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SINGLE PARTICLE MOLECULAR

ORBITALS

General remarks

Unlike the case of NV center in diamond, and other
similar defects such as the axial divacancy in SiC, al-
though we expect the single charged Si vacancy to still
have a C3� symmetry, it can still be interpreted as a very
weakly broken Td symmetry. This is because all four
nearest neighbors to the vacancy are carbon atoms with
very similar distances (di�ering by �1%) from the near-
est silicon atom in a perfect crystal, and we do not expect
this qualitative feature to change much upon removal of
the silicon atom. We thus anticipate that the form of A1

symmetry molecular orbitals will be very close to those
of Td:

uTd = a+ b+ c+ d;

vTd = a+ b+ c� 3d;
(1)

where the normalization has been omitted for brevity.
Based on the `nearly-Td' symmetry we also anticipate
that state v will be near-degenerate with states e (in
Td they are degenerate). As we show below, our single-
particle molecular orbitals obtained using DFT indeed
con�rm these qualitative expectations. Combining re-
sults from DFT with analytical calculations we can de-
rive further information, such as the coe�cients in the
molecular orbitals, overlap integrals and on-site Coulomb
energies.

First principles calculations

In order to complement the main group theoretic
results, density functional theory (DFT) was used to
obtain single particle molecular orbitals (MOs) of the
charged Si-vacancy center in 4H-SiC. The ordering of
the defect states is obtained from the calculated Kohn-
Sham eigenstates around the bandgap of 4H-SiC. The
spin-polarized calculations were carried out using the
Quantum-ESPRESSO package [1], within the general-
ized gradient approximation (GGA) [2] of Perdew-Burke-
Ernzerhof (PBE) [3]. In this work, we report the results
for the V�1Si at the h-site in a 6 � 6 � 2 (576-atoms) su-
percell with �-centered 2 � 2 � 2 k-point sampling ac-
cording to Monkhort-Pack method. The large size of
the supercell considered here ensures a reduction in the
defect-defect interactions. This produces nearly-
at de-
fect states that are labeled as u/�u (A1-symmetry), v/�v

(a) �u (A1-symmetry) (b) �v (A1-symmetry)

(c) �ex;y (E-symmetry)

FIG. 1. (color online) Isosurface plots (5 � 10�3e=a:u�3)
for the optically-active minority spin MOs of the negatively
charged silicon vacancy center V�

Si
in 4H-SiC: (a) the highest

occupied orbital, �u, (b) the lowest unoccupied orbital, �v, and
(c) the next higher unoccupied orbital, �ex;y.

(A1-symmetry)and e/�e (E-symmetry). Here, the let-
ters with bar overhead represent the minority spin state,
with the excess of three-electrons in the majority spin
states. The MOs of the defect plotted in Figure 1 dif-
fer from those obtained with group theoretic methods
(using symmetry-adapted sp3-orbitals) in that they are
not restricted to the dangling bonds only. In DFT-
calculations no such restriction is made and it includes
contributions from other electronic states of the crystal
as well. Nonetheless, the defect states can be seen to
be highly localized on the carbon atoms surrounding the
defect. The majority spin u, is found to be resonant
with the valence band, while the higher energy defect-
states lie in the band gap. This ordering of the defect
states can be seen in Fig.2. Thus, the DFT-results re-
produce the correct symmetries expected from the group
theoretic results and provide the ordering of the defect
states relative to each other. In the main text we used
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FIG. 2. The energy ordering of the defect-induced majority-
and minority-spin states.

group-theoretic approach to obtain single-particle MOs
from the symmetry-adapted linear combinations of the
sp3-orbitals belonging to the four carbons surrounding
the silicon vacancy. However, group theory does not yield
the relative ordering of states with same symmetry, which
can be obtained from the DFT calculations. In Fig.3, we
choose a di�erent isosurface (compared to the isosurface
plots in Fig.1) to showcase the bonding- and the anti-
bonding characters of the A1 symmetry states u and v,
respectively. Thus, DFT results can be used to shed light
on the relative ordering of the MOs qualitatively (bond-
ing vs. anti-bonding) and quantitatively (Fig.2).

(a) �u (A1-symmetry) (b) �v (A1-symmetry)

FIG. 3. (color online) Isosurface plots (5 � 10�4e=a:u�3) for
the optically-active minority spin MOs with A1-symmetry,
showing: (a) bonding character of u, and (b) anti-bonding
character of v.

Coulomb interaction and overlap integrals

The Coulomb interaction Hamiltonian can be grouped
as Vc =

P
i6=j vij +

P
i vii in terms of interactions be-

tween di�erent sites (denoted by ij) and on-site (ii) in-
teractions. Therefore, the Schr�odinger equation in the

basis of sp3 dangling bonds [4] takes the form of0
BB@
vaa vab vab vad
vab vaa vab vad
vab vab vaa vad
vab vab vab vdd

1
CCA = En

0
BB@

1 �1 �1 �2
�1 1 �1 �2
�1 �1 1 �2
�2 �2 �2 1

1
CCA (2)

in terms of the overlap integrals �1 =
�
 a b d

3r and
�2 =

�
 a d d

3r between the bonds. For Eq. (2) to
have non-trivial solutions for each eigenenergy En (n =
u; v; ex; ey), the following determinant has to be zero,��������
vaa � En vab � En�1 vab � En�1 vad � En�2
vab � En�1 vaa � En vab � En�1 vad � En�2
vab � En�1 vab � En�1 vaa � En vad � En�2
vab � En�2 vab � En�2 vab � En�2 vdd � En

��������
= 0

(3)
Note that the sites a; b; c are equivalent due to the sym-
metry of the basal plane. The Coulomb interaction be-
tween the sites a and d is roughly equal to that of be-
tween a and b, i.e. jvadj = (1 � �)jvabj where � ' 0,
since the bond length along the c-axis is only slightly
distorted from the basal ones as shown by the density
functional theory calculations. Since all sites a-d have
carbon atoms, jvddj = jvaaj = v0. Moreover, the o�-site
Coulomb interactions are smaller than the on-site inter-
actions, because of the 1=r dependence of the electro-
static potentials, which can be expressed as jvabj = �jvaaj.

Solutions of Eq. (3), with the realistic assumption
lim � ! 0, leads to the energies of MOs:

Eu =� v0(�+��)

1 + 2�1 � 3�22
;

Ev =� v0(����)

1 + 2�1 � 3�22
; (4)

Eex;y =� v0(1� �)

1� �1
;

up to O(�2). The coe�cients � and �� are given by

� =1 + �1 + �(1� 3�2);

�� =
�
�21 + 3�22 + �2(6�1 � 6�2 + 4)

+�
��6�1�2 � 2�1 + 6�22 � 6�2

��1=2
;

(5)

in terms of the overlap integrals �1, �2, and the o�-site
to on-site Coulomb ratio �. In the case of zero over-
lap between the bonds (�1 = �2 = 0), according to
Eq. (4), the energies Ev and Eex;y become equal, i.e.
Ev = Eex;y = �v0(1 � �) and Eu = �v0(1 + 3�), also
indicating that Eu < Ev. This can be understood as the
defect's asymptotic limit to tetrahedral symmetry.

The true bene�t of the above treatment is realized once
it is used in conjunction with the energies calculated by
DFT. By using the MO energies obtained by DFT (Fig.2)
in Eq. (4), we �nd the previously unknown overlap in-
tegrals, the on-site potential energy and the Coulomb
ratio of the defect to be �1 = 0:0034, �2 = 0:054,
v0 = 1:177eV, and � = 0:285, respectively. Furthermore,



we calculate the eigenfunctions satisfying Eq. (3) as,

u = �u(a+ b+ c) + �ud;

v = �v(a+ b+ c) + �vd;

ex = �x(2c� a� b);

ey = �y(a� b);

(6)

with the coe�cients obtained as �u = 0:523, �u = 0:423,
�v = �0:272, �v = 0:882, �x = 0:408, and �y = 0:707.
The coe�cients of u and v only slightly di�er from the
readily known coe�cients of Td symmetry [5], i.e. �u =
�u = 0:5, �v = �0:289, and �v = 0:866. Later on, we
use these coe�cients to estimate the zero-�eld splitting
of the ground state leading to a remarkable agreement
with the experimentally measured values.

Energy order of the doublets

Due to the many-particle nature of the doublets,
we cannot obtain the ordering of the states using
DFT, which is an e�ective single-particle description of
the system. Therefore, we analyzed the ordering via
Coulomb Hamiltonian Hc=

P
hi +

P
i;j Vee(ri; rj) using

the wave functions of the states 	i
d1-d5 given in Table. I

of the main text. One electron (hole) Coulomb terms are
included in hi, whereas Vee(ri; rj) = e2=(4��0jri � rj j)
is the two-particle Coulomb repulsion potential. Eigen
values of hi in MOs basis are represented by � and
can be estimated from DFT. Many-particle Coulomb
integrals are given as j0ll=

�
�ll(1)Vee�ll(2)d

3r1d
3r2,

jlm=
�
�ll(1)Vee�mm(2)d

3r1d
3r2, and

klm=
�
�lm(1)Vee�lm(2)d

3r1d
3r2. The integrals j0ll,

jlm, and klm are the one-center Coulomb integral,
two-particle Coulomb repulsion direct and exchange
integrals, respectively. Charge density is de�ned as
�lm(i) =  l(i)

� m(i) belonging to the ith particle in the
basis of sp3 hybridized dangling bond wave functions
with l;m=fa; b; c; dg and l 6=m. We obtain the Coulomb
energies of doublets as,

EEe3 =�e3 + 0:67j0aa + 2:33jab � 0:33kab (7)

EA2

ve2 =�ve2 + 0:22j0aa + 1:22jab + 1:56jad

� 1:22kab + 0:78kad (8)

EEve2 =�ve2 + 0:41j0aa + 1:04jab + 1:56jad

� 0:04kab � 0:78kad (9)

EA1

ve2 =�ve2 + 0:74j0aa + 0:70jab + 1:56jad

+ 1:30kab � 0:78kad (10)

EEv2e =�v2e + 0:09j0aa + 0:61j0dd + 0:40jab + 1:90jad

� 0:30kab � 0:89kad (11)

where the relationship �� j0 � j � k holds and due to
the nearly Td symmetry of the center charge localization
on the basal and z-axis carbon atoms are assumed to
be similar, i.e., j0aa ' j0dd. Furthermore, we obtain the
ground state energy in a similar way:

Eg = 1:44(jab � kab) + 1:56(jad � kad): (12)

Assuming �v2e > �ve2 > �e3 , the ordering of doublets
becomes EEe3 , E

A2

ve2 , E
E
ve2 , E

A1

ve2 , and EEv2e increasing in
energy.

THREE-PARTICLE STATES

Because of the near-degeneracy of state v with states
ex and ey, it is energetically favorable for two electrons to
occupy the e states instead of paying the energetic cost of
doubly occupying the only slightly lower in energy state
v. As a result, in the ground state the occupied states
are v, ex and ey, in the three-hole picture.

For the ve2 ground state, the three hole con�guration
space is spanned by 32 (2
 4
 4) basis functions in the
form of single particle Kronecker products f j� = (fvg 

f�; �g)
(fex; eyg
f�; �g)
(fex; eyg
f�; �g). However,
consideration of the Pauli exclusion principle discards 8
of them leaving 24 basis states.

Moreover, the single particle irreducible matrix repre-
sentations for the cases where the degeneracy lies only in
the orbital, only in the spin, or in both spaces are simply
�E(R)
1s, 1o
�E1=2

(R), or �E(R)
�E1=2
(R), respec-

tively. Note that the identity matrices are de�ned as 1o
for the orbital and 1s for the spin subspace. The explicit
form of the matrices �(R) are given in Table I.

R �E(R) �E1=2
(R)(

E
�E

) "
1 0

0 1

#
�
"
1 0

0 1

#
(
C+
3

�C+
3

) "
� 1

2 �
p
3
2p

3
2 � 1

2

#
�
"
�� 0

0 ���

#
(
C�3
�C�3

) "
� 1

2

p
3
2

�
p
3
2 � 1

2

#
�
"
��� 0

0 ��

#
(
��1

���1

) "
1 0

0 �1

#
�
"
0 �1

1 0

#
(
��2

���2

) "
� 1

2 �
p
3
2

�
p
3
2

1
2

#
�
"
0 ���

� 0

#
(
��3

���3

) "
� 1

2

p
3
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3
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1
2

#
�
"
0 ��

�� 0

#

TABLE I. Irreducible matrix representations of E and E1=2

for orbital and spin degrees of freedom, respectively. �E1=2
is

given in helicity basis with � = exp i2�=3.

For the multi-particle vexey ground state con-
�guration, the irreducible matrix representation

�
(j)
��(R) can be decomposed into its orbital and

spin components for each particle, i.e. �
(j)
��(R) =�

(1
 �E1=2
)
 (�E 
 �E1=2

)
 (�E 
 �E1=2
)
�(j)
��

(R). In

this form, application of the projection operator [5] on



each basis function,

P(j)f j� = (Ij=h)
X
R

IjX
�

�(j)(R)��(j)��(R)f
j
�; (13)

yields the symmetry adapted basis functions belonging
to the jth representation of the ground state. Character
table of C3� is given in Table II. This gives us a prescrip-
tion for generating all the partners of any basis function
belonging to a given representation. Further combina-
tions of these symmetry adapted basis functions are then
formed according to the spin con�gurations listed in Ta-
ble III to �nally obtain all the quartet and doublet wave
functions of ve2 con�guration listed in Table II of the
main text. The wave functions for the uve excited state
quartet (q2) are also produced in the same way.

E C+
3 C

�
3 ��1��2��3

�E �C+
3
�C�3 ���1 ���2 ���3

A1 1 1 1 1 1 1 1 1 1 1 1 1

A2 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1

E 2 1 1 0 0 0 2 1 1 0 0 0

E1=2 2 1 1 0 0 0 -2 -1 -1 0 0 0
1E3=2 1 -1 -1 i i i -1 1 1 -i -i -i
2E3=2 1 -1 -1 -i -i -i -1 1 1 i i i

TABLE II. Character table of C3� double group. 3-particle
coordinate (spin) space belongs to the �rst (last) three rows.

D1=2 
D1=2 
D1=2

�s S ms  ms

S

D3=2 3=2

+3=2 j���i
+1=2 j���i+ j���i+ j���i
�1=2 j���i+ j���i+ j���i
�3=2 j���i

D1=2 1=2
+1=2 j���i � j���i
�1=2 j���i � j���i

D1=2 1=2
+1=2 j���i+ j���i � 2j���i
�1=2 j���i+ j���i � 2j���i

TABLE III. Free space spin con�guration of three holes in
terms of spin up � and down � states reduced into irrep. of
a quartet D3=2 and two doublets D1=2.

SPIN-ORBIT ASSISTED TRANSITIONS

AMONGST DARK DOUBLET STATES

We show the spin-orbit coupling matrix elements be-
tween all doublet manifolds d1�d5 in Table IV using
Eq.1 of our manuscript with the symmetry-adapted ba-
sis functions given in Table I. The spin-orbit coupling
parameters that are perpendicular and parallel to the
C3 axis of the defect are represented by �? and �z, re-
spectively. Each element of the matrix is evaluated by
h	ijjHSOjj	ji where i and j are the wave functions given

as the row and column headings. We also omit the dark
doublets, much higher in energy, lying in between the
excited quartet states q1 and q2. These will either tran-
sition to the lowest excited quartet state (q1) or along
the doublet ladder to the �ve lower doublet states. The
key thing to notice here is, as shown in Table IV, all
doublet states except d5 have spin-orbit assisted allowed
transitions to the lowest d1 doublet. However, d5 dou-
blet can transition to d1 through the other doublets in
between and also has strong transition rate -just like d1-
into the ground spin ms = �3=2 states by itself which
will assist the optical spin polarization process. There-
fore, any other high lying doublet states we omitted in
this �ne structure will follow the general paths shown in
our manuscript and will not a�ect the dominant spin-
polarization channel identi�ed as to be through the d1
doublet in our manuscript. Note that d1 is energetically
the closest doublet to the ground state (as shown above)
and it is also the only one connected to the q1 quartet
with a directly allowed spin-orbit assisted transition.

SPIN-SPIN INTERACTION

Spherical tensor components

The spin dipole-dipole operator given in terms of the
single particle operators Sd = s

i �sj�3 �si � r̂ij� �sj � r̂ij�
can be expressed as fA+B + C +D + E + Fg, using
the following spherical tensor components,

A = �4
p
�=5 Y 0

2 sizs
j
z; B =

p
�=5 Y 0

2

�
si�s

j
+ + si+s

j
�
�
;

C;D = �
p
6�=5 Y �12

�
si�s

j
z + sizs

j
�
�
;

E; F = �
p
6�=5 Y �22 si�s

j
�: (14)

Orbital parts of A and B terms involving the spherical
harmonic Y 0

2 belong to the A1 symmetry, whereas all
other terms belong to the E symmetry. Since the ground
state wave functions (Table II of the main text) possess
an A2 orbital symmetry, only A and B terms of Eq. (14)
will cause the zero �eld spin-splitting of the ground state;
however, for a q2 excited state with E orbital symmetry
and corresponding spin symmetries listed in Table II of
the main text, all terms can contribute to the splitting.

We �rst calculate the matrix elements of Sd for each
wave function listed in Table II of the main text by di-
rect evaluation of its spin components. The remaining
spatial dependence of the matrix elements can then be
analyzed through the Wigner-Eckart theorem using the
spatial components of the spherical tensors listed above.

Ground state zero-�eld spin splitting

In the main text, we report the zero-�eld spin (ZFS)
splitting of the ground state in a compact form as


g = 
0h�A2

ve2 jjI2jj�A2

ve2i=
p
10; (15)

where I2 is an irregular solid harmonic of second rank,
i.e. Iml =

p
4�=(2l + 1)Y m

l =rl+1 and 
0 = �0g
2�2B=(4�).
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p
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2
p
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p
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p
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2
��?
2 0 0 0 0 0 0 0 0 0 0 �i�?
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	1
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2 0 0 �i�zp
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0 0 0 0 0 0 0 0 ��?
2 0 0
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2 0 0 0
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0 i�?
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2 0
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0 i�?
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2

TABLE IV. Spin-orbit matrix elements amongst the dark doublet states. Spin-orbit parameters of the defect are given by �z
and �? along the C3 axis and the basal plane of the defect, respectively.

In its open form, it can be written as


g = 
0

r
�

5

X
i>j

hvexeyjj
Y 0
2;ij

r3ij
jjvexeyi; (16)

where Y 0
2;ij=r

3
ij can be treated as a pair operator. In

terms of the direct and exchange integrals [5, 6], the ex-
pectation value of any pair operator F is given by,

hXjjF jjXi =
X
i>j

fhaiaj jf(i; j)jaiaji

�haiaj jf(i; j)jajaiig ;
(17)

where F =
P

i>j f(i; j) is the total pair operator and X
is the multi-particle antisymmetrized product (Slater de-
terminant) de�ned as AP [a1(1)a2(2) � � � an(N)]. In the
case of ground state ZFS, these are f(i; j) = Y 0

2;ij=r
3
ij and

X = AP [v(1)ex(2)ey(3)].

A quantitative estimate of ZFS splitting can be ob-
tained by switching back to the atomic orbitals,


g = h	1;2
g jHS j	1;2

g i� 3

2

� h	3;4
g jHS j	3;4

g i� 1

2

=

0
4

�
�adhr�3ad i(1� 3 cos2 �ad) + �abhr�3ab i

�
; (18)

where the �ab = 1:443 and �ad = 1:557 are the respective
weight factors of the expectation value hY 0

2;ij=r
3
iji origi-

nating from total ad and ab pair contributions of MOs
after evaluating the determinantal multi-particle wave
functions according to Eq. (17) and using the explicit
forms of u, v, and ex;y given in Eq. (6). This equation
can also be written in a more familiar form starting from

the spin dipole-dipole interaction as


g =
3

2

0

*
1� 3 cos2 �

r3ij

+
�
A2

ve2

�
S2
z �

1

3
S(S + 1)

�
; (19)

where 
g becomes D[S2
z � S(S + 1)=3]. So far we as-

sumed all the charge of unpaired electrons is localized on
the neighboring carbon atoms. However, as previously
reported [7], only 62:3% of total charge is localized on
the neighboring carbon atoms, and this yields to a re-
duction of roughly � = (1 � (0:377)2) = 0:858 in 
g, i.e.

g ! � 
g.

Evaluation of Eq. (18) with these weight factors and
structure parameters calculated via DFT, i.e. rab =
3:3563�A, rad = 3:3567�A, and �ad = 35:259�, as well as
accounting for the missing charge, results with a ground
state ZFS splitting of 2
g � �68MHz (D < 0) for an
h-site V�Si defect in good agreement with the experimen-
tally observed values [8, 9].

LAMBDA SYSTEM

A �-type three-level system can be created by a mag-
netic �eld transverse to the C3-axis. Such a �eld will
mix states in the ground and excited manifolds in dif-
ferent ways. This is because in the ground state man-
ifold there is a small spin-spin splitting between states
with jSzj = 3=2 and jSzj = 1=2, whereas the correspond-
ing states in the excited manifold are split by the much
larger spin-orbit interaction. We assume a weak enough
magnetic �eld such that the coupling of the spin states is



much smaller than the spin-orbit term �e. This allows
the eigenstates in the excited manifold to remain in the
form shown in the main text (without a B-�eld). There
are several choices for the composition of the � system.
Below we present some of these options. In all cases, the
lower levels are eigenstates of Ŝx, which in terms of the
states in Table I of the main text are given by
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#
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in descending hSxi value, 3/2,1/2,-1/2, -3/2 and where,
for simplicity, we have ignored a small correction from
the ZFS.
In the �rst approach for a � system we can select states

with the same weight of j """i, e.g., states f	1
g;x;	

4
g;xg

or f	2
g;x;	

3
g;xg. In the excited state manifold then we

select 	+
e , which is de�ned in the main text and has well-

de�ned projection of spin along the z (or C3) axis, due to
the suppression of Zeeman mixing originating from the
large SO interaction. The e�ect is similar to the selection
rules in self-assembled quantum dot electron-trion sys-
tems under a Voigt B �eld. Because of this composition
of the Lambda system, the polarization of the two tran-
sitions is the same. The frequency however is di�erent,
and that degree of freedom can be used as the `handle'
with which to the emitted photon can be manipulated.

An alternate scheme for a � system is to select as lower
levels the eigenstates of Ŝx with eigenvalues -1/2 and 3/2,
	3
g;x and 	1

g;x. In the excited state manifold the rel-

evant state is then (	7
q2 + 	8

q2)=
p
2, i.e., again mixing

to the states with di�erent spin projection along z has
been ignored in the excited manifold due to the large SO
splitting. We note that here the two transitions have the
same polarization but, unlike the scheme above, di�er-
ent dipole moments, originating from the di�erent coef-
�cients of 	3

g, 	
4
g in the states 	3

g;x and 	1
g;x.
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