TA > ) :
|

i
] s

o nic 0 /e q n m/oc 4

Fig.4.4.The phonon dispersion of: a 3C-SiC in the Basic (large) BZ; b & ¢) 2H and 6H-SiC in the
corresponding minizones, showing the folded modes [15].

4.1.2. Geometrical Considerations

The direction of the resulting Kynonon Wave vector is very important to be considered for
different geometry. When the wave vector of the phonon is exactly parallel to the c-axis
of the crystal, i.e. Kyhonon || T-A direction in BZ, the group of the wave vector is Cg, and
it is C,, when the wave vector Kphonon i perpendicular to the c-axis, i.e. Kphonon || T-M or

I'-K directions in the BZ. When the Kphonon is neither parallel nor perpendicular to c-axis
but has some intermediate angle with respect to c-axis, 1.€. Kphonon || T-A-M plane in BZ,
the wave vector group is Cs for 4H and 6H-SiC. It can be seen from fig 4.5 that wave
vector Kphonon 1S parallel to c-axis ie. 6 = 0° (along z-axis) only in the case of back
scattering geometry from surface and is perpendicular i.e © = 90° (along x-axis) for back
scattering geometry from edge. Kphonon has intermediate angle with c-axis in both cases of

rectangular geometry i.e. @ = 45° (zx-plane). Hence different point groups for different

geometries will predict the modes.

65



Back Scattering Back Scattering
Geometry Geometry

I
I
X X :
Knonn A O B Korener R N T’
Ié"‘ . ¢ X
zllc-axis 7%‘; LW z Il c-axis %ﬁ Received
o Received ‘,*‘J Light

zll caxis Light z Il caxis
y Y, y Y
Rectangular Rectangular

1
i
1
Geometry 1 Geometry
1
1
1
1
1

X X
Kphono J“ ————————— = A--- x Kphonon A“, --------- =k A--- x
n .} J.'
4 .
z Il c-axis 04 / Received z Il c-axis e / Laser
. ’ .
- Laser  Light . Receive

# .
z Il caxis Light

z Il caxis

Fig.4.5. Four different experimentally measured geometries a) Rectangular geometry(E, through
surface E, through edge), b) Rectangular geometry(E, through edge E, through surface), Back
Scattering (edge), Back Scattering (surface).

We have already discussed the point group Cs, and C,,. The point group Cj is quite
simple group and the characters are given in table.4.3. The two symmetry operations for
this point group are the identity operation E and the reflection operation c,, where o, is
equivalent to AT’ML plane. The order of the group is 2. The two, one dimensional,
representations for this point group are either A; and A, or By and B; in I'-A-M plane so

we simply labeled them as I'; and I'; species.

Table.4. 3. Character table of C; point group.

Cs E Oy
A +1 +1
A +1 -1
B, +1 +1
B, +1 -1
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Now we will consider atomic displacement and behavior of modes in all four
geometries with respect to phonon wave vector Kphonon in detail. Let us first consider the
back scattering (BS) geometry from the surface (see fig4.5). As we already discussed that
Kophonon || T-A direction so phonon modes can be predicted by Cg, point group and the
number of allowed Raman and IR modes are given by eq.4.13-4.14. In fig.4.6 the atomic
displacement of atoms in unit cell of 4H-SiC in I'-A direction is shown, simulated by
computer aided lattice dynamic model (LDM) with important parameter, i.e. ionicity of

12% for SiC [17].
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Fig.4.6 Atomic Displacement of atoms of 4H-SiC unit cell in I"-A direction, simulated by Lattice
Dynamic Model (LDM).

In this figure, atomic displacements corresponding to phonons of different energies
are shown and labeled with the irreducible representations of Cgy, i.€. Aj, By, E; and E,.
We can observe from fig.4.6 that E modes are double degenerate. Each E mode has two
atomic displacements in two directions because these are planar modes and it’s not

possible to show planar displacements only in the xoz or yoz plane. The first three modes
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in fig.4.6, i.e. A; at 0.35023 cm™ and E; at 0.44025 cm™ are acoustic modes and all the
rest are optical modes. The B-modes are forbidden in Raman and IR spectroscopy. Hence

the total number of observable modes is ten as given by eq.4.8.

The optical modes A; and E; are polar modes, which means that there exists an
associated dipole moment and macroscopic electric field with these modes. E; modes are
non-polar in nature. The strong polar modes are TO mode at 774 cm™ and LO mode at
1239 cm™ of symmetry E; and A, respectively. We can also see from fig.4.6 that for
these modes i.e. E; (774 cm™) and A, (1239 cm™), the net dipole moment per unit cell is
maximum, which implies that the net polarization also has non-zero value. Due to the
non-zero polarization, the splitting is large for this E; (774 ¢cm™) polar mode when the
direction of the wave vector Kphonon With respect to c-axis changes. The A; mode does not
split of course, but its energy also depends on the direction of Kyhonon. Hence polar modes
frequencies strongly depend upon the direction of the Kphonon due to the contribution of

the macroscopic field.

For any scattering geometry we can classify the polar modes as longitudinal and
transversal modes with respect to direction of Kyponon in BZ, as shown in our lattice
dynamic calculation. The rest of the modes do not change significantly their atomic
dispacement patterns therefore they remain purely axial or planar, see fig.4.8. Hence, the
A, and B; modes remain longitudinal modes and E; and E; modes are transversal, also

with respect to c-axis.

In back scattering geometry from edge Kpynonon is parallel to I'-M direction in BZ, i.e.
perpendicular to c-axis of crystal and the modes are predicted by C,, point group. The
displacement of atoms in I'-M direction in unit cell of 4H-SiC is simulated by LDM (see
fig.4.7). If we compare fig.4.6 and fig.4.7 [17], we observe that E; modes split into B;
and B, modes and E, modes decompose into A; and A, modes in back scattering
geometry from edge. The acoustic modes are A, corresponding to 0.39074 cm™, B,

corresponding to 0.30665 cm™ and B, at 0.20083 cm™ where B, and B, correspond to
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planar acoustic mode E;. But these acoustic axial modes, B; and B,, in C,, symmetry are

at higher energy than the planar acoustic E; in BS (surface).

In this geometry we can assign modes as longitudinal and transversal modes
depending upon their direction with respect to Kphonon. For example the LO mode (A;) at
1239 cm™ in BS (surface) is shifted to wave number 767 cm™ and in this scattering
configuration it is TO mode (A;) as atomic displacement are along y-axis. Similarly the
TO mode E; at 774 cm’ in BS (surface) geometry transformed into LO mode B; at 1243
cm” in BS (edge). One can see from fig.4.7, the strong polar modes are LO mode (B;

at1243 cm™), and TO modes (A, at 767 cm™, By at 774 cm™).

-M, k=Knw/500

2 Bl AI g BI A2
0.20083 030665 0.39074 24560041 260.09770 27256072
. _ f _
= — ] 'y oy =
~ _ | i _
— — l ' 1 -aull
= — - P4 P4 o -
. .~ | | .
= — I | P E
A, A, A, A B, B,
27256984 280.77429 28077446 37464893 4368130 £23.69601
. — s | ! -~ -
-, - - . b - -
- £ — - g4 - . -
—_ —— - 1 | - P
B, B, A A, A, A,
68126044 68129438 73758453 73756478 739.55908 739.55924
A B, A, B B, B,
76754755 77496678 1143.83917 1193.41516 1196.67931 1243,65461

i - i I

[ 3 1 | | .

- o b -
I - . | I l -
| _'_ | I . | _._
], — ! 1 I —
Fig.4.7. Atomic Displacement of atoms of 4H-SiC unit cell in I'-M direction, simulated by Lattice

Dynamic Model (LDM).
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In rectangular geometries, the modes can be explained by the Cs point group.
The character table of Cs point group is shown in table 4.3. In fig.4.8, the atomic
displacement for 4H-SiC in I'-A-M plane is shown [17]. The wave vector Kyhonon 1S in Xz
plane at 0 = 45° with respect to c-axis. If we look at fig.4.8, the first three modes are
acoustic while the rest are optical modes. The classification of modes as longitudinal and
transverse modes is also with respect to direction of wave vector Kphonon in this geometry.
We can observe that the strong polar mode (I'; at 1241 cm'l) is parallel to Kphonon, hence
it can be classified as LO mode and the other two strong polar modes (I'; at 771 cm™ and
', at 774 cm™) are perpendicular to c- axis, so can be classified as TO modes. Thus
indeed in all configurations the frequency of the polar LO mode is shifted up very

sensibly by the association with it macroscopic electric field, as predicted by the theory.
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Fig.4.8. Atomic Displacement of atoms of 4H-SiC unit cell in T-A-M direction, simulated by Lattice
Dynamic Model (LDM).
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We have plotted the dependence of the energies of phonons near the I'- point on the
direction of the wave vector Kynonon, to investigate the angular dependence of phonons
(fig 4.9). The angle 6 = 0°, corresponds to Kpnonon along I'-A direction (BS from surface
i.e. Cey group) and the final angle 6 = 90° correspond to Kphonon along I'-M direction (BS
from edge 1.e. Cyy group). The intermediate angles correspond to Kphonon in I'-A-M plane
(Rectangular geometry i.e. Cs group). If we observe the A; mode at 1239 cm™ at 6 = 0° in
fig.4.9, we can conclude that it has rather strong angular dependence and it has shift of =
4 cm™ at 0 = 90°. Another important point is that this A; mode now has to be classified as
B mode of C,, symmetry at 0 = 900, which confirms that Kpnonon has different group in
different directions of BZ for 4H and 6H-SiC. E; mode at 789 cm™ at 6 = 0° also exhibit
large energy shift ~ 7 cm™ at @ = 90°, which also confirm strong polar nature of this

mode.

When we consider direction from I'-A to I'-M point, we can observe another point
that splitting is large for polar A; and E; modes and E; modes have very negligible or no
splitting at all. The scale in fig.4.9 is highly exaggerated around some energy in order to
see the splitting of modes. This actually explains why the number of modes observed
experimentally is less than the number of the theoretically predicted modes. The reason is
that the splitting between modes is very small and it is hardly possible for even very good

spectrometer to resolve this splitting.

Note that only one TO mode and one LO mode show significant angular (or
directional) dependence, namely, the TO modes of E; symmetry with energies around
775 cm™ and the highest energy LO mode of A; symmetry (at 8 = 0°). On the other hand,
all the modes of A; and E; symmetry are polar modes. However, the remaining polar
modes are associated with vibrations stemming from the edge or other non-zero wave
vector points of the large zones (Jones zone), i.e., they can be considered as appearing at
the zone center due to the zone folding. Consequently, the displacements of the atoms are
paired two by two for atoms of same species but with opposite signs, which leads to near

cancellation of the polarization contributed by the unit cell.
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Fig.4.9. Angular dependence of the phonon energies of the optical phonons in 4H-SiC calculated with

a lattice dynamical model. 6 is the angle between the I'-A direction of the Brillouin zone (BZ) and the

phonon wave vector. The amplitude of the latter is constant chosen to be 1/500 of the extension of the

BZ in the I'-M direction. Note the breaks on the energy axis and the very different energy scales for

the different phonon branches chosen so as to make visible all the splittings of the branches with E;

symmetry (and also of one branch of E; symmetry). The classification of the phonons by symmetry is
done within Cg, at 8 = 0° (I"-A direction), C,, at 8 = 90° (I'-M direction), and C; for arbitrary 0

between these limits, because these are the groups of the wave vector for the corresponding

directions
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Only the original (not folded) modes, which are common for all polytypes,
contribute strongly to the polarization of the unit cell, because the four (in the case of 4H-
SiC) atoms of each species vibrate in phase, creating vibration of the silicon and carbon
sublattices against each other. This yields the maximum possible value for the
polarization of one unit cell. This is illustrated very well by the displacements patterns of
the atoms presented in Fig. 4.6 and Fig.4.7 for the cases of the phonon wavevector along
the I'-A and I'-M directions, respectively. Note that the places of one of the polar
transversal modes and the longitudinal polar mode with highest energy are interchanged.
This is easily understandable in view of the fact that the phonon wave vector has different
direction for these two figures, the important issue being that the polar modes (but not
any other mode) can be classified as longitudinal and transversal with respect to the

direction of the wave vector for arbitrary direction of the latter.

Table.4.4. Compatibility table for phonon modes in different direction of BZ.

CGV Al AZ Bl Bz E1 E2

Con |AL A; B B, Bi+B, | A1+ A;

Cs I I, I | ) I +1, r+1Iy

Hence we found out that the polar modes have very strong dependence on the
direction of wave vector Kynonon and the phonons have totally different symmetry and
character in different geometries as well as there is large splitting and energy shift for
polar modes. So here we can formulate a compatibility table, which can explain the
transformation of phonon in different symmetry point group. The theoretical analysis for
6H-SiC can be done in similar way and the modes in 6H will follow the same behavior as
in 4H-SiC. The only difference is that it has larger number of modes as it has 12 atoms

per unit cell. Table.4.4 gives the compatibility relations of phonon modes in three point
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groups i.e. Cey, Cyy and Cs, which correspond to three different directions of Kphonon 10

BZ.

4.2. Classification of Phonons with respect to Polarization Vectors of

Incident and Scattered Raman light.

As we discussed before that the mode symmetry and appearance depends on many
factors, especially on the direction of the wave vector Kynonon. The sample geometry
measured is also very important to be considered to study the symmetry of phonons. The
prediction of intensity I(k) of each mode can be made theoretically using the simple

relation, i.e.,

1 (k) = (e x,€;)° (4.16)

where e; and e, are the polarization vectors of incident and scattered light and yx is the
Raman tensor and has different form for modes of different symmetry. The form of the
Raman tensor for back scattering (surface) geometry, which correspond to Cg, group, are

given below:

a 0 o0 0O 0 c O 0 O
Za=|0 a 0 ;(ELX:0 0 0 ZEl’y:O 0 d
0 0 b/ c 0 0) 0 d o0
e 00 0O f O
Xe, =0 € 0 xg,= f 00
00 0) 0 0 0
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Note that the two tensors A E, and X E, correspond to each of the two-dimensional

representation.

The polarization vectors can have four different forms for BS (surface) geometry

ie. z(xx)E,z(xy)E,z(yx)E,z(yy)E, where z and Z represents the direction of wave

vector k for incident and scattered light respectively and alphabets in bracket represent
the polarization vector e; and e for incident and scattered light respectively for all four
cases of BS (surface) geometry. We did calculations, using eq.4.16 to see which mode is
appearing with strong or weak intensity for all the four cases (mentioned in above lines)
of BS (surface) geometry. We can compare the intensity of modes obtained theoretically
and experimentally and this will help us to identify the modes in our experimental

spectra.

Here is an example to understand how triple product from eq.4.16 can be calculated.
For example, for Z(XX)E case of BS (surface) geometry, the polarization vector, e; for

incident laser light and e for scattered light has the form given in eq.4.18.

1
e,=(1 0 0)e=[0
0

(4.17)

Solving eq.4.16 for the polarization vectors given in eq.4.17, we found out that for
scattering configuration Z(XX)E, the Raman lines of axial Aand planar E; and E, species

can be observed proportional to a’, d* and we found that E; modes are not allowed in this

geometry.
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Table.4.5.1. Theoretical prediction of modes for BS (Surface) geometry calculated by eq4.17.

Back scattering

(Surface) Z(XX)z Z(Xy)z Z(yx)z z(yy)z
A a° 0 0 b?
E; 0 0 0 0
E, e’ 2 2 e’

Similarly we did calculation for the other three BS (surface) configurations and
results are summarized in table.4.5.1. We also observed that in the BS (surface)
geometry, the A; modes are polarized parallel to the polarization of laser light, the E;
modes are forbidden in this geometry for all configurations and the E, modes are also
polarized both in the direction of polarization of incident light and perpendicular to it,

i.e., they are depolarized.

In the BS (edge) geometry, the Raman tensors for the modes are given below for Cy,
symmetry group. The component to which intensity of species is proportional, is

eq4.17 for the four BS (edge)

ie. X(zz);, x(zy);, X(yz)i, x(yy)i. The A; species appear only when the scattered

calculated  using configuration

intensity is polarized along the polarization direction of incident light, A, and B; modes
are forbidden in this geometry, while the B, modes appear only when the polarization

vector of scattered light is perpendicular to polarization vector of incident light.

a 00 0 d 0
A=0 b OLA =|d 0l
00 c 0 0
00 e 00 0
B,=|0 0 0[B,=|0 0 f
e 0 0 0 f 0
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In addition, we can say about these modes is that the A; modes are polarized parallel to c-

axis of crystal in x(zz); scattering configuration, and perpendicular to c-axis in X(YY) X

scattering configuration. The results are summarized in table.4.5.2.

Table.4.5.2. Theoretical prediction of modes for BS (Edge) geometry calculated by eq4.17.

Back - - -

scattering X(22) X X(zy)x X(yz) X -

(Edge) X(Yy) X
Ay c 0 0 b
A, 0 0 0 0
B. 0 0 0 0
B, 0 f2 f 0

Cs group gives the mode symmetry in rectangular geometries. Hence the Raman tensors

for C; groups are given below.

The four scattering configuration for rectangular geometry (Er through surface, E,

through edge) are z(Xxz)Xx, z(xy)X,z(yz)X, z(yy)x while for the other rectangular geometry

(EL through edge, E, through surface), the four scattering configurations are

X(zxX)z,X(zy)z,z(yx)z,X(yy)z . By using eq.4.17 for different scattering configurations

for both the geometries, we found out that these two are equivalent geometries. Both I';
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and I, modes are allowed in these geometries in certain configurations. The summary of

results is given in the table.4.5.3.

Table.4.5.3. Theoretical prediction of modes for Rectangular geometry calculated by eq.4.17.

Rectangular

G try(EL

vigosrﬂﬁfargé) Z(XZ)X Z(Xy)X Z(yZ)X Z(yy)x
Iy 0 e’ 0 b®
I, f 0 i2 0

Rectangular

seme Y& x(2X)2 | X(2y)Z | X(Y)Z | X(Yy)z
I, 0 0 d’ b?
I, f 0 i2 0

After all this discussion, we should keep this in mind that the C, and C; are low
symmetry group for these geometric configurations so the polarization vectors should be
compatible to our geometries in this case. Hence it might be possible that in geometries
which are govern by C, and C; point groups, the modes, which are not predicted
theoretically, can be observed experimentally. But it should not be confused with wave
vector Kynonon, as Cz and Cs are group of the wave vector Kynonon 1n different directions of

the BZ of crystal.

4.3. Experimental Details and Interpretation of Observed phonons

In this section we will compare the experimental results of Raman and Infrared
absorption of 4H-SiC with the theoretical results and provide an overview of the results
for 6H-SiC. We also tried to assign the representations to these Raman and infrared
absorption lines based on the theoretical knowledge but this assignment for some of the
lines has to be considered as tentative, before a more detailed theory giving explicit
expressions for the Raman tensors in various symmetries is built. Such a theory is now in

process of development.
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For the Raman measurements we used 4H and 6H-SiC samples of thickness ~ 55
um with c-axis nearly perpendicular to the surface (8° off). All the measurements were
done at room temperature. The excitation source used is Argon laser, which is tunable to
different discrete wavelengths. The laser wavelength we used is 458nm. This laser
wavelength is well below the electronic band gap of SiC and the material is transparent
for it ensuring good signal to noise ratio. Some researchers have used higher wavelength
like 514 nm but we did not use it just because photomultiplier of Raman setup has better
sensitivity at shorter wavelengths. Raman spectra measured were averaged over 10-20
scans with integration time of one second. It is always better to have small integration
time with large number of scans than a single scan with long integration time because any
spike can be averaged out easily. Similarly set up can have some minute vibrations so it

is always good idea to have more scans with small integration time.

We will first discuss the most common back scattering geometry (surface), see
fig.4.10, which correspond to Cs, group of wave vector Kpnonon. Although the total
number of the Raman modes predicted theoretically are ten (eq.4.8), the total number of
the Raman lines appearing are roughly seven in all spectra of the scattering
configurations of the back scattering (surface) geometry. The reason behind this can be
that it is difficult to resolve the modes close in the energy even with a very good
spectrometer. If we consider fig.4.4 in detail, we can observe an interesting feature. The
dispersion curves of the three polytypes displayed in the fig.4.4 has about the same

energy gap between acoustic and optical modes, ranging from ~ 610 cm™ to 730 cm™.

Our theoretical prediction, (see fig.4.9), underestimates the energy gap, i.e., from ~
400 cm™ to 650 cm™. The reason is that we use the non-modified force constant as given
by the Tersoff [19]. The adjustment of force constant may provide a better fit to the
experimental energies and may lead also to re-ordering of the states. Therefore, we will
discuss only model-independent theoretical features such as the existence of energy and
the number of phonons above and below it. There are two, i.e. LO and TO, modes above

the energy gap, and two, i.e. TA and LA, modes below this energy gap in the basic BZ of
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3C-SiC. Hence from fig.4.9, we can say that 4H-SiC has five optical modes, i.e.
2A+2E;+2E; above the energy gap and four optical modes, i.e. 1A;+1E;+2E,, below it.
This classification of the modes below and above the band gap will be very useful to

label the Raman lines with the specific representation

The Raman line at 966 cm™ is the high energy LO mode (as LO modes are always at
higher energies) and it is assigned as A species in the fig.4.6. (However the energy given
in fig.4.6 does not match the experimental one as explained above). Therefore the Raman
line at 966 cm™ can be labeled as A, and later we will justify our assignment when we
will analyze the experimental results for other geometries. For the moment, we assign the
Raman line at 799 ¢cm™ as E,, the line at 778 cm™ and shoulder at 785 ¢cm™! as the E,
modes. Here we can question the appearance of the E; mode at 799 cm™, as it is not
allowed in the BS (surface) geometry (see table 4.5.1). The appearance of E; mode in this
geometry is most probably due to imperfect geometry. There should be another A; mode
above the energy gap according to our above classification but it might be overlapping
one of the strong lines. By imperfect geometry we mean that the orientations of geometry

in the measurement are not as accurate as shown in fig.4.5.

Below the energy gap, we should assign the 610 cm™ line as E; mode according to
our theoretical result given in fig.4.9, (as it is just below the energy gap). But it is also
observed that when we use the different ionicity parameter in our LDM model, the
ordering of modes as shown in fig.4.9 and fig.4.6 is different and the mode just below the
band gap is A; instead of E;. Similar reordering of the states is expected with changing
the short-range force constants in our LDM, as explained before. Therefore, we will base
our assignment on the intensity behavior of the line in different scattering geometries
rather than on the ordering of the states predicted by the model. We note, however, that
ionicity of 12% (as used in the model in agreement with previous work [17]) correctly
predicts the shift of the polar LO mode and the splitting of the polar TO mode in different
geometries, as will be seen. This is so because the shift and the splitting mentioned above
are entirely due to the long-range coulomb interactions between the ions, which in term is

determined by a single parameter, the effective charge of the positive/negative ion (Si and
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C, respectively). The Raman lines at 194 cm™ and at 204 cm™ are assigned as the E,

modes and line at 266 cm™ as the E; mode. We will observe the behavior of these modes

in other geometries and try to justify this assignment of Raman lines.
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Fig.4.10. Raman Spectra of 4H-SiC for back scattering (surface) geometry, where a) represents

Z('yY) Z configuration and b) represents Z('yX) Z configuration and c) represents

Z(XX) Z configuration.

Back scattering from the edge is another measurement geometry, which reveals

important results. As we know the group of the wave vector Kynonon 1S Cay in this case but

here we should understand that it is the local symmetry group of crystal and Cg, represent

the real symmetry point group of the crystal. The Raman spectra for all four
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configurations of back scattering configuration (edge) for 4H-SiC are shown in fig.4.11.
The Raman lines appearing in this geometry are not more than nine even though the
theoretically predicted number of lines is twenty-one. As we know that in C,, group, all
the representations are one-dimensional but we will label the modes using the notations
of the irreducible representations of Cg, in order to show from which mode, originates

one or more Raman line.

The 971 cm™ Raman line is the polar LO mode and can be labeled then as A; mode.
This mode has energy shift of ~ 4 cm™ in this geometry, which is consistent with our
theoretical results given in fig.4.9. Hence it confirms that this is the longitudinal axial
mode (LA). There is another new mode at 839 cm™, which does not appeared in BS
(surface) geometry. We can assign this 839 cm’ line as E; mode because these (E;)
modes are not allowed in BS (surface) geometry according to our theoretical results (see
table.4.5.1). If we compare the intensity of 266 cm™ line in both BS (surface) and BS
(edge) geometries, this mode is also a good candidate for E; mode as it is also

significantly enhanced in BS (edge) geometry.

According to theory, this E; (266 cm™) mode must also exhibit splitting in this geometry
but it is not observable because this splitting is very small to be resolved, i.e. of the order
of 0.014 cm™ according to our model (fig.4.9). The E, mode at 799 c¢m™ split into B, and
B, mode but as B; mode are not allowed in this geometry (see table.4.5.2) we cannot

observe this counterpart.

If we compare all the four scattering configurations for BS (edge) geometry, we can
see that the A; mode at 971 cm™ is stronger in all configurations except the X(yy);

configuration, which is not consistent with our result given in table.4.5.2. The one reason
can be that as we said that the C,, is just local group for our crystal system and the forms
of Raman tensor for C,, used for theoretical treatment is not fully compatible with our

crystal system and a more detailed microscopic theory is needed. The E; mode at 799
cm™ (splits into Bj+B, at © = 90%) is more intense in X(Zy); and X(yz); and it is

consistent with our theoretical results. The E; mode at 785 cm’'is very strong in all
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geometry and even stronger than the E; mode at 778 cm™ in the X(zz)x configuration.

All the other modes are consistent with theoretical results summarized in table.4.5.2 for

this geometry. We can also observe that

equivalent (see fig.4.11)

the x(zy); and x(yz);conﬁgurations are
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The Raman spectra of 4H-SiC for the four configurations of rectangular geometry

are shown in fig.4.12 and fig.4.13. Two of the rectangular geometries are equivalent

according to our theoretical results. Now we will study the experimental spectra and

compare them to our theoretical results. As we know the group of Kynonon 18 Cs for
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rectangular geometry and all representations are allowed in Raman and can correspond to

Aj and A, or B; and B..
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Fig.4.12. Raman Spectra of 4H-SiC for rectangular scattering (excited via surface) geometry, where
a) represents Z('yz)X configuration, b) represents z(yy)X configuration, c) represents z(Xz)X

configuration, d) represents Z(Xy)X configuration.

We will consider first the rectangular geometry for which we excite through surface
and receive through edge (see fig.4.12). The LO mode, A,, is shifted to 969 cm™ except
for the z(yz)x configuration. The E; mode at 799 cm™ splits into B; and B, or more

generally speaking into I'; and I';. This particular mode split into B; and B, where B; has
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no shift and it appears at 799 cm™ but the B; mode at 791 cm™ exhibits a large energy
shift of ~ 8cm™ towards lower wavenumbers.This energy shift of the B; mode is also
predicted theoretically (see fig.4.9), hence it suggests that the assigned representation for
this doublet (corresponding to E; mode at 799 cm™ in back scattering geometry from
surface) is correct. We can see the splitting of this mode, since both B; and B, modes are
allowed in this geometry. Another important feature to note about the E; mode at 785

cm’ is that it is significantly weaker in nearly all configurations of this geometry

The other case of rectangular geometry measured experimentally is when we excite
the sample through the edge and received from the surface (see fig.4.13). The LO mode
appeared at 971 cm™ while this mode in later case of rectangular geometry has energy
shifted to 969 cm™ in x(yz)z and x(yy)z, while in x(zx)y and x(zy)y configurations it is
shifted to 971 cm™. The E; mode at 839 cm™ appeared only in x(zx)y and x(zy)y but
disappeared in the other two configurations, i.e. X(yz)z and x(yy)z. The E, mode at 785
cm’ is quite dominant in all the configurations for this case of rectangular geometry,
which was not the case for rectangular geometry with excitation through the surface. The
E; mode at 196 cm™ is also present (but weak) in all configurations. This mode also
appeared in all the configurations of the rectangular geometry when we excite through
surface except the z(yy)x configuration. The 778 cm™ mode is strong in all configurations

for both cases of the rectangular geometry.

If we compare the two geometries, we found that the z(yy)x (fig.4.12) is equivalent
to x(yy)z (fig.4.13). Similarly the z(xy)x is equivalent to x(yx)z configuration. The z(yz)x
and x(zy)z configurations are non-equivalent because the mode at 839 cm™ disappeared
in z(yz)x configuration and there is large difference of intensity for the mode at 785
cm™. Similarly, the two configurations x(zx)z and z(xz)x are also non-equivalent (see
fig.4.12 & fig.4.13). Thus a more advance model is required to explain these

observations.

Now we will discuss the IR absorption result obtained experimentally for 4H-SiC. For 4H

polytype, we used two kinds of samples; one was bulk material of thickness 0.359mm,
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~

1

and the other sample of 4H was free-standing epitaxial layer of thickness 55um. For both

samples the c-axis was roughly perpendicular (8° off) to the sample surface. For the 6H

polytype we used two samples; one was bulk of thickness 3.031 mm with c-axis cut and

polished parallel to the c-axis. The other sample was free-standing epi layer of thickness

55um and with the c-axis nearly perpendicular (3.5° off) to the plane. These epitaxial

samples had negligible background doping of nitrogen. Note that the thickness of

samples used for IR absorption measurement unlike Raman has to be chosen

appropriately for transmission measurements.
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Fig.4.13. Raman Spectra of 4H-SiC for Rectangular (excited via Edge) geometry, where a) represents

X(zx)Z configuration, b) represents X(Zy)z configuration, c) represents

X(yX)Z configuration and d) represents X(YyYy)z configuration.




The infrared transmission measurements were performed on a ‘Biorad Fourier
Transform Infrared Spectrometer’, KBr Beam splitter and a DTGS (dueterated triglycine
sulphate) detector. Measurements were taken at room temperature with beam incident at
angle of 30°, 0.5 cm™ resolution and averaged over 1000 scans. The source used for IR
light was ordinary lamp. Reference spectra for transmission measurements were recorded
without any sample. The IR absorption spectra for 4H-SiC, bulk and epi sample are
shown in fig 4.15a and 4.15b respectively. There is only one geometry measured for IR
transmission measurements, as it was not possible to change the setup’s settings. The

geometry measured is shown in fig.4.14.

: T c-axis IT z-axis

\\

Fig.4.14. Sample geometry measured in IR experiment. The beam is incident on sample surface at a

30% angle. n, and n; is refractive index of air and sample respectively. The c-axis is polished

perpendicular to surface and is taken along z-axis of crystal.

In fig.4.15a (transmission measurements of the 4H bulk sample), we can see the line
at 610cm™ which is the characteristic axial mode, A, according to our assignment of
modes in Raman spectra. This mode is also reported in Raman scattering experiments.
This line disappears in sample with polarization of light perpendicular to c-axis of crystal,
i.e. ELc but it appears in our measurements because our samples (bulk and epi4H-SiC)
were cut and polished with c-axis orthogonal but 8° off and moreover the incident beam

has incidence angle of 30°. The Restrahlen band region ranges from wro=765cm™ to
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wLo=970cm™. There is a hump around 800cm'in the high reflectivity region, which is
also reported in 6H [20]. The origin for this hump is unknown however it possibly has

extrinsic nature.

In fig 4.15b (Transmission measurements of the 4H epi sample) strong line at
610cm™and a line at 738cm™ also appeared. The line at 738cm™ appears in sample with
both polarizations; E"c and E Lc, and is also reported in 6H-SiC [22]. Line with very
weak intensity at 747cm’" is also observed which is characteristic for a measurement with
polarization in direction parallel to c; E || ¢ but we observed it in our measurement due to
not perfectly orthogonal orientation of c-axis with respect to planes. The 738cm™and
747cm™ lines cannot be seen in the 4H bulk sample due to large thickness. Restrahlen

region lies between wro=765cm Tand wio=970 cm™.

In the IR spectra of the epitaxial free-standing layer(see fig.4.15a-b) we can see
interference fringes. These fringes are due to interference of the light reflected from the
top surface of the sample with the light reflected from the bottom one and can be used to

calculate the thickness of samples.
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Fig.4.15a. IR-absorption Spectrum for bulk 4H- SiC, b) IR-absorption spectrum for free standing epi
sample (4H-SiC)
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The relation to find thickness (at normal incidence) is

d - 1
2n(k; —k;) @19

where k;=1/A; and k,=1/A, are wavenumbers according to the wavelengths of two

subsequent fringes, and n is the refractive index in the region of these wavelengths.

The IR and Raman spectra of 6H-SiC are also shown in fig.4.16 — fig.4.20. These
spectra are not discussed in detail but the analysis of these spectra is quite similar to 4H-
SiC spectra and same theoretical arguments can be used to label the Raman lines though
6H-SiC has its own characteristic phonon modes. Due to the larger number of modes in
6H-SiC, an adequate model of the susceptibility is necessary for unambiguous

identification of the phonon symmetries.
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Fig.4.16. IR-absorption spectrum for free standing epi sample (6H-SiC). We were not able to observe

transmission spectra of bulk sample of 6H-SiC due to large thickness of bulk sample,
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Fig.4.17. Raman Spectra of 6H-SiC for back scattering (surface) geometry, where a) represents

Z(XX) Z configuration and b) represents Z('yX) Z configuration.
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1.04 Raman spectra of 6H-SIC
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Fig.4.18. Raman Spectra of 6H-SiC for back scattering (edge) geometry, where a) represents

Z(xX) z configuration and b) represents z(yX) Z configuration.
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1.0 4 Raman Spectra of 6H-SIiC
Rectangular Geometry (E via Edge)
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Fig.4.19. Raman Spectra of 4H-SiC for Rectangular geometry ( excited via Edge), where a)

represents X(2Y)z configuration and b) represents X(yX)z configuration.
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104 Raman Spectra of 6H-SiC
' Rectangular Geometry (EL via Surface)
Z(xZ)x
0.8 - 789 | 9%
N
2 0.6 1
©
c
O«
€ 0.4
- 797
i 767
0.2 150 241
., 236 504 \ L
\ }
I I I I I 1
0 200 400 600 800 1000
Raman Shift cm™"
(@)
1 0 4 Raman Spectra of 6H-SiC
Rectangular Geometry (E via Surface)
(xy) L /789
X(xy)z
0.8 y
2~ 0.6
»
G
€ 044 /965
767
150 \ /797
024 \
241
y
0.0 - :
I 1 I I 1
0 200 400 600 800 1000
Raman Shift (:m"I

(b)

Fig.4.20. Raman Spectra of 4H-SiC for Rectangular geometry (excited via Surface), where a)

represents Z(Xz)x configuration and b) represents z(Xy)X configuration.

93



5. Conclusions

The purpose of this study was to explore the possibilities for extracting maximum
information about the phonon properties of 4H, 6H and possibly, higher polytypes of SiC
from the Raman Spectra recorded in different geometries, as well as from the infrared
reflection and transmission spectra. We have shown that observation of spectra recorded
in different geometries is crucial for the assignment of phonons symmetries to the
experimentally observed lines. Raman spectroscopy offers more flexibility than the IR
spectroscopy in this respect without special sample preparation. In addition, Raman
spectroscopy allows studying phonons with energies within the IR Restrahlen band and

is, therefore, preferable technique.

Aided by the lattice dynamical model (LDM) and group theoretical considerations,
we have been able to assign symmetries to the phonons associated with different lines in
the Raman spectra. However, in some cases this assignment should be treated as
tentative, because the existing theory does not explains completely the all intensity
variations of the lines with the experimental geometry. We believe that adequate
description may be obtained if the macroscopic model for the susceptibility of the crystal
is built, and we are now in process of development of such a model using the so-called

bond polarizability concept.

A rigorous identification of the mode symmetries will provide important feed back
information to lattice dynamic calculation. So far, such calculations employ information
about the phonon energies and not about associated symmetries. As a consequence,
usually the LDM provides good description of the phonons energies, where as this is well
known within this field that the eigenvectors (i.e., the corresponding atomic

displacements as calculated by theory) are quite wrong employing experimentally-found
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symmetries in conjunction with the corresponding phonon energies will certainly provide

a ground for improvement for LDM.

Finally, we have found empirically (using our LDM) that the ionicity of the bonding
is the major (if not the only) parameter of affecting the shift of LO mode and splitting of
the TO modes with changing the direction of the phonon wave vector with respect to the
crystal axis. Since this shift and splitting can be easily measured using different Raman
arrangements, the experiment provides a measure for the ionicity of the crystal. In the
case of 4H-SiC, we find that the experimentally observed splitting and shift are very well
reproduced by our LDM if ionicity of 12% is used, a value in excellent agreement with

the literature data [29].

5.1. Future Directions

The perspective for future work is to build full microscopic model of polarizability of
lattice based on the so-called Bond-Polarizability Model. That will provide more incite
into our experimental result. From this model we can construct explicit expressions for
the component of polarizability derivative and we can even expect to be able to be
synthesize the whole spectrum theoretically. The main goal of this diploma work was to
obtain the experimental data and provide initial identification of the lines, which will be

used for rather more detailed comparison with theory in future.
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