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A general semiclassical derivation is given of the efficiency of the scattering of light from a
longitudinal-optical (LO) phonon coupled to a single-component plasma in a semiconductor. The
efficiency is the sum of two terms. One is due to the modulation of polarizability by atomic
displacements and by the macroscopic longitudinal field; it obeys ordinary Raman polarization
selection rules. The other term is due to free-electronic-charge-density fluctuations, is
proportional to the square of the wave vector transferred, and obeys different selection rules.
When the exciting light is near resonance with the band gap, the second term may have two
interfering parts, one due to the free-electron-charge-density fluctuations and the other due to
photon-induced, virtual, bound-electronic-charge-density fluctuations coupled to the macro-
scopic field (Frdhlich mechanism). New data are presented on coupled plasmon-phonon scat-"
tering in heavily nitrogen-doped (z-type) 6H silicon carbide. The plasmon is overdamped
(wpr~0.2-0.3). The dominant light-scattering mechanism is shown to be the polarizability-
modulation mechanism. The density mechanism is predicted to be 3500 times weaker. The
ratio of polarizability derivatives in dimensionless form is vy,,,=+2.60. From this and from
published data on the nonlinear optical constants of 6H SiC we obtain the following value for the
derivative of the polarizability with respect to relative atomic displacement: aozu/ Suy
=($10.4+1.2)x 10"16cm?. Absolute efficiencies are also calculated for the coupled mode
spectrum in doped materials and for the A;(LO) phonon in lightly doped crystals. Sum rules
are derived for the differential efficiencies integrated with respect to the frequency squared.

I. INTRODUCTION

When the frequency of oscillation of a free-car-
rier plasma in a polar semiconductor is close to
that of the longitudinal-optical (LO) phonon, the
two excitations interact via their macroscopic elec-
tric fields. The resulting coupled modes have
frequencies w, given by the zeros of the real part
of the total dielectric constant.! The shape of the
spectrum depends on the amount of plasmon
damping due to scattering of the carriers? and on
the nature of the experimental probe used to study
the coupled modes.

A very effective probe is provided by inelastic
scattering of light.3 It occurs by means of three
mechanisms?: the displacement mechanism, a
modulation of the optical polarizability by the
atomic displacements u (sometimes called the de-
formation-potential mechanism); the field mech-
anism, a modulation of the polarizability by the
macroscopic longitudinal field § (sometimes called
the electro-optic mechanism); and the density
mechanism, a direct scattering by electronic-
charge-density fluctuations p.

A derivation of the Raman efficiency due to all
three effects will now be given. We will not make
the usual separation of the resulting spectrum into

8

w, and w_ components having frequency-dependent
phonon and plasmon strengths.® Instead a direct
calculation of the line shape for arbitrary plasmon
damping strength will be given.

The case of large damping is of practical im-
portance in wide-band-gap semiconductors. Heav-
ily damped coupled modes have been observed in
Cds, ¢ GaP, " and SiC.%° After a general discussion
of the theoretical results, they will be used to
analyze new data taken on heavily doped SiC. One
of the fitting parameters will then be used to cal-
culate two other parameters, one a ratio of polariz-
ability derivatives, and the other a derivative of
polarizability with respect to phonon displacement.

II. THEORY OF RAMAN SCATTERING FROM
COUPLED PLASMON-PHONON MODES

A. Assumptions, Definitions, and Notation

It is assumed throughout most of this paper that
the incident laser energy is far enough below the
energy of the band gap that resonance effects can
be neglected. In Appendix A there are some com-
ments about the situation near resonance. Away
from resonance we may use the notion of adiabatic
modulation of the optical polarizability « by the
phonon displacement « and by the field §. The free
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carriers will be assumed to be electrons for def-
initeness and will all be assumed to have the same
reciprocal effective mass tensor (m/m*),,. Thus,
the discussion is restricted to a single-component
plasma. A semiclassical argument!® will be used
to give the low-temperature Stokes scattering ef-
ficiency in terms of the rate of energy transferred
to the medium by an effective external longitudinal
driving field. This field will be screened self-
consistently by use of appropriate susceptibilities.
The resulting expressions are correct in the ran-
dom-phase approximation.

The following definitions and notation will be
used: ﬁ, lattice site; ¥;, coordinate of the jth
free electron; k, ,, incident and scattered photon
wave vectors; w,,,, incident and scattered photon
frequencies; 7,5, incident and scattered photon
polarization unit vectors (assumed real) w=w,
- wy, frequency of energy transfer; 4= k1 Ez, wave
vector transferred; 7,=q/lq |, unit vector along
q parallel to longitudinal dlsplacements, UM u(R),
cth Cartesian component of the longitudinal dis-
placement within the unit cell at R§; nzg(ﬁ), cth
component of the longitudinal macroscopic elec-
tric field at ﬁ; vy, volume of a unit cell; V, vol-
ume of crystal; E(¥), total transverse macroscopic
field at optical frequencies; A(¥), total optical vec-
tor potential; Vo=ea/mc2, classical electron ra-
dius.

B. Derivation

The Hamiltonian will be the appropriate cross
terms from

~3 2 E,R)6a,(R)E,R)

R,ya,b

+37 2 AG(FJ)(m/m*)ubAb(.fj) ’

Jrasd

where

~ 9
da,,(R) =2, ( aa ab

S u(R) +

°5(ﬁ))

is the first-order change in the polarizability of
the Rth unit cell due to atomic displacements and
the longitudinal field. The fields at optical fre-
quencies are written

E(ﬁ) = 'é'['ﬁ1El ei(kl.a-wln + ﬁzEzei (ka'R'wat)+ c.cC. ] ’
K(fj) = (c/gi)['ﬁl(El/wl)et(il-},.wlt)
+Ty(By/wplet Ffred ] s c.c.

The Hamiltonian involves the E,E¥ cross terms
and is
e

r_ 1 -twt [ Y7 9= ox
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da _ 80y,
ou —"gi U1ﬂzﬂq 8 ’ (lb)
8_Ot= 5 b,c 9%;p
Y: -~a'Zb:c i nyms YR (1c)
_n,l_g SN e f 7
m* %,anz<m*>ao ’ aa)
wr=25 u(R)e 1R , (1e)
8*=T 8RR | (1f)
pq Ez;jeiq-rj , (lg)

and H.c. stands for Hermitian conjugate.

The phonon displacement and the electron den-
sity produce ionic and electronic contributions to
the gth Fourier component of the polarization

P,=P:+P} (2a)
with

Pize*y,/V , (2b)

¢=epl/Vig . (2¢)

Here e* is the effective charge associated with the
displacement u.

The polarization from ions and conduction elec-
trons will be screened by the bound electrons,
producing a macroscopic longitudinal electric field
with Fourier component

8,=—41P, V/ve,, . (3)

This expression is then used to eliminate §, from

Egs. (1). The Hamiltonian may thus be written in
terms of P}'® in the form
H'=-1E Efe’’“'Vv 2 d;Pi*+H.c. (4a)
i=ie
or
'=-V2,D,Pi*+H.c. (4b)

The last equality defines the effective driving fields
D; , in terms of the reduced fields d,,,, which are
given by

d;=d} +id]’, withd/=d,+dg, di'=0 (5a)

d,=d}+id}, withd/=ds,  dl'=d, . (5b)
Here
1 da
W (62)
41 da
6=~ vy 88 -
2
dy= T (6c)
(Cywam™e

The driving fields D, , act on the ionic and elec-
tronic subsystems. In the random-phase approxi-
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mation the Coulomb interaction within and between
the subsystems is taken into account by allowing
them to respond linearly to the total effective fields

Di,e _4W<Pq>/€co
to induce the polarizations
<pqi'e>=Xi,e(Di,e~4‘”<Pq>/€eo) » (7)

where X; and x, are the susceptibilities of the ionic
and free electronic systems for (J, w) Fourier
components. For small ¢ and for frequencies in
the plasmon regime they are given by

2

w?_w
ry; = —H—% €, , (8a)

w§-w

2
4y, = — Y€ (8b)

w(w +iT)
Here w,,w,;, and w, are the frequencies of the
plasmon, LO phonon, and transverse-optical (TO)
phonon, respectively. T is the plasmon damping
factor and equals the reciprocal of the electron
scattering time.
The solutions to Eqs. (7) are

(P1y=23 %+ Dyo (92)
T
with
Xj50= X; O30 — 4T X; Xg0/€ (9b)

where € is the total dielectric constant
e=e +4nyx +4m1 X, . (10)

The effective driving fields D; , will transfer
power to the medium as follows:

P=2wVIm 2 D} X;;D;s
i’
=w|E |3 E,|2VIm 2 $df x5.d;e - 1)
i3’

Ps(“, the power scattered into a single mode of the
Raman field, is related to the power transferred
to the medium by

PY=w,P/w . (12)

The total power of a given polarization scattered
into solid angle d© and frequency range dw, is

3
P;tot)=P;”-é%3—<ﬁca> wg dwadﬂ s (13)
where 7, is the refractive index of the medium at
frequency w,.

The magnitude of the field strength |E,| is given
in terms of the incident power P; by

|E,|2=87P;/nicA , (14)

where A is the cross-sectional area of the incident
laser beam. The field strength E, for a low-tem-
perature Stokes process is that associated with a
single mode containing one quantum per unit vol-

|

ume, i.e., the zero-point field, and obeys
| Eo|%=8mw,/n5V . (15)

The volume V is written LA, where L is the length
of sample illuminated by the laser beam.
The differential Raman efficiency is then given by

dzR Ps(tol') wp 4 T «
= - ore
dwdQ  P,Ldw,dS <c> ™ Im%"’f Xijedye -
(16)

The assumption that both d; and d, are complex
leads to
%
T (W)= Im d; x;y0dy = 20 (djdy " +d;"d," ) Im x 0
i

13

(Imy,)e .2

= 12012 _ (y2)2
lel? (w2 ~ w?)? [ds¥(wg? - o)

+d " (wf't-w??] , (17)
where new frequencies have been introduced by
wht= wi- (W? - wi(d{-d})/d! (18a)
or
wit=wiley— (€g-€.)di/d)]/e., (18b)

with an analogous expression for wy. In Eq. (18b)
we have used the Lyddane-Sachs-Teller relation

w?/w2=¢y/€.. The factor multiplying the brackets
in the expression (17) for T is readily evaluated as

wle wl/4mA
with
A= [wA(w? - w?) - wE(WE - W) P+ WY wE- w?)?

(19a)
The zeros of the expression in square brackets in
Eq. (19a) define the frequencies w, of the coupled
modes. Thus an alternate form for A is

A= (- W) (w? - WP+ (Wi-w?? . (19b)
This gives
D(w)=wle, wId]}(wi?- wd)2+d) 2(wg'? - w?)?]/anA,
(20)

C. Discussion of the Derived Expressions

From Eqs. (16) and (17) we see that the impor-
tant frequency dependence of the Raman efficiency
is that of = (w), which consists of the sum of two
noninterfering terms. The first term is due to the
combination of # and § mechanisms. It obeys the
usual polarization selection rules for LO phonons
that follow from the condition that 8a/8u and 8¢/
88 # 0.!! Its contribution to the Raman efficiency

is
4r  da \? nn, _wj_)‘
€.v, 98 ) ™, c

(£2)..
dwdQ /., s

’
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2 ’2 2\2
wie, wh(wp®-w
x[ 4 A , (21)
with
wh?=wi-d, (- wi)d3 (22a)
or
e* aa/ou
w=@Et 3T 5a/08 (220)
or
1/2
2_ .2, (€0~ €e . da/ou 4,
w _w,+( ye ) “ Ba/og U0 (22c)

Here M is the reduced mass corresponding to the
coordinate #. This result has the same form as
that given by Mooradian and McWhorter* for the
special case of the zinc-blende structure. Note
that the scattering is zero when w=wj. An ex-
perimental determination of the position of this
zero will yield a value for the ratio (8a/au)/(8a/
88) by use of Eq. (22b) or (22c). ¥
In the ordinary situation below resonance d{’
=0and d;’ =d,. Then wj'?=w?, and the contri-
bution of the density mechanism to the Raman ef-
ficiency is
(#50) () 2 (2
dwdQ /, m*ew;w, ™,y c

[ ered=e] gy
47 A
This is distinguishable from the u, § contribution
[Eq. (21)] by a generally different quantitative val-
ue and by three qualitative features:(a) a depen-
dence on g2—thus there should be no contribution
in the forward scattering case where g~ 0; (b) a
zero at w?= w? instead of at w?= w{?; (c) polariza-
tion selection rules governed by

m/m*=7y+ (m/m*)- n,

instead of by
X! > « >
YR =20, y- (00/88,) - FymS

These distinguishing features should make possible
a clear experimental determination of the mech-
anism responsible for light scattering from the
coupled modes.
An expression sometimes proposed to describe
the coupled mode line shape is®?®
1 1

~ar BTt

Imx, w2wl' w?-w?

" 47e, A (24)

This gives an incorrect result for the case of strong
damping (I'Z w,). For then A is relatively slowly
varying, and the zero of Eq. (24) at w=w, would be
distinguishable from those of Egs. (21) and (22) at
w=wg and w=w;. The correct scattering efficiency
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would be proportional to Eq. (24) if the coupling of
the optical radiation fields were only to the total
charge density - ep? +e*p; or to the totallongitudinal
polarization P,. This would be the case for the
combined (#, ) mechanism if 8a/8u=0. This will
not be the case for the density mechanism, since
the A2 term in the Hamiltonian couples essentially
only to electronic-charge-density fluctuations; the
amplitude of the direct coupling to ionic-charge-
density fluctuations is less by the ratio of the elec~
tron mass to the ion mass.

There is the possibility of qualitatively different
effects occurring near resonance. This is dis-
cussed in Appendix A.

III. EXPERIMENT

A. Introduction

The 6H polytype of SiC has six molecules per
unit cell. The only optical phonons with apprecia-
ble macroscopic electric fields are those in which
the two atoms in each molecule undergo the same
relative displacement . These phonons have only
a small A,-E, anisotropy shift and have almost the
same frequency as the LO phonon in cubic SiC.3

There is a multivalley conduction band in 6H
SiC. The minima are along the lines ML in the
Brillouin zone. *® The zone is the same as that
for a simple hexagonal lattice, and the lines ML
are the intersections of the mirror planes with the
rectangular zone faces. There are three different
groups of electrons in these valleys. The effective
mass ellipsoids for each group will all have the
same principal axis in the z (or ¢) direction. An-
other principal axis will be along [1000], [0100],
or [0010]. The data to be discussed below concern
coupled modes of A; symmetry where the elec-
tronic and lattice displacements are along the z
axis. The effective mass entering the expression
for the plasma frequency

2 _ 2
wj = 4mne’/mey €.,

is m/mgyy = (m/m*),, and is the same for the three
groups of electrons. As far as the (¥, §) mech-
anism for light scattering is concerned, the three
groups behave as a single-component plasma. Each
group of electrons has different values for xx,

xy, and yy components of m/ m*. This means that
in general each group will have its own value of
m/m* appearing in Eqs. (1). These equations and
the subsequent derivations must be generalized to
treat the three groups separately when the p mech-
anism is being discussed. **

We have previously presented the results of a
study of Raman scattering by electronic excitations
in 6H SiC doped with nitrogen donors.®? In a
sample with a nominal doping of 6x10%%/cm® a
very broad asymmetric line was observed having
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TABLE I. Position and width of some optical phonons in 6H SiC (wave number in cm™}).

Nitrogen
doping Temp. A;(LO) A4(TO) E, E,
(em™®) (K) Position Width? Position Width* Position Width?* Position  Width?
1x10Y7 12 967.0 3.2 788.8 2 769.0 2 789.6 2
1x10%7 300 965.0 4 767.7 2.7 788.3 2.7
6x101 110 769.0 2.6 789.6 2.6
1x1017 300 964" 788" 766° 788"

2Widths are uncorrected for the instrumental slit width
of 1.2 cm™!,

a peak at about 980 cm™! in the general vicinity of
the A,(LO) phonon. An approximate fit was made
using the imaginary part of the reciprocal of the
dielectric constant [Eq. (24)]. The calculated
curve fit the data well near the peak and at higher
frequencies, but the data points dropped sharply
below the computed curve below 960 cm™. The
fitting parameters were w,=700 cm™ and w,t
=0.29, corresponding to an extreme case of over-
damping.

B. Techniques

Additional data were gathered to provide a test
of the theoretical expressions discussed above.
Backscattering experiments were performed on
both a and ¢ surfaces [%(yy)x and z(yy)z geome-
tries] of the same 6x 10'° sample studied pre-
viously. From the a surface no structure was ob-
served that could correspond to coupled E,(LO)-
plasmon modes. Coupling to such modes would
have been via the p mechanism since with X(yy)x
ordinary selection rules give no coupling to LO.
From this negative result and the positive result
on the ¢ surface [where A,(LO) is allowed by
ordinary selection rules], we conclude by a small
extrapolation that the p mechanism yields much
weaker scattering than the (#, §) mechanism. This
conclusion is supported by numerical calculations
given below.

The data were taken using approximately 1 W of
4880-A laser light focussed to a circular spot 150
my in diameter. The beam caused heating of the
sample, even when it was cooled directly by a
stream of cold helium gas in a variable-temper-
ature Dewar. The sample temperature was raised
from the 12 K of its surroundings, as determined
by a thermocouple, to 110 K, as determined by
the ratio of anti-Stokes—to-Stokes Raman intensity
of the close-in electronic Raman continuum. °
Additional measurements were taken with the
sample at room temperature.

We calibrated the wave-number scale for the
Raman runs by use of a neon lamp and published
calibrated data.® Neon lines were also used to
determine the positions of several other phonon

bData from Ref. 13.

peaks in the 6x10'® sample and in the “nominally
pure” (1x10'" donors/cm®) sample studied pre-
viously. ®

C. Results

Peak positions and widths for the several pho-
nons are given in Table I and are accurate to
within 0.3 cm™. They are compared with earlier
published data taken at room temperature.® The
nitrogen doping did not affect the peak position of
the A,(TO) and high-frequency E, phonons, but it
did broaden the lines slightly.

Data from the heavily doped sample in the re-
gion of the coupled LO phonon-plasmon mode are
shown in Fig. 1. Also shown are fits using Eq.
{21) superimposed on a decreasing linear base
line, The parameters used for the fits are given
in Table II. Owing to the large damping, the
spectrum does not give peaks near w, and w_;
these parameters would have the values 1060 and
490 cm™ for w,=660 cm™. Over a certain range

T T T

SiC:N ROOM TEMPERATURE

6r 6x10%em®  Z(XX)Z
q
£
;
[FS)
o
a
=l
Q
o
=
o
I
a

T 1 L 1

900 1000 1100
WAVE NUMBER (cmi)

FIG. 1. Coupled-mode spectrum at two different

temperatures. Solid line is calculated from Eq. (21)
using the parameters of Table II. Linearly decreasing
background terms have been added to fit the high-fre-
quency region,
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TABLE II. Parameters used to fit Eq. (21) to Raman
data in Fig. 1 (wave number in cem™),

Temp.
(K) wy wy Wy  wp T w,T  T(107" sec)
110 967 789 928 660 3400 0.19 1.55
300 965 787 928 620 2200 0.28 2.4

one can vary w, and I' without affecting the good-
ness of the fit—it is only necessary to keep w?/T’
constant. For instance, the room-temperature
curve may be fit equally well with w,=660, T’

= 2500 as with w,=620, I'=2200. The quality of
the fit is quite sensitive to the value of wj, how-
ever, The calculated curves do not reproduce
the small peak at 930 cm™ ; we attribute that to
an impurity effect of undetermined origin.

There is a slowly varying “base line” on which
the phonon-plasmon coupled mode is superim-
posed. Part of this appears in the z (xy )z (E;-only)
spectrum. This E, continuum interferes some-
what with the 790-cm™ E, phonon, but this inter-
ference is not as strong as the ones observed be-
tween lower-frequency E, phonons and electronic
excitations described previously. ®°

There is additional background in the z (xx)z
data of Fig. 1 (where A, and E, symmetries are
allowed) beyond what is observed in the E,-only
data. Thus the “background” apparently has an
A, component. It is broad and structureless,
peaking near 930 cm™. The various contributions
to the background have made it difficult to obtain
better fits in the regions away from the peak than
those shown in Fig, 1.

D. Discussion of the Experimental Results

One of the theoretical curves used in Fig. 1 is
shown over a wider frequency range without the
linear base line in the upper curve of Fig. 2.
This represents the contribution of the (x, §)
mechanism as given by Eq. (21). As mentioned
above, for the p mechanism in this multivalley
material, one should really treat a multicompo-
nent plasma. Since we do not know how anisotrop-
ic the effective mass tensors are, we cannot do a
quantitative calculation. Therefore, in the lower
curve we give the predictions of the single-compo-
nent theory of Eq. (23) for the p mechanism using
the same parameters as those used for the upper
curve. Shifting the zero from wj=928 cm™ to w,
=965 cm™ has a strong effect on the shape of the
spectrum, producing a dip at w, rather than a
real high-frequency peak. There is also a large
quantitative difference; estimates below indicate
that the maximum in the upper curve of Fig. 2 is
3500 times higher than the upper maximum in the
lower curve,

Both parts of Fig. 2 show a very strong, broad,
distorted “w_” peak. (Recall that w_=490 cm™.)
We were not able to observe this experimentally
because of the strong-low-frequency scattering
from broadened valley-orbit transitions, °

The fitted value of wj will give a value for the
dimensionless parameter v used by Scott, Damen,
and Shah'Z:

w? , 90/08

= =MW
wp? - w? te*da/au

Y (25a)
More specifically, the present experiment with its
Z(xx)z geometry measures

9 )
Yorgm Mt 223/ 06s (25b)

fe*da,/ou,
Our results for 6H SiC give
Yxxz=+2.60 . (25c¢)

This has the same sign and nearly the same value
as that found in several II-VI compounds having
the wurtzite structure (2H).?

The nonlinear optical constants of 6H SiC have
recently been measured. * The parameter of in-
terest to us is d,; which appears in the following
expression for the optical polarization vector at
the second harmonic frequency

P.(2w)=2dssE, (W) E ,(w) . (26)

Neglecting dispersion of dy5, we may apply Eq. (26)
to our case in the form

P (wy = w;)=2dy5E (1) 8 ,(w;) (27)
and find that

1 %a,

o aa = 2. (28)

The numerical result from Ref. 16 gives

1 2a
—— .1+1)x10712
e 38 2(¥9.1+1)x10"*2 m/V
=¥(54.6+11%)x10"® cm/statV . (29)
) (55), /!
g >
5 Creiolh
o 300 500 1200 1600

WAVE NUMBER (cm™)

FIG. 2. Raman efficiencies calculated according to
Egs. (21) and (23) using the room-temperature param-
eters from Table II. Numerical values at the peaks are
given in Eqs. (33) and (35). Proper relative efficiencies
are obtained if the lower curve is reduced by a factor of
about 800.
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When this value is used with Eqs. (25b) and (25c)
we find
da, -6, 2
—* - (¥10.4+1,.2)xX10™° cm® . (30)
ou,
To obtain this result we used'®
€,=6.56, (31)
vo=2.075%10"% cm® . (32)

We assume that vy is one-sixth of the unit cell vol-
ume.

It is now possible to make quantitative calcula-
tions of the (u, §) and p contributions to the Raman
efficiency. Using the room-temperature param-
eters from Table II, appropriate for Fig. 2, we
find that the expression in large square brackets
in Eq. (21) has a peak value of 0. 32 at 990 cm™,
Using this and the result from Eq. (29) we find

2
( d’R ) (w=990 cm™)=2.6x107%° sec/cmsr .
dwd$ u, 8

’ (33)
Guessing the effective width of the upper part of
the (4, §) curve of Fig. 2 as 2x10" sec™! (1060
cm™), we then obtain this rough estimate of the
total efficiency in the high-frequency region

4R ) 510" em™
<d9>,,,g 5%10° cm™ . (34)

The expression in large square brackets in Eq.
(23) has a local maximum value of 0. 088 at 1036
cm™. Using this result in Eq. (23) with m*/m = 3
we find

2
(d‘if;n) (0=1036 cm™)= 0, 75x 10" sec/cmsr .
o
(35)

This is 3500 times smaller than the upper-peak
value due to the (#, §) mechanism. Equations (33)
and (35) then give the absolute scale of peak heights
in Fig. 2.

1t is also possible to use Eq. (29) in Eq. (21) in
the limit of small w, and small I'. As w,and I
tend to zero, we find that the term in large square
brackets in Eq. (21) tends to a 8 function with an
integrated strength

Wi, [ wD(WP- ?Pdw €, (W§ - wi)?
4 ), A T8 w,(wé, - wzt) ’
(36)
This then gives the integrated scattering efficiency
for the A;(LO) phonon in the (xx) geometry at
4880 A as

(d—R> =2.1x10""cm™. (37)
a A,(LO)

There are more general expressions for the
scattering efficiency integrated over w? rather

jo

than w. They are derived in Appendix B.
IV. SUMMARY AND CONCLUDING REMARKS

A derivation of the scattering efficiency from
the coupled modes has been given from a unified
point of view. We found no interference between
the p mechanism and the (#, §) mechanism. The
reason for this can be most easily seen when the
p coupling term in the Hamiltonian is expressed
in terms of the electronic polarization, for then a
factor of ¢ introduces a 90° phase shift. The pos-
sibility of an additional mechanism that may inter-
fere with the p mechanism is discussed in Appen-
dix A.

As noted by other workers, the v and § mecha-
nisms interfere to produce a minimum at a frequency
w} that depends on the ratio (9a/88)/(8a/du). Data
on 6H SiC doped with 6x10'° nitrogen-donor
atoms/cm® were fit using the calculated formula
for the (¥, ) mechanism. (The p mechanism was
found experimentally to be too weak to detect. )

The fitted value of wj gave a dimensionless polar-
izability ratio close to that found for other hexag-
onal materials. The calculated value of |9¢a/dul
=10 cm? is about what one would expect. The
calculated value of the peak-differential Raman ef-
ficiency given by Eq. (33) may be used as an in-
ternal standard of absolute efficiency with which
to compare the various other peaks observed with
the same heavily doped sample. Similarly the
value for the total efficiency given in Eq. (37) may
be used as an internal-calibration standard for
lightly doped samples.

The effect of adding the heavily damped “free”
carriers has been to shift the LO peak from 965
cm™ to a very asymmetric peak at 990 cm™!. The
addition of the carriers has also increased the scat-
tering efficiency integrated over w in the high-
frequency region from 2.1x10°7 cm™! to about 5% 1078
ecm™, This is qualitatively consistent with the sum
rule of Eq. (46) in Appendix B, which involves a

total integral of the scattering efficiency over w?.

APPENDIX A: PLASMON-PHONON COUPLING NEAR
RESONANCE

The above semiclassical derivation must be put
on an explicit quantum-mechanical basis when the
laser energy is close to the band gap. Many of
the formulas will carry over provided that the ap-
propriate resonant-energy factors are inserted
into m/m*, 8a/du, and 8a/88. "

Near resonance a qualitatively new scattering
mechanism becomes important. !® It results from
intraband matrix elements of H, the Frohlich in-
teraction, between intermediate states created by
the virtual absorption of a laser photon. In the
language of the present paper, Hy is simply the
Coulomb interaction between the total charge-den-
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sity operator p, used above and pze, the density
operator for the bound charge created by the ab-
sorption of the virtual photon. The result of using
Hy in a third-order perturbation calculation is es-
sentially to add a term to the effective Hamiltonian
in Eqs. (4a) and (4b) that is large only near reso-
nance and proportional to ig(P!+ P¢). This would
introduce an extra term d y proportional to ¢ and
containing an inner product of the phonon polariza-
tion vectors ﬁl, 772 with a tensor having the full
symmetry of the crystal. Thus in Egs. (5) we

would have
ay=dy, (382)
dy=d,+dy . (38b)

We note that when the effective-mass tensor has
the full symmetry of the crystal, d, and dy will
both yield the same polarization and wave-vector
selection rules. I the Fr&hlich mechanism is
dominant, the optical radiation fields couple only
to (PL+P?). The Raman efficiency will then be
proportional to Ime'l, which has a zero at w,.

If the resonant-energy denominators are such
that d, and d are of comparable magnitude, there
will be an interference between scattering by the
p mechanism and by the F mechanism. This will
contribute to the scattering efficiency a term ob-
tainable from Eqs. (16)-(18):

( d?R ) _ (ﬂ)‘* iny Imy, dri(wg?- w?)?
o F ¢

dwdQ ™y l€l® (W= w?)?
(392)
with
wil= iy (W= w%)dp/(dp+dp) . (39b)

Thus as resonance conditions change to make
d,/d y vary from >>1 to <1, the parameter wj?
should vary from w to w?, This will give a line
shape to the coupled-mode spectrum that depends
on the resonant enhancement of dy relative to d,.

APPENDIX B: SUM RULES AND INTEGRATED
EFFICIENCIES

We will now derive expressions for integrals of
the form

® d°R * d°R 5
_L dwd$ zwd“’“L dwdn 1

These will be independent of the plasmon damping
factor T.

The derivation follows from a dispersion re-
lation™®

J’ M_ TRex;(w) .

Use is then made of the fact that Imyx(~ w’)
= —Imy(w’) to obtain for large w

* Imyy. (') 2w dw’
w,z_ wz

= TReX;;+(w)

or

Jo Imx; (@) 20" dw’= - lim 7Py, ()
W=

(40)
With the help of Egs. (8), (9b), and (10) we find

Jo Imy;;.(w) 2w dw=36,;.€,w% , forj=i,e

N (41a)
where
wi= - o}, (41b)
Wi of . (41c)

This allows us to integrate the quantity Z(w) ap-
pearing in Eq. (17) to obtain
JTZ(w)2wdw= te.[@

+d1?)(wf - W)+ @2 +dr?)w}] .

42
Note that this is independent of T, @2
Equations (5) and (42) may then be used to ob-
tain an integral of the quantity in the large square
brackets in Eq. (21):

wie., Jwaar(w{,g-wz)zdw € (w w)? o).
ar ), A "% —wa )

This result is consistent with Eq. (36). We also
obtain an integral of the quantity in the large square
brackets in Eq. (23) as follows:

wle., J’” 20T (0 - widw €, wh (44
ar Jo A T4 )

Equations (43) and (44) then give the Raman sum
rules

[ 8, s 22

o \dwdQ/, s “\ewvy 98/ muy \c
€, w,z_wzz
).

w5 - Wl

© 2 2 2
[ (222 awsun (et s
o MdwdQ/, m¥*ew,w, / T ny

4 2
w,\ €W
X <—c > —4”—4 . (46)

These results are independent of plasmon damping
and show clearly how the integrated Raman strength
increases with increasing electron density (in-
creasing w3).

For completeness we also give expressions for
several integrated scattering efficiencies. For LO
phonons in the absence of free electrons we set
w,=0 in Eq. (45) and multiply by 3w, to obtain
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(22) - (Ar2ey'in (s)' < (of-uly
d_sz LO_ (vao 3(3) 1y 4 8(4)’ (w,— w%)
' (47
To obtain the integrated TO efficiency we take Eq.
(47), use Eq. (22b) for wg, with
e*2=Me,vy(w? - w)/4m | (48)

set 9a/88=0, and multiply by w,/w, to obtain the
usual result

¢ 9\ 1
a TO c nq zth 3“ Vo
For p-mechanism scattering from the plasmon in

the small damping limit we multiply Eq. (46) by 3
w,, use

s
wi=4mne®/ (m¥e.) , (50)
where 7z is the electron concentration, and where
m¥ is obtained from
m . - E -
my e e Mas (51)

and is the effective mass in the direction of the
longitudinal macroscopic field &, and find

2 2
(d—R-) =<””°“’2> np Mg, (52)
aQ ), \m*w, /] ny 2mfw,
Equations (52) and (46) are consistent with an

exact sum rule obeyed by S(q, w), the dynamic
form factor for the electron-density operator p,.°
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