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Note 1. Analytical dynamical matrix and Kanzaki forces

Here we present the analytical formulas for computing the dynamical matrix and Kanzaki

forces in reciprocal space. For body-centered cubic (bcc) Fe, the dynamical matrix can

be derived analytically by considering the first- and second-nearest-neighbor interactions,

namely [1]

D11(q) = 4ac44

[
1− cos

aqx
2

cos
aqy
2

cos
aqz
2

]
+ a(c11 − c44) [1− cos(aqx)]

, (1)
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2
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aqy
2

cos
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2
. (2)

where a is the lattice constant of bcc Fe. c11, c12 and c44 are the elastic constants of bcc Fe.

Regarding the Kanzaki forces, an analytical approach has also been developed [2]. Specif-

ically, the concentration expansion coefficients are introduced as follows to describe the ex-

pansion produced by placing interstitial atoms at the Ox, Oy, and Oz octahedral interstices,

respectively.
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Then, the Fourier components of the Kanzaki forces can be derived as
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(9)

Here a and c are the lattice constants, and n3 is the probability of finding an interstitial

atom in the Oz octahedral sublattice.

Similarly, F1(q) and F2(q) can be obtained by a cyclic permutation of the coordinate

indices x, y, z and the index m. For instance, F1(q) is given by the permutations (m =

3)→ (m = 1), x→ y, y → z, z → x.
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Notably, in Eqs. (6), (10) and (11), a consistent origin is used in the coordinate system.

However, to use these equations in practice, one has to shift the origin to the location of the

point defect (here C interstitial), such as (0.5, 0, 0), (0, 0.5, 0) or (0, 0, 0.5) for the three

sublattices, respectively. Such a translational operation of the coordinates would lead to a

cancelation of the exponential phase factors in the three equations, namely, exp(−1
2
iqxa0),

exp(−1
2
iqya0) and exp(−1

2
iqza0). Hence, to use the analytical Kanzaki forces to calculate the

strain induced interaction, one needs to remove the exponential phase factors in Eqs. (6),

(10) and (11).
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Note 2. Accuracy of the lattice Green’s function

In this note, we inspect the accuracy of the lattice Green’s function. Since the lattice

Green’s function is the inverse of the dynamical matrix, we compare the phonon dispersion

of bcc Fe calculated from different approaches (analytical, finite displacement, and molec-

ular dynamics) to experiment [3] in Fig. 1. The derivations of the analytical approach are

provided in Note 1. The finite displacement approach is described in the Methods section

of the manuscript. The technical details of the molecular dynamics approach can be found

in Ref. [4]. Overall, the three approaches yield similar results and are all in good agree-

ment with experiment, especially in the vicinity of Γ, which is the most important part for

the present study. There is some discrepancy at the boundary of the Brillouin zone, e.g.,

the H point. This is because the analytical approach uses elastic constants as input and

can well capture the long-wavelength limit, but overestimates the phonon frequencies at

short-wavelength vectors. Due to error cancellation, the analytical results agree even better

with experiment. However, the consistency between the results from the finite displacement

method and molecular dynamics demonstrates that our calculated phonon frequencies (thus

the lattice Green’s function) are reliable, though the EAM potential [5] employed here is not

perfectly accurate compared to experiment. Since our benchmarking result is from the same

EAM potential, the choice of the potential seems appropriate. Therefore, the discrepancy in

the long-range strain induced interaction does not stem from the lattice Green’s function.
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Fig. 1. Phonon dispersion of bcc Fe obtained from different approaches (analytical, finite dis-

placement, and molecular dynamics). The experimental data are taken from Ref. [3].
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Note 3. HRTEM characterization

Alloy ingots are produced by arc-melting electrolytic Fe (99.99 wt.% purity), Cr (99.99

wt.% purity), and a Fe-C pre-alloy (2.15 wt.% C) under vacuum. The ingots are flipped and

melted 10 times during arc-melting to ensure homogeneity. The investigated microstructure

was obtained by austenitizing the alloy at 1150 ◦C for four hours followed by quenching in

water. Energy dispersive X-ray spectroscopy shows that Cr is homogeneously distributed in

the lattice.

TEM thin foils are prepared by grinding 3 mm-diameter discs to a thickness of 50 µm,

followed by twin-jet electropolishing in a TenuPol-5 (from Struers). Good thinning condi-

tions are achieved using an electrolyte consisting of 70 vol.% methanol, 20 vol.% glycerin

and 10 vol.% perchloric acid, flow rates between 15 and 20, and a voltage of 30 V at -11 ◦C.

HRTEM imaging is performed at the rim of the electron transparent region, using an FEI

Tecnai Supertwin F20 equipped with a field emission gun operating at 200 kV. The multi-

slice method embedded within the Java electron microscopy simulation software (JEMS)

is employed to simulate the HRTEM images using the atomic structures from EAM relax-

ations. A defocus of 75 nm with Cs = 1.2 mm is used. The specimen thickness is set to 35

nm as measured by the low-loss Electron Energy Loss Spectroscopy.
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Fig. 2. HRTEM analysis of the local strain fields induced by C interstitials. a, HRTEM

image of the (111)bcc plane of a Fe-Cr-C alloy. Orange arrows highlight the “dark spots” associated

with the local strain fields induced by C interstitials. b, An enlarged image of one local distortion

field (orange box) in a. The two yellow dashed boxes show a comparison between the experimental

HRTEM image and the one simulated using the distorted atomic structure from EAM relaxations.

The orange circles and blue dashed lines depict the deviation of a Fe atom from its ideal lattice

position (i.e., center of the hexagon). c,d, Similar analysis for the (001)bcc and (110)bcc planes of

the Fe-Cr-C alloy, respectively.
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Fig. 3. C-C interaction energies. C-C interaction energies as a function of interaction shell

computed directly from the EAM potential. The inset provides an enlarged view for the interactions

at the 6th−12th shells.
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Note 4. The DOS sampling approach

In this note, we discuss the technical details of the density of states (DOS) sampling

approach, which is employed to benchmark the accuracy of our Monte Carlo simulations

based on the microscopic elastic theory (MET).

Fig. 4. DOS of the total energies of the ordered and disordered phases obtained from sampling

105 configurations for a representative C concentration of 1.2 at.% C.

The internal energy of both the ordered and disordered phases at finite temperature (T )

can be computed by

U =

∫ +∞
−∞ Eg(E) exp(− E

kBT
)∫ +∞

−∞ g(E) exp(− E
kBT

)

=

∑n
i=1Ei exp(− Ei

kBT
)∑n

i=1 exp(− Ei

kBT
)
,

(12)

where g(E) is the DOS of the energy of the ordered (or disordered) phase. n is the total

number of configurations sampled and Ei is the total energy of the ith configuration. kB is

the Boltzmann constant.

The DOS of the ordered and disordered phases is randomly sampled using the EAM

potential for 105 configurations to ensure a full convergence. Each configuration is fully

relaxed (shape and atomic positions) using the EAM potential. Figure 4 presents the DOS

of the ordered and disordered phases for a representative C concentration, 1.2 at.%. By using

Eq. (12), the internal energies of the ordered and disordered phases can thus be computed

and are shown in Fig. 5.
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The entropy of a system is determined by the number of microscopic states and can thus

be expressed by

S = kB ln Ω, (13)

where Ω is the total number of microscopic configurations.

Fig. 5. Internal energies (left y-axis, solid lines) and entropies (right y-axis, dashed lines) of the

ordered (red lines) and disordered (blue lines) phases (1.2 at.% C) as a function of temperature.

For the ordered state, its configurational entropy can therefore be derived as

Sordered =kB ln Ωordered

=kB ln(C1
3 · C

NC
NFe

)

=kB ln
3 ·NFe!

NC!(NFe −NC)!

=kB [ln 3 + lnNFe!− lnNC!− ln(NFe −NC)!]

=kB [ln 3 + (NFe lnNFe −NFe)− (NC lnNC −NC)

−((NFe −NC) ln(NFe −NC)− (NFe −NC))]

=kB [ln 3 +NFe(lnNFe − ln(NFe −NC))

−NC(ln(NFe −NC)− lnNC)]

=kB

[
ln 3−NFe ln

NFe −NC

NFe

+NC ln
NFe −NC

NC

]
,

(14)

where C indicates a combinatorial number. NFe and NC are the number of Fe and C atoms,

respectively.
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Similarly, we can derive the configurational entropy for the disordered state as

Sdisordered =kB ln Ωdisordered

=kB ln(C
NC/3
NFe

)3

=kB

[
−3NFe ln

3NFe −NC

3NFe

+NC ln
3NFe −NC

NC

]
.

(15)

Hence, the free energy of the ordered (or disordered) phase can be calculated by

F = U − TS. (16)

Fig. 6. Free energies (left y-axis) of the ordered (red line) and disordered (blue line) phases (1.2

at.% C), and their difference (right y-axis, black line) as a function of temperature. The black

dashed line shows the critical temperature.

The calculated free energies of both the ordered and disordered phases for the C con-

centration of 1.2 at.% are shown in Fig. 6. By solving the equation Fordered = Fdisordered at

different C concentrations, we could then derive the critical temperature as a function of C

concentration. In the case shown in Fig. 6, the intersection of the two free-energy curves

corresponds to a critical temperature of 355 K.
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Fig. 7. Analysis of vibrational free energy. Helmholtz free energies including lattice vi-

brations (left y-axis) of two representative configurations (one ordered and one disordered) and

their difference (right y-axis) as a function of temperature. As shown by the blue shaded area,

the difference in the vibrational free energies of the ordered and disordered configurations is ∼1.7

meV/C atom at T = 0 K and ∼2.5 meV/C atom at room temperature, the latter of which is only

around 3% of the total energy difference at T = 0 K between the two configurations.
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Note 5. The self-consistent defect-chemistry (SC) approach

In this approach, we treat the presence of C in bcc Fe as different defects with different

formation energies and probabilities of occurrence. Since each C defect interacts with the

same tetragonal deformation potential, we introduce the concept of tetragonality dependent

formation energies. We consider three types of C defects: monomer (M), single-sublattice

dimer (SSD), and double-sublattice dimer (DSD). M denotes a single C atom. SSD refers

to a C dimer with two C located on the same sublattice, while DSD denotes the case with

two C on different sublattices. The pair interaction energies of different SSDs and DSDs are

shown by blue and green circles in Fig. 8a, respectively. For benchmark purposes, we first

perform all calculations using the same EAM potential [5] and refine all results using density

functional theory (DFT) after validation. As shown in Fig. 8b, we compute the formation

energy of each C defect as a function of the tetragonality (t = c/a) by

E
‖
f (t) = EnFe+mC‖

tot (t)− EnFe
tot (t)−mµC‖(t), (17)

E⊥f (t) = EnFe+mC⊥

tot (t)− EnFe
tot (t)−mµC⊥(t), (18)

where EnFe+mC‖

tot (t) is the total energy of the Fe supercell (n Fe atoms) with m C‖ (m =

1 or 2, corresponding to monomer and dimer, respectively) relaxed at a fixed t. Here,

C‖ (C⊥) indicates that the local distortion direction induced by the C atom is parallel

(perpendicular) to the distortion direction of the supercell. We note that since for DSDs

two C atoms induce distortions along two different directions, the distortion direction of the

supercell can be either parallel to one of them or perpendicular to both. Here, EnFe+mC‖

tot (t)

refers to the former case, while EnFe+mC⊥

tot (t) denotes the latter. EnFe
tot (t) is the total energy of

the same body-centered tetragonal (bct) Fe supercell without C. µC‖ (µC⊥) is the chemical

potential of C‖ (C⊥), which will be determined self-consistently. The formation energies of

the C‖ defects decrease with increasing the c/a ratio, while those of the C⊥ defects increase

(Fig. 8b). This indicates that the C‖ defects tend to stabilize the bct Fe-C martensite, while

the C⊥ ones destabilize it.

The concentration (x) of a C defect (m C) at temperature (T ) follows the Boltzmann

distribution.

x = m exp(− Ef

kBT
), (19)

where kB is the Boltzmann constant.
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Fig. 8. a, Pair interaction energies of C dimers as a function of C-C distance (in units of

the lattice constant a) computed from the EAM potential (inset: magnification). b, Formation

energies of three types of C defects (M, SSD, and DSD) as a function of the c/a ratio when the cell is

deformed parallel (‖) or perpendicular (⊥) to the local distortion direction that the C atom induces.

Representatively, we show one for each type of C defect. The formation energy of C monomer in

bcc Fe is used as the zero energy reference. c, Calculated order parameter of the order → disorder

transition as a function of temperature including different contributions (C concentration: 1 at.%).

d, Occupation of different defects as a function of temperature. e, Simulated critical temperatures

as a function of C concentration computed from the SC approach using different inputs (EAM

and DFT) compared to the one derived from the DOS sampling approach with the same EAM

potential.

The concentration of all types of C interstitial defects should sum up to the total C

concentration (xC) in the Fe-C alloy. Therefore, the following relation applies.

(xM, C‖
+ 2xM, C⊥

) +

NSSD∑
i=1

nd
i (xSSD, C‖

i + 2xSSD, C⊥

i )

+

NDSD∑
i=1

nd
i (2xDSD, C‖

i + xDSD, C⊥

i ) = xC,

(20)

where NSSD (NDSD) is the total number of SSD (DSD) defects considered and nd
i is the

degeneracy factor of the ith defect. For given t, T and xC, one can thus solve Eq. (20) to

obtain the chemical potential of C, µC(t).
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Once µC(t) is determined, all xi can be computed, based on which the fraction of C

atoms occupying octahedral sublattice i (oi , i = 1, 2, 3) can be calculated. Thus, the order

parameter θ can be evaluated following the definition given in Ref. [6] as given by Eqs. (9)

and (10) in the paper.

Then, the tetragonality t can be updated by

tupdated = 1 + γxCθ, (21)

where γ describes the linear dependence of t of the fully ordered phase on C concentration,

which can be computed from EAM potentials or DFT (see Table 1). Since t is definite,

tupdated should be consistent with t. Moreover, with the updated t, we can compute µC

again using Eq. (20). By using Eq. (21), t can then be updated again. Therefore, t can be

computed in a self-consistent manner.

TABLE 1. Comparison of lattice constant, elastic constants of bcc Fe and the γ parameter obtained

from EAM, DFT and experiments [7–9].

Method
a

(Å)

c11

(GPa)

c12

(GPa)

c44

(GPa)

γ

(1/at.%)

EAM 2.867 243 138 122 0.01030

DFT 2.834 277 140 92 0.01026

Experiment 2.867 243 138 122 0.01025

In this way, the tetragonality (t), the order parameter (θ), the C chemical potential (µC)

and the occupation of different defects can all be determined as a function of temperature

and C concentration self-consistently. The order parameter for a representative case of 1

at.% C is shown in Fig. 8c. At low temperatures, the system favors the ordered state

and undergoes a phase transition to the disordered state with increasing temperature. The

critical temperature is ∼303 K. Using the SC approach, we can also easily separate the

contributions from monomers and dimers. As shown in Fig. 8c, the major contribution is

from the monomers. The SSDs enhance the critical temperature by ∼40 K, while the DSDs

decrease the critical temperature by ∼28 K. This clearly demonstrates that the ordered

Fe-C martensite is mainly stabilized by monomers rather than dimers. The C dimers indeed

impact the critical temperature, but due to counteraction of the SSDs and DSDs, the dimers

14



have a limited effect on the critical temperature (see Fig. 8e).

The SC approach also yields the occupation of different defects at finite temperatures

(Fig. 8d). At low temperatures the system favors the SSDs with C‖ and forms a fully

ordered phase. When temperature increases, the system starts forming C‖ monomers. Close

to the critical temperature, there is a sharp increase of C⊥ monomers and a remarkable

decrease in SSDs and C‖ monomers. This significantly decreases the order parameter and

triggers the order→ disorder transition. At high temperatures, the system mostly consists of

monomers (both C‖ and C⊥) because of configurational entropy, leading to a fully disordered

state.

Figure 8e shows the critical temperatures from our SC approach using both EAM and

DFT inputs compared to the DOS sampling result using the same potential (see Note 4). It

can be seen that the two approaches show good agreement, which validates our SC approach.

Qualitatively, the DFT-based results are similar to the EAM ones, but quantitatively DFT

gives slightly higher critical temperatures.
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2.6 at.% C

a b c

d e f

PAGB

PAGB
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PAGB

Fig. 9. Preparation of specimens containing a prior-austenite grain boundary

(PAGB). a, A wedge containing a grain boundary is cut loose from the bulk for the sample

with 0.8 at.% C. b, A part of the wedge being transferred to a Si-post. c, Careful annular milling

performed to slowly remove material, creating a tip with the grain boundary. d-e, Same prepara-

tion procedure for a different sample with 2.6 at.% C.
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Fig. 10. Analysis of grain boundary roughness. a, Selection of four regions of interest

(ROI) on the atom probe tomography (APT) tip for the sample with 0.8 at.% C as highlighted by

the colored rectangles across the grain boundary. The yellow line tracks the direction of the grain

boundary and divides the rough interface into three segments of flat interfaces. By comparing the

total length of the “zig-zag” grain boundary to that of the one approximated as flat (i.e., the length

of the green rectangle), we estimate the increase in the interface area due to roughness, which is

∼2% relative to the flat grain boundary. b, Quantitative analysis of the Gibbsian interfacial excess

of C for the four ROI in panel a. The colors of the lines in panel b correspond to the colors of

rectangles of the selected ROI in panel a. NC and Ntot are the cumulative number of C and of

all atoms, respectively, normalized by the selected grain boundary areas. The Gibbsian interfacial

excess of C (Γ) taking into account the grain boundary roughness is 20±2 at./nm2.
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