Files
SiC-2nd-paper/test-typst/main.typ
2025-05-14 16:08:04 +08:00

668 lines
34 KiB
Typst
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#import "@preview/starter-journal-article:0.4.0": article, author-meta
#import "@preview/tablem:0.2.0": tablem
#import "@preview/physica:0.9.4": pdv, super-T-as-transpose
#show: super-T-as-transpose
#set par.line(numbering: "1")
#set par(justify: true)
// TODO: fix indent of first line
#show figure.caption: it => {
set text(10pt)
// TODO: how to align correctly?
align(center, box(align(left, it), width: 80%))
}
#set page(
// paper: "us-letter",
// header: align(right)[
// A fluid dynamic model for
// glacier flow
// ],
numbering: "1/1",
)
// TODO: why globally set placement not work?
// #set figure(placement: none)
#show: article.with(
title: "Article Title",
authors: (
"Haonan Chen": author-meta(
"xmu",
// email: "chn@chn.moe",
),
"Junyong Kang": author-meta(
"xmu",
email: "jykang@xmu.edu.cn"
)
),
affiliations: (
"xmu": "Xiamen University",
),
abstract: [#lorem(100)],
keywords: ("Typst", "Template", "Journal Article"),
// template: (body: (body) => {
// show heading.where(level: 1): it => block(above: 1.5em, below: 1.5em)[
// #set pad(bottom: 2em, top: 1em)
// #it.body
// ]
// set par(first-line-indent: (amount: 2em, all: true))
// set footnote(numbering: "1")
// body
// })
)
#set heading(numbering: "1.")
= Introduction
// SiC 是很好的材料。
// 其中4H-SiC 是SiC的一种多型它的性质更好近年来随着外延工艺的成熟而获得了更多的关注。
SiC is a promising wide-bandgap semiconductor material
with high critical electric field strength and high thermal conductivity.
It has been widely used in power electronic devices and has long attracted a lot of research
@casady_status_1996 @okumura_present_2006.
The 4H-SiC has a wider bandgap, higher critical electric field strength,
higher thermal conductivity, and higher electron mobility along the c-axis than other polytypes.
Currently, the 4H-SiC has gradually received more attention than other polytypes,
thanks to the development of epitaxy technology and the increasing application in the new energy industry
@tsuchida_recent_2018 @harada_suppression_2022 @sun_selection_2022. // TODO: 多引用一些近年来的文献,有很多
// 声子(量子化的原子振动)在理解晶体的原子结构以及热电性质方面起着重要作用。
// 声子可以通过多种实验技术来探测,包括 EELS、IR 吸收谱等。
// 拉曼光谱是最常用的方法,它提供了一种无损、非接触、快速和局部的声子测量方法,已被广泛用于确定晶体的原子结构(包括区分 SiC 的多型)。
Phonons (quantized atomic vibrations) play a fundamental role
in understanding the atomic structure
as well as the thermal and electrical properties
of crystals (including 4H-SiC).
They could be probed by various experimental techniques,
such as electron energy loss spectroscopy and infrared absorption spectroscopy.
Among these techniques,
Raman spectroscopy is the most commonly used method,
as it provides non-destructive, non-contact, rapid and spatially localized measurement of phonons
that near the #sym.Gamma point in reciprocal space.
Studies in Raman scattering of 4H-SiC have been conducted since as early as 1983
and have been widely employed to identification of different SiC polytypes.
// TODO: 增加引用文献
// 近年来,更多信息被从拉曼光谱中挖掘出来。
// LOPC 已经被用于快速估计 n 型 SiC 的掺杂浓度。
// 层错的拉曼光谱也已经被研究,可以被用于检测特定结构层错的存在和位置。
// 掺杂对拉曼光谱的潜在影响也已经被研究。
// 然而,拉曼光谱上仍有一些不知来源的峰;同时,一些也缺少一些理论上预测应该存在的峰。
// 此外,预测掺杂导致的新峰也没有说明原因。
Increasingly rich information has been extracted from Raman spectra of 4H-SiC.
Longitudinal optical phononplasmon coupling (LOPC) peek
has been utilized to rapidly estimate the doping concentration in n-type SiC.
Peeks associated with some stacking faults have also been investigated
and used to detect the presence and location of specific structural faults.
Moreover, the potential effects of doping on Raman spectra have been explored.
However, some unidentified peaks still appear in the Raman spectra,
while certain phonon modes predicted by theory remain unobserved.
In addition, the origins of newly emerged peaks induced by doping are often unclear or unexplained.
// TODO: 多举例,增加引用文献
In this paper, we do some things. Especially we do something for the first time.
// TODO: 完善
= Method
// TODO
calc
experiment
= Results and Discussion
== Phonons in Perfect 4H-SiC
(There are 21 phonons in total.
We classified them into two categories: 18 negligible-polar phonons and 3 strong-polar phonons.)
// 拉曼活性的声子模式对应于 Gamma 点附近的声子模式。
// 根据这些声子模式的极性,我们将这些声子分成两类。
The phonons involved in Raman scattering are located in reciprocal space
at positions determined by the difference between the wavevectors of the incident and scattered light.
At each such position, there are 21 phonon modes (excluding translational modes).
We classify these 21 phonons into two categories based on their polarities.
The 18 of 21 phonons are classified into negligible-polar phonons (i.e., phonons with zero or very weak polarity),
for which the effect of polarity can be ignored in the Raman scattering process;
and the other three phonons are strong-polar phonons,
where the polarity gives rise to observable effects in the Raman spectra.
(This classification make sense.)
This classification is based on the fact that
the four Si atoms in the primitive cell of 4H-SiC carry similar positive Born effective charges (BECs),
and the four C atoms carry similar negative BECs (see @table-bec).
In the 18 negligible-polar phonons,
the vibrations of two Si atoms are approximately opposite to those of the other two Si atoms,
so do C atoms,
leading to cancellations of macroscopic polarity.
While in the three strong-polar phonons,
all Si atoms vibrate in the same direction, so do C atoms,
leading to a net dipole moment.
#figure(
table(columns: 4, align: center + horizon,
table.cell(colspan: 2)[], table.cell(colspan: 2)[*BEC* (unit: |e|)],
table.cell(colspan: 2)[], [x / y direction], [z direction],
table.cell(rowspan: 2)[Si atom], [A/C layer], [2.667], [2.626],
[B layer], [2.674], [2.903],
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730],
[B layer], [-2.648], [-2.800],
),
caption: [
Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC, calculated using first principle method.
],
placement: none,
)<table-bec>
=== Phonons with Negligible Polarities
(We investigate phonons at Gamma instead of the exact location near Gamma.)
Phonons at the #sym.Gamma point were used
to approximate negligible-polar phonons that participating in Raman processes of any incident/scattered light.
This approximation is widely adopted and justified by the fact that, // TODO: cite
although the phonons participating in Raman processes are not these strictly located at the #sym.Gamma point,
dispersion of negligible-polar phonons near the #sym.Gamma point is continuous with vanishing derivatives,
and their wavevector is very small (about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
which corresponds to only 1% of the smallest reciprocal lattice vector of 4H-SiC),
as shown by the orange dotted line in @figure-discont.
Therefore, negligible-polar phonons involved in Raman processes
have nearly indistinguishable properties from those at the #sym.Gamma point,
and the phonon participating in Raman processes of different incident/scattered light directions
are all nearly identical to the phonons at the #sym.Gamma point.
#figure(
image("/画图/声子不连续/embed.svg"),
caption: [
(a) Phonon dispersion of 4H-SiC along the A#sym.GammaK high-symmetry path.
Gray lines represent negligible-polar phonon modes,
while colored lines indicate strong-polar phonon modes.
The green, red and blue lines indicate the mode along the z-direction, y-direction and x-direction, respectively.
Along A-#sym.Gamma path, strong-polar modes along x- and y-directions are degenerated,
showing as a single purple line.
(b) Magnified view of the boxed region in (a).
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
with incident light along the z- and y-directions.
],
placement: none,
)<figure-discont>
(Representation of these 18 phonons, and the shape of their Raman tensors could be determined in advance.)
Phonons of the B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
In contrast, phonons of the other representations are Raman-active,
and the non-zero components of their Raman tensors
can be determined by further considering the C#sub[2v] point group (see @table-rep).
These Raman-active phonons may appear in Raman spectra under appropriate polarization configurations.
However, the actual visibility of each mode depends on the magnitude of its Raman tensor components,
which cannot be determined solely from symmetry analysis.
The 18 negligible-polar phonons correspond to 12 irreducible representations of the C#sub[6v] point group:
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
Phonons belonging to the A#sub[1] and B#sub[1] representations vibrate along the z-axis and are non-degenerate,
while those belonging to the E#sub[1] and E#sub[2] representations vibrate in-plane and are doubly degenerate.
Phonons of the B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
In contrast, phonons of the other representations are Raman-active,
and the non-zero components of their Raman tensor
can be determined by further considering their representation in the C#sub[2v] point group (see @table-rep).
These Raman-active phonons might be visible in Raman experiment under appropriate polarization configurations.
However, whethear a mode is sufficiently strong to be experimentally visible
depends on the magnitudes of its Raman tensor components,
which cannot be determined solely from symmetry analysis.
#figure({
let m2(content) = table.cell(colspan: 2, content);
table(columns: 6, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Representations in C6v*], [A#sub[1]], m2[E#sub[1]], m2[E#sub[2]],
[*Representations in C2v*], [A#sub[1]], [B#sub[2]], [B#sub[1]], [A#sub[2]], [A#sub[1]],
[*Vibration Direction*], [z], [x], [y], [x], [y],
[*Raman Tensor of #linebreak() Individual Phonons*],
[$mat(a,,;,a,;,,b)$], [$mat(,,a;,,;a,,;)$], [$mat(,,;,,a;,a,;)$], [$mat(,a,;a,,;,,;)$], [$mat(a,,;,-a,;,,;)$],
[*Raman Intensity with Different #linebreak() Polarization Configurations*],
[xx/yy: $a^2$ #linebreak() zz: $b^2$ #linebreak() others: 0],
m2[xz/yz: $a^2$ #linebreak() others: 0], m2[xx/xy/yy: $a^2$ #linebreak() others: 0],
)},
caption: [
Raman-active representations of C#sub[6v] and C#sub[2v] point groups.
],
placement: none,
)<table-rep>
(We propose a method to estimate the magnitudes of the Raman tensors of these phonons.
Here we write out its main steps, details are in appendix.)
// TODO: maybe it is better to assign Raman tensor to each bond, instead of atom
We propose a method to estimate the magnitudes of the Raman tensors by symmetry analysis (see appendix for details).
The center principle is to assign the Raman tensor (i.e., change of polarizability caused by atomic displacement)
to each atom in the unit cell.
This including the following steps:
- Write out the change of polarizability caused by displacement of Si atom in A and C layer,
Where unknown non-zero components are denoted by $a_1$, $a_2$, $a_5$, $a_6$.
For example, when we move the Si atom in A layer slightly towards the x+ direction in $d$ distance,
the change of polarizability should be $mat(,a_2,a_1;a_2,,;a_1,,)d$.
This could be done by conclusion above.
- The Si atom in B layer have similar local environment as the A and C layer, with only a little difference.
We denote these difference by $epsilon_1$, $epsilon_2$, $epsilon_5$, $epsilon_6$,
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
For example, when we move the Si atom in B layer slightly towards the x+ direction in $d$ distance,
the change of polarizability should be $mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,)d$.
- The local environment of C atom in A layer is similar to the Si atom in A layer with charge reversed and
the system reversed along xy plane.
We denote these difference by $eta_1$, $eta_2$, $eta_5$, $eta_6$,
and the absolute value of $epsilon_i$ should be much smaller than $a_i$.
For example, when we move the C atom in A layer slightly towards the x+ direction in $d$ distance,
the change of polarizability should be $mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,)d$.
- Similar to the case in Si atoms, we derive the change of polarizability
caused by moving C atom in B layer slightly towards the x+ direction in $d$ distance,
which should be $mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,)d$.
Lets assign Raman tensor onto each atom.
That is, Raman tensor is derivative of the polarizability with respect to the atomic displacement:
$
alpha = pdv(chi, u)
$
where $u$ should be the displacement of the atom corresponding to a phonon mode.
But, even when $u$ is *NOT* the displacement of a phonon
(for example, lets only slightly move Si atom in A layer, keeping other atoms fixed),
the (high-frequency) polarizability is still well-defined,
and the will still cause a change in the polarizability.
Even more, the group representation theory is still applicable in this condition:
the only thing that matters is, when applying $g$ to the system,
the tensor transformed into $g^(-1) alpha g$ or $g alpha g^(-1)$,
no matter $alpha$ is Raman tensor or something else, or it is related to a phonon or not.
Thus, we can, in principle, "assign" Raman tensor of a phonon, to each atom.
This "assign" is unique since both the atom movement and all phonons have 24 dimensions.
Next, we consider what these single-atom-caused "Raman tensors" looks like.
For example, what happens if we move the Si atom in A layer slightly along the x+ direction?
Consider also move the Si atom in C layer slightly, along x+ or x- direction.
How about the Raman tensor caused by the both two atoms?
In first case, this is B2 representation in E1 representation. Thus the Raman tensor should be something like:
$
mat(,,2a_1;,,;2a_1,,;)
$
In the second case, it is A2 in E2. It turns out:
$
mat(,2a_2,;2a_2,,;,,;)
$
The average of these two tensors should be the s"Raman tensor" cause by move only the Si atom in A layer,
slightly towards x+ direction.
$
mat(,a_2,a_1;a_2,,;a_1,,;)
$
The difference should be the "Raman tensor" of the second atom.
$
mat(,-a_2,a_1;-a_2,,;a_1,,;)
$
// This approach applied relied on the fact that, all Si atom in 4H-SiC is "distinguishable" by the symmetry operations.
// I mean, what will happen if we have two Si atoms in A layer?
// Apparently, we could not extract the "Raman tensor" of only one of the two atoms.
// This is the case for the 6H-SiC.
// Hence, we will provide a more general approach to estimate the "Raman tensor" of a single atom.
Consider the Si atom in the B1 layer.
It lives in an environment quite similar to the A layer.
Thus, the "Raman tensor" caused by it should be similar to the one caused by the A layer:
$
mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)
$
Similar to the Si atom in B2 layer:
$
mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)
$
Same approach applied for Si atom vibrate in y direction.
When we move both Si atoms in A and C layer in y+ direction,
it is B1 in E1, thus the "Raman tensor" should be:
$
mat(,,;,,2a_3;,2a_3,;)
$
And if we move Si in A layer towards y+ but Si in C layer towards y-,
it is A2 in E2:
$
mat(2a_4,,;,-2a_4,;,,;)
$
Thus we get the "Raman tensor" of Si atom in A layer sololy move towards y+ direction:
$
mat(a_4,,;,-a_4,a_3;,a_3,;)
$
and the "Raman tensor" of Si atom in C layer towards y+ direction:
$
mat(-a_4,,;,a_4,a_3;,a_3,;)
$
Same applied for the Si atom in B layer:
$
mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
$
$
mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)
$
Before consider z-direction, it is important to note that, $a_1$ $a_2$ $a_3$ $a_4$ are not independent.
Consider vibration along x+ direction (lets say the distance is $d$).
System energy caused by external electric field and vibration is:
$
E^T (mat(,,2a_1;,,;2a_1,,) d) E
$
Apply C#sub[3] to atom vibration and external field, energy should not change. We got:
$
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)^T ( mat(,,2a_1;,,;2a_1,,)(-1/2 d) + mat(,,;,,2a_3;,2a_3,)(sqrt(3)/2 d) )
(mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)
$
It is equal to:
$
E^T (mat(,,1/2 a_1 + 3/2 a_3;,,sqrt(3)/2 a_1 - sqrt(3)/2 a_3;1/2 a_1 + 3/2 a_3,sqrt(3)/2 a_1 - sqrt(3)/2 a_3,) d) E
$
Thus:
$
1/2 a_1 + 3/2 a_3 = 2a_1 #linebreak()
sqrt(3)/2 a_1 - sqrt(3)/2 a_3 = 0
$
Thus $a_1 = a_3$.
Apply the same method, we get $abs(a_2) = abs(a_4)$.
Since we have not define the sign of $a_4$, we could take $a_2 = a_4$.
Same for $epsilon$.
Now consider what if we move the Si atom in A layer along z+ direction.
If we move the Si atom in C layer along z+ direction, it is A1:
$
mat(2a_5,,;,2a_5,;,,2a_6;)
$
If we move the Si atom in C layer along z- direction, it is B1:
$
0
$
Thus we get the "Raman tensor" of Si atom in A or C layer towards z+ direction:
$
mat(a_5,,;,a_5,;,,a_6;)
$
Lets consider the C atom in A layer.
It should be somehow similar to the Si atom in A layer, but with a negative sign in some places,
and then add or subtract some little value.
Actually, the "transformation" of Si atom in A layer to C atom in A layer applied in the following steps:
- reverse charge.
- reverse system along xy plane.
First we consider the first step.
Taking the define of electricity tenser:
$
P = chi E
$
Lets reverse charge of the system, say we now have electricity tensor $chi'$. We get:
$
-P = chi'(-E)
$
Thus we get $chi' = chi$, the first step does not change the electricity tensor, nor the "Raman tensor".
Now we consider the second step.
For electricity tensor, it will become:
$
mat(1,,;,1,;,,-1) chi mat(1,,;,1,;,,-1)
$
For $u$, when it is along x or y direction, it will not change. When it is along z direction, it will become $-u$.
So in conclusion, Raman tensor of C atom in A layer could be estimated from the Raman tensor of Si atom in A layer, by:
- for movement alone x and y direction, xz yz should be applied a negative sign.
- for movement alone z direction, xx xy yy zz should be applied a negative sign.
Export "Raman tensor" of C atom in C layer from C atom in A layer, in the same way.
Now consider the C atom in B1 layer.
Is it similar to the C atom in A layer, just like that for Si atom?
No. It turns out to be similar to the C atom in C layer.
We summarize these stuff into @table-singleatom.
Furthermore, we list predicted modes and their Raman tensors, in @table-predmode.
- $a$: Raman tensor of Si atom in A layer, large value.
- $epsilon$: Difference of Raman tensors of Si atom in A and B1 layer, small value.
- $eta$: Difference of Raman tensors of C and Si atom in A layer, small value.
- $zeta$: Difference of Raman tensors of C atoms in A and B layer, small value.
Frequency could be estimated by, how many atoms are moving towards its neighbor.
#page(flipped: true)[#figure({
table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Move Direction*], [x], [y], [z],
[C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$],
[$mat(a_2+eta_2,,;,-a_2-eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
[Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_2,,;,-a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
[C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
[$mat(-a_2-eta_2-zeta_2,,;,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
[Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
[C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$],
[$mat(-a_2-eta_2,,;,a_2+eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$],
[Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_2,,;,a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$],
[C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$],
[$mat(a_2+eta_2+zeta_2,,;,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$],
[$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$],
[Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$],
[$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$],
[$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$],
)},
caption: ["Raman tensor" caused by single atom],
placement: none,
)<table-singleatom>]
// Raman Tensor for A1: line1 xz/yz; line2 zz
// Raman Tensor for E1: x-dirc xz or y-dirc yx
// Raman Tensor for E2: x-dirc xy or y-dirc xx or y-dirc -yy
// Relative Vibration Direction: col1 C ABCB col2 Si ABCB
#page(flipped: true)[#figure({
let m(n, content) = table.cell(colspan: n, content);
let m2(content) = table.cell(colspan: 2, content);
let m3(content) = table.cell(colspan: 3, content);
let m4(content) = table.cell(colspan: 4, content);
table(columns: 11, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Representation in C#sub[6v]*], m3[A#sub[1]], m3[E#sub[1]], m4[E#sub[2]],
[*x*], m2[0.5], [1], m2[0.5], [1], m2[0.25], m2[0.75],
[*Relative Vibration Direction*],
[$++\ --\ ++\ --$], [$+-\ -+\ +-\ -+$], [$+-\ +-\ +-\ +-$],
[$++\ --\ ++\ --$], [$+-\ -+\ +-\ -+$], [$+-\ +-\ +-\ +-$],
[$++\ +-\ --\ -+$], [$++\ --\ --\ ++$], [$++\ -+\ --\ +-$], [$+-\ ++\ -+\ --$],
[*Vibration Direction*], m3[z], m3[x/y], m4[x/y],
[*Raman Tensor Predicted*], [$2(zeta_5-epsilon_5)$ #linebreak() $2(zeta_6-epsilon_6)$],
[$2(epsilon_5+zeta_5)$ #linebreak() $2(epsilon_6+zeta_6)$],
[$-4(2a_5+eta_5+epsilon_5+zeta_5)$ #linebreak() $-4(2a_6+eta_6+epsilon_6+zeta_6)$],
[$2(zeta_1-epsilon_1)$], [$2(epsilon_1+zeta_1)$], [$-4(2a_1+eta_1+epsilon_1+zeta_1)$],
[$-2(zeta_2+epsilon_2)$], [$2(2eta_2+zeta_2-epsilon_2)$], [$2(4a_2+2eta_2+zeta_2+epsilon_2)$],
[$2(epsilon_2-zeta_2)$],
[*Raman Intensity Predicted*], m2[weak], [strong], m2[weak], [strong], m2[weak], [strong], [weak],
[*Raman Tensor Calculated*],
[0.10 #linebreak() -1.33], [-1.68 #linebreak() 1.34], [7.68 #linebreak() -21.65],
[-1.56], [-0.30], [7.32], [1.06], [0.41], [9.41], [0.17],
[*Atom-pair that Move Relatively In-plane*], [4], [0], [4], [4], [0], [4], [0], [2], [4], [4],
[*Atom-pair that Move Relatively Out-plane*], [0], [4], [4], [0], [4], [4], [2], [0], [2], [2],
[*Predicted Frequency*], [low], [medium], [high], [medium], [low], [high], [low], [medium], m2[high],
[*Calculated Frequency*],
[591.90], [812.87], [933.80], [746.91], [257.35], [776.57], [197.84], [190.51], [756.25], [764.33]
)},
caption: [Predicted modes and their "Raman tensor"],
placement: none,
)<table-predmode>]
// 我们计算了拉曼活性声子的频率及拉曼张量,并与实验对比,如表如图所示。
// 其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。
// 其中xxx 和xxx 位于强模式的附近它们在实验上无法看到xxx 只在 z 方向入射/散射时可以看到xxx 则在任意方向都能看到。
// 我们同样计算了这些声子在 300K 下的展宽,并与实验对比,结果如表所示。原子的振幅另外列于附录中。
The Raman tensors of these Raman-active phonons were calculated using first-principles methods,
and the results are summarized and compared with experimental results in @table-nopol.
Two Raman-active modes are not observed in our experiments,
including the E#sub[1] mode at 746.91 cm#super[-1] and the E#sub[2] mode at 764.33 cm#super[-1],
due to their relatively low Raman intensities, broad FWHM values, and their proximity to stronger modes.
The A#sub[1] phonon at 812.87 cm#super[-1] is Raman-active
in both in-plane (xx and xy) and out-of-plane (zz) polarization configurations,
but it is only visible when both the incident and scattered light propagate along the z-direction (zz),
as its Raman intensity in basal plane is too week to be distinguished from the noise.
We also calculated the linewidths of these phonons at 300 K and compared them with experimental results,
as summarized in the @table-nopol.
The atomic vibration amplitudes are listed separately in the Appendix.
// TODO: 将一部分 phonons 改为 phonon modes
// 在论文中我们这样来称呼phonon 对应某一个特征向量,而 modes 对应于一个子空间。
// 也就是说,简并的里面有两个或者无数个 phonon但只有一个 mode
#page(flipped: true)[#figure({
let m(n, content) = table.cell(colspan: n, content);
let m2(content) = table.cell(colspan: 2, content);
let m3(content) = table.cell(colspan: 3, content);
let A1 = [A#sub[1]];
// let A2 = [A#sub[2]];
let B1 = [B#sub[1]];
// let B2 = [B#sub[2]];
let E1 = [E#sub[1]];
let E2 = [E#sub[2]];
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
// [*Direction of Incident & Scattered Light*],
// m(26)[Any direction (not depend on direction of incident & scattered light)],
// TODO: 整理表格,使用 m2 m3 来代替
[*Number of Phonon*],
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
[1], m2[2], [3], m2[4], [5], [6], [7], [8], m3[9], [10], [11], [12], m2[13], [14], m2[15], m3[16], [17], [18],
[*Vibration Direction*],
// E2 E2 E1 2B1 A1
[x], m2[y], [x], m(2)[y], [x], [y], m(2)[z], m(3)[z],
// E1 E2 E2 A1 2B1
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], m(2)[z],
[*Representation #linebreak() in Group C#sub[6v]*],
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
[*Raman-active or Not*],
m(8)[Raman-active], m(2)[Raman-inactive], m(14)[Raman-active], m(2)[Raman-inactive],
// [*Representation in Group C#sub[2v]*],
// // E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
// A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
[*Scattering in Polarization #linebreak() (non-zero Raman #linebreak() tenser components)*],
// E2 E2 E1 2B1 A1
[xy], [xx], [yy], [xy], [xx], [yy], [xz], [yz], m(2)[-], [xx], [yy], [zz],
// E1 E2 E2 A1 2B1
[xz], [yz], [xy], [xx], [yy], [xy], [xx], [yy], [xx], [yy], [zz], m(2)[-],
[*Raman Intensity (a.u.)*],
// E2 E2 E1 2B1 A1
m(3)[0.17], m(3)[1.13], m(2)[2.43], m(2)[0], m(2)[2.83], [1.79],
// E1 E2 E2 A1 2B1
m(2)[0.09], m(3)[88.54], m(3)[0.50], m(2)[0.01], [1.78], m(2)[0],
[*Visible in Common #linebreak() Raman Experiment or Not*],
// E2 E2 E1 2B1 A1
m(8)[Visible], m(2)[-], m(3)[Visible],
// E1 E2 E2 A1 2B1
m(2)[Invisible], m(3)[Visible], m(5)[Invisible], [Visible], m(2)[-],
[*Wavenumber #linebreak() (Simulation) (cm#super[-1])*],
// E2 E2 E1 2B1 A1
m(3)[190.51], m(3)[197.84], m(2)[257.35], [389.96], [397.49], m(3)[591.90],
// E1 E2 E2 A1 2B1
m(2)[746.91], m(3)[756.25], m(3)[764.33], m(3)[812.87], [885.68], [894.13],
[*Wavenumber #linebreak() (Experiment) (cm#super[-1])*],
// E2 E2 E1 2B1 A1
m(3)[195.5], m(3)[203.3], m(2)[269.7], m(2)[-], m(3)[609.5],
// E1 E2 E2 A1 2B1
m(2)[-], m(3)[776], m(5)[-], [839], m(2)[-],
[*FWHM #linebreak() (Simulation) (cm#super[-1])*],
// E2 E2 E1 2B1 A1
m(3)[0.08], m(3)[0.09], m(2)[0.08], m(2)[-], m(3)[0.61],
// E1 E2 E2 A1 2B1
m(2)[3.97], m(3)[4.62], m(3)[4.01], m(3)[0.89], m(2)[-],
[*FWHM #linebreak() (Experiment) (cm#super[-1])*],
// E2 E2 E1 2B1 A1
m(3)[1.11], m(3)[1.11], m(2)[1.11], m(2)[-], m(3)[591.90],
// E1 E2 E2 A1 2B1
m(2)[-], m(3)[1.11], m(3)[-], m(3)[1.11], m(2)[-],
[*Electrical Polarity*],
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
m(6)[None], m(2)[Weak], m(2)[None], m(5)[Weak], m(6)[None], m(3)[Weak], m(2)[None],
)},
caption: [Negaligible-polarized Phonons at $Gamma$ Point],
)<table-nopol>]
#figure(
image("/画图/拉曼整体图/main.svg"),
caption: [
(a) Phonon dispersion of 4H-SiC along the A#sym.GammaK high-symmetry path.
Gray lines represent negligible-polar phonon modes,
while colored lines indicate strong-polar phonon modes.
(b) Magnified view of the boxed region in (a).
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
with incident light along the z- and y-directions.
]
)<raman>
// TODO: 画一个模拟的图,与实验图对比。
// 实验与计算基本相符。对于声子频率,计算总是低估大约 3%。
// 此外,一些较强的模式在预测无法看到的偏振中也可以看到。例如,一些在 xy 偏振中不应该看到的模式可以被看到了。
// 这个现象可以由 4度的斜切所解释我们将材料略微踮起一些角度就可以使得该模式减小。
// 这个现象也可以由材料或偏振片的微小角度来解释。
// 例如,我们将偏振方向转动 5 度,就可以得到这个模拟结果。
// 此外,由于使用的材料是沿着 c 轴切片的,所以我们在测量 y 入射时不得不将片子以略小于 90 度(约 75 度)的角度放置。这也导致实验与计算的偏差。
// TODO: 翻译成英文
=== Strong-polar Phonons
// 在半导体的极性声子模式中,原子间存在长距离的库伦相互作用,导致散射谱在 Gamma 附近不再连续(引用),如图中的彩色线所示。
// 这导致不同方向的入射/散射光的声子模式不同。
// 具体来说,当入射光/散射光沿着 z 方向时,起作用的是 A-Gamma 线上的声子模式(图中的左半边的橘线),它们适用于群 C6v。
// 这时会有一个 E1 模式TO振动方向在面内和一个 A1 模式LO沿 z 振动)。
// 而当沿着 y 方向入射时,起作用的是 Gamma-K 线上的声子模式(图中的右半边的橘线),它们不再适用于群 C6v而只适用于群 C2v
// 它会分裂成沿x、y、z 方向的三个声子模式(图中的右半边的蓝线),它们分别对应于群 C2v 的 A1、B1 和 B2 表示 TODO: 确认这个几个表示的名字。
// 若考虑到到入射光不是严格沿着 z 方向,而是有一个小的角度(例如 10 度),则此时有一个声子模式沿着 x 方向,另外两个声子模式则为 y-z 两个方向的混合。
// (没有在图上表示)
#page(flipped: true)[
#figure({
// 使用 m2 m3
let m(n, content) = table.cell(colspan: n, content);
let A1 = [A#sub[1]];
let A2 = [A#sub[2]];
let B1 = [B#sub[1]];
let B2 = [B#sub[2]];
let E1 = [E#sub[1]];
let E2 = [E#sub[2]];
let NA = [Not Applicable]
let yzmix = [y-z mixed#linebreak() (LO-TO mixed)];
let lopc = [Yes#linebreak() (LOPC)];
let overf = [Yes#linebreak() (overfocused)];
table(columns: 20, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Direction of Incident & Scattered Light*], m(5)[z], m(5)[y], m(9)[between z and y, 10#sym.degree to z],
// z y 45 y&z
[*Number of Phonon*], [1], [2], m(3)[3], m(3)[1], [2], [3], m(4)[1], [2], m(4)[3],
[*Vibration Direction*],
[x#linebreak() (TO)], [y#linebreak() (TO)], m(3)[z (LO)], // z
m(3)[z (TO)], [x#linebreak() (TO)], [y (LO)], // y
m(4, yzmix), [x#linebreak() (TO)], m(4, yzmix), // 45 y&z
[*Representation in Group C#sub[6v]*], m(2, E1), m(3, A1), m(14, NA),
// z y 45 y&z
[*Representation in Group C#sub[2v]*], B2, B1, m(3, A1), m(3, A1), B2, B1, m(4, NA), B2, m(4, NA),
[*Scattering in Polarization*],
[xz], [yz], [xx], [yy], [zz], // z
[xx], [yy], [zz], [xz], [yz], // y
[xx], [yy], [yz], [zz], [xz], [xx], [yy], [yz], [zz], // 45 y&z
[*Raman Intensity (a.u.)*],
m(2)[53.52], m(2)[58.26], [464.69], // z
m(2)[58.26], [454.09], [53.52], [53.55], // y
m(2)[53.71], [3.20], [425.98], [53.56], m(2)[3.60], [50.36], [27.99], // 45 y&z
[*Visible in Common Raman Experiment*],
m(2)[Yes], m(2, lopc), [No], // z
overf, [No], overf, [Yes], lopc, // y
m(4)[???], [???], m(4)[???], // 45 y&z
[*Wavenumber (Simulation) (cm#super[-1])*],
// z y 45 y&z
m(2)[776.57], m(3)[933.80], m(3)[761.80], [776.57], [941.33], m(4)[762.76], [776.57], m(4)[940.86],
[*Electrical Polarity*], m(19)[Strong]
)},
caption: [Strong-polarized phonons near $Gamma$ point],
)
]
// TODO: 这句话放哪里?
// whose dispersion curves exhibit discontinuity near the #sym.Gamma point (also shown in @phonon),
#bibliography("./ref.bib", title: "Reference", style: "american-physics-society")