RESEARCH ARTICLE | DECEMBER 04 2008

Theoretical consideration of step-flow and two-dimensional ${\sf nucleation}$ modes in homoepitaxial growth of $4H\text{-}{\rm SiC}$ on **(0001) vicinal surfaces under silicon-rich condition**

[K. Mochizuki](javascript:;)

Check for updates

Appl. Phys. Lett. 93, 222108 (2008) <https://doi.org/10.1063/1.3043433>

[Theoretical consideration of step-flow and two-dimensional nucleation](http://dx.doi.org/10.1063/1.3043433) [modes in homoepitaxial growth of 4](http://dx.doi.org/10.1063/1.3043433)H-SiC on (0001) **vicinal surfaces under [silicon-rich condition](http://dx.doi.org/10.1063/1.3043433)**

K. Mochizuki^{a)}

Central Research Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601, Japan

Received 9 October 2008; accepted 17 November 2008; published online 4 December 2008-

Reported experimental results on homoepitaxial growth of 4H-SiC on (0001) Si-face vicinal surfaces under silicon-rich conditions in a $SiH_4 - C_3H_8 - H_2$ system are quantitatively analyzed according to the surface-diffusion theory dealing with step dynamics. The surface-diffusion length of C_2H_2 molecules, which are the main carbon-containing chemical species reacting with silicon adatoms on the surface, is determined to be $12-36$ nm at 1500 °C. According to the two-dimensional nucleation theory using these values, the maximum growth rate for step-flow growth is estimated as a function of the off-angle of 4*H*-SiC substrates. © *2008 American Institute of Physics*. DOI: [10.1063/1.3043433](http://dx.doi.org/10.1063/1.3043433)

Despite its polytypism, silicon carbide (SiC) has shown significant promise for high-power device applications.¹ This is due to homoepitaxial growth on off-oriented (0001) substrates (with an off angle θ larger than 1.5°),^{2-[4](#page-3-2)} in which polytype control is achieved by step-flow growth. On the other hand, to eliminate the basal plane dislocation issue that has hampered the reliability of bipolar⁵ and metal-oxidesemiconductor power devices, 6 there has been growing interest in the growth of $4H$ -SiC on nominal⁷ and vicinal^{8[,9](#page-3-7)} (0001) surfaces. Although an uncommon gas (methyltri-chlorosilane) was supplied in Ref. [7,](#page-3-5) a conventional $SiH_4 - C_3H_8 - H_2$ growth system for vapor-phase epitaxy (VPE) of SiC also achieved good surface morphology on 4*H*-SiC (0001) vicinal surfaces when the C/Si ratio (*r* is the atomic ratio of carbon and silicon in supplied gases) is less than unity: $r=0.5-0.75$ for $\theta=1^\circ$, growth temperature T_g =1500 °C, growth pressure, P_g =80 Torr,⁸ and $r=0.6$ for θ =0.79°, T_g =1600 °C, and P_g =250 mbar.⁹

Homoepitaxial growth on vicinal (0001) surfaces was achieved by Powell *et al.*^{[10](#page-3-8)} in 1991 for 6*H*-SiC with θ as small as 0.1°. Their polytype control was attributed to the presence of surface disturbances (e.g., dislocations), not to the surface step density.¹⁰ In recent studies on homoepitaxial growth of 4*H*-SiC, however, the step bunching was observed when $r=1$ for $\theta=1^{\circ}$ (Ref. [8](#page-3-6)) and $r=0.6$ for $\theta=0.42^{\circ}$,⁹ which means the epitaxial growths in Refs. [8](#page-3-6) and [9](#page-3-7) were carried out in the step-flow mode.¹¹ During step-flow growth under silicon-rich conditions, almost all of the step edges are assumed to be occupied by silicon [Fig. $1(a)$ $1(a)$], and they can accept no more silicon atoms until another carbon atom enters the step edges, as discussed by Nishinaga and Suzuki¹² with regards to molecular beam epitaxy (MBE) of GaAs under gallium-rich conditions.

According to the simulation of surface mass fluxes in $SiH_4 - C_3H_8 - H_2$ growth system, ^{13,[14](#page-3-12)} the surface reaction of silicon adatoms with C_2H_2 ,

$$
Si + (1/2)C_2H_2 \leftrightarrow SiC + (1/2)H_2
$$
 (1)

is most active among the surface reactions involved, including other carbon-containing species such as C_2H_4 , CH₄, CH₃, $Si₂C$, and CH₂. Based on the reaction in Eq. (1), Kimoto and Matsunami analyzed using the Burton–Cabrera–Frank¹⁵ (BCF) theory, the surface diffusion of silicon adatoms under carbon-rich conditions. However, they have not discussed the case under silicon-rich conditions.¹⁶

The BCF theory dealing with step dynamics 15 has been applied for MBE in order to discuss the surface diffusion of silicon adatoms,^{17[,18](#page-3-16)} gallium adatoms,¹⁹ and As_i and Sb_i molecules $(i=1, 2, \text{ and } 4)$.^{[20](#page-3-18)} Based mainly on the last approach by Mochizuki and Nishinaga, 20 the present study deals with surface diffusion of C_2H_2 molecules during VPE growth on 4H-SiC (0001) Si-face vicinal surfaces under silicon-rich conditions.

FIG. 1. Schematic of growing silicon-rich 4H-SiC (0001) Si-face vicinal surface showing (a) atomic arrangement (hydrogen-passivation effect ignored) and (b) surface diffusion of C_2H_2 molecules, and (c) distributions of supersaturation ratio for step-flow (broken curve) and two-dimensional nucleation modes (solid curve).

a)Electronic mail: kazuhiro.mochizuki.fb@hitachi.com.

Figure $1(b)$ $1(b)$ schematically illustrates the surface model, where Si–C bilayer steps with height *h* are separated by equal distance λ_o . It is known that SiC homoepitaxial growth on off-oriented (0001) substrates results in microscopic step bunching, which is peculiar to SiC polytypes. $\frac{11}{11}$ In the case of $4H-SiC$, two- and four-bilayer heights are dominant, $\frac{11}{11}$ i.e., *h*=0.504 or 1.01 nm. The steps are assumed to act as a uniform sink for the diffusing silicon adatoms and C_2H_2 molecules on the surface. As reported by Saito and Kimoto,⁸ growth rate *R* is limited by the supply of carbon under silicon-rich conditions. This fact allows the assumption that the surface diffusion of C_2H_2 molecules is a rate-limiting process.

Two modes are known to exist in the epitaxial growth of 4*H*-SiC. The first is step-flow growth mode, where nucleation on terraces does not occur. Since the net flux of C_2H_2 molecules onto the surface is equal to the diffusion flux toward steps, the continuity equation is¹⁵

$$
-D_{s}d^{2}n_{s}(x)/dx^{2} = J - n_{s}(x)/\tau_{s},
$$
\n(2)

where D_s and $n_s(x)$ are the surface diffusivity and the surface density of C_2H_2 molecules, respectively, and *J* is the flux of C_2H_2 molecules arriving at the surface. Under the boundary condition where $n_s(x)$ takes its equilibrium value n_{so} at the step edges, 19 the solution of Eq. ([2](#page-2-0)) is given by

$$
n_s(x) = J\tau_s + (n_{so} - J\tau_s) \left[\cosh(x/\lambda_s) / \cosh(\lambda_o/2\lambda_s) \right],\tag{3}
$$

where τ_s and λ_s $\equiv (D_s \tau_s)^{1/2}$ are the mean residence time and the surface diffusion length of C_2H_2 molecules, respectively. The flow of C_2H_2 molecules in the *x* direction $J_s(x)$ is obtained as

$$
J_s(x) = -D_s dn_s(x)/dx
$$

= $\lambda_s (J - n_{so}/\tau_s) \sinh(x/\lambda_s)/\cosh(\lambda_o/2\lambda_s)$. (4)

The step velocity is calculated by considering C_2H_2 molecules diffusing from both the left and right sides of the steps. Since two carbon atoms are provided by one C_2H_2 molecule at the step edges, ^{20}R is given by the product of the step velocity and tan θ (i.e., h/λ_o) as follows:¹⁶

$$
R = (4h\lambda_s/n_o\lambda_o)(J - n_{so}/\tau_s)\tanh(\lambda_o/2\lambda_s),
$$
\n(5)

where n_o is the density of sites of adsorbed C_2H_2 molecules on the surface. When $\lambda_s \gg \lambda_o/2$, *R* becomes independent of λ_o [i.e., $(2h/n_o)(J-n_{so}/\tau_s)$]. Since, according to Ref. [8](#page-3-6) *R* depends little on θ when $\theta = 4^{\circ} - 45^{\circ}$ but decreases when θ $= 1^\circ$, λ_s is estimated to be comparable to or less than $h/(2 \tan 1^\circ)$ [$h/(2 \tan 1^\circ) = 14.4$ nm for $h=0.504$ nm and 28.9 nm for $h=1.01$ nm. If n_o is assumed to be equal to the density of silicon adatom sites on the surface (1.21) $\times 10^{15}$ $\times 10^{15}$ $\times 10^{15}$ cm⁻³), *J*−*n_{so}*/ τ_s can be calculated from Eq. (5). As is clear from Fig. [2,](#page-2-2) when $\lambda_s = 12-18$ nm in the case of *h* $= 0.504$ nm and $\lambda_s = 24 - 36$ nm in the case of $h = 1.01$ nm, the least-squares fit of $J - n_{so}/\tau_s$ for $\theta = 1^\circ$ fits among those for $\theta = 4^{\circ} - 45^{\circ}$. This λ_s range agrees with the above estimated value (i.e., 14.4 and 28.9 nm).

The absolute values of the intercept with the vertical axes in Figs. $2(a)$ $2(a)$ and $2(b)$ give an equilibrium desorption flux of C_2H_2 molecules (n_{so}/τ_s) of $(0.5-1.2)$ $\times 10^{14}$ cm⁻² s⁻¹. This corresponds to the equilibrium vapor pressure of C₂H₂ molecules (P_o) of $(0.4-1.0) \times 10^{-4}$ Pa, which is obtained from Knudsen's equation, 20

FIG. 2. Dependences of $J - n_{so}/\tau_s$ on C/Si ratio calculated from Eq. ([5](#page-2-1)) for a surface diffusion length of 12–36 nm. Data denoted by symbols are taken from Saito and Kimoto's experiments (see Ref. [8](#page-3-6)), where 4*H*-SiC was grown on $4H$ -SiC (0001) substrates with an off-angle of $1^{\circ} - 45^{\circ}$ in a SiH₄ $(1.5-2.0 \text{ scm})$ -C₃H₈-H₂ (8.0 slm)-Ar (0.8 slm) system (sccm denotes standard cubic centimeters per minute and slm denotes standard liters per minute) at a growth pressure of 80 Torr and a growth temperature of 1500 °C. Solid lines and corresponding equations show the least-squares fit to the results for an off-angle of 1°.

$$
n_{so}/\tau_s = P_o/(2\pi m k_B T_g)^{1/2},\tag{6}
$$

where *m* is the mass of a C_2H_2 molecule and k_B is Boltzmann's constant. In regard to MBE growth, since molecules can arrive at the growing surface without any barrier and their beam equivalent flux can be measured, $20 n_{s0}/\tau_s$ can be obtained from Eq. (6) (6) (6) . In regard to VPE growth, however, *Po* is difficult to determine because of many related parameters. 21 The procedure described above is thus effective for estimating n_{so}/τ_s for VPE.

Next, the second growth mode, i.e., two-dimensional nucleation on terraces, is considered. Supersaturation ratios $\alpha_{\rm C}$ and $\alpha_{\rm Si}$ are defined as $n_s(x)/n_{so}$ for C₂H₂ molecules and similarly for silicon adatoms, respectively. As mentioned above, under silicon-rich conditions, the equilibrium vapor pressure of silicon adatoms must be similar to the incoming pressure of silicon, i.e., α_{Si} nearly equals unity.¹⁹ Since α_C reaches a maximum at the center of a terrace, i.e., $x=0$ [Fig. [1](#page-1-1)(c)], the maximum supersaturation ratio for SiC is obtained from Eq. (3) (3) (3) as

$$
\alpha_{\text{max}} \equiv \alpha_{\text{Si}} \alpha_{\text{C}}(x=0) \approx 1 + (\lambda_o n_o R / 4h \lambda_s)
$$

$$
\times (\tau_s / n_{so}) \tanh(\lambda_o / 4\lambda_s). \tag{7}
$$

Nucleation on terraces becomes dominant when α_{max} exceeds $\alpha_{\rm crit}$ [solid curve in Fig. [1](#page-1-1)(c)]. For a disk-shaped nucleation per second on a 10×10 nm² area, α_{crit} is given by¹⁹

$$
\alpha_{\rm crit} = \exp\{\pi h_1 \Omega \sigma^2 / [(65 - \ln 10^{12}) k_B^2 T_g^2] \},\tag{8}
$$

where h_1 is the one Si–C bilayer height (0.252 nm), Ω is the volume of the Si–C pair $(2.07 \times 10^{-23} \text{ cm}^3)$, and σ is the surface free energy, which is assumed to be 2.22 J/m^2 , as Kimoto and Matsunami¹⁶ speculated from the calculation for $3*C*-SiC (111) by Pearson *et al.*²² From Eqs. (7) and (8), the$ $3*C*-SiC (111) by Pearson *et al.*²² From Eqs. (7) and (8), the$ $3*C*-SiC (111) by Pearson *et al.*²² From Eqs. (7) and (8), the$ $3*C*-SiC (111) by Pearson *et al.*²² From Eqs. (7) and (8), the$ $3*C*-SiC (111) by Pearson *et al.*²² From Eqs. (7) and (8), the$ $3*C*-SiC (111) by Pearson *et al.*²² From Eqs. (7) and (8), the$ $3*C*-SiC (111) by Pearson *et al.*²² From Eqs. (7) and (8), the$

FIG. 3. Off-angle dependences of critical growth rate for a mode transition between step-flow (bottom-right region) and two-dimensional nucleation (top-left region) calculated with three sets of two parameters, namely, equilibrium desorption flux and surface diffusion length of C_2H_2 molecules, obtained from Fig. [2.](#page-2-2) Data denoted by symbols are taken from the experi-ment of Saito and Kimoto (see Ref. [8](#page-3-6)).

off-angle dependence of the critical growth rate (R_c) for mode transition between step-flow and two-dimensional nucleation is calculated at $T_g = 1500$ °C. As is clear from Fig. [3,](#page-3-21) the range of R_C , originating from the variation in determining λ_s (Fig. [2](#page-2-2)), does not depend on *h* (*h*=0.504 or 1.01 nm). It is also confirmed that the three experimental data for step-flow growth in Ref. [8](#page-3-6) are in the bottom-right region under the curves calculated using the n_{so}/τ_s and λ_s values obtained from Fig. [2.](#page-2-2)

As expected from Eq. (7) (7) (7) , R_c increases with increasing n_{so} / τ_s . According to Eqs. ([1](#page-1-2)) and ([6](#page-2-3)), the increase in n_{so} / τ_s , i.e., the increase in P_o , is achieved by the reduction in the $SiH₄$ flow rate. However, to maintain *r* at less than unity (silicon-rich conditions), the C_3H_8 flow rate has to be limited, resulting in lower R_c . The calculated curves in Fig. [3](#page-3-21) are thus considered to be close to the practical limit at T_g =1500 °C. To carry out a similar calculation at different T_g , e.g., 1600 \degree C, ⁹ the dependence of *R* on *r* has to be experimentally determined because of the difficulty in estimating *Po* described above.

In summary, according to the surface diffusion and twodimensional nucleation theories, a surface diffusion length of C_2H_2 molecules on $4H\text{-SiC}$ (0001) was derived as 12–36 nm at 1500 °C in a $SiH_4-C_3H_8-H_2$ system, and the maximum growth rate for step-flow growth was estimated as a function of the off-angle of 4*H*-SiC substrates.

- ¹H. Matsunami, [Jpn. J. Appl. Phys., Part 1](http://dx.doi.org/10.1143/JJAP.43.6835) **43**, 6835 (2004).
²N. Kuroda, K. Shibabara, W. S. Voo, S. Nisbino, and H.
- N. Kuroda, K. Shibahara, W. S. Yoo, S. Nishino, and H. Matsunami, Extended Abstracts of the 19th Conference on Solid State Devices and Materials, Tokyo, 1987 (unpublished), p. 227.
 ${}^{3}H$ S. Kong, J. T. Glass, and P. E. Davis, J. A.
- ³H. S. Kong, J. T. Glass, and R. F. Davis, [J. Appl. Phys.](http://dx.doi.org/10.1063/1.341608) **64**, 2672 (1988).
⁴L. A. Powell, D. J. Larkin, J. G. Matus, W. J. Choyke, J. J. Bradshaw, J. ⁴J. A. Powell, D. J. Larkin, L. G. Matus, W. J. Choyke, J. L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang, and P. Pirouz, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.102492) **56**,
- 1442 (1990). ⁵M. Skowronski and S. Ha, [J. Appl. Phys.](http://dx.doi.org/10.1063/1.2159578) **99**, 011101 (2006).
⁶L Senzaki K. Kojima T. Kato, A. Shimozato, and K. Fukuda.
- ⁶J. Senzaki, K. Kojima, T. Kato, A. Shimozato, and K. Fukuda, [Appl. Phys.](http://dx.doi.org/10.1063/1.2221525) **[Lett.](http://dx.doi.org/10.1063/1.2221525) 89,** 022909 (2006).
- ⁷S. Leone, H. Pedersen, A. Henry, O. Kordina, and E. Janzén, Technical Digest of the International Conference on Silicon Carbide and Related Materials, Otsu, 2007 (unpublished), paper Tu-2B–1.
 ${}^{8}H$ Saito and T. Kimoto, Mater, Sci. Forum 483, 89.
- ⁸H. Saito and T. Kimoto, Mater. Sci. Forum **483**, 89 (2005).
⁹K. Kojima, J. Sanzaki, and H. Okumura, Extended Abstrac
- ⁹K. Kojima, J. Senzaki, and H. Okumura, Extended Abstracts of the 69th Autumn Meeting of Japan Society of Applied Physics, Kasugai, 2008 (unpublished), p. 349 [in Japanese].
- ¹⁰J. A. Powell, J. B. Petit, J. E. Edgar, I. G. Jenkins, L. G. Matus, J. W. Yang, P. Pirouz, W. J. Choyke, L. Clemen, and M. Yoganathan, [Appl.](http://dx.doi.org/10.1063/1.105587) [Phys. Lett.](http://dx.doi.org/10.1063/1.105587) **59**, 333 (1991).
- ¹¹T. Kimoto, A. Itoh, H. Matsunami, and T. Okano, [J. Appl. Phys.](http://dx.doi.org/10.1063/1.365048) **81**, 3494 (1997) .
- ¹²T. Nishinaga and T. Suzuki, [J. Cryst. Growth](http://dx.doi.org/10.1016/0022-0248(91)90775-Z) **115**, 398 (1991).
- ¹³[J.](http://dx.doi.org/10.1016/j.jcrysgro.2004.04.038) Meziere, M. Ucar, E. Blanquet, M. Pons, P. Ferret, and L. Di Cioccio, J. [Cryst. Growth](http://dx.doi.org/10.1016/j.jcrysgro.2004.04.038) 267, 436 (2004).
- ¹⁴S. Nishizawa and M. Pons, [Chem. Vap. Deposition](http://dx.doi.org/10.1002/cvde.200606469) 12, 516 (2006). ¹⁵W. K. Burton, N. Cabrera, and F. C. Frank, *[Philos. Trans. R. Soc. London,](http://dx.doi.org/10.1098/rsta.1951.0006)*
- [Ser. A](http://dx.doi.org/10.1098/rsta.1951.0006) 243, 299 (1951).
- ¹⁶T. Kimoto and H. Matsunami, [J. Appl. Phys.](http://dx.doi.org/10.1063/1.356439) **75**, 850 (1994).
- ¹⁷H. C. Abbink, R. M. Broudy, and G. P. McCarthy, [J. Appl. Phys.](http://dx.doi.org/10.1063/1.1655818) **39**, 4673 $(1968).$
- ¹⁸E. Kasper, [Appl. Phys. A: Solids Surf.](http://dx.doi.org/10.1007/BF00617144) **28**, 129 (1982).
- ¹⁹T. Nishinaga and K.-I. Cho, [Jpn. J. Appl. Phys., Part 2](http://dx.doi.org/10.1143/JJAP.27.L12) **27**, L12 (1988).
- . 20K. Mochizuki and T. Nishinaga, [Jpn. J. Appl. Phys., Part 1](http://dx.doi.org/10.1143/JJAP.27.1585) **²⁷**, 1585 $(1988).$
- . 21T. Kimoto, H. Nishino, W. S. Yoo, and H. Matsunami, [J. Appl. Phys.](http://dx.doi.org/10.1063/1.353329) **⁷³**, 726 (1993).
- . 22E. Pearson, T. Takai, T. Halicioglu, and W. A. Tiller, [J. Cryst. Growth](http://dx.doi.org/10.1016/0022-0248(84)90244-6) **⁷⁰**, 33 (1984).