128 lines
8.9 KiB
XML
128 lines
8.9 KiB
XML
=== Phonons with Negligible Polarities
|
||
|
||
对弱极性声子的理论分析,首先使用 Gamma 点的声子来近似,然后再讨论不同入射方向导致的差异。
|
||
使用Gamma 点的声子来近似,基于这样的事实:这些声子的色散曲线在 Gamma 点附近连续且非常接近 Gamma 点,并且已经被广泛使用 @_n-sic_2008。
|
||
|
||
Negligible-polar phonons were theoretically analyzed,
|
||
starting with the approximation using phonons at the #sym.Gamma point,
|
||
followed by a discussion of modifications arising from non-zero wavevectors.
|
||
This approximation is based on the fact that
|
||
the dispersion of these phonons is continuous and very close to the #sym.Gamma point,
|
||
and has been widely adopted in the literature @_n-sic_2008.
|
||
|
||
18 个声子属于 12 个表示。拉曼张量的形状可以确定,大小不能。
|
||
|
||
使用对称性分析来从理论上研究声子。
|
||
18 个 Gamma 点的弱极性声子包含了 C#sub[6v] 点群的12 个不可约表示(2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2])。
|
||
通过进一步考虑 C#sub[6v] 中简并表示(E1 和 E2)在 C#sub[2v] 中的表示,所有声子的拉曼张量的非零分量可以确定,如表所示。
|
||
其中,B#sub[1] 模式具有零拉曼张量,不参与拉曼散射;
|
||
其它表示的模式具有非零拉曼张量分量,可能可以在适当的偏振配置下在拉曼实验中观察到。
|
||
然而,模式是否足够强以在实验中可见取决于其拉曼张量分量的大小,而仅通过对称性分析无法确定这些大小。
|
||
|
||
Symmetry analysis was utilized
|
||
to theoretically investigate the properties of 18 negligible-polar phonons at the #sym.Gamma point.
|
||
These phonons correspond to twelve irreducible representations of the C#sub[6v] point group
|
||
(2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2]).
|
||
By further decomposing the doubly degenerate modes (E#sub[1] and E#sub[2] of C#sub[6v] group)
|
||
in the C#sub[2v] point group,
|
||
the form of the 18 negligible-polar phonons' Raman tensors can be determined, as summarized in @table-rep.
|
||
Phonons of the B#sub[1] representation in C#sub[6v] possess zero Raman tensors
|
||
and thus do not contribute to Raman scattering,
|
||
while other phonons have non-zero Raman tensor components,
|
||
making them potentially observable in Raman experiments under appropriate incidence and polarization configurations.
|
||
It should be noted, however, that the observability in Raman experiment depends not only on the form of Raman tensor,
|
||
but also on the magnitude of its Raman tensor components,
|
||
which cannot be inferred from symmetry considerations alone.
|
||
|
||
#include "table-rep.typ"
|
||
|
||
我们提出了一个新的办法来估计拉曼张量大小。
|
||
|
||
我们提出了一个办法来快速估计拉曼张量的大小。
|
||
这个办法基于对称性分析,并加入了以下假设:
|
||
每个原子对拉曼张量的贡献主要取决于第一近邻原子(它们的贡献记为 $a_i$),更远的原子则归结为小量(记为 $epsilon_i$ $eta_i$ $zeta_i$)。
|
||
此外,我们忽略了同一个振动模式中,同种原子振幅的绝对值的差异,只考虑它们振动方向的不同。
|
||
因此,拉曼张量的大小可以在进一步的第一性原理计算之前给出,结果总结在表中。
|
||
我们的结果表明,E2-3 模式的拉曼散射强度远高于其它振动模式,这与实验一致。
|
||
我们的研究表明,这个峰的高拉曼强度来自于所有键的贡献的相长干涉,这与其他弱极性模式不同(他们的贡献相互抵消)。
|
||
|
||
A method to estimate the magnitudes of the Raman tensors of each mode from their vibration patterns (eigenvectors)
|
||
was proposed (see appendix for details).
|
||
This approach was founded on the symmetry analysis and incorporates the assumption
|
||
that the primary contribution from each atom to the Raman tensor arises from its nearest neighbors (denoted as $a_i$),
|
||
while contributions from more distant atoms are much smaller (denoted as $epsilon_i$, $eta_i$, and $zeta_i$).
|
||
Furthermore, the absolute amplitude differences among atoms of the same type within a phonon mode was neglected,
|
||
and only their vibrational directions were considered.
|
||
This enables a preliminary estimation of the Raman tensor magnitudes prior to detailed first-principles calculations,
|
||
with the results summarized in @table-nopol.
|
||
Our analysis gave the result that the E#sub[2]-3 mode (at about 756.25 cm#super[-1] in simulation)
|
||
should possess a much higher Raman scattering intensity than the others,
|
||
which is consistent with experimental observations,
|
||
where at about 776 cm#super[-1] a very strong E#sub[2] peak is observed.
|
||
Our result showed that
|
||
the high Raman intensity of this mode arises from the constructive interference of contributions from all bonds,
|
||
in contrast to other negligible-polar modes where contributions tend to cancel each other out.
|
||
|
||
#include "table-nopol.typ"
|
||
|
||
我们使用第一性原理计算得到了频率和拉曼张量的大小,并与我们的结果进行了比较。
|
||
|
||
声子频率和拉曼张量的大小被使用第一性原理计算,并与实验结果和理论预测进行了比较(@table-nopol)。
|
||
计算的声子频率与实验数据有很好的吻合,误差在 2-5% 之间,这个误差可能是由于 PBE 泛函对原子间力的低估(cite)。
|
||
计算的拉曼张量也与实验和理论结果基本一致,这包括强度最高的模式 E#sub[2]-3,
|
||
其次是四个强度较低但在实验中清晰可见的模式,包括 E#sub[2]-1、E#sub[2]-2、E#sub[1]-1 和 A#sub[1]-1。
|
||
E#sub[1]-2 和 E#sub[2]-4 模式位于最强模式 E#sub[2]-3 附近,且具有很弱的拉曼强度(分别为最强模式的0.1%和0.6%),
|
||
使得它们在实验光谱中难以区分。
|
||
此外,A#sub[1]-2 模式在基面极化配置(xx 和 yy,仅为 0.01)中具有非常弱的拉曼强度,这导致它在正入射的拉曼实验中通常不可见;
|
||
但当偏振沿 z 轴时(1.78)则显示出可观测的强度。
|
||
// E#sub[1]-1 模式在理论上无法在正入射中观察到,但在实验中仍然可以看到一个小峰。
|
||
// 这被认为是因为入射光并非完全沿z轴入射,由于衬底斜切和共聚焦汇聚角。通过向不同方向倾斜衬底,我们可以使这个峰变高或变低,如附图所示,这印证了我们的猜想。
|
||
|
||
The Raman tensors and frequencies of the negligible-polar phonons were calculated using first-principles methods,
|
||
and the results were compared with both experimental data and theoretical predictions (@table-nopol).
|
||
The calculated phonon frequencies were in good agreement with experimental values,
|
||
with a slight underestimation of 2-5%,
|
||
which might be attributed to the known tendency of the PBE functional underestimating interatomic forces (cite).
|
||
The calculated Raman tensors were also consistent with both experimental and theoretical results.
|
||
Among negligible-polar modes, the E#sub[2]-3 mode exhibited the highest Raman intensity,
|
||
followed by four modes with lower intensities that were also visible in normal incidence Raman experiments,
|
||
including the E#sub[2]-1 mode, the E#sub[2]-2 mode, the E#sub[1]-1 mode, and the A#sub[1]-1 mode.
|
||
The E#sub[1]-2 mode and E#sub[2]-4 mode were not visible in our Raman experiments,
|
||
as they were located close to the most intense E#sub[2]-3 mode (only about 10 cm#super[-1] away)
|
||
with very weak Raman intensities (only 0.1% and 0.6% of the E#sub[2]-3 mode, respectively).
|
||
Additionally,
|
||
the A#sub[1]-2 mode exhibited a very weak Raman intensity under the incident light with in-plane polarization
|
||
(only 0.01),
|
||
but showed an observable intensity when the polarization is along the z-axis (1.78).
|
||
Thus, it was not typically observed in normal incidence Raman experiments (cite),
|
||
but could be clearly detected in edge incidence configurations in our experiments.
|
||
// TODO: 这里缺两个引用
|
||
|
||
不同方向的入射配置会导致微小但可观测的峰位差异。
|
||
|
||
非零长度的波矢(i.e. 参与散射的声子不在 Gamma 点)导致不同入射配置的峰位具有微小但可观测的差异,如色散图所示。
|
||
相比于正入射,肩入射时,E2-1与E2-2的间距会减小、E2-2会展宽;E2-3会展宽,同时略微蓝移动。
|
||
我们的计算结果为xxx,实验结果为xxx。
|
||
|
||
// 186.38835388124227
|
||
// 201.84270995851526
|
||
|
||
// 191.77252066290447
|
||
// 199.03816532139587
|
||
|
||
|
||
// 其它峰在其它章节中解释。
|
||
//
|
||
// Besides, there are other peeks in the experiment.
|
||
// The peek at 796 and 980 are caused by strong-polar phonons which will be discussed later.
|
||
// Besides, there are small peeks at xxx,
|
||
// which could not be explained in perfect 4H-SiC and will be discussed in the next section.
|
||
|
||
// TODO: 将一部分 phonons 改为 phonon modes
|
||
// 在论文中我们这样来称呼:phonon 对应某一个特征向量,而 modes 对应于一个子空间。
|
||
// 也就是说,简并的里面有两个或者无数个 phonon,但只有一个 mode
|
||
|
||
// #include "figure-raman.typ"
|
||
|
||
// TODO: 解释为什么 E1 可以看到
|