95 lines
6.2 KiB
XML
95 lines
6.2 KiB
XML
== Raman experiments setup
|
||
|
||
拉曼设备的型号。激光的波长,背散射。共焦针孔。
|
||
|
||
拉曼设备的型号是 LabRAM HR Evolution,使用背散射。
|
||
大部分实验中,我们使用 532 nm 的激光,少部分实验中使用 325 nm 的激光以观测紫外拉曼。
|
||
|
||
All Raman experiments were conducted using a LabRAM HR Evolution system in a back-scattering configuration,
|
||
where the scattered light was collected in the direction opposite to the incident laser.
|
||
A 532 nm laser was primarily used as the excitation source,
|
||
while a 325 nm laser was employed for only ultraviolet Raman measurements.
|
||
|
||
三个入射方向配置
|
||
|
||
// 在之前的很多计算中,我们使用的折射率为 2.73。接下来我们将它更新到 2.7。
|
||
// 但实际上,这个影响非常小,在图中肉眼完全看不出来。各种因素导致的误差也远大于
|
||
// 因此,对于一些没有明确标识数值的图,我们就不再专门更新;只更新那些明确标识的数值。
|
||
// 同时,由于计算过程中就有舍入,所以只要变化不大的数值,也完全没有必要再计算一遍。
|
||
|
||
有三个不同的入射配置,包括正入射、掠入射、边入射。
|
||
考虑到 4 度斜切和 4H-SiC 几乎各向同性的折射率(2.7) @shaffer_refractive_1971 ,掠入射的入射角大约为 25 度。
|
||
在正散射过程中,我们使用 100 微米的共焦针孔,以尽可能提高 z 方向的分辨率 @song_depth_2020;其它情况使用常用的 200 微米针孔以提高信噪比。
|
||
此外,在正入射和边入射时,拉曼散射信号较强,因此我们使用较短的积分时间(约 60 秒),
|
||
而在掠入射时,拉曼信号较弱,因此使用较长的积分时间(约 300 秒)。
|
||
|
||
Three distinct incidence configurations were utilized, as illustrated in @figure-incidence:
|
||
(i) normal incidence, where the laser incident perpendicularly to the epitaxial surface;
|
||
(ii) grazing incidence, where the laser incident nearly parallelly to the epitaxial surface;
|
||
and (iii) edge incidence, where the laser is incident at the wafer edge and perpendicularly to the edge surface.
|
||
Considering the 4° offcut angle and the nearly isotropic refractive index of 2.7 for 4H-SiC @shaffer_refractive_1971,
|
||
the refracted laser in grazing incidence forms an angle of approximately 25° with the c axis.
|
||
A 100 μm confocal pinhole was used for normal incidence to enhance axial (z-direction) resolution @song_depth_2020,
|
||
while a 200 μm pinhole was employed for the other configurations to improve the signal-to-noise ratio.
|
||
The integration time was set to 60 seconds for normal and edge incidence,
|
||
while it was extended to 300 seconds for grazing incidence due to the weaker Raman signal.
|
||
|
||
// 这里列出波长(单位 nm)、采用的折射率、波矢(单位 um-1),z y x 方向的倒格子长度(单位 um-1),以及沿z y x方向的约化波矢(单位 1e-3)
|
||
// 325 2.9 17.85 987.54 3732.92 3232.80 18.08 4.78 5.52
|
||
// 532 2.7 10.15 987.54 3732.92 3232.80 10.28 2.72 3.14
|
||
// 633 2.65 8.37 987.54 3732.92 3232.80 8.48 2.42 2.59
|
||
|
||
偏振的配置?
|
||
|
||
#include "figure-incidence.typ"
|
||
|
||
使用以下公式来从实验结果估计拉曼张量:
|
||
|
||
$
|
||
abs(S_i) = C I_i (nu_i (1-exp(-(h nu_i)/(k T))))/((nu - nu_i)^4)
|
||
$
|
||
|
||
其中 $S_i$ 是对应于入射方向和偏振的拉曼张量的组分,$I_i$ 是散射光强度(对应于峰积分),$nu_i$ 是声子频率,$nu$ 是激光的频率,$T$ 是样品温度。
|
||
$C$ 是一个包含入射光强度在内的常数,在本文中使用 4H-SiC 正入射 zxxz 的特征峰来校准 $C$ 的值。
|
||
|
||
在本文中,涉及到对 A1 E1 E2 模式的拉曼张量的估计。
|
||
在本文中,对于 E2 和 A1 在面内的拉曼张量,我们使用正入射 zyyz来估计;
|
||
对于 E1 的拉曼张量,我们使用侧入射 xyzx 来估计;
|
||
对于A1在面外的拉曼张量,我们使用侧入射 xzzx 来估计。
|
||
使用4H-SiC的特征峰来校准 K 值。
|
||
|
||
todo
|
||
将拟合结果填充到表格中
|
||
关于正入射和侧入射的对比:拟合得到结果、画曲线图、画箱图
|
||
极性模式对比。有两个方面需要对比。一个是,正、侧入射的不同,说明分裂的大小与我们的计算是否一致,LOPC是否会在其它偏振下出现;一个是,对正入射时E1的出现作解释。
|
||
|
||
散射光路对不同偏振的响应不同,因此需要乘以一个系数。
|
||
|
||
探索:为什么对于A1的拟合,结果会差两倍?
|
||
|
||
E#sub[1]-1 模式在正入射拉曼实验中被观察到尽管在理论上是不允许的,这被认为是因为入射光并非完全沿c轴入射。
|
||
如图所示,由于非零的数值孔径,激光汇聚到样品上时存在一个锥形角度(不完全平行于c轴),使得 E#sub[1]-1 模式在正入射中总是可见的。
|
||
由于衬底斜切(沿着x方向),对于 zxxz 和 zxyz 配置,入射光或散射光的偏振将具有更多的 z 分量,从而使 E#sub[1]-1 模式的强度增加。
|
||
通过略微倾斜衬底可以补偿斜切导致的效应,如附图所示。
|
||
同时,此对比也可以验证衬底斜切的方向。
|
||
|
||
Two effects beyond ideal theoretical prediction were observed experimentally,
|
||
including minor but observable peak shifts of negligible-polar phonons between different incidence configurations,
|
||
and the observability of the E#sub[1]-1 mode in normal incidence Raman experiments.
|
||
The peak shifts were considered caused by the non-zero wavevector lengths of phonons.
|
||
In our calculations, compared to normal incidence,
|
||
the E#sub[2]-3 mode's frequency remained nearly unchanged,
|
||
while the E#sub[2]-1, E#sub[2]-2, A#sub[1]-1 modes exhibited minor but observable shifts.
|
||
The experimental results were in good agreement with our calculations, as shown in figure and table.
|
||
The visibility of the E#sub[1]-1 mode in normal incidence Raman experiments were attributed to the fact that
|
||
the incident light was not perfectly aligned along the z-axis,
|
||
due to the substrate's slight tilt and the converging angle of the confocal setup.
|
||
This was confirmed by the results under different polarization configurations and different tilt angles,
|
||
as shown in figure.
|
||
|
||
对齐:正入射、xyyx 使用 E23 对齐,其它则无法对齐,看情况处理。
|
||
|
||
只考虑了沿 zOx 平面入射的情况。
|
||
|
||
#include "figure-e1.typ"
|