Files
SiC-2nd-paper/paper/method/experiment/default.typ
2025-12-25 12:23:05 +08:00

95 lines
6.2 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
== Raman experiments setup
拉曼设备的型号。激光的波长,背散射。共焦针孔。
拉曼设备的型号是 LabRAM HR Evolution使用背散射。
大部分实验中,我们使用 532 nm 的激光,少部分实验中使用 325 nm 的激光以观测紫外拉曼。
All Raman experiments were conducted using a LabRAM HR Evolution system in a back-scattering configuration,
where the scattered light was collected in the direction opposite to the incident laser.
A 532 nm laser was primarily used as the excitation source,
while a 325 nm laser was employed for only ultraviolet Raman measurements.
三个入射方向配置
// 在之前的很多计算中,我们使用的折射率为 2.73。接下来我们将它更新到 2.7。
// 但实际上,这个影响非常小,在图中肉眼完全看不出来。各种因素导致的误差也远大于
// 因此,对于一些没有明确标识数值的图,我们就不再专门更新;只更新那些明确标识的数值。
// 同时,由于计算过程中就有舍入,所以只要变化不大的数值,也完全没有必要再计算一遍。
有三个不同的入射配置,包括正入射、掠入射、边入射。
考虑到 4 度斜切和 4H-SiC 几乎各向同性的折射率2.7 @shaffer_refractive_1971 ,掠入射的入射角大约为 25 度。
在正散射过程中,我们使用 100 微米的共焦针孔,以尽可能提高 z 方向的分辨率 @song_depth_2020其它情况使用常用的 200 微米针孔以提高信噪比。
此外,在正入射和边入射时,拉曼散射信号较强,因此我们使用较短的积分时间(约 60 秒),
而在掠入射时,拉曼信号较弱,因此使用较长的积分时间(约 300 秒)。
Three distinct incidence configurations were utilized, as illustrated in @figure-incidence:
(i) normal incidence, where the laser incident perpendicularly to the epitaxial surface;
(ii) grazing incidence, where the laser incident nearly parallelly to the epitaxial surface;
and (iii) edge incidence, where the laser is incident at the wafer edge and perpendicularly to the edge surface.
Considering the 4° offcut angle and the nearly isotropic refractive index of 2.7 for 4H-SiC @shaffer_refractive_1971,
the refracted laser in grazing incidence forms an angle of approximately 25° with the c axis.
A 100 μm confocal pinhole was used for normal incidence to enhance axial (z-direction) resolution @song_depth_2020,
while a 200 μm pinhole was employed for the other configurations to improve the signal-to-noise ratio.
The integration time was set to 60 seconds for normal and edge incidence,
while it was extended to 300 seconds for grazing incidence due to the weaker Raman signal.
// 这里列出波长(单位 nm、采用的折射率、波矢单位 um-1z y x 方向的倒格子长度(单位 um-1以及沿z y x方向的约化波矢单位 1e-3
// 325 2.9 17.85 987.54 3732.92 3232.80 18.08 4.78 5.52
// 532 2.7 10.15 987.54 3732.92 3232.80 10.28 2.72 3.14
// 633 2.65 8.37 987.54 3732.92 3232.80 8.48 2.42 2.59
偏振的配置?
#include "figure-incidence.typ"
使用以下公式来从实验结果估计拉曼张量:
$
abs(S_i) = C I_i (nu_i (1-exp(-(h nu_i)/(k T))))/((nu - nu_i)^4)
$
其中 $S_i$ 是对应于入射方向和偏振的拉曼张量的组分,$I_i$ 是散射光强度(对应于峰积分),$nu_i$ 是声子频率,$nu$ 是激光的频率,$T$ 是样品温度。
$C$ 是一个包含入射光强度在内的常数,在本文中使用 4H-SiC 正入射 zxxz 的特征峰来校准 $C$ 的值。
在本文中,涉及到对 A1 E1 E2 模式的拉曼张量的估计。
在本文中,对于 E2 和 A1 在面内的拉曼张量,我们使用正入射 zyyz来估计
对于 E1 的拉曼张量,我们使用侧入射 xyzx 来估计;
对于A1在面外的拉曼张量我们使用侧入射 xzzx 来估计。
使用4H-SiC的特征峰来校准 K 值。
todo
将拟合结果填充到表格中
关于正入射和侧入射的对比:拟合得到结果、画曲线图、画箱图
极性模式对比。有两个方面需要对比。一个是正、侧入射的不同说明分裂的大小与我们的计算是否一致LOPC是否会在其它偏振下出现一个是对正入射时E1的出现作解释。
散射光路对不同偏振的响应不同,因此需要乘以一个系数。
探索为什么对于A1的拟合结果会差两倍
E#sub[1]-1 模式在正入射拉曼实验中被观察到尽管在理论上是不允许的这被认为是因为入射光并非完全沿c轴入射。
如图所示由于非零的数值孔径激光汇聚到样品上时存在一个锥形角度不完全平行于c轴使得 E#sub[1]-1 模式在正入射中总是可见的。
由于衬底斜切沿着x方向对于 zxxz 和 zxyz 配置,入射光或散射光的偏振将具有更多的 z 分量,从而使 E#sub[1]-1 模式的强度增加。
通过略微倾斜衬底可以补偿斜切导致的效应,如附图所示。
同时,此对比也可以验证衬底斜切的方向。
Two effects beyond ideal theoretical prediction were observed experimentally,
including minor but observable peak shifts of negligible-polar phonons between different incidence configurations,
and the observability of the E#sub[1]-1 mode in normal incidence Raman experiments.
The peak shifts were considered caused by the non-zero wavevector lengths of phonons.
In our calculations, compared to normal incidence,
the E#sub[2]-3 mode's frequency remained nearly unchanged,
while the E#sub[2]-1, E#sub[2]-2, A#sub[1]-1 modes exhibited minor but observable shifts.
The experimental results were in good agreement with our calculations, as shown in figure and table.
The visibility of the E#sub[1]-1 mode in normal incidence Raman experiments were attributed to the fact that
the incident light was not perfectly aligned along the z-axis,
due to the substrate's slight tilt and the converging angle of the confocal setup.
This was confirmed by the results under different polarization configurations and different tilt angles,
as shown in figure.
对齐正入射、xyyx 使用 E23 对齐,其它则无法对齐,看情况处理。
只考虑了沿 zOx 平面入射的情况。
#include "figure-e1.typ"