Files
SiC-2nd-paper/画图/入射角度与偏移/plot.ipynb
2026-01-06 17:00:37 +08:00

328 lines
137 KiBLFS
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 63,
"id": "e8521a2b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/chn/repo/SiC-2nd-paper\n"
]
}
],
"source": [
"import numpy as np\n",
"import os\n",
"import matplotlib.pyplot as plt\n",
"import h5py\n",
"import sys\n",
"from scipy.interpolate import RegularGridInterpolator\n",
"import plotly.graph_objects as go\n",
"import matplotlib.colors as mcolors\n",
"np.set_printoptions(precision=6, suppress=True, threshold=sys.maxsize)\n",
"plt.rcParams['text.usetex'] = True\n",
"plt.rcParams['font.family'] = 'Arial'\n",
"plt.rcParams['svg.fonttype'] = 'none'\n",
"\n",
"print(os.getcwd())"
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "20c1986e",
"metadata": {},
"outputs": [],
"source": [
"res = 100\n",
"frequency = [[[None for _ in range(res + 1)] for _ in range(res + 1)] for _ in range(24)]\n",
"center_freq = [\n",
" 0, 0, 0,\n",
" 5.715, 5.715, 5.935, 5.935, 7.720, 7.720, # E2-1 E2-2 E1-1\n",
" 11.698, 11.924, 17.751, # B1-1 B1-2 A1-1\n",
" 22.407, 22.407, 22.687, 22.687, 22.929, 22.929, # E1-2 E2-3 E2-4\n",
" 23.297, 23.297, # normal-TO\n",
" 24.386, 26.570, 26.823, # A1-2 B1-3 B1-4\n",
" 28.014 # normal-LO\n",
"]\n",
"visible_modes = [\n",
" # E2-1 E2-2 E1-1 A1-1 E1-2 E2-3 E2-4 TO A1-2 LO\n",
" 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23\n",
"]\n",
"negligible_polar_name = [\n",
" \"$\\\\mathrm{E}_2$-1\", \"$\\\\mathrm{E}_2$-2\", \"$\\\\mathrm{E}_1$-1\", \"$\\\\mathrm{A}_1$-1\",\n",
" \"$\\\\mathrm{E}_1$-2\", \"$\\\\mathrm{E}_2$-3\", \"$\\\\mathrm{E}_2$-4\", \"$\\\\mathrm{A}_1$-2\"\n",
"]\n",
"negligible_polar_modes = [[3, 4], [5, 6], [7, 8], [11], [12, 13], [14, 15], [16, 17], [20]]\n",
"# visible_modes = [\n",
"# # E2-1 E2-2 E1-1 A1-1 E2-3 TO A1-2 LO\n",
"# 3, 4, 5, 6, 7, 8, 11, 14, 15, 18, 19, 20, 23\n",
"# ]\n",
"# negligible_polar_name = [\n",
"# \"$\\\\mathrm{E}_2$-1\", \"$\\\\mathrm{E}_2$-2\", \"$\\\\mathrm{E}_1$-1\", \"$\\\\mathrm{A}_1$-1\",\n",
"# \"$\\\\mathrm{E}_2$-3\", \"$\\\\mathrm{A}_1$-2\"\n",
"# ]\n",
"# negligible_polar_modes = [[3, 4], [5, 6], [7, 8], [11], [14, 15], [20]]\n",
"strong_polar_name = [ \"TO-x / TO-xz / TO-z\", \"TO-y\", \"LO\" ]\n",
"strong_polar_modes = [[18], [19], [23]]\n",
"lazer_vec = [17.85, 10.15, 8.37]\n",
"lazer_color = ['purple', 'green', 'red']\n",
"lazer_name = ['325', '532', '633']\n",
"for i in visible_modes:\n",
" frequency[i] = np.loadtxt(f'../SiC-2nd/5/5.1/5.1.6/5.1.6.3/data/{i}.txt')"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "23f011be",
"metadata": {},
"outputs": [],
"source": [
"# 插值,得到不同波矢下的频率\n",
"x = np.linspace(0, 20, res + 1)\n",
"z = np.linspace(0, 20, res + 1)\n",
"light = [17.85, 10.15, 8.37]\n",
"freq_per_light = [[[None for i in range(101)] for mode in range(24)] for _ in range(len(light))]\n",
"for l in range(len(light)):\n",
" for mode in visible_modes:\n",
" interp = RegularGridInterpolator((z, x), frequency[mode], method='linear')\n",
" for i in range(101):\n",
" kx = light[l] * np.sin(i / 200 * np.pi)\n",
" kz = light[l] * np.cos(i / 200 * np.pi)\n",
" freq_per_light[l][mode][i] = interp((kz, kx))\n",
"for l in range(len(light)):\n",
" fig = go.Figure()\n",
" for mode in visible_modes:\n",
" fig.add_trace(go.Scatter(x=np.arange(101), y=freq_per_light[0][mode], mode='lines', name=f'{mode}'))\n",
" fig.update_layout(width=500, height=2000)\n",
" # fig.show()"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "a6502ad9",
"metadata": {},
"outputs": [],
"source": [
"# 画频率的偏移,以 z 方向入射为参考\n",
"for l in range(len(light)):\n",
" fig = go.Figure()\n",
" for idmode, mode in enumerate(negligible_polar_modes):\n",
" delta_freq_mode = [None for m in mode]\n",
" for idm, m in enumerate(mode):\n",
" delta_freq_mode[idm] = [freq_per_light[l][m][i] - freq_per_light[l][m][0] for i in range(101)]\n",
" delta_freq_peek = np.mean(delta_freq_mode, axis=0)\n",
" fig.add_trace(go.Scatter(x=np.arange(101), y=delta_freq_peek / 3 * 100, mode='lines', name=f'{negligible_polar_name[idmode]}'))\n",
" fig.update_layout(width=500, height=2000)\n",
" # fig.show()"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "dc1f8731",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_2124873/2037526599.py:22: UserWarning:\n",
"\n",
"FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAEJCAYAAABR17e1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAuvNJREFUeJzs/Xl0HNd1Lwr/TlXP6G40GiMJDmCD8yyQ1GhZtgTKgxx5ECgmdgbHiYjc5OY6yb0Ro2S99a31vfWeQr5h3be+796EVBLbie1YImJ5nghLsgbLEglInEc0B4DE3Gh0Aw30VOf90V1Vp6YeMBbA+nEV0XXqnFOnaled86u999mHUEopLFiwYMGCBQsWTAZusRtgwYIFCxYsWLCgB4ukWLBgwYIFCxZMCYukWLBgwYIFCxZMCYukWLBgwYIFCxZMCYukWLBgwYIFCxZMCYukWLBgwYIFCxZMCYukWLBgwYIFCxZMCYukWLBgwYIFCxZMiXuepHR3d6O9vR2EEBw+fBjHjx/H0aNHcfjwYVRVVaGzs3PG9e7Zs2eOW2uhVMyHXLu7u3H06FEcPXoUBw4cQDQanfuGWzCE9a4uf3R3d+Pw4cNzVpcl16UPYkWcBcLhMJqbmzE2NoZAICCld3d34/Tp0zh06FBZ9XV0dCAUCmHPnj2wbu/iYa7levToUTz//PPS75dffhldXV1z2WQLRWC9q8sb7e3teOWVVzA2Njareiy5Lh/c85oUAAgGg7rpLS0tM6qvra1txmUtzB3mUq7d3d148cUXpf22tjZ0d3cjHA7PuH0Wyof1ri5vBAIBRKPRGWvFRFhyXT6wSIoO2MHn2WefXeTWWJgrzEauLS0teOmll6R90dRjNGhaWBhY7+ryQWdnJw4ePIjW1lacOHFisZtjwSSwSAoD0cb93HPPSWmsStnC0sRcybWtrU36/fLLL6O1tdV6PhYJ1ru6/NDd3Y2WlhbJ5GPBAgDYFrsBZsKhQ4esjm4ZYq7lGo1G0dHRYfmjLCKsd3X5oq2tDQcOHEBnZydaW1sXuzkWFhmWJkUH7BezaBvt6OhAR0cHDh8+PGt7qYXFwVzJ9fDhwzh58qQ1SJoAejKNRqM4fPgwuru7F6tZFspEZ2cnenp6cPz4cRw/fhyhUEhj8rHkem/C0qToIBQKSb/D4TA6OzsRDofx/PPPo6WlBQcOHEBXVxf279+PSCQilbHsqObGXMhVnPIaCoUkvxSLrCwe1DIFgNOnT2umh1vvqrnR3d2NY8eOSfvBYBDPPfecIs2S670Ji6QA0kOuRjQaRVdXFw4dOiSpHcPhMPbu3QsAOHnyZNG6o9GoNYgtEuZarh0dHWhpaZEIyiuvvFL2lFcLs0MxmQJAa2urRobWu7q0oGfyseR6b+KeJyksg3/xxRfR3NwMAJLq8YUXXlDkP3bsGI4cOVKwzs7OTunlefHFF7Fv3z6FWtrC/GOu5RoOh3HgwAFFWiAQsEjKAqJcmZYC611dXHR2duLIkSOIRCJobW2Vpg0fP34cgUAAhw8fRnt7e9nvmSXX5QMrmFsZOHr0qOJFsrA8YMl1+eHw4cM4ePCgJdNlBkuu9x4sx9kSIaodW1pa0NHRsdjNsTBHsORqwYIFC+bFPW/uKQWiql/0RWhtbbVUh8sAllyXJzo7OxUzQKyv7uUBS673JixzjwULFixYsGDBlLDMPRYsWLBgwYIFU8IiKRYsWLBgwYIFU6IsnxTRsTASiSAUCumGLDbK09HRgUgkgq6uLhw4cEC37IEDB6xgPIsAS67LD5ZMlycsuVq411AySQmHwzh58qQUp2D//v2ah9woj+jsdOjQIUSjUaxbtw5jY2OKsh0dHVIE0KamJty9exc+nw+EkFld4L0GSini8ThWrlwJjiuuKLPkan6YWaahUAiCIFhynQHMLFfrXZ05ypXrXGJ6ehqpVGpGZR0OB1wu1xy3aPYomaR0dnYqovYFAgHNAlBGeYBcZMC2tjYEAgEEg0FpxUsRkUgEhw4dwrFjx/Dnf/7nWL169Swuy0Jvby9WrVpVNJ8l16UDM8r0yJEjuHv3riXXWcCMcrXe1dmjVLnOFaanp+FpWAk6PlY8sw4aGhpw48YN0xGVkklKT08Pqqurpf1gMKhZR8EoT1tbm+JFikQiipcjGo1Kask9e/bgb//2b3Xb8N8+7sJfP+4prcGlsv8C+Qy/IAgBQHTSCtWtPk4U+Yhqv/TfRFFVPEkR+psb8Pl8+m1XwQxy9X7uIPxf+GJJ7RVRyqS0XBb9fHrHqFG6qgoKqsiiLkLV56RsCvObKvOy1ySwvxOTmPqvz5lSpkeOHDFs11/+xX/Bf/3LvyipzYZgn/OC+Yy/WCmI7lNAoX065GdAmSYoEqhyP3+cLSaong9B/EEoKM3tT8Tj+OjO7aaUq9G7+ld/9of4b3/+h8pEqr4b0gEQo2Oa91dQpQlQvCjMPhGPS+8hcw7KSELxYlKpnXJ5Zbq2PPuECCCUrQs65XPXEJ+cQnPrX5cs17lCKpUCHR9D5f/zdRB3ieNkHnQqgYGvfhmpVGrpkhQ9GK2jUShPe3s7XnrpJUVaZ2enFJ8iFArhjTfeAAD0/C/V8LnkzsdpI3DaSiAfJRMU6T/9g7rEw6CMOq9qn6gJS6H8Rr8ZQpIjNUTZHgIQXtA5X3mYb7k2Hn8FnEd+iYjdDmJ3FDljrlcodcK8mkiUckxNLkTCohnIqDqf8T5VEZFCxIQyHR+V+lkKIa8yNqNMOzs7cf/99wMALp0/o+iYnU4HnE7njNuce/ZLUJfPEUEBgKxOYlZTWElS1CSGqh6v3LBHARBFWYl+mVCu4rt65fTP4PNWSPmcDgecToN3laqpWg4EVDXgs/kLlTcmKrl6GcmUQjSoLClNmxTl9epVES5qRHLksotlJuPcFSCeMklKsY+ARUTJJKW5uVnB2kWnrHLydHR0YP/+/ZqAWadOnZJ+7927F1/72tcAAL4KO/yumdj0iC6PKC+fPkkhzP9yonpflUdDbEojKcQgXf5NtOl8eQ/bYsjV7vWC81SgNIi9Esn1KUUvT6QA+hmpQSVGGhStVgSgpAApkStj6mDapiYiRNlqtj6xTaTAIKyHhZTpsWPHJJLi8/ng98/R12OpBKUAjIhIofxzmU8JoihbbtuAReqDvV74fV6d1ui0nnC5dBUhofn+TkMMFPnFfZGIUAAcQMT9/PNAmPwgzHnyZcV6RLJACFM/AWiuDFXorqmqLua3VJ7ky2jTc+cT5PTFBiFlEyRqhnYboGSS0traisOHD0v74XBYUh+Kq0wWyiPaSkUnrkAggFAohO7ubrS3t0svkmgzBQAQHpiJ41GJN7ywIA00KXr1FzX15OtjjhEjEqMhOMVJinQdhIBwmu++glgMuXI8B54vIFeGMJTF8PVIBXs4r27XP52SvFCJjCjTlM2hqjSq0DBTBSlhjkOtQZErYdsokaQy34GFlGlVVVVZbSsJ5RCUggTO+NnR1a7oJOoZKzSatQItoDo7MyM5i9UHG/WDzECuuHFifq2GQiIrCo1JPr+UTyQigD5REU9NQcGBQFWXHmnRJR3sb8Jkoco8RmUV52KPLX5UD47ktrJgXo5SXsRZdmpbMBiU2HhzczO6uroQCAR084TDYezZs0eqJxqNglKKzs5OzSqX3d3dePzxxzE+Po5Tf7MCO1fNQF08B/4ohiRFz9xDiFbGBYnMzMw9Wr8VrbknNiWguv0MxsfH4ff7te3XwULLten/93W4QhsUbdA+heV15cZPMS14XO/x15IL/byFzDjqfUFdVkNSxN9MzfnkbGICw195xpQyfeKJJ/C5z30OX//619F3Kzx7TUpZGhTjD4nc97r+MSMPCoFqnzo9AwYrS6quj8LYFJT3TRL347EYWtatNaVcxXf13c4T2LF1Y0lt0/dNyWtOVM8/0TMNKcoX8lGRjxH2jkovDUuexGMGJhkjM5HCjMO0nwqMAVG/TbGJBOoe/NOy5DoXiMViqKysRM0/d5Shqc5BSExi5I/aFrzNpcCUYfHFmz38f6+D3z3f5h7jjPqaFqO6C5h31M5/Ouag0hxnuaJ5YlMCqp/rNuXDJsp1U0cn+DJfIj0U8jtR5DN4xPW0LkYOtUrnVx3CoirHHmbbqSZA6mPiCdmzZScnMPDlz5tSpoAs11mTlDkiKECOoBg9GrpDKdVP1zrEap+NQiRFUT7vjyLuz4SkLBREmd69+pu8uUdNNAq8eIbOssq7SVgSoFt2JkRFTVLYfX0/EqJyfJXz6JUFiK7Pilx+sUlK7b/8x4xISrkfQgsFUy8weOdmHeIuHjwvgLdnYbMJsDszcDjTcLgyRRQhpbAUoiUMqsO6x0o17yh4iLpTnam5R2XiUeUp031hUVB7ZRxcRRaCjUCwc8g6eWRdPNIeGwQHX1IdkiOi/kEmDzT5ZEKhk86YeFjewfqhGJp92N+EaQqlOVO4qlUKMsL8ZgkPpQBd4FgLM8VA1yASlQnwdh68i4fdbYPda4fD5wBXyLwHlElQUPT9NhpC9dKpQbq+G2jh+tTDeLHjZkd/1ygmfElwNg68k4PdxcPm5uHw2uDwiO+q6kokXxPVMUIUaTTfWSm0KgqTimjqYfZ1TDg5X5H8vq45B6oyRFFe/s1BdpM2MucAlBB5po/mHGLZxQOZgU+KmWPhmJqk3LragAq7XffYQ5+4DLsz90CN9PuQmrajwj+NCv80bPYynJj0phNLx6B7TFegRUhKUROPIr/8m6jT9cgM+3sJjGf1ZyOwO6Y16fFVFbjzeKO0X31mFCmvHdNVTqQqHaprM1DzSwTBgIToFJW0GYRNg4pciHVQVT4KUFlGSs2ImCIzFq2DLGHapiQpVPzNlUbcFhu33uxDhVM7q2DzMxsQ3FAFAJgcnET0RgyeWjcq6j1weB2F30E9FCUohTQspaXrkhld02Ap9ctyJoZ5zIlb7wyhwjmhSbe7bbj/zzbl9ygGz46BUoqKWic8NU7wdk4WKfviSTeAeQ8IxxAVqZCqjJoUEBVBYO+smswoz6fJryA2KidYNdHSnMvo9+LBIikLiLo1cVTY7MhmCbIZHpkUj3SKRzbDweYGQHKd9+CdIEb7cyoqQijc3hT8wQQqqxOorEnAVZEpeB6tlkOdQe+YmnDopemREMLsGmhMNISlkGYlfwVitUtgPIuHAnDY3eDSAri0AD6ZBT+VQdbrAJf/uuKnM6g7I0+dFOwcpqtdmKpzI1HvxlSdG9QmshZqSEAg59DtP0QyokdcWHIh1cFkVM8U0u7LhSXCwbaXMOVUJIdtV3aJaFJqtgThsbmRTQnITGeQmc4gNZGG0y9PWY3eiOHWG73SvtPvhK/RB99qHyrX+OGucRfuMEsgNOVoUWZST/nIDYLsMLz4Q1lpqN0SgMfhgZAWkE1lkZnOIp3IwOFlPx4J7pyKYGosmdsjQEWtE75GN/yrPKhc5YHdzUO6eh2iokAhB1UFWE0Lox1R8AYDzQoz08cYxmREoU1R5F98cISAK5d0GOQvZxkGEeqZY7OFqUnKxvuG4HdrR11KAcKMxlW10yCEx8S4E8mEHVMTLkxNuDB4OwjCUTz8mWvgbdovawUMtCa5Y6VoTnLllcllak/02qHyZ9E18yjSdJplMow83AC+QmdaI6Xg89fCgyC2pQqOsSSckST4tICKwSlUDE4B54DY+koMfKQhX1DnohXEQpXH4BhLIqS0/H/K7khnVo9aE6MgHpAIBxXPqyY+lPkttSWvTSnbVX9x0PzJdRqfFLX2wV3tQs2WICYHpzA9lkQylkIyNoqRS6MAgO1f2gr/mpnbxGeiRRF0DuhqUtTl1Mep0XH102PsvGs2ND/ZqDsFmQoCxIGbUorgeh8mh+yYHJ5GOpHBxGASE4PT6O8eg7vKgZY/amaIiagFkc08Sm0KlBoNNRlhNSsgEAPkSSYfsYzelGQd0kOR71f1phQrYEBq1JqYRcZcaVJKWYYhGo0iHA7j+eefB5CLwXNPkRRwHDP9Ur6J6tvZuDGGxo0xAEAqySMecWF81IPxYTdsDgG8Pc+yCcGFdxvhcGdQtyoGf/W0jpuIHiFRaT2k9BLS1F9+RWb1KK6yFG2KRG7yf3nzf6MVnYIMAD4nRh9Zme/RKRzjKbiGp+AanIS7P4GpVRXg88+GI5pE/Vv9iK/zIb7Oj6zHrjHTiFCba6R0HU2LpNUgqlRKYERI5HKi4ybz9WVARHR/E+b8S8Tcowd15xfcUIXgxiAAgkwyi8mBBOJ9ccRux5AYmYK3UR4Qb/+qF9Nj06jeUo2q9QFwNh6FWDhF+VoUI4KiTi4pwrHhkaWkOykNhOmXCSiaHqsHkLtPqXgGsbsJxPsmMd47icrVeRMgIRAyFOf+/SYCazyo2eJDRY0TxkSF1agY+YswGhTFb3U+MclAs2J8odCNuQKSP6P55EpA9MerImXUKGUZhkAggGPHjqG1tRUtLS2K/HMFc5MUwpdoj5cHDYcHqPZMo3pVzueBCpDqmE7YMDqQ+9Lrv1EFtzeNhqYYGppicLiyuvUpT6OvPdHuqgmFUtNhGCNFfQ5Wi2KQT61ZIZz5Xho1eI4Hr5Kr4SBAAHBAptqNiWo3JjYHkR/twec1DP5bE3CNTsM1Oo3arhEkVlYgtjGAydU+KbgdZTsmFSj7hQapy9SSEZGxEGZfbCSVy7EkROEYS5jaSzT3UAKJjC0LEA7ixdqcNlSu9aNyrR94pBFUoCCcLK/h8yNIxpIYuTQKm9uG2u21qN9dD0+tUTTN8rUoM0UhQqTJSApF7zE3KDgofTx0wDr0Q4DTb0etvxK1mysBUNCsXDbWl8DE4DQmBqfRdyoCb50TddsrUbvFC5uT1xABhdZE4y+ioxHRM/kABtegJjhUdawMU5AU2wW6fcxCohRNCk2nQNNpeX96SpOnlGUYAODIkSPYs2cPWlpa8Mtf/nLmDTeAqUkK4TiQsr4i1eSCKLRvTg+w49EBDPd6MXynAlOTTty4UItbl2pQs2oCqzdF4Q3kV5A0ErJOuvaBMCYVuvsFTUIckyxqTZi6Fb8JwJlfkaxrM53Biy0Sj/iWalC3Hd7wOFyDCXjvTsJ7dxIZjx3jmwMY3xoEtatIEfM/y05YosFaf6i6pKL/0sZVURAP9ewelqAwqho90w8FFr3TmxMw5MQ4i/L4pi9swMilUYxcGEVqMo3+0wPoPz2AyjV+rHxgJarWV0l5SyYNDIzKaNKolmRoNS3KfaWph4BiiRIVQvLRSJn3h7ITvNWaCrWphIDwPETTjq/Rg01Pr8LIxXGMhScwMZTExGtDuPXWMGq3+tC4Nwh3pc3A3KI4EXNuWcuimOljaJ7RmnMUBEdDOozMP3rtUX2ULgJKISnj3/13jL/yjbLr1luG4dSpU+jq6sLhw4fxxBNPoKurq+x6C8HUJAU8n9tmDKUphOOBYGMSwcYk1mciGO6rQH+PH7FRF4Z6/ahakYQ3mFUUn7GZp0yiYjSluKC5SE/TshQ0KYXMPQWar+3m89fvdWByWw0mt9XAFkvCeyUK39Ux2KcyCF4Yw8T2WlCeU5ENVb0McWDPZTjdWE0yiLouxtxD2S6d0azokBLpnExdS2UKshLsB0P57SeEwLvCC+8KL9Z+vAnRG1EMfjCEsZ4xjN+OwRV0K0jKTLQoRsq7uX2DdDR3c3+ShQXJhYgHoB/rhHBQxBiR0gTwdg41G/2o2ehHOpHG8MVxDJ6LIjGaxMCHUdRt8cNVaVcRBsgvokKbwpxCz3RDAKVzrA5pUfiriCggnCLaHDOgFMfZqrYvIfDZZ6V9IZFA73MHFHlKWYZBXGahpaUFJ0+eRHt7u8YkNFuYm6QQHurpKuV/VOoP8DYHsCI0hRWhKcTHHBi44UX92kSO9QMYvesGb6MI1E0bnFittWHORVT74gutIS3qMkUIiKYMG9yN01yuWcETDryBg5mRL4lOTm0IBABCwI3YA27E9tSj4sY4SFoAcdrE4R/+86OYbK7M+a1IrIUlGWLdallC3yzEOMQqapBGIsKQDqkirWaF/U1k8pMz9ywBoQK5Z1Yh1zlod/6rsKq5ClXNVUiOJzHQPYi6nbVSlqnRKYzfmUDt9lqNNgYw1paUpEWZYR4pJyEl+bMsVcixTsQ7KppmxJdCS1TENLvHjpV7gljRUoXx2wmM35qAb6VbKj90cRwVNU5U1DqV9ehqSoqREXV7tHnkGTviM1RMbkT12xxyJqT4OEkcDsAhz7rTy1/KMgxq4rJ//34Eg8HZXYAKpiYpOXNPKaugltoZ6hMCX3UWvupxiCpNQSC4/kENpidtqGqYQvPuKCoCad3zFI+ZovPElDzjhyUejEaFkNwxwuQRvzKWwFc3Rwi4Mtup7ej1SCKT185jamPuZRFprqs3jur3B1H1wRBiO2oQ21EjmYFYkkEZ1qEkH6LWw7hdsu+LTGK0ph7C5CUKUiL+Zv1hlo4mRaX1m7M6ZTgrnVj78TWKtFu/6sXolQj63+vH2sfXItAckI7NxASkRrH1e6j6mZCOm/NLuzzk+xoJ+mYPmtf4KqKxlkBUxMkCgbUVCKz1SFqK5GQWPSeHIGQp6rb4sebhKjh9tlx7JFMMq2Vh2qKv/9a5LkMdG+RnWf27FCzuR8Vcze4JhUI4ePAgOjo6EIlE8MILL0jH9uzZg66uLhw6dAhHjx7F6dOnAeT8VlpaWmZ3ASqYmqTM3NxjoK0wyqs6LAgEwcYk+q/bMTZYga6THqxcP4F1O8dh01ul3JB06GtxtPsqIsPa7zXaEqIqQ6SvGQCgZa6CvBjgOU7XGbRwF0DL2ZVT2QHEZUe6vgKOoQSqPhiB/+o4xh5oQCJUKRMHqaiOH4J6Fk9uLrzuvqxlUZl6WFOOgvSwGhiZ7FCgbEK3bFDCdE6BUngbfRi/FUNiJIFLr1xCVXMATa3r4Aq6yjb1zAVYeYomAfa7f0nxFqLuH/MyUZtz8qCEV5qA9IiKRushHicSiaFZiqpmH0avxDB0MYaRq3Gsuj+Axj0BcLqjllxW0/6SZvAo/Wi0eZh6mPyKlZFNgrkM5mY0nbinp0f6LU4/ni+YmqQQji/TcVa3FtUzV0B4eUJjdwIb749h9ZZJhD8MYLjXjTvX/Bju9aJ5TxR1a6dyQtVURaAhRZrpwmwetXaEPa4kJ1STDwxpkQkLONlj26wgHFf6wGsQpa2QWUj2+1DKKLPCi+HPb4A7PI7K39yFbSKF2td7MX01irGPNCJT6dSdBaRO0/qd5FJZ3xNWI6Nv5lGSHomUkHxZJqNggtgLC44SrjknAg4rH1iJup116HunD4PdAxjriWL81hmsfKgRKx5aqQnJb2Tq0QuDr2eqKc01XR6cZZKqbb/5wZo/GJA80aDaq8tNJWbS1USFEICycUyguRlOvx2bPrMSEy0B3PzVEGJ3p3H7nQiGL8bR3FqHylV6X4uKBmorJQTlBXArAeVOaV4IzICkmNk539QkBYTT76xmc0P1YoxAnZRLd1cC2x6LYqx/CtdOVyIRs+PSr2vg8o6gsi4lF9DVihhpStQaEuUxqrhejmkPa/phNS2iNiWXp3SfjsUDT4gUtK0Qchrdwvk0XQJrUyaqPHnNRmp9FYabKuE9MwTfB0Nw352A7ec3MfjsJoW5jCU7xQYvXS0LZDKl1LKoSQ5DcGie3BA53z2nSSnDfCtKwea2oam1CfX31ePmyRuI3hhH31u9IDaClQ82FqylEIoOOTqmHqZ5GlPQ0oPY1+hdhdh35U2V7JwmQnLLYCmIid4+VPUTxb5vpRvbD67C8OU4bv5qBFNjaVz47l3s/coqOLxq84+63WqH2OLQjyRbKsokOPOEmUScpRZJmSF4bnaze/ScXUvKx+YnqGrMYu+KCG5f8GJ6wobKBgBwqMqrSYiKqBACqtCOqLUoKodDjcYkly6RGA2ZyeddAsHc7ByBvQxn0EIqck0yIRCMbEGsKcbBIbFvJaY3ViPwZi8mdtWC03nW9IK/GZl12H32pdcSFJGE5EvkHWTl43KTKaXLK05KUagJvj6MtCHuajc2H9yC0YujGPhgEPV7GjR5So0wa3Te4nlkGYsQhy+9c5saohem4uuHndGj0v5SJVEB5UBgMBtGMVPGeJovIQR1W/wIrqvAzTeH4fTZ8mH5Z3EzCYprVcyiGSkT1to9Cwn17J5Z3UgdjYcmi/HMBI7n0LQ7DUrTAMkx+NQ0h96LbjTtmgJvQ/4LWF0vqw3J7yuuhS0jkw2qMQWpNSlie2UiQ0GWhCbFQQjshGiWvS8Ig+vSG6zUodGpqq9h8wsBF6K/tR4gRHoZnNcjoBxBcl1AIhsKzYk6jSg1Law/ia4ZiKrystoWRoYiuVk6jrOzhd77UyCv0RFCUL2tBlVbq6XOlwoUvW/cRv3eBth8Tt1yMzH16D/BonZBsbe0objdnM7gLV6simyoTSyK40qtiVxGPS04l8fm4rF+f51M+mkWkyMpjIUn0Li3Mm+C1yMWRYLRGULvI9f8kpyriLNmgblJCmcHeP1VkPWh9xVWivZEn7BQ9TGFcyWHy+96EemzY2zAja2PTcLtZ1SZ6raoCBAl7HGiLCORGqI6JtdNJfKTa4t0jiUQJ8VGgNxKBfL9LOkLtUAmtcpd24VSw7xiOwQA/HgSwV/1gqQETO6qQ/zBlQBH8hoauSEUWhWpbOIhTD75i1o5mweSBoaqyyvIDy1/sbClijKus9jzkrOmyfXd/c0d3H3vLobPDWPd0+tR2RQoq75S2yFbMIj8nBiUNX/YxQIQ+yTJgZaVnZIUyLNtWJMOa/bRSVeUVaaJchUyAq78eBBTkSTG+6ax8ZO1sLvn611ZGgQFsDQpCwtiz226x0pXCzOFDDpCPa2G6phOeuPWLOIRJybGeHT/xI4tj00h2JhfeEtS56tNPOw+e5xAO5OH1c4QnXzMMclx1vwvko0Q2NQDfAnljGJ26g0UmjSF+UX/fAIA+BxIba2B58wQ/GeH4BxNYHz/OlC3TSYTkiZFdT6x81SRFT1CojQJyVOTc6YthlDRe4SklEVQCufVk21wczUil0YxMZjAle9cwprH16J+3wpZ01LCeUshFeZ/+8pFkbD4kqZErT1hHWNV2g0jM4rCCdXA/MPkITxB455KhF8fQfRmAme+fRdbnq5FRU05H7ZGUBMvTUNgVmkTzICkWJqUmYFyNlCumBe3DgoSGKL6aaRKVxOWfGfG1F21Gmh5ehoXX3cjNmLDuV/60PxACo1bMhrNiXafqOplF1Jkjxs5zHJMe1ifFfN/nzlIbhMhACW974WcuwpdNTvw58iEcTlq45D6yCrQFV54f3kL7jsTcHz3Ksafaka2yiXXAWh8X8TZIbxEVphjrJMsoJi9I4XNF6c9s+ake8HcU+IHh4hStChquINubP697bj58xsYOTeM27+8hamRKaz9xDoQnejHVGcK+kwhDmfmfzP1IMqmQKwUsW/STD2WB3LN4oGa+su/24QQ1G/3w1vvwOUfDGJ6PI1zr/Rj4ydrUB0yWt9JtyaUbRKSmkyYazMHOIIZOM7OU2PmAKYmKeDsQLkkxfBm63REev4jUj1agqI1/RA4fcCuT2dx7V0OA9dtuP6eB9OTGYT2ZfJZGI0I5H09ogJDoqKa9SP95pR1EG5JrN2jnt3DAyWNUXo+Anpdm1qTwg78gLHzoiLA9/oqJAJOeH4ahj2WRPDVq5j4dAiZFV5Zo5JXRFOmnPLcVJGWI0uirJmBi5A8UWHIiZgOc6tiZ42yCcrM7wVv57HuqWZ46itw+5c3MXxmCKlYEus+vxG8s/yuUP0cGZp+dBLM+Q1eCOx956FLuyTtB6N9zqkRDeorok0plMagotaFnV9ciSs/GsJ4bwKXfjiE5o9XY8XOcoiKHnmaAUwQLsAy9ywgKOcA1Y/cUwA6N9uwI1STDhbqaK/q/PLDSBwEGz4KuAIUN7t4DN+0Y9UuAodbTUQIU5/efu63wl9FdI7VLaec6UPBgXLlT7tbaEg+KSVCNllrC+n7nxjvC5SCjXfHEgyeTaMArfFg+plN8Pw0DNvAJNw9UUyt9Ml1KXQjWpKiXoYt58ei1OrIG5OXMftQLOMpyHOsQSmUR36ECBr2rYCryoXr37+GeG8cUyNT8Db6DEqWfm4xvJekHS2hPUsXRtoHMY01l7DalHz/pDDtFCYhykUD9WF38dj6+QaEXxvG4Pk4hi5OoH6bG1xJwS0LSWrpQfQfLreMWWFqkpLTpJRjXyzQmWuEoM6rJCy6X2xq3xAmjQBYcx/g8gPeWgJHBasBIoqyVNf0U1ybwjrXUgVxYULkk4z+9ZsIej4phaGvQSllANBoTViNik4ZyTSUz0Yr7Eh+dgNs54eR2VUnkSuBymYdPVW+wKzpoz5PIfIim5Lymj6aMxUtO5RJUPKFCg4lxYYa9lhgfRW2fHErkpNpXYJipKErpY05hrtMZFZQMyASFebOEzDXTpl98e7pERvxWZgdUeB4gubWalTU2FG7uQKzjgO6RImLpUlZSHC2MkmK/o3Wnxqsym/4MrIEgi2jdoDN5avbAOlcFASxQcBbA3AcgWLKsOKcaqLCkhF1viJmn7Lu1+JA7ZOiBwW5KPEF0iMdCv8TzRof8l/FEUIU56cOHmhpkF8WgYIbmER2RYWuuSdvo9EQFNmhVp2eL0+U5qPc9yhdNuOdhBkQlFl/6+oUrljhhZs5NB2ZAmfn4fDNwA9OAeWAS7BU/VHykPqZvBSULwvkK1RrRpSaFPHX3D/O8t0lhGDFbn/+HDmtzfidafhX2k09EM8lrGBuCwhK7KBGs3v0UPBGq47pkpJCpIUlECrbuCa+Su7Y6C3gUqeA4BqCLa28arFEOX6KFBOFNeEo6lVqUdQaHTbA25Iw96CEB89AlIXiVPCqdIk85H+wfjBU9VeqWxUpVl0XBApb501w18eQenIdsuurNAOoAKohLjR/fnZmkUhieJI7r6AuQ3Odx7LSpMxIg4IZlslBT9OlxtToFK5++yJ4J4+NX9wKW4Wy39GYEFUJVLXDuogWM0cuHYj9jxFZoQb7BlqSAgHcpA+yWTqk3umO4cavxrBqjw9rP1KpeoqK6d2W5ntnaVIWEmWbe/IopjWRT6A4rDTxKM0/+mVY0w/RpHF2CpAsRm4BV9/isOFjPAhhg7uxZfSi0WpNQdo1fFQEZgloUvgyzD3qbkStwVUf11+xVvYB0atfJAQ5B16iTFfnJRQ8T8BRCtfJm0g5eQhr/PLxvBlIXZ41I1Gd+gUQ8Ez7ab7dFEDWvP1H6VA7iZeJUgb2cgd/Nj/H5z4SpkancPWVS9j0xa2SM20pWhzK/ihiuZi1VmjRIfY7gkplaTDtmDX5qGb9zDc4W+5cfV0x8E4Oq/d5cweKnl7dRjUrpfq/TQArmNtCQh1xNpdYhmpKJ18xG6tRZ2qkeVF9GbJB1gJrgM1P2nDpFxkMXqOwVwDrHsyTCMMpxrkdpfMsQ0LYc+qskEyXgE+KHaU5zhq9+qV8WynMNarnRW+QEDUneiYhRVfFc6BPNAFZCv7aGFw/DSP9hU2gdR6JCumZgBRxUJjrYNf4URzL5xcAZE38lVMaZqo9yaGUGT0Fp6AbPEjs/XYGXNj0xa24/M0LSAxOoufVq1h/YLNmccJiLS3KUJYVOB2iojoOcbaPkZZlLqF9s1fs9EFIZXHjrShu/ToKRwVB/VbjWT+KKzCKqqtKW86rIJsBpiYplNhnFicF0JpOlAeYXaMOVGt+kd9FnfD5euYhQlAdAjZ8zIarr6fQd4bCFaBYsdUhHadMXrk+o30loVE6z+bzLAFNSimOs6W+9orBiQ2CRgzyqMtT1flURELOx2hjeAJhfxNIMgOuNw7ux9eRPbAZgtchyU0xnRnKmCpSPBUouziqKCeTnSWtSZnllMy5GAJKLe8KurH+wGZc+dYFxG6O4/bPwlj76WaNZlYdDFD+TXTHX4mkLkFQ8LlZOaAGF6EmKqw2BYzFh5R5E+jMTD3SKeSyjXv8SE8J6Dsdw/VfRuD0cgisdumUwazNS7MuPwewSMpCgrPltqIo4UtNFfdE93VRazc06SpzkIbg6BEWgrqtDkwnONx6P4Xrb2XgCjgRWGVj8qu1JNr6KVRmIt0yHEDSBjfAPLCT4poUI5V4IfMPle6VPtTEAcj5gyjX2lHmp1K+nKpDIhh2Hvh0M2jHFZDRKXA/ug7hmU2gDl4iIIC+UyyPHOmhgML8I7ZB1KKI6XYTdyBasM/07FDqkFYon9Exo+fL01CB0Oc34nrHZYycG4ar2oPaB1eW0AZRi7IczDlqiLMJqQFZKUVTMvPnQREEjrJvSiEovz7WPlKJZDyD4SuTuPyTCHY9Wwt3lfSW6pRdSu+cEmQGjrNm9nszNUmhnB10xpoBPeKi1qKo04jqJ6eTrk9YqDpd9QW5eq8HU+M8hq6mMHRNQGCN3SC/enqxmoSwJIaZ3ZNPKsvReJHAEWUwt3Kg6KI0QZ+UedRdDxsHRfE1TPQHF17KKxMK1m8ELhuEp9cDL18GjSbBDSWA1X6FRoSHjkMsAB6FTT9s281vwMtjJgEaCldY0mBfkKTMgC1UhgJY/UQTbp+8gciFYVTvbQBnK6IRorlBvNjgtrTJS65vIkRQ3dj8tYsvCQBGhYJ5uWo2um3B6vO6akKwoTWIZCyNWH8KkRsJNFYVjo2zVDGXmpSOjg4AQCQSQSgUQmtrq26+o0ePIhQKAQDa2trKOncxmJqk6Puk6IHT6RsKCYkhMESdrjouJbOxU9SkRU1+tFONCYD1H7ejsjGN+m0uRWdOVasZ69ej1rLkF0BUxFXhAM78mhRHXpMyky9gRQaVaaVQPZoVl/O3Uu8bSqOez/uGSFoVpk7e7wT9THNOU9JQoaiL1YhopiITNWnJOc+yJEz8XU7gu8XF3DZ0tgSl7PMxQq9tqQdn41C1pRpQERR9LSzyRKWE88yqlYsPCk6fqOheGYHslzK/rSrYE1AKzkax+alqxO4kUbPBpclCNAsdMm/jErLXzRVJCYfDOHnyJI4dOwYA2L9/vy5J2b9/P06cOIFAIIA9e/YsLkkphVUZ5YlGozh+/DgA4Pnnn9et/8CBAzhx4oScMJOw+AooiULhx0zvK1BfK1I4nSU/7GwcgHMC9Ttyy8TrLxzIlmd/s/UUiplCYLggYwEstFxLmd2jIRVq6BTXM+fI+YnGl0CEXvfG+oQAjFZFkSevDVFEoYXUoRWKh6JIR26A5FWmHyFfVXmB73JY8Hd1jjGb8PcihAIf2cU8BwghqNlVpyCnRqBgM83vYLbgcjUQg5aoqLUpLGmZK4JSxNRDxbMJhtkcFTxqNnggPQG6PiR6Bjtm3wR+J4UwVySls7MTgUBA2g8EAujs7FQ8c93d3VKe7u5udHV1zajNhVAySSmFVRXK09nZidHRUVRXV+vW39HRgc7OToTDYdTU1OTqS4whyKfg4u2o4J1w88UC8qg1IMUEpSYK6rrUdRiTE6rJpyY9rLYEyKQobrw5gepmF4Iht6INumHxdTQp8unyM3tAyl5GYDHkGp24jQwXhMPmhtNeAZueSU8V06QUS7TSnKOzQBwxrkfyBVGdX0/TIhEolTYEAMjAJDK/uQv+UyEQB6/ya1E64Kq1KCKyQO7LDzmikymzj19ImYoqXgDoi/ehhq+B2+5Ghb0C3CycZksd6hfi+5ZSiqH3+iFkBax4ZJXm/LLZkOpaH+bqI3wx3tVbsT4ESQAumxNeewWcvFO+LpASDXIzh8IoqvFHoTppLIx6jtxbnZzIoue1MTQ97IWnmu2DSjdRmWlhQRGlWF2FVApCOiXtZxOTmjw9PT2KZyUYDCIajSrynD59GuFwGOFwGADQ3t4uPXtzhZJHtFJYVaE8bW1tiEQimosUEYlEcOjQIRw7dgx/93d/BwA40dcFp0d+eOwcj6C9ArUuHz5RvwMem1OfRBSEarAveFyZTo00J7pERkVQVPt3z8QxeDmJyO0M7lvpgd2dH2KNzD0GJiHJVCRNSy4vFvRiyPW9G6/C7pE7O5etAl5XFRr8zdhYf3/B9rJahsIghnlkk46yI1JrPgDWL0VOk1c0ZtIoBRUosj8NA7Ek8E4f+MfX5p1k5XZzTFnKBHDjmXNzVHZkoyhfk7KQMj1y5IiU/vKlV+CscOavh0elsxLV7mo8suphrPQWdz4VUaoWpZi5sCwtSoFVj+O3Yrjzxi2AEPjWVsJT4jo/pQ91pWEx3tWOq6/CKb2rFC7eiSpXFeo9tfjUuidVklLP9IFUrmRtiviilTv458sZkyZt+s23xhG5MYXURAa7nq1mulWVeadklmkOk1ApEWdvf/OfcPtf/mfZdUciEcV+NBpFMBhES0sLgBxp6e7ulvbnAiV/6pTCqkrJo4doNIpQKIT29nZJHQkAPuKBG06QLI9kWsB0JovB1AQuxQfhtHty5iBiR3e0D+9HbiGWSQPEpr9xjvxmZ9J5aaPEJjnqUmJTbpwj58DL5M/Vac/NPlKk2Zi03HkpZwMlfG7j7KCcDSv3VMIddCI1BYTfjAMcL9fHMXXn03Nt4fN1ye2Sr8Mmt6kMLIZcPaQCduoATWeRTaUwlYwhMtGHRGpMWiGZgOJsXycGYz0AzUrp4vRlByFS5FrdjciziHjVJh6z5etk67Yz5xA3Hsry9nwd7MYTAhvPwbm/KUdszg0Dt8bBQ5nfTnLt4wHNecRz2Zh220gZL+kiyhQA3HCDz/JIJVNITCcwPDGMa2PXFGTw5vhNvNX7FoYmh3RXtS4Hc+qPUiDd31SJ4LZagFLc/HEPhLROVGci/VcQs/nuXgy5eokXLuoEMkAymcZkMoH+yQH0TdwFIfKH29t3foMzw+cxlZnWqb3IfaGlGNWkzAyR0dOS5Okpa4NTHJZ3mj7ig93JYWI4jb7TE4XPqWirUTazkBSu6Nb0++34yMlT0vbg917X1NPc3KzYF82HLEKhkCItGAxKWpW5wqwcZ9WsaqZ5Ojs7JWebUCiE11/P3bD/z5f/Q87EAX/5n57CH/7+Y5jMJMFxDunReW80jJFkDD8fOIe1FbXYVdWErZWrYZNWmCrwkrDxR3SP6ZiDDJxlNV+ABRYS5B02bPhkLc6+PIjhq0nUbE6jull0vOSUs4UMZ/QQpnPM5aNk9r7Q8y3XE7/z93ImG/DUf/kTPPIHB+GxBySTTTQxgBvDH+DG8Aew806srtqMddU7EaxYIRUVZwgV6/iNzD+s9kKdnzX9sBFklXkokydnpuHX+EF31yF9ZgjCa7fh+N1tGrMPB9VCgmI6hTRVmb2uuZivNV8y7ezsxP3357Rf//szL+YyEQAO4E/+qh0H/uAA6jx1UvmLIxfx4dAZvNX3NmrcNdhVtxM7anfAY88F2Jqr0FhzMV6wz8aq1ibEb40jGZnCwDt3sPJja9RnxNz5XpSO+X5X/9dnmHeVB/78v/4n/N5zByFHKCVICxm82/8+0tkMfkoI1gfWYVftVjRXrgUn9a06AjEc8FlzTiHfEWV+5VuqNe+o63Z6eYQ+VomrPx9D76lJ1Kx3whO0QfumG53WfKYeoDSfFN7pBO+Utdl6+VtbW3H48GFpPxwOK/ybAoEAWltbFeYdNs9coeQRrbm5WcHI9VhVKXn0cOrUKen33r178bWvfQ0AcP2N/wmf1y0dczrscDpUa2pQit3VzbgSu4PeyRHcSoziVmIUJwcvYF/1euyt3pAzC+nCyB8F0MzQkdJ1VkjWy2u4mGD+vITA12BHY0sAfV0xhN8YR+UaL3gHrzL58Dp1yIRHuXgiV7a5ZzHkevzUGXi8ssrc7nDA7nQq4pV47G5sqtuDO9GrSKTjuDl6BjdHz6C6YiU219+PxsoN0oul9gvRAzUw/yimFDNg19+R0lQJarMPh9zzyD+yChPhKIR4Etn378L56GrwALKSHUBuSy5d9nFhnX85OjNzz0LK9NixYxJJuXTxAnw+Wa5OpxNOp/LdCwVCSGSmEI6GMTI1gl/eeg2/6n0T22u24YGVDyLo1veXUGOmpp6Zcheb24bVT65Dz39cwdD7d1G1rQbuWo9ufaKZp/gzWR4W4129dK5bJVNHTqbMAJ0FxYMN+3Bl7BqGEsO4OtaDq2PXEXD6sa/+Puyu2QI7z/bbBleu0ZCo8+uREKO7zNalU29e01Kz0YWRqy5EwlO4/noMO75QpaTJiraYQ1NSDHPlOBsKhXDw4EF0dHQgEonghRdekI7t2bMHXV1dCAQCkvYtGo3iyJEjCnPjXKBkklIqqzLKY4Tu7m60t7cr5liLF+nzeeH3GocwBnLj84O1W/Bg7TaMpyZxNnoTH4yFEUsl8ObQJQynJvDMmkd0SupNW86BanxIpLNBQ2xKnILM1sH6tqx6MIjh60kkY2n0nZrA2kdrDOqRyYiifWpflTLXJ18UuXp98Ph07PrMPa9yBbFvTSv2rn4CwxO96Bk5i97oFYxN9uPd8Pfx2IYDWOFfpyguFPArYAmAGnqzQNQvbe47WZlLs+i86EvitKHi42sx+YPryH4wBGyvBV/lki6PArmQGsy5WD8GsWMUSC4vX+YH+kLKtKqqSjru8/ng9/sL1rG5ejM2V2/GdGYal0Yv44PBDzAwOYAPh87gxvhNtN/3n0pyuJ3pcFFkSCuIwMYgKjcEMX4tgr6TN7D+d7YqNZ55HyNRp5LT4BVoS5nqnsXpg/3w+73aQoRIF+fknXh01UN4dNVDGE4M4czwBZwduYBochwnb72B6UwCjzY+IF40dM0z0m/mFHr3R8/UI2XTIzmFfxNC0PyYD9HeacTupDB8eQp1m7XTk3WaV87BBQWH8oO5cQaDodF04p6enqJ55golk5RSWFWhPJ2dnTh58qRk+2xra0NnZycOHz6M9vZ2HDp0CEDuhRFxq28UO7YU7vTAzKzxuyrxkYZdeLh+By6P9+HXwxfxUN120Lx2ISNkwRObajVibX2GBEW389Q6xVJFcZU5iUCxz7scWPexWlz+wQAGL0xg1UN14O254wpHXV3HWaZN0t/yzD2LIdeRvlsIbd1etG25Dp9ghW8NVvjWYCr9MVwd6sbI5F00+pqk1yorZMBztqJfD0YkhiPaLkZt8gGgmTos1ikflyklv74KmVAlUuFxCGeH4fjYGkU3wGpqFOl5kw+Q18xAu6hiMSy0TL/61a+W2ULAZXPhvvrd2F23C33xPrx79zcIBZolgkIpRZZmYStzttp8o7F1LWI3opjsi2NqMAFnQ0VuUGSevfky+ixKH9zbix3bt+mQC33UemrQuuYxPNb4IM6OXED30FnsqdslEYeMkIGd4wqwN2PSImtv2EBuKlMPZcoZaVGYcxAATh+P1Xu9uPVuHHfPJlC7yZnrSzS+MkoTUjlOuguJ3OyecjUp89SYOQChs/VemwfEYjFUVlZi8Hv/Hf6AD9TlBLwewMlEaTWcOiyDUqoQ1i/unsbQ9DieWvUgqpx6HvpGRASGBEWz2KHG9KPW2OiQGkrR/+E4arZUwu62ac+nICgM6WHugTjLJxafQOP6FoyPjxf9ql1oiHL9ycnX4Q7WIOvxIOPzAQakUXcaMZRyTWWm8ZNLX0dzzQ5srn8QXAFNklHcDKPuN6vzaigWLoTW2s2SluzYNNIDk7BvDuZMPGpzkU45dVwVCmAqHsdf79pgSpkCslzv/Pod+GtrQb1ewO0uq+cTQBRyvTRyCb/q/RU+3fxprPGvUeUtjGyBHs3IRVNvYUktIc39jVwcgafOA1eNB5ILLSM/qlNGr85YbBwPhppMKVdJpr/6JfzBalCPC/B6ATtLGqlEBAhLIGj+L3Iz3gihABVAqYCXr34fHpsLT65+BG6bSyYC0l+2PqpIg945KJUJCpsXUJIM1n+Eyo7PYruFDEX/2Qk0bHeDF6MnKkiKTIjENhDVvpg1NpFA3QPtCy5XUWaPv/4BbN7youlmJuJ47eP3mfJZNNdnigr8T98Bz/qgeFyg1VWg9dUQ9m4HXEa+JjmwfWQiM40Px24glc3gpWs/wScbH8DOYLO6hCFJoXq+HgaLChqbeqDwGWH9SVbsqQbAM0XVxERLUnQ1LWWaexYDK7/3Knx5XwXKcchUBpCsq0NiXQgT23dI+QzXk2DSe6OXkUjFcO7uO7gzHsYjTZ+Bz1VVrJgCRuSFNcNIaUyKqNaX9ikUalY+6IYt6JYOsgsFsiYfAfKXD2vuITM09ywW7CdOwC76oDicoDU1EBrqIbS0gNbWGpYTfbwkHyNK8d7d32BsegzfvvBtPLjyATy6+qPgZ/lsG5p6yvxOC26t0SYy5g8jmNPNsjDsr35flikoqNcHWlcDuqIB2UceKlqeMHbNwcQwbsRug1KKW7FePL3uCTT5VkKtrdD1CdGYd6gyrVQtCvObPQ9nAxrvY10LCmmO1B2GQQeySFhuCwzObonSeQatCYIGKgGXKzcIT6VB+obAfXgVsDshTf0dGQem01BOEVZuHnsF/njT57Da24CUIOAHve/iR73vIUMJIE3ptctThdlNM/1YnPKrSuO0U5ul6c3SJtcr5xenD+fyT47kr4XjpTTK5Te2PDv1mD2vyZGtrYHg94PwPHgqwBmNwH/1Miru9Oan8+Y6kIre2+AFITcF2GDbXLMbHw39Fpw2FyKT/fjZ5X/F3fHriqnF0mZQh3hOduNI/hizEaBgnXr1iMe4jAASTUpTjTlop0XbSH56ss45lgJoMAi48x19Kgly9w747m4gmZQzRaNAZKxgPYQQ/PbW38HOup2goHj37m/w7YvfRjwVLzoWqLVVJbW7/CK5cwGYjkzlpiTrEBQTjVszBq2tzfXBttwbQOJxcD1hcJcuK01cd/uBtNGSHLk70VBRhz/Y/AyqXQHE05P49tUf4u3+LlApFLNqlSuFeUeHrAAqk0uZv6ne8RxpnRxWXYtKvvMdxG42EElKuZtZYWpNSvbgU8j68tNykykgOgGMRECmkqAOOVy+7eS7QCQKurEJwn1bQet1vnRAUOWuwu9ufArvDJ7FW/0f4MOx6xhJxdC27glU2N1QaC+URaG/MrI2TTvzRzXEaEw3cn5KCS523EL01iR2/F4zfCvEKcmshofxmVHULZqRTC1SAMDQl34Pkz4/QCn4iTjso6NwDA4i1dAg3Q330CBWvvLvyPj8iO/ajfiu3RDcbm1lhGBD9VY0eFfhzRs/xNBEH97s+S5aGh/D9oYHpJdPoPpfC+L3EqdOo1TlWwRlcC6a6zpZzUlOOyJ3XrnjQPpuHNEfXAfx2BH43W2aToE1K4naE0DWtMx0McaFRvrLX0bK7wcyGZCxMZDhYZD+AdCGBikP/9574Lu7Iaxdi+y+fRDWb9DcZyDns/JU81NoDjTjJz0/Rl+8D9849w20bT6Auor6GbWvnGGllLx337iNoffuYuUTa1G7ZwUEzWBnXLbosg8mQfp3v4S035e7mKkpkNEIyGB/nrTkkcnA9kouXISwbTOye1qAKsZkIGk1KBq9DfijLc/i571v4szwRfzqznsYTozgM02PwU7yy24a3RuFuaeQFsXIzCOnE7WPTT5fKiHgwvcimBrPYO/vV8Ph4aB+GjRRZtX+Los8NZnkP7LKLWNWmHpEkzQGAOByAw1uoKE+36nl72oyBRAORADI5ZvgLt+EsLYRwiN7dMgKAcfxeHTFHqysqMerN15H3+QIvtXzC/zx5s/lnPZK9kkhoLrEpXRzj+Y4x8HucwIkgTvvR7D5c5XSufRjpcjpok+KrlnKZODyGwgB9fmR8vmRbFoHQHYSdcZioC43HPE4qt9+C1Xv/wbxlj2I7XsA1CV734tdjd/px6c2/jZO9b2GS0Pd+ODOr8ATgh0ND0hkQQ96X94CoPE1EihVaDT01pITGHMPu6QaCXqAtABhJIHszXE4QgHpGKWQZQiZ5DDJS8bcI8Fmy32B19YCW7cqDpHpaYAQcLdugbt1C0JNLTIf/SiEjRt1e8rN1ZtR56lDx5UOjE6N4psX/g1/tPOPUekKlNWkQsr7UvLqjZuOyty0+eH37qL6vnqAM/P39SxBCODxgHo8oKtWMAcoyHgMcLtBouPgu8+A++AMhC0bkX3kQSAgkxXx2bbzNnym6eNo9NTi57ffwsWxHmSEDA40PwktuRAJiYqUQNRmiARFjKeib9pRlgMU9TH57G4CwgNCmuLumQSaHvIWNeOZDST/r9wyZoWpzT36phtRg0Fy+y43Mr/3DDJf/ByELRtAOR7crbuwffuH4H/+NpBIMmU56Xdz5Vp8efPnUOWqxEdW7AEnmXQ43fNScBqzjTTlVzLLcEozDWdcn2wKks1BIDY0PtAAgEPkWhxTYym5Pk0ZHpRwjOnHJrff5OCIdlObSVKbNmHgT/8MY089hUxdLfh0GoH3foNV/3wc/rMfgqNUooM50wmBg7fhkbVP4qE1rahyV2NTzQ5weXOJXlRatclFbaJRbCoTDKc6rq6LPW5z2+DdVQcOBMmuAcUxTn1esX7VuZYLMp/9LFJ/8ifIPvAgqMMJMjIC+3e/C/s3vwkyNKRbJugO4ve3/z7W+tdid/198DsrdfOVQ0SkMrMYgII7amGvcCAVTyF6aRSArh522YNWB5E+9BWkn/0ChFATCKXgL16G/Z//Ffwbb+VMfxrNBcV9tVvxOxuegt9egUcadkvpWgLB/M2Tktw8O9VsHzaPWJ45n+5vVT4CYNWenMly4Nw0simN+3SR/cUnNJa5ZyEh+loUzUdyjlwrGoCH94F/twvcpevgLvVAWLsKdOtGVf5cdNhqdw2e23oQNs6mfLR0B3qin67rPKtM02g31IHdpNk6gKe2AlXrAxjrGUd/9xhC+735OowcaVXB3pYCSUGJ02ptNiS3bUdy6za4rl+D/603YR8dReXbb2Fq4yZQPfMPgJ0Ne7Gldjd4cfqq6gXUM/GIEChVaC4oct2QQouiMh0JUA52ApTaD4ECvpYGTHUPItUbhzCUgL2+QqM5ERReuPKfcmMemB6BALKPfxzphx8G/957sL3/Pri+PvDd3ch88pO6RVw2Fw5sOQiOcMYd6gL6owAAZ+NQs7ce/b/qxcjpflRurQYIUZoFlzpIvj9jTRjq/Xw+uq4JmXVrQPoHwL/5NrgbN8Gd+gDCxmagIe84TRnNCBWw1rcS/2nbQdg4XjajFAp7ryYYlHlRWIJSkplHz7REUR1ywB2wYSqaweClKazcyfQzmvOriy++5EtZu0evjFlh7hGtiBZCdhSVTR20qgqZT7ci/cVnkG3ZBWHrFu1aPOCkum287IA7nk7glZ5fIJGZhq5TKnTaA6LJp3a8lbQ+Gsdbm1Lzkj+2Yl8DQDgMnR9DOg1QzujabflORKlhMTv01qzRXcdG3DgOqY2bMPzlr2D8448jtv9JcG63rsZDJEAO3iZpKG5ELuCDO29KDrFiHlGjIpZVO8ZyeS0Gm4+DUvvBanJYDYjaQdbhd8C9sQocAZJnhxjti7hWkbId8ppA5cdJWQqgIIDLhexjjyF56BCyu3cj87GPFSzDc7xEUNLZNH5w7fsYmBhg6jTGXHsJiMNe9a46cDYOiYFJJO7K679oTIFzfP6FQzmDV46A0IZaZA58Hulnnkb20YdAV6h9iKiijExQKPonh/DqjdeQzaah8TfJEw8i3n0DM5AhQVHkU5eX8xJCsGKXGwDFwLlp+QOECqq7YT4tCqCvqS5lMytMTVKkGS0lbvkoNjlNycoGZB//iLzYXzID/gcngfFJhnAwAzw4fP/G67g2fhv/Ee5EVqA6JIlj0mRiwppdlKREf7YPwCnrVpAfDv6mSriqPcimBYxeGs/XwZiWWLMSS4hAoH6NzAg9E4vop6LeFCYdnsf0vvuR3rRZGtw9PdcReP21nPknTwpYYjExNYo3wz/Gmf53cWX4jK6Jh8uTDTXZYUkES1rUJh6RUEhlIJMNkbRwAHz31YMASF4azT2PzLVLpIY5n9Qm84u0LGjW56msROZTn8rN4gMASmH78Y9Bbt5kyijxdt9buDhyER1XTiCWjM3I1GPcvtJh8zgQ2JLzfRv9YFAqb47haq5ANNrI4qCgzU0QHmiRtReRMfA/+CkwNQU2Lor4NGSENF7p+QUujvXgp73vgLJaFxQgKFQ+rrzxSjOO1qFV32cFAOo2O8DbCRJjGcTuZtQV65xLN2FRwIPMaDMrTE1SStKi6G4iAZH/8m/+BlzPLdi/8z2Q4QijucgdJ5wNn2x6HE6bC7cnBtB5510VKZEJhZaU6OdTEhGibF+emCh9S3K+LoTYUL+rDiAEo1ejhmSGIrcJyC1ux1ppzQyitxHtpuerotimplD1kx/De/oUgt9/FXwmo/EdqfLUYE/jIyAA3r19EiOTdxW+HiIRYDUX6nOL+dQaEy0hYTQsRNbW5LQvBO5GH5zVbtCMgFR+hWRWM8NqeVitjrlf0rkHd+YM+LNn4Xj5ZXDnzwPQdv8PNT6MWk8NJlIT+N7VV5EVdFYmLgIjfxS9sadQzurdtaAAYuEohKygX8eyhMFVKvxI8vkEAbafdoK70gPbd14FYnGZoOTz2wiPz6x9FAQEZyJX0TV8ERJBkfxQVCYgDUFRR6Ol+gSl4AwdwGYnqNmQiw8zGk4qyFTBazcBLE3KgkJ3OIOu2UVhclFrMDhkH3kAtLYGSEzD9soPQPqHNRqSOk8Nnm7+JEA4nB6+gItj4TyBICqNDUOCFNoNVoPCaDwYosKSEcoSFwWp4VC7sx6b27Zg84HNivQcKeGkoMxZ5F9jmou0OZM4EQsNPTONnmOrTScfq10hHjfin/gEiM0Gz/VrqP5uB/hMWqMd2bfyETQHN4EKWbzW832kMlMKLQerudDVqBBZYyIREjCmGiOnWqYD4Alg4wiC+5uw8g93wr+5RjYPieeBbEJSa2OWC0pZ5VjYvh3ZLVsAQYD9Rz8C9+GHmjwumwvPbGqD2+bC3Ym7eOP26/PS3lLgWenDmt9aj82HdoPjjVZBkbEEXlEdGIRnAOTosGqSIBIFKgAEyD7xKKivAmR0DLaXvw+Mx+S8eULR7FuJx1fuBUDRefcU+hPDSoJCofJZUcRoZurTm4ZMmWMM1OHv88cb73Njx+crse4jHi1B0RBcQSdtcaDXv5aymRXmJimFNCVq4iJpPXS0GoQH/JXI/E4b6KpGIJkG3/EjYDiiCbK2IRDCwyv3ASD4ya03EEsnZE2IRI7YmTTqczHkJb8vB4WzQWGqkUxUWk2J3eNAcGM1iM2e15jkTDni65QVNwpkKGRtiklelEIQHbuKbXoe6GpikdmyFbEDzwJ2B5y3bqLqe6+CZLMKs46dI3gi9GkEXFWYTMbw61sndYmP6EvCkha1eYdjNC56ZiK1iUc0PYnHPKv9cNW4laYh5rrYdkuamQWTjElgsyHz2c8iu2dPzvTz05+Cz2tUWARcVfh082cAAKfunsKNaFi3unnTLuYHTEIIqrbWgHeZex7C/EPr4EoY4kDrqpH57c+BVlWCjMdgP/FDIB6HrC3J5X2gbis2+tciK2Tx/ZtvIiNkmOpZLQ2jQaFqgoL8+dVNLEJQGHiqbKhsdIArSivN1ecW1D4X2MwKk5MUPe2IwabyZshpQFSmGZcb6bbPQli9CiSVgq3jh0B8UkNqHl35EBoq6pHMpvCzW7/KO9qy5EhpdlETGCqaYkRzkGR6EvPo1CERGyK3WdSWUCqZcrKMxiSbJycCpchSmluUbVEEVR6M/E/Um5GGRZ0vs3Ytxp99FsRuh+vGDQR+/jNwlCr8Wpy8E/ubfws8x6EnchG3oldzJEPHtMOSFp4hTGryIRIKSWUKtYMtUx5a05AYaYcw6bzOOZaLIqUsXw1CkNm/H9m9ewEA9h//GNyNG5psG4Ib0FLfAgD4efinSGVTc9PYEtuYE47yqpbCh8Lcg3FyFR1QpfuQ1zJQCvgrkDnwGSDgBxmPwfbqz4DpJOR7KICA4Kk1D8Frd2M0GcWbA91y/XoERWfBQQAqM4+e9kPPz0Tfb0VhGtSTr4lkTkDAlblZcVJmCEpICZtOGHsiDRO5jSUJThcyX/gshNo6kMkp2H78i9xzyDjd8rwDv9X8KfDEhmgyhqlMKl9eJEX5oUXhmyISEyNCwwx/7HEV2RG1JuJreOtXt/HhsQ8xMTIFgdWYQCYoYppo+jE79JxXdZ1piUZfJmk31GSGrlqNic99AeA4uM6fh/vCBUkjI2pIVnhXoqXhARAAwxP9UlmFXo4hLQpfFCg1JWK9ivYQKPxp1L4sItkRIlMY/eF1jPzHVelcog+LVJ/K72V5oMyOkBCkW1uR3bo1Z/r53veA6WlNto+t/TgqXQGkhTRGEsOzamEpWhcF2aKAGDI3en4Y1//1PMbOza4Npgfjc6IwwwCQHFxFIkHFhfdkUwvxupH5wqdAPW6QoVHwb74nE4886fDwTjy1Krc20MDUKAQhC5REUEQNDlRmHvavNj8U+eU8QiqL629M4PQ3o8im1OYlsU5zzfJZbpoUc+snxQG//IKFPz/dLmTanobtR79A5slWgLNr+s9aTw2+uOVZrKxokBc2I2LYe1VmddwTAij5n9geothnOT/7WLMKyHj/JKYi0xi7FoGjujGvYaaK104KaUQLrwBrFujcQcN8bEa9SxOYA5lQCIknWmEbHkJmy5YceWHKcYRgX+MjCAU3oMHbKH3xsm1h7yf7CIm+PmydFDnykTueezKYb0dNefFY1mHD5JUIQACaSIPz2HP15h8dsU8X8o0wc6ClUlGKL4ouCEH6qadAkklk7rtPngHEwMY58LmNX4Df6Yfbph87R9sg/RW2dbMWbF8+BwWS40kk+idg99pRtbOuxNqXIvS0CuqZOKxfiACNWSXgQ/bpVnDvnEb2od2QCYpMfjZUNuL3mp/Emoq6vMKqmA8K8y4b+Jmo8+teE3NtnA0Yu53GdExA9E4a1U06Q6bJ+lzxo6ncMmbFEiAppdy+Yp24algkACqDyHzpt/XryA8Kq/2r8p0rUaQr8xOmKPu9L+Zn681di1gfO4CyfymVj1Wur8JYOIpITxS1D6xUlBGYvGLZpTC7RzRp6CE3dBBxR0lSdAYWHrk8Ynp6TwvSUEhHqgoU4Hk7VngbpXZIx5jTcZDVu+L95AkjL6qsVyQrEnnJh9BXEiRZtk6fA646D6aHEpi+OQ7ftloFyRHyDefy+Ze6JkX1vVp2WdhsSD37bME89Qbr+Rh7HJTZBr1ExXtP4W+uwuDbfZi4OQ4hK4BwnJTVZONY6ShIkPNXpQphrwiYpgreRkSCQAXQFbXIPvMJyAQHeSdceZrxWm+e7Ck0KKqekyUoEjkhOnmV+ZVpagnl20oIqtY60H9uGmO3klqSortOjzk0KeWW0UNHRwcAIBKJIBQKobW11bCOjo4OBAKBgnlmAjMTKJTuvaBjBFD4mYgmH1GjwSj48/nI0EjONspM7aV5kpShWXQPnUUqmx/+WD8ShfMsp7MxZqE84WG+NaTfAmU25pgvFABAMXEnjnQqKzvOUiWZkUw/JrKNGqGwFBl/DKIy6xA5loi8FaiPUth7b0tPhyh+0ZQTn47i+uhFhdlINvvIs3bUpiXJFKUy62hMNTrlRf+VinWV4AAkb8UkXxTWvKM2IS1tzPEFTEyAjIzoHqKU4nrkGoZnafYpClZtln/nXPUe2Dx2ZNMCJu9MGBZdWjCSndiTqYkKozkRt/w+S1BksiASFAGkrx8Q8jFJ2GnMVMB0dhqnR66AClnlOVltqEZbokdQ1P2jAUFh0qrW2AFQRHuNVnlWV7nIJAVzEyclHA7j5MmTaGtrw6FDh3DkyBHDc0ajUbz44ouIRqNzfj0mJynEeDMMtMYQB50yclwSTvIjIae6YfvXb4F75zfymjxMHS9f/i5+drMTHw6fhzzTh+icT92GnI+JwLzOoj+JRC6obApgfU2yeWdYe6UDdr8T2ayA+J04KM0TFCavmH+pxEkxIhXqWTJGm7Kc/mwgLpNB5be+icp//3c4+vsV5QiA6PQovnnuOH554yeYSk/q1i2lMc6vbD7WCdYoKJ26vJjuWVsJQoDp3lju61PMzxIwJv9SxVxrEbibN+E8fhz2H/4QoFQz5f6t3l/hu1c68Ou+t+fwrAbIExWxCYQQeNf6QQFM3orN//kXEwqCJmo4hJwmRJx2LEq/BILCvfYb2E78BOTsFSVBAUVWyOD4lR/hZ33vIzzRL51LrF9LUNjjTINLIi1QEBQAqGy0gRBgalzAdJydmmDO3nau4qR0dnYiEAhI+4FAAJ2dnbrnfOWVV3Dw4MH5uZ55qXWuoKeZ0MQl0d/UAddymgwVccnXSevrAIGC/+AsyGgkf0zUmPDYUrMVAMHpge68Kp6ZMqwgQKLTqzhdWCYnjBJTIhoi2VBoVvLaECmdEFSs8QMUiN2OS/lYzQmb3/x6lIJiUzqeGmx6JEZNcni7HTQQAKEUntdf05ChalcQdZ56ZIUMLgx/KNUtnR9ap1rF9Oh8mrotaodZtjwbQM7T6AXhCLLxFGg8JTkJq8mNWHbpYuat1xsChNpaEErBDQzoTkveXJ1bdflq5ArGp6MzPndJoNJ/0nvnXe0HAEz2LVOSIplW1NoOUcPB9Ga0BA0KFUAogKAfoBT8ux8AySRDfih4QrC5chUA4P3hy1I9BHlCUYq/iSFp0cunhM1B4K3NmXli/Rk5b4H7s5goyUk2nUR2Ms5sWs1fT08Pqqurpf1gMKirKenu7p5zEw8Lc5MUEM3oJZliCm0KUwu76WhbCAFtaoKwYT1ABfDvvKs4BkKwo3Y73DYPoskYwtGbTLvkukSHWlYJqiAn+XeCNecoZuqIhEOnXEWjL/d1djeumdWj2KhZub0SRpoUPS2G3gYd4qLJAyD52GOAzQZ7by8cN28qNS0ch5aGfSAALg59CHFdDklDwpIlVZtYkw4bil/Ko26f4ljeDGTn4arzgABI3okrzFuEyS+atJYq5pw0V1Qg/fDDAADb228DWeWk+7qKOqypXAtKKc4OnymrXWWTfCL9J+16VvkAAFP9E6BLIbJiyVAN8NpPr7wWhdGk0KwOQcn3eCJByeuQ6fYNoEE/MJ0E130BSv8TYF/1JhAAPfE7iCRjee0JKzEq16tudxlpWvfuXLq/IUdS4gMZRbr2Hi2+zEuZgtx1/H/g2L4t0va1j+8rqe5IJKJJC4fDCIVCc30ZEkxNUvQICIDin+GFhjm1v0h+CMl+9KMACLjLV4GxKFgTjp13YnvddoAQnB0+D9Ehlio2Ha0I8qYcqnydlVoVleYEMuEQfU7cK71wVLvhqHIp8rOaGfEci/+KFEdBApJHKURGTQwUmhgA8Fcivfs+AIDr3V8rtRQANlZvgtvuwUQqjt7YTc1xmSjIdbLHIR3Pkx9Vu6RrVZEVkeRUrK2EZ5UPvI2T74EO6TL1S1oAVCHRcssaI7t3L6jHAxKNgr90SXN8d31O5ueGzyFr8GVrRFLKayDVJDmr3XAG3ahYU4nsdEavpGE4fnODGYA1ZERgCIogaVUUBEVMZ/xUCJh6OEB4YAcACu7MZSCZYogNRZWjAiFfzjn6XCSs0oyInaWKJCjW/oEyr+byDOaf5fP6V9jgreHhqOCU90JzjxYfpWhSHmj/z/iz05el7bk3TmvqaW5uVuyLzrMsjh49CiDnNHvq1CmcPHkS3d3dc3o95u7/dB1R9QiIwXd4SZFqc8SF1jdAWL8+p3Ls6maO5865s3YnAOB69DqmMkmFKUdNPJD/y5pzSiUnoraFTXfWVWDzH+/CyifXKYgOq5mR0pdAB6gXSZaNKGsYgVYsj8LS5/KZCAFSD9wP8BzsvbdhGxxUlLNzNmyu3gIC4OrIBYBth945xMclnyaag8Q2sWRFlyoTZX21j63Bmi9ug29TtVxHvj5WC7MUFSkznnIslS8Aux3ZfbkvP/70Kc3h9VUb4LQ5EU/G0RfrnUUr9NslsDsq4RCOYNNzu9D0zCbYPHbd8ksXOgO+gohkZYIi/pZIC0NOWN8VxjRE168GrfQCU0mQy+H8KeQ8u6pCIBQ4H72ZJ3oqLY2iqeynItNe3f7R6GmV02rWO3DfwUqs3uOCHPvFnCjlw87hcMLt9Umby+vV1NPa2opTp+T3KxwOS2Yd0ezz/PPPo62tDW1tbQiFQti/fz9aWlrm/HpMjELf3HqaETWZ0alHs56OPJRk9+wBCAF//iKQyUKMZUIB1HrqEXTXIC1kcT3aA0CHeEAZEVbMwzrLQkVOlMdUdSH/1aU2AzFaFpaciPWaHSVIVaNZAaBLYoyIixTK3u9HZuMmAIDjzIcKUwwAbMqTlBvRHkDIKswyrCmHPYc044bI51IQmrw6RyQdvKqsWBebzkam1WhxZnifFwsL8Qxmdu8G5Xnw/QMgAwOKYzbOho3BnMyvRq7M7kRGF0Mo9KLNLm9QRmuSJyFCliEkIkHJqAgKq3GhUBIXKuchBMLOjQAouPPXpDy5d4Rig7cBdo5HNDWBwekxHS2J3Eb9dAOCYjSNuKwPvnLzzx/mKphbKBTCwYMH0dHRgePHj+OFF16Qju3Zs0fhn9LZ2YnOzk68/PLLCIfDc3o9yyROiroce8f1hjv9fDTUDOr3gySmgMEh0FWr5EedABurNuDdqVEMTg5iS802qSQ7FVhKgzJNHeNDoXWhSg1Mbsslsl9uAqXIpgRwDl6qQ0wX95eST0ox6HyoAlBeI2GICqtGZ+91dtcuOC5fgq2/P9dJ5sknR4BVvlWosFcgmU1idGoEdRX1Un1C7gQ5bTQBwJBL5NtGSW6fo8pzcvmyegHj2JgpHIBMRsj7aedNkPnzcPk2LD2flNlpUUp6hj0eZDduBHfpMvg7d5BpaFAc3lC1EWeHzmIoMTiLlhi1xejJzD8T+d/ZVBa8Y6lHuQGkAZiqAihQcTUxWZtB8sQldzzLpLNOs2AGdKVJhm5uAt7uBolNgkwkgAq3dMzB29Hkrcf1+F30J0bR4KpUNdPI4G1MUIyJhX46FQQIGQrebt6X0mhKcbEyemhra9NN7+npUey3traiq6urrHOWCnOTlEIgBchHIQFpCIwMSgjSB54FDQRAHQ7FMQHAfSv2YnfDHvid/lx+KAmGlIbC5ASK4/Jv9pi63pEPh9D/y5vwbQxi1WfWy2UYgqL3XbGUYSRFluAoSAMjWwJIg3127Vok/uDLEBoawOUJikRECMEzW34bAVcVbJxdqlM8D0XukREJCwFAGM2WmAckp+ESBympjvz5xGnG4jHR/HPz3y8h0RvD6oNb4F7jl66D5s9hclWnBgv5DGYeewzZJ1oBHVX12som/OGuP0bQXTMPZ84/PaLgmSumAKYGJhF++RJ4J49N7ffNw/kXA3nJiloQIav0Q4GQJygZaV/WrDBERLM6MfsbgMuOzIFWoCYAwrH3Nvd3f8Mu/FbjXnhsTqZp6l5X1e4CBEWfTuubc26+m8CdD6ewZp8rZ/ZR3xuTwGhKcbEyZoW5SYo4g0b/YOl1FMnLPqq0rk51TH78fA6ftK923C9GToBStCdQfK3LRATgnTyEtIBUdFo+riIoYr1mBynxJTKaHGFEM9mvXpo/EQFAeB5YuVK6OWwZHkB9RZ1SO8OcX/wtPoVCPoOoOVFoTxiiIkacFSCbj8SosqKGBAA4W05zko5Ow7NGJr+EEBCqiL+7RDC71pb6+FIAQqDK8LiNt6PGUzu/Q4fK2iNeuc1jQ3YqAyGZzc3wMfMIUA6YqcMKEw/NMgQlq8zHaFlYR1iZnIhvCfPk1AUBRe8onhsIOtWEVC6v317dAwYmHuUp1eBsFEKWYmpcp6yJOl7R1F1uGbPC3CSlkKnGsEgppCRXdyFFn/qYHrlg8yrSVARF/RqpCYrAHNAjKABgq3SCAkiNpwwJylKZ8ViqVNV2Uvb69C6V0zmmJBG5CtXyEUmFWlkskg4xj3gOCpJbZ0fVMVEoTTkaQqIiKhSAvdIJQoB0LCndF0lLw5iLlgrM1FrDtsz6nlJICy0R+WUWa7X5HCA8Ac1SpOMp2CudRhUtEeQIBqFCzpRDM/ktR0wITcsaFZGwiGSEjZ+i1ngo1ttRazxYEmPQGxckGjMlKMblnL5cD5OMm9uozvq+lVPGrDA5SWFACt3G0m4xu2aO/vHcxn/wAfjubmR37kR23z6FE+z1yDV8MNiNRt8qPLTqESVByavo1XWWRFCY86tJBwVg8zpAAaQnU/l1QYguQTHTIGEEcTAut63siycSAfG3Xv1SPgA0m4XzB98H33cHieeeA3E6Fff69ZuduDtxB59s/gyq3NVSOkeUMlMQCWYmj2ZaKSlOVADA4c2ZFbMTKUX7xbaLkWeXAmYz5Viuozxwt27B/tZboH4/Uk8/rTg2nBjGO71vgiMcnt74eSl99kMMYboc+UkWfxFCYPM6kB5PIh1PwmZAUpbCu6qdPpwBETUmQjrnJCsSF4gaFlZjovQ5YcPniyZZ+S2Vn3zu12dBrt+G8NH7QNeuYBuErtHruBi9jfuCIWwPrFE3uAAJLXQMKCwRCmdFrn2pSdUTZIIAbizm0ifFDDB3/1dw2jG7GUMvlok2j/IrmiQS4IaGwPX3K6YDA8BkegI3omH0xfuUX94qgiLWKciHFSvhajQoKqdMlnRQAHyFPe9TSZFNpDXTnTV1mhii1ArFPSmlDr2Abrr5AHDiTJCJCXADAxCnG4vnuztxB/0TdzGaGNY8VVLcFQZq519NGci8mqjyihodAsBWkfODyU6mFTN/2PqWyirIizLoUgq+txfcnTu6h69FruJmNDx/sUmockVyUVJ2b06u6URmaZCRQpCixmbyJCQjE5T8PqGqWT7quCjMVGF5CjI7NxLKfPEJkGgcGIpojo0mY7g1OYT+qYimncW0ZAX150XIjcOTe4tTCXP3snM1u8csMDdJmQHEQV0dlr4UciJCEP1Shoc1xypdQVAAY8moskwJ9aqPi+oAIw2KWC8FQDgCzpVTfGWmMoq6lphFoCjUBKaU/CIpMFJzEgC0ri5X9+gocyBHVqpcOf+Gsekx6fxEVYG6LQryQbQh7NW/9YiKzWMDAZDNy5QlKvcaZvIYi+8qF40CaeUCcKJMk9kUpjJTs2ydDnQ0eeJv3p0nn4kSF6UzNSggpECEdP6v/BvZVN7ck9OsaGOjZKWeOEdkWBd/FTlh0miwEgBAIjHNsaAj55cSSTGh3ItqM4qYeUqA3Z17KzNJykQTNh9hKSVOim5sKZPClG1LJpMAgFQqVSRnDrnHVxkBthgKkQihqiqnqletUzCVTOLr//NfkMlmEE/G5BgmKpagMflQ/Y4MkCPHSmVVBIUtwzlz7k2ZZFZRXyqZxD8e/XtM5++bWVGuXEWUqmGRNDQGWhUarMr5n0THNO362Xd/gmwmi4lUXHHeUohKTm0NSXWi1sKo88vHCPg88RSmleHdASCTTOL40b9HOlne/VpozFSuasyIa3s8oK6cOUX9vmbTWZx6+z1ksxnEU7FZtU2JfEsLPJC8K/euZpNauaaSSfyPo3+PlInlKsk0OZUz7whpQEiCCEkgm8z9zqby5p78ccn0k5U0K0T0S1GTE4V2RQ0KVHlzGpxoDOyTkUyl8a2Xf4VMVkA8PQUp6m1BlEBQSvjSszllgWeSSoaaTKXxv/7P7yOZWnxSamlSFgDiC5IsMuiWYsrRlinMfSmArDe3/gZJpoB8xyvk2/M//s//jmwmi4yQQSqT1PVBUeyrCIqaHLGqYnW6Yp9SVDRVwttcBc7OMelAKpXEsf/zKFKppUFSisnVCLoaDqN8OloV6svNnuHicUUdqWQSHf/6HQjZLKYyCU1dpRAV0SGBqDQq0jGddovmHm9TJTyr5FkLYrtTqSSO3wNynS2oL/++TsQV6alkEm/+/HVkM1kk0pOF60A5JCkvbJ0CoozdDV74QgHY/Q5NnlQqiX/4P44ibWK5SjKdnsoTkmmQ7DSQTcqaFMqQkzwRkbQlrDlHCuDGkBM9MPloRX6K7+S0sl2pNP7xaz9HNpvFZGYaJUltVhoU+ckgHEFwrR3V6+waTpNMZfC//cMPkEzpL4WwkCi2bo/RZlYsHcfZPPKPC/N7JuWNjwkUgMMBarOBZDIgiQSowyGXywIclxumprPTsDPz9fUIkIa06Jw33+UZaFvk3yufXKc4h95snmVm+dGFSAKKdT3q14663bn0xJTkzCrdr3zfkswoO0UCnXuqSiSqH+Jh8a/CcVZ1Xle1B2uf3QKo22OhINhBgnoqAIzkgjCqkZfrdGauCQFRzOyR2pL/W7OnATV7GpaMn5gRCE2BZCZBMpM5U082CeT9U0SnV6WWgjHhlAwK2YE2D3e+X53WkVsmVyaZLUUTJRQffsvQsmz7jDYmj9kwE82ImTUppicp8uMxuyiWQHENijToEwI47EAmA6TTmnJ2YgcFRUrIaOooBNbMA0qWdOdlBrCDv2EewshVDNCX0VHJ5itK04yGmGgIjQ5yZXJynQssEV/ZRYOCxItyTesMWnlrS0aYQzW8OG1L9aRIHxvLiGmSdAwkldOkiBoTQtXUi87sog0jxAKw54YmkskCggBwjP4yL9O0oDWlWcj1eeWSDjOH8jElSRE98eMTkxiPxYvkLg3FrZbK92xq8xYgnUI2nUY2FgMFEI/n2rLBsxF2pwPpRArxtGzr1phyCpl6KCBAG09FL2+ubbk99rUUB9+JfLsm43G5jAl7SrFNExMTiMXmzkegGPkUbwWx28Fv3wbq8yObP38WeblOApsrtqDe0YB4Xt7qc2jS2K95sR0095+RWU9dFytbdfpkXq6JiZyDoBllCsydXMsh7ey95xobwbmcyLrcoPnzS+/rELDZuwXOjAvx/DG92DNGGg+9oI3yx0zuBVcPlWq5q/UMolwnTSxXsU2TIzcxQXxg5inOnoUVIici0hlwm9YChECYSEgkJT4xBWSArc7VqHA5MR6fLDL7TdDEM9K2p4h+vWhcFYr4ZE6LJ/7NVbs4cp2J+cbM5h5CTfiGhMNhzTLRFspDb28vVq1atdjNUMCS6+xgRpkCllxnCzPK1ZLp7LHQco3FYqisrMR/P3cd7ryfVqmYisfxFzvWY3x8HH6/f55aODOYUpPS1NSE3t5e+Hy+JRMjwiyglCIej2PlypWL3RQNLLnODGaWKWDJdaYws1wtmc4ciy1XO8lt5SBjYhGbkqRwHGe6L4ulhMrKysVugi4suc4cZpUpYMl1NjCrXC2Zzg6LKdflZu4xJUmxYMGCBQsWLJQPa3aPBQsWLFiwYMGU4FD+qsamDJiWx6KSlHA4jO7ubk16KBRCS0vLnJ+vo6MDABCJRBAKhdDa2lpynkLpoVAIp0+fBgAcOnQI3d3dePHFFxEOh3HkyBEp7/79+xEIBHDkyBGEQqF5bRcAHD16VDpPW1tb2e2aKSy5zl+7gMWR60LLFLDkuhzlasl0/mWqF8iylDJ6KPW+RCIRdHV14cCBA7p5ZgW6yDhy5Ahta2uT9ru6uuihQ4fm/Dw9PT2KeltbW0vOY5Q+NjZGW1papN/s7Tx27JiiTE9PDz1x4sSCtEv8PTY2RimlUhvLaddsYcl1+cl1oWRKqSXXcts1G1jv6vKQ6fj4OAVAv3ExTE/0Dpe1feNimAKg4+PjRa+ZRVdXl9T2sbExGggEZn0daiy6licQCCAYDEr7LS0t2LNnz5yfp7OzE4FAQHHezs7OkvIYpQcCAXR1dQHIfZEYMcju7m50d3ejra1tQdrV3d0tpXd3d0ttLKdds4Ul1+Un14WSKWDJtdx2zQbWu7q8ZKpeHb7UTY1S7kskEsHJkyel48FgUFczNxuY0ifl0KFDc15nT08Pqqurpf1gMIioakEyozzFyh4/fhwnT57EiRMnNOft7u7GgQMHDB/S+WhXOByWNgBob2/HsWPHymrXfMCS6+zaZUa5zodMAUuuy1GulkwXRqY8ivukpJNJpJkFQZOqda+A0u5La2urghhGIpE5NxMuuiZlMRGJRGach00/dOgQ2tvbcfjwYUWe06dPIxKJoL29Hc8999yCtSsajSIYDKKlpQUtLS04ffq0gt3OtF1LBZZcLbkWSrfkah5YMp17mZay4vF3/8f/gy9uCUnbH+/bVVLdhe5Le3s7Xnrppbm6DAn3DElRR08UHYFKyVOorMgsW1tb8corryjUYXv37kVrayuef/55hMNhyQlpvtslbiKCwaDE6Ett11KBJVdLruo8llzNCUumCyPTUlY8Pvif/wInLt+Qtm+cPqupp5T7IqKjowP79++fF9eBe4aktLa24tSpU9I+a79kH3K9PEbpx48fx4svviilB4NBhW2XxYkTJ/Dcc8/pqsvmul2tra2KF6KQrdaoXUsFllwtuarzWHI1JyyZLoxMuRI0KS6XEz6/T9q8OmH0S7kvgOy7Is5eYq97LrCoa/eEw2EcPnwY4XAYL7zwwrywMBbsdKpgMCidr7m5GV1dXQgEAoZ59NKj0agkoJMnT6K6ulpixuJ1idPMotEonnjiCQDASy+9pLDbzXW7xHRR7RgKhdDW1lZ2u2YKS67z0y4xfTHkutAyBSy5Lke5WjKdP5mKa/e8evUGKspcu2cyHsfnN67TrN1T7L5EIhGFk3U0Gp3zhRVNucCgBQsWLFiwYKF0iCTlB1dvoMJX3iKBk/EYntYhKWaAKWf3WLBgwYIFCxbKhxUW34IFCxYsWLBgSnAo39nUzM6pFkmxYMGCBQsWlgksTYoFCxYsWLBgwZQQpxmXW8assEiKBQsWLFiwsEzAzUCTUu6ChAsJi6RYsGDBggULywSWT4oFCxYsWLBgwZSwfFIsWLBgwYIFC6YEDwK+TB+TcvMvJCySYsGCBQsWLCwTcKR8HxPLJ8WCBQsWLFiwMO/g81u5ZcwKi6RYsGDBggULywQcZqBJmZeWzA0skmLBggULFiwsE3Az8Emx4qRYsGDBggULFuYd1uweCxYsWLBgwYIpYTnOWrBgwYIFCxZMCWsKsgULFixYsGDBlLA0KRYsWLBgwYIFU2IupyB3dHQAACKRCEKhEFpbW2eUZzawSIoFCxYsWLCwTDBXjrPhcBgnT57EsWPHAAD79+/XEJBS8swWZp4ebcGCBQsWLFgoAwQEXJkb0fFJ6ezsRCAQkPYDgQA6OzvLzjNbWJoUCxYsWLBgYZmgFE1KMplEMpmU9hMTcU2enp4eVFdXS/vBYBDRaLTsPLOFRVIsWLBgwYKFZQICCgJaMM///X/9X/j7v//7suuORCJzkqccWOYeCxYsWLBgYbmAZotu//Wvvoq+3pvSduniOU01zc3Nin3RMbbcPLOFRVIsWLBgwYKFZQJCKQgVCm4uhx2VPq+0+b1eTT2tra04deqUtB8OhyWnWNGkUyjPHF4PLawXWubo7u7GsWPHcPz4cTz//PNobm5GNBrF6Ogojh8/jhMnTpR907u7uyXnoVOnTuGll15SOBdZmH/Mh1xFmUajUZw6dQoHDx5ES0vLfDTfgg7mQ6YsDh8+jBdeeMF6VxcR3d3dePnll3HkyJFZ13Ov9cGxWAyVlZW4c+s6/H5fmWXjaFy7HuPj4/D7/VI6O704GAyira0NQE6D0tXVhUAgYJhnzkAt0J6eHgqAjo2NKdK7urrosWPHyq7vyJEjit8tLS2zbaKFGWCu5RoIBGhXVxellNJjx47RUCg0F820UAbmWqZseb16LSwsDh06RAOBwKzruRf74PHxcQqA3rl5hcYjd8va7ty8QgHQ8fHxxb4MDSxzD3IeyXqYyVdyd3c3XnzxRWm/ra0N3d3dCIfDM26fhZlhLuUKACdOnFCUXe5fZmbEXMtURDgcnnNbuoXyEQgEEI1GZzWN9Z7vg6kws82ksEiKDtgH+tlnny2rbEtLC1566SVpX7TdGXWuFhYOs5ErAIUp4cSJE2hvb5+ztlmYGWYrUyCn0p5zFbWFstHZ2YmDBw+itbUVJ06cmHE9Vh9c3HFWsyG72I02hDUFmcHx48cBAC+//LL0kszka5nt8F5++WW0trZaX92LiLmSKyDbzPfv349Dhw7NVRMtlIm5kmk0GrXeTZOgu7sbzz//PNrb2/Hcc89JUUxngnu5DxadY8stY1ZYJIXBoUOH5vRBjkaj6OjoQFdX15zVaaF8zKVcW1paEAqFcPjwYesLfBExVzJ95ZVXLLJpMrS1teHAgQPo7Oyc9UyRe7IPlrQjZZYxKSxzjw7YgYed0XH48GF0d3eXXM/hw4dx8uTJe4bBmx16cu3o6EBHRwcOHz5csh08EAjgwIEDOHDgwJxHV7RQHmYj087OzhmbiCzMLTo7O9HT04Pjx4/j+PHjCIVCGpOP1QeXCCEDCOkyt8xit9oQliZFB6wDnWjvPn36tGZA2r9/vxRdT/1SHT16FIcPH0YoFJLK3VMvigmhlmtnZyfC4TCef/55tLS04MCBA+jq6tKVa2dnJw4cOICxsTFFXeFw2JqGvIiYjUyBnCaFLf/iiy9aU8sXAeL0chHBYFBj8rH64BKxzDQpFkmBcRjfaDQqqQlbW1tx8uRJxXH1voiOjg7JLBCNRi2V8iKhmFwPHTokqZPD4TD27t0LQF+uwWBQoXru7u5GIBCwBrMFxlzKVG1KaG9vR3t7uzXLxwTQM/lYfXBpsHxSlhlYBv/iiy9KYX5F1eMLL7xQVn3hcBgHDhxQpAUCgXvmBTELypXrsWPHCgaQamlpwcGDByWHzZMnT95bdm4TYK5lKiIajUpyPXLkCNrb2y3yuUDo7OzEkSNHEIlE0NraKt3348ePIxAI4PDhw2hvby+r/7T64JnM1jGvJuWejzhbDg4fPmypgpchjh49quggLSx9WDJdnrD6YGOIEWf7L78Bv08b5r5g2fgEVmz+mCbirBlgOc5auKchqpNbWlqk8M4WljYsmVq4p7HMgrnd8+aeUtHZ2anwKreY/NKHqBYW7datra3WlOIlDkumyxdWH1wiqDADx1nzkhTL3GPBggULFiwscYjmnoELv4DfV1Fe2fgkGrY9aUpzj6VJsWDBggULFpYLrCnIFixYsGDBggVTYiY+JiY291gkxYIFCxYsWFguuJc1KaKnfCQSQSgU0l1XwShPR0cHIpEIurq6cODAAd2yBw4cmNXqlxZmBkuuyw+WTJcnLLlaKIp7laSEw2GcPHlSCqa0f/9+zUNulEf0yD506BCi0SjWrVsnhRcX0dHRIYW0bmpqwt27d+Hz+UAImdUF3muglCIej2PlypXguOIzzC25mh9mlmkoFIIgCJZcZwAzy9V6V2eOcuU611joiLOlEudiBNkIJZOUzs5OxboHgUBAs0qlUR4gF6Gzra0NgUAAwWAQ3d3diilkkUgEhw4dwrFjx/Dnf/7nWL16dckXYUGL3t5erFq1qmg+S65LB2aU6ZEjR3D37l1LrrOAGeVqvauzR6lynXMs4BTkUohzKQS5EEomKT09Paiurpb2g8GgZrEnozxtbW2KhkciEcXLEY1GJQa2Z88e/O3f/q1uG/7iL/8Sf/VXf1Vqk+cENL8tFcTjcezYuhU+n6+k/GaQ61/+xX/Bf/3Lvyipvfci4vE4tmzfZUqZHjlyxLBd//kv/hJfXeD3dSkhHo+jZdvSelfbv/oX+NO/+CsAVNE3sn2k+jc7/AlMxIssk0dMZvNnmbziuYR8krJO5jiTJuajkCtX1yPnEdtBDdot/2aHf6pqowBgaiKOv3rwvpLlOudYQMfZUohzJBIpSpALYVaOs0aLfRXK097ejpdeekmR1tnZKQVcCoVCeOONNwAAFy5eVAja6XTC6XTOpskzwlIjKgBmpaKdb7leOn9GJVfHosh1qcGMMu3s7MT9998PAPjwgvJ9dRR4X5fiOzVfMKNcxXf1nXMX4DWSKaWawRwwJh3AzEgKRTGSQouTFKpfD/scCiifpLDXI5IdEYtnJivuk5JMpZFMpaX9+ERiRmcqhTi3trYWJMjFUDJJaW5uVpxctD+Vk6ejowP79+/XRIA8deqU9Hvv3r342te+BgDw+XymCCwjPmrLsVNdPLku0lfGPYCFlOmxY8ckkuL3+eAr432dbRdu3kmT84PFeFf9Ph+8fr9O30cBQkAoBQelLAjkvpKo9wmBOn4oe3xeQBV/9A4tL5TgOPt//OMJ/G///1fm5fSFiLMeQS6GkklKa2srDh8+LO2Hw2GJHUWjUQQCgYJ5RLWQ6MQVCAQQCoXQ3d2tWB5dVAmZDcuVqNzrcl2OWEiZVlVVzaiNc/GNyZeQpxiRWUrv82K8qwS5Bd5YbQPEI5QCICCgUh6ZjMjaETVpmct7LmpRCqLISSm0zyObXW0aMjsIBJAiLX2+/XP46h8+Je3HJ6bQ/NifaPIdPXoUo6OjmvTq6mo8//zzJRFnEUYEuRjKCovPevEGg0HpZM3Nzejq6kIgENDNEw6HsWfPHqmeaDQKSik6Ozs1S3F3d3fj8ccfx/j4ON5++21s37GjrAuab5hdTR2LxdC0enVZ4Y0XWq7vvPU6dmzfPpeXvawRi8Wxam3IlDJ94okn8LnPfQ5f//rXEb7dW5YmxQwo1JXP93sej8WwYY2539Wfvfk2tqjeVYVZIz/CUxVZyJlO5CwKs4qOSYU1v5Rj7mFJiqQ7oMxxyOYeuV5lOxXn0DFhlWLqkc8FTMXj+E/b1y94iHkxLP7Q6X+B3+spr+xEAnV7v1J2m8PhMA4fPixNW9+zZw+6uroAyMQZgOS8rSbIpcCUa/eIN/t2b68pzD1qmJmozISkLBREufbdClvmnmJg7NmxWByr1qwzpUwBWa5LkaQYodD7PVdf0zMhKQsFUabnb97WyFRBOhg1BKVKZ1oB8g5LbOabpKj9TYxISinkia2PPQebX11m0UnKqX+aGUnZ98czanMx4hyJRHQJcqkwdcTZq9+9Cq/XC97GgXfy4J022CvssFfYEdwUBG8vReE791iupp+FwpVXr8Hv84Fz8OAdHGxuG+weOzy1blSuMVdnPb8gCjKiOab727y4/v2r8Pn84Ow8bC4+J9cKB/xNlXBWLi3H6EJ3XC/yxVIwA8wEN753Dd4KLzh7vg922XJy9TlRuaUalAAiUyGQOUuhvlHPL2W+UIIxqGB71doh4/OYCAu8CrKR+aanpwdAbsZPOVOO1TA1SYnejCLtTOse27dhn/T7zrt3MNk/AU9dBSoaKuBd4YW9wj6vbbOIyswRvRlD2pnRpNdsDkokhVKKi9+5AlelE556D7wNFaio94CzLXxwpFmDGLV5aZCPUjHeo/++bjy4RSIp0Z4xDHYNwFPrgae+AhUrvXBWOpdUwDC9lqo/l/S6/KXYV8RvjCHrTGnS7V4HqrZU5zULBH0nbyCbSMNdXwFHfQU8DRXgXTbpPojOtYtyD2hxgkFV+9JvgwYXuo5Fl/O9GnF2MRD6xDpUuLwQMgKyySwy0xlkEmlkUlnYnHLTY7fGEb0xjtErslexq8oF/2o//Gv9qN5cvTQHt2WK0JNrUeH0IJsSkE1lkUlkkE6k4Vstm4BSsRTGb8UwzpTjeALvigr4V/tQtb4KvkbvArW4yABKSPE89wDW7l8Ht9MDIZVFZjqLzFQG6YkUXFUuKc/k3QmM90Qx3hOV0mwVdvhW++BfU4ng5up5/8BYCCwXbcvqT4RQ4axANp1FNpVFdiqDTCID3p3rf0WH2djVMaTiSYxdGs0N0gRw1XjgWeWDt6kS/g3BRbwKGUYyUMc7KYpC+ReZpSx0xNn5hqlJSs222pLsY40Pr0JlKIDEYAKTAxOYGp3C9Ng0psemEbkyipqtNVLedCINm9s2J19uljZlZqjdVlPUJ4V32bDxs81IDE9hcmASE/2TSE9lEOubQKxvAtm0IJEUKlBkklnY3SU8zmXL3SIgpaJmR21Rn5TglmrYvfbcuzo4icTgJDKTaYxdjmDscgS+NX6JpGSmMuCdPAi3PO6/mrgshc+m6m01kkwp1fZ1BLkBftUn1mFqOIGpwUkkBiaQjCYxPZzA1HACif5JBUnJJNISyZkJqOqv4jdVpRWZ1VMozeh3KfuLCkuTYj741/jhZ3wZMtMZxO/EEbsVA+GI1MlRSnH+G+fA2ThUb61BzbYauAIuo2pLgkVUZgBCCphAcrC5ONRsrZX2KaWYjiYRvx3H+K1xBDdWS3XE+mK4+J3LCIQqUbutBsGNVQU0Z8tjwFuqcNd44K6RnfqEjIDJ/gnEb8eQGE7AXeOWjt06eQOxW+MIbq5GzfZaeBoqlpRZqBiW2pUQAhAd0wkhBJXrq+BvrpJm+iQnUkj0xTHRG4MjKMs0m8zg6j98AFetG/6tNfBuqYbNU5rmjJ0tJCaoCQv7V4/MQC+fkVZEVbBQfQWKLTwWMOLsQmBZkBQ1bC4bqpqrUNWsjOGQjCaRiqcgZCkSb/ai761eVDZVov6+elRtCM74i23egxEtO5SvnSCEwF3lhrvKjbpddYpjsd44qEAxdj2KsetR2Fw21G6vQf19dfDUlOflbmFhwdk4+Fb74VutmkFCKSb64khPpDF4egCDpwfgqfegdnc9arbVgHcuy67L/CAApyIqUv/HvNIOrwP2zdWo3FytmB0zdXcCNCsg0T+BRP8E8MZt+NZXwb+rDp41/oKazvL7WCqHc4FISGZWbyHHWr2Iu4sKS5OydOGqcmHPf9mLyNUIRs4PY/xWDNEbOX8Wp9+JtU+sRfXm6uIV6cAiKouH1R9ZherNQYxcGMXw+REkY0n0nx5A/+kBBJoqsf63muHwOha7mRbKACEEO9p3I3ZjHCMXhhG9OobEYAK3fn4DfW/cRsP9K9H4kUVYvM1CblKayvTDOsaSfCQ3vf7Quy6ATX/aguilEUQvjGBqcBKxK6MYvzwKZ40H9Z9cB+dK2RRcSrgHPVOP9mBh8w2gdOxVa2KUzrTGLTJFQA9Lk7K0YXPZULezDnU76zA9No2hDwcxdGYIyVgSNufMpzRbJGVx4anxYM1jHqx+dBWiN8cx+MEQxq6NYTqahL1EdbIFc4HjOQTWVyGwvgqZqQxGzg9j6INBTI9OLXbT7nmwEWWVoMjPS9b0iRxycUZsXgeq965AcO8KJAYnMXZmCOMXRpCKTMFWkfuYKDZF2YhESDFPVPulTDGeCdTlzTDU5xxny9OMWI6zJoWryoU1H1+LVY+uxtj1MfibKqVjd39zB9m0gBX3r1DMJCoEi6gsPghHUBUKoCoUwHTevCea8YSsgKuvXkP97joEmgPLyr9hucPmtqFh3wrU723A+I1xeFfIM7vGb0QxemEEjY+uXnLxWMwODtCszcMe05p95HdK7AuNCQ3gqq/AiifXoebR1Zi6E4e90ilpNIY6b8IedMG/qw6E5xR1qn/r7Wt8SvL7CgLDBHDTy6s+po4ya8r+3jL3LD9wNk5h5kkn0uh7+w6y6SwGuwex+tFVqNtdX9RnxSIp5oIr4IQrIA9aQ2eHEbk2hsi1MVSu8WPtE2vhbahYxBYuL8zVPKhigcACoYCcl1L0vdmLybsTiFwaRf2+Bqx8qNHyWZkjiDLloRPnhOSJCpXz5n5Q0R2k5P6Qd9lQ0VwlEYjk0CTGPxgEBRDtGkTwsdVwr6+SfVbUrIfqa1GKxTPRIz3qNKM61MRNMEvnv8zMPUthFtyCw+a2ofmpENxBF9KJNMI/v4FzXzuLeF98sZtmYRao3lyNxgdXgrNxGL8dw7mvn0f4ZzeQntIGlrNQPggBuLnYIA+ORTdCsLa1Cb41fggZAf3v3sXZ4x9i5PzwgkU1vVcgyqUoqBh/duZwVLtR29oEW4Ud6eg0Br53DQMdV5DKm/qKExFlqjqcfiEtjJEWpRjhMQ+yM9zMCYuk6IAQguotNdj5x7vQtL8JNiePyaEEzv/beYR/2oPMtPGgZhkQzAu724a1H1+D+w7tQs3WGlBKMfDBID586QyGL4xYg5pJUC7Z8a/yYeuXtmLTgU1wV7uQmUzjxo+u4+p3LiI5Nr3Yl7OsoDdgEPVxQmbdERKeQ+C+eqz5o12oemAliI1D4uY4+r5xDmO/vgOaVX75a/xTdDQrmrw6U48LaVHU+dXTlU3Te4ialHI3k8IiKQXA8RxW7F2B3e33oW5nbtrr8LlhJGNJwzIWSTE/nJVObPzsemz74lZ4atxIT6Yx+MHQYjfLwgwgalQ4QhDcEMTOP9qF1Y+tBmfjELsVw0RvzFBbY2FmKOfeldIfav1B5JlBnJNH1aOrserLO+BZVwmapYh9MAghmdV1mGX9TNT1l2K2KVWLUqpJaDFAaHZGm1lhGW5LgL3CjuanmlGzvQbTo1OoqJP9GCillgPmEkXlWj92fmUH7v6mH9VbqyU5WjJduuBsHBofXoXqzTUYPjeE2p21csBFVq5Eu94OoO9XYKYByAwgUDrNanxPKJ1BZGemuOovANirXKh/ZhMmLo8CNg68xy6RAypoz6d0jtWeg13xuCRflEJaFJ2yi4pl5jhrfVCUgcq1lahvaZD2Jwcncf4b5zEVUU6JtG7q0gHHc1j1SCPczPoyt9/oxY3OmxCy5lWBWigMV9CF1Y+tkUhJZjqDC984jyizZpAe9LQuer4w9woKXSthfijyMYShnNk4RYOiEQLvlhp41ldJxxNXIxj67lVkE+k8eTDWohiREem3gRbFqB69cqYApTMw95jtImRY4+kscPPkTUz0T+Dcv5xD5MroYjfHwhxganQKd9/rR/+pAVz41sWCpj0LSwd3372Dif4JXDlxCX1v9Zblf6QhLTokZrmCEH0X2KLXXIJGSk8CennUfiGSr0lGQOS1W5i6EcXgv53H9N0JRR0U8thL2U1n2nEhLUqxacelXNfCIitrU0rdLMfZ5YkNn90A/2o/suksrnz3KnrfLK/zs2A+uKvd2PTMRthcNsTvTODcNy4gfmcRZ3URrug6RxaKY9Wjq1F/Xz0oBfre7sO1/7iKbGpmHbNaq6KneVlOMCIqxijdS4MlEmyawO5AOytHAEBsHGqf2QR70I1MPIXhly9i8tywoQ+K2iyl0K4wBwrpT4tNOzaF7tVynLUgwuFzYOsXt2LFvhUAgL53+nDte9eQTWeXXUd1LyG4oQo7vrwdFXUepCZSuPDtSxi5uECaMpGUWORkTsHZOKz7ZAjNTzWDs3GIXIvgwr+enzNNmZq08PlNz1y0FKFHVIyfTlK2T4oRpSnmoOqo8aD+S9vg2hAEzVJEfn4D42/2QqBUN3gbLcEXhYWgMwNIPmYGrYkWC+0429HRgY6ODhw/fhydnZ1F8xbLo4bVC84ShCNoam3KdX48wejlUVz+zqWC05QtmB/uKhe2/942BDdUQcgIuPr9a7j7fv/sKyZEtVmkZCFRu7MOW764FXaPHYnhBC7863kkRhLzdj61poWQpUtWCjmTK48UHrr1tM1G04ILOqnmSQJx8gg+vR6+B1cCACZO9WPsJ2FQgRoSkFJ8UdRtUcwC0lyBSbQoQPmmnpk42uYRDodx8uRJtLW14dChQzhy5Ihh3mg0ihdffBHRaLSsc1i94hyhbmcdNh/cApuTB2fnwNmsW7vUwTt4bPrCRqzYl3OWtrtnMBlOQ0KWw3f10oav0Yftf7Ad7ho3CEfAO2a+Zle5YEnLUpxAZtirqa+lgBMqYDygFzIUqbUgrIaEAPA/sgpVnwwBHAFx8LkVkJn8Ynn1QoJ659b4wug01FQzelgsoLmns7MTgUBA2g8EAoaakldeeQUHDx4s+xzWFOQ5ROXaSmz7/e1w+p3gbJy5HlwLMwLhCNa1NqF2W41ivRidjAvXKAuzhjPgwrbf3Y7MVAZO/+Ks97MEOYpmIR79dX2I0gGkQEdIqUwajMwpepuYWU0sPNtqwNe4wdd4FCxQ7fzKnl8sWypx0strqr6+BM1IMpVBMi3niU2mZnSqnp4eVFfLS8oEg0FdTUl3dzdaW1vR0dFR9jkskjLH8NR4AMjMfeBUP4KbqxetI7QwG8idnHeFT0pKT2YwdHYIKx9cacVTWcKwuW2wMdqxyNUIbC4b/Gv8i9gq80MdI6UUGJluWOjFLtE7BqjjoFAFUbHl41gJAGhWwMT7/XC11INz8EotipGZB1pTj7It2mtT7C/y5AlCadFVjY/82yn8f7/+/rycPxKJaNLC4TDa2tpmVJ9FUuYRA+/349ZrtzD04RC2fmkb7BX2xW6SBRFFyYX+cSEr4OK/X8TkcALpRAZrH19jEZVlgNitcVx79So4nsPm39kCX6NvsZtkCsxYP2gwkItTiI0Ii5pA6Dm7KqcVq47ly4tDdKzzJibPDyPZG0Pl5zcCjBmezWvki6I9pm2voc/MYkFIA0LhPulvvrgLf3lgu7QfS6Sw9sA3NfmOHj2K0VHtpIHq6mo8//zzaG5uVmhOIpEIQqGQpo5QKISOjg6cOnUKPT09CIVCaGlpKelyLJIyjwhuCmLg9ACmRqdw+eVL2PKlrbBZq7PODxbI3MLxHBr2rkDPT3tw9/27sHtsaHyocUHObWH+ULHSC/9qH8ZvxXDllcvY+nvbJK3ovQx1dNlcIgGh6rBpLIo4zop/GXOOWlOim18vXe0botKOuHbWIXElgmRvDOM/7oHvt9aDcEShDWHLC0UISjEzTzFt0cKgeNwTpwNwKnyx9P2ynn/++YL1tLa24vDhw9J+OBxGa2srgJyjbCAQUNRx6tQp7Nu3r2SCAliOs/MKZ8CFzb+zBXaPHZODk7j23atWFFNA60w6F9sCon53HZqeWAsAuPXGbQyfG17Q81uYe/B2HhvbNsO70ovMdAZXXr6MVHxmdvrlBpGolAxKSh6sdZ1qqez3oXZkZYmNetNb6djWUIHA5zaA8Byme8Yw8dotZAWZECnX7TE28eil6REWI9+XBcUCzu4JhUI4ePCgNAX5hRdekI7t2bNHoWXp7OxEZ2cnXn75ZYTD4ZLPYX3WzzPcQTc2PbsZl751EeM3x3Hz5zew7lMhy0SwxLHy/pVIT6Rx57276PlpGA6/A5VrKxe7WRZmAd7BY9OBzbj4b+cxFZnGlROXsfV3ty3o7B8zQ7NGTwkZ2VgiCnOMimyoj0vnYcxDLATmGHTKsfntq/3wfTqE2I96MHV2CKTSCc/eFYYzePTMUeqYKLokxgwEBQChQlGfFL0yM4WRr0lPT49iv7W1FV1dXWXXb2lSFgDeFV5s+PwGEAIMnRnCwKk5iLdhYdGx5uNrULO5GkJWwJXvXsX02PRiN8nCLGH32LHp2S2wu22YHJxE+Mc9phl8FhOz/aRS+5YoD1JdsqIhC1SfyAgw0LAw53NuCKLisdWgFEi81YfkjaiiCYVC3+sFbdPsFzR/LTAWUJOyELBIyjxB/cAGmquw5okmEI6AcJYWZTmAEILmzzTDu8ILm9sGIWOZ8pYDXFUubHxmEziegLNzuVV2LUCM8jNbqB1W1SYbWduidLIVmL8oQgr0YqI4d9fDtaMOsHMQslRxHrZtxfxONMcpNU8gNwDLbYFBy9yzgGjY24DKdZWWQ94yAm/nsfmZTSA2bmbB3pYROMz+q8ccjoeAb7Uf27+yE+5qt2WaLQUFbCEKM49BUXVxtVZF5IkUAPKkwMhPRdAhKBS5jwrv42vg3NcAPpBb9bwYQSm2No/pCAqQ14yU+SaaWJNSVq8qBmIRpxmJXryl5IlGozh+/DgAY4/hAwcO4MSJE+U0aUmBEKIgKNl0FhzPLbpmxZLr7ODwORT72VR20f0YlqpMS4nDa0Ri5prcsO8qpRRCWrDkmofeYn3yX6rQfGhNI1ptSe63Ml2qjyEoFKpQ9wYERUN0xB2ekwgKANBUFsTB6xOlEvxQ9AjKopOWe5WkiDH6jx07BgDYv3+/5gUplKezsxOjo6OK6HQsxIWHwuEwampqAADv9L2NSn8ALpsTHnsF/E4/qlxVcNvc5V/pAqKUh3RycBLXf3ANtdtrsXIRp7Auhlx/fefXCMQDcNvd8Dp8CDgrEXAGwHNL20GRUor+0wO4884d7PiD7XBVuYoXmgcspEzZmAi/ufsbBCeDcNvd8Dl8qHJVwWv3zrkmwqg2PcfOuSAu6ck0en58HRzHYcMzGxdNs7I47+o7qIzn+mCv3Qev049KVxUcvEN3GrKe0ykgaxz0HFvVmhK1qUZNNtR16MlYj6CoNSXJG1FM/vwG3K1rYWuuUrW3+LNkipk8Olhox9n5RskkxShGP/uSFMrT1taGSCRiuLhQJBLBoUOHcOzYMfzd3/0dAOC9u+/DOa6N1Op1ePHlHV+Gz7F0Ay5N9k9gamQKfW/1ItAcgCcfJXGhsRhyfffOb+CMKuXKEQ7ba7bhM+s/M2fXtuCgQORKBOmpNK7/uAfbvrR1UQa0hZQpu6DYr/t+DeeYUq4u3omnN3wWzVXNc3JtxaC+23p3v9zuODWRQuzmOIQsxfDZYdTtqpth62aHxXhX37/znuZdFQBUe2rw5R1/VDgoYiFHVyi1KKpi0l+RLOScY+XcWaZ+Ma/azFOIoAiUIn07BiGRxuTJm/Ct8ILz2PPHivuhGLXdFEP9MtOklHwlpcToLzWOvxrRaBShUAjt7e2SOhIANvs3Y4N3PVa7VyNoC8LN5b5MM9k0vHZ5HZVf3PgFvnvlP3Bh5AJS2aUR26B2Vx2qNlRByFL0/Khn0ZzzFkOum3wbEaoIYYVzBfycHxzlIFABLkZDls6mcfzDl9B585e4E7+zJGZYEI5g/VPN4O08Yr0xDHQNLEo7FkOmALDetx5rPWtRZ6+Fi7ogZLOYzibhd8ph5s8MncG3LnwLp/tPYyI1MbMLnCU41VYMFfUVWPXoagDArc6bSMaS89g6YyxKH1y5Cc3eZjS6GhHgA7CT3EDu5B0KAv69Kyfws54fIhy5hqyQNdR2KDQmkLUoLBGRCIXKlCPl1zmm64dSgKAAgPvhRnDVbghTGUy9fltqXzGCYjSTxxQEBcBCLjC4EJiVp59ejP6Z5Ons7JTmWodCIbz++usAgD/Z367Id/hv/gZ/9dd/hXgqLr0glFJcGb2MifQkrkSuwsHbsbl6C/bU70GDt6HcS5o1ShU1IQTrPhlCvPcMJgcn0f/+Xax80ByRS+ddrk/+qSLf4b95Hn/+V/9Z0endit3GyNQIRqZG8H7/+wi6gthdtwu76neZ2tznqnJh7cfXIPyLG7j9Ri+CG4JwVi7+uk3zJdPOzk7cf//9AID//OSfKfL+9d88jz/6L3+Earc8aPaMXcft2G3cjt1G581ONFc14776+9AcaF40MwpLVIx8EFY8sBKRKxFM9E/g1i9uYmPbpgVqXWHM97v6p/v/RJHvrw//Df7sv30Vyaw83X4qncCNaA8ESnFh+DycNje21O7Attr74HNVKULhA7JJR5PGbJo0nXD6BQkK81ePoAAAbBzcn1iHie9cQupqBPYt1bCtCyiud0lpUCTMhHSY6wpYlExSSonRX0oePZw6dUr6vXfvXnzta18DAFy4eBE+n2zScTqdcNpyG4sDm5/FlcgVXBq9hLHpMZwdOouzQ2exxr8GjzQ+jKbAulIvc0Hh8Dqw5vG1CP+kB3fe6kP1lpoFH9AWQ66XLl7QytWpvO41/tV4ZuMXcCVyBVciVxGZjuC126/jrb63satuFx5qfNC05r76lnqMXBxFrC+GGydvYvMCD2gLKdNjx45JJEX3fVXJ9fG1j2O1fw0ujVzEnYm7uD52HdfHriPoCuLBxgexs3bnos6mIQa/KUcQeqoZ5/7lLCLXIhi7FkHVhuCCtm0x3tVzFy/C6/NJWgmH0wmb3Qm3zS0N1k7ehWe2/A6uRa7i6uglTKQn0d3/Prr7T2Fd1Qa0rHgYwYp6hWaD/SuZZxi/FYEq09VaFNZkxNYBqUxhgiIes9VXwNlSj+nTA0i8dgve3/eB2HmpTqjKm5+gIH/xZWqeTaypLpmklBKjv1AeI3R3d6O9vV16kdra2iSbqs/ng99feEVSQggavA1o8Dbgo6s/it54Lz4Y/ACXRy/jduw26ivqF4ykzETMtTtrMXJuGLHeGG798iY2fmFhBzSzytXBO7CpehM2VW9CKpvCxZGL6BroxmBiEKcHTmNX3U7TkhRCCEKfXIcz4oDWE0VVc2DBzr+QMq2qkh0OS5FrwFWFfSv2Yd+KfRidGsWHgx/g7NBZRKYj+HDwA+ys3Vn29S4ECABvrQcr963A3ffu4lbnTVSuC4CzLVyoqcV8V1kzCOu9IAAghMNq/1o0+tfiI2seRzjag7ODH+BmNIzrkSto9DchWFEv5RenEANa84/mt2r2j1gHmwfqsiUSFBHOB1YieTkCIZZC8tQAXA83zsrEs+jD/b1KUtgY/ZFIRBOjv6urq2Cezs5OnDx5UrJ9trW1obOzE4cPH0Z7ezsOHToEIPfCiLh96xa279hR8sUQQrDGvwZr/Gvw8TUfx6n+93H/ygek47FkDDbOBo99fuKUzETMhBA0PdmEc/9yFunJNLLpLHj7ws1yWQy53rp1Gzt2yCtwFoODd2B3/W7sqtuFG+M3cSfeh/p8pwcAQ5NDqPXUmiqehafWgxV7GjDQPYip0cSCkpSFlulXv/rVGbWz2l2NJ5pa8ZFVj+LDoQ9R76mTZJgRMhhPjitMRWbAqo+swsiFERAAqeg03PlpygvRxZuxD1ZfNyEcQlUbsDawASOJYZwd/ACbanZKJGdsOgKPzQuOtyvIhKilYMPlq4O5Adq1drRmpPIICgVA7Txcj61G4kc9EGJJZClV9CVGsVAMY74s8nifm6Zdnn7HRPFyNSDUhB6JsVgMlZWVuPutb8EXCABuN6jfD1pVBVpVBfDlD+KUUrxy+RUMTPTjE6FPYnP15jlts5rZl4vJgQl46itmPdDGYjE0rV6N8fHxol+1Cw1Rrv3//u/wB6tAPR7QykrQYBDwegvPFDBAZHoM/3Tmn7DKtwqfDn0KAVdg7hs+Q2SmM0gnMnAHZzcVORaLYdXqNaaUKSDL9c4rr8BfXQ3q9YIGAqDV1YDdPqM63+57G7/u+zUeWfUIHmp8CNwCLyJZCInhBFxVLo0WRW3GYKE3PXopvKt93/42/FVVyLrdEPJ9cCZQJfV3WUBaHVgAkM0ThyyVyUfuL5AUMjhx/p8hUIqPrvsMar2NCoKirosN2iaafwClg63Sb6U8gqKe9iwMJ0BUsyzLNfEIFEjE43h+14YFl6sos+jLT8DvKc/dNJbIIHDwl6Z8Fk0dIpM/fRo2lU0bPA+hrg7ptrbcwFYipjJTiKdiSGSm8OrVV7GzbieebHoSdn5mnagas2V6FQ2lX8tSB//+e+BVcqWeCgjbtyP7xONl1TU0OQgCgpvjN/EvZ7+GTzd/as4J6Exhc9lgc5n6FZtT2N59V/m+EgJaXY30k0+Crl1bcj2UUgxPDiFLs3iz902Eo2E8veFpVDor56HV5cNTq6+JJaq/Imb7AbOYsJ06BZvTCZ65gKzDjuzKlZg6+NvShwUFJBWCpA1R+ZLEk1FkhAwmUnH86PK3sHPFw9i54iGAcJoZO3oERSYjVDpnKQRFnc62UQQhZE4IiinkvMzMPeb5PNFBtqUF2V27IGzYAFpfn/sqy2bBRSJAhfxAcefPg7t+HRCMVVweuwd/uOMreLjxIRAQnB06i389/w1Ep8dm3c65FG9mOoOB0/1LYsrtTJG97z4I27dDaGrKacYIAUlMKl+UbBb8W28BRWYmbK7ejK/s/AoavY2Yzk7ju1dfRefNX0Iw2ZS6iYFJRK4Vn2WhRq4TNo8ZqxCyO3dC2LQJwsqVoG43QCnIyAjgkQd1cvs2uDNngJRxqABCCD638fP4zPrPwMk70Bfvw9fPfg03x28uwFWUDiErYOjMEFJx/WsRNQJL+U3OtLQgu3Mnss3NEGprQG02kFQaJJVWEBTH6dPg+nqld5glEKLGotJVjS9s+wrWV2+DQCk+uPsOTl7rwFRmStKgSFoNVVkReoHeZktQoMojxFNInhsqywfFNAQFkElKuZtJYerPvMzHPoYMq3qiFGRsDIjFZNOAIMD2+usgExOgfj+ye/ciu3s3oNbAAOA5Ho+t+RjWVjbhB9e+j6HEML5x7ht4ZnMbVvlWzbidcyVeKlCc+5ezSI4nYfc6UL3ZXPb4uUL24x9XyjWdBhkayg1seZCbN8G//Tb4t9+GsG4dsvc/ALquSdckVO0O4ne3fQm/6n0Tv7n7G7zf/z5Gp0bx+Y2fg4N3aPIvNKLhKC6+fAmOCgcqmypL8jkSiclS+grPtLYizcp1YgLcwABoPnopANhOnwZ35QrQ2Ynsrl3I3H8/oKNeJoRgR+0OrPatwqtXX8XA5CBevvQyPrHuE9hdv3sBrqY4en54HSOXRrFi3wo0tTZJ6RQ5bYre1OalIksRmY99DGnWcVYQIIyOAsmkfC2Tk3C/9ku4BAHpmhok9j2Aqa1bQTlOoUmhABw2Fx5d9xnU+5rw61s/R1/sBn586Zt4fMMBeJ0ByTzEEhR18LdyNCjs/WbzK9LYsok0Jr5+FkJGgKfBC75G7pMK+aCYSq6WJmURQQhoMAja1CSnZTIQtmwBdbtBYjHYXnsNjn/4B/Dvvw9kMrrVNFU24cs7/hANFfVIZKbw4+s/nvGX91yKlnAENdtyHXr/u0sjgNmcwG4HbWwEgsyUTpcLQnMzQAi4Gzdgf/k7sP/bv4H09upWwXM8Hl/7cXx+w+dg5+zoifbgVP8p3bwLDf9aP5x+J1KTKQyfHS6Yl4LkN5N1fDOB1wth/XoFsRRWrcppz1Ip8KdOwfmP/wjbyZNAIqFbRcBVhd/d9nvYWrMVAhXwixu/QHQ6ukAXUBg1O2oBAEMfDCKdSEvpenovotqWLDgOtLYWQmOj/Hxms0hu3QZqs8E2PALvT36MquPH4LxwAYJAFdoRkeyEqrfhU5u/hAqHH7HpCN6/fVIiKID87IvaKDXxKJWgKAiJikyotVyUUsBtA9dUCQBIn+5X5NWD6QgKACuYm9ngcCDT2gp87GPgzp+H7b33QCIR2H75S/Dd3Ug/9RTo6tWaYn6nH1/a9rv4WfhneLjx4Rk55s3HQNKwdwUG3u/HxMAk4rdj8K+tnOMzLA3QxkZknn0WGIuCP30K/Icfgty5A/s3vwlh61ZkPvEJwKV1SN1SswV+px8fDn2IhxofWoSWa8HxHFY+sAI3Tt7E3VP9qG+pV84ewNIx6cwW2fvvR3bfPnDhMPh33wXX2wv+9Gnw584h/cQTEHbt0pSx83Y8vf5pBJwB1FfUm8Y5OhAKoKLOg8mhBIY+HETjw8W1sazfylKWuEQiKED9fiSeegrCE0/A8eGHcJ46BS42Dv+PfghXdxdGP/0ZZPJT1dk+M+Cpx6c2/S7e6/0l9q3ZL9Wdc4xVmn+kdClNn6Cw5EZOV7ZZfRyQSRQAOPatQOb6GDJXIxAeWQX49LWxpjLxMKCUlv2BO5sP4lIWvQSAo0ePKqa5l4qlT1JE2GwQdu9GaudOcGfPwvbmmyDRKMAZkw8H78DTG55WpKWz6ZKcaefrS9deYUfNjloMfjCIgVMD9yxJkVAVQHb/fmQffDBn/jlzBmQ0AjiMzTiNvkY0+uTovZRSZITMnDlJzwR1O+vQ+2YfpsemEe2JIrBejC9CTNnRzSsIgdDcDKG5GeTGDdhfew1kaAgknS5QhOCxNY8p0kp9V+cDNN+mFfevxPUfXcdA1yBWPLASHF/6x85SJCkU0JgGpOnDLhcmH3gQ8fta4Dp9Gu7fvAtudBRZGy/N+MnN4KHSTB6Xw4dHmz8na1qQkyvH2SUTD1CYoBTSnpQa5p5N4+srwK/yIdMXR+rsEByPKMmnKU08LBbQ3FPKopdi+okTJxAIBLBnz56ySMrSMveUAo7LkZX2dqQ///mcGUFEgU4QAG5Ew/jHD/4BAxOLs+aKiPq9uXD+Y9cjSI4vzjohpoPPh+ynPoX0l7+MzGeeksknpYZmPQAQqICfhn+KE1c6kBUWbxEt3sHnF6Yj6O8eVJh17mXQdeuQ+sM/RPrpp5FtaZEPFHlXx6Yj+Kcz/4Rzw+fmuYX6EAlG9ZZqOCrsSE2kMHZtbFHaspDQ861Rkwdqt2PioYcw9MfPIfL0Z5H1MT4tqZRiKrE4nVj8fW34DH508Z8xmZqQyQ+g8FOZKUFRa15YM5Qatt25OEzp8yOgGWWOYgRl0d/pBXScNVrQkkV3d7eUp7u7G11dXWWdY/mRFBFOJ4RNcvRWMjICxz/8A7hr13SzU0pxqv80JtKT6LjSUXDxs/n22PfUeOBf4welwPDZoXk809IDbWgArZNXoeXffhv2b30bmJzUzT82HcXF0Uu4OX4Tv7h5cqGaqQEFQf19DaDIOdJOR6eLlrlnwHEQtm2TiWcyCcfXvw7+nXcMO8+LI5cQTUbx056fojem76e0EOBsnLQq8tCHg4vWjsUASwJkoiL7nmS9Pkw3rZNIhvNGGCv/+SXYB/rlacUMQclkM7g0eAoTyRje6vkuskJGdrqlxgSFPT9UecVjGv8T5txQpQsA+FAAnNcBOpVGticqXW8xE0/uPItMU0ogJMlUFrHJtLwlCn8UGKGUBS1Pnz6NcDiMcDgMAGhvV67JVwzLl6SowJ86BTI5Cft//Ae4Dz/UHCeE4OkNT6PaXY14Ko7vXfuerjPtQj1+dbvrQTiCzJSxluCex9QU+K5ukLt3YP/XfwXGopos1e4gPrvhsyAg+GDwA5wZOrNgzRN9TYS8xsQZdKFyrR92jx3TEYukGIG7cgVkZAS2N9+E7ec/1w0t8HDjw9gc3IQszeJ7V19dtBWVAaB2Zx0IAYS0ACFrXgfEmaDQAMFqOdhIseLGBnKjlML37q/BT8TR8PJ34Lh1U0FQKAUIZ8Ojzc/AaXNhNNGP072d0jGWaAiUKsxAWagICrsPbZ8tllens3kJR2DbWgNi50EnU4rrM4JpppuX4CT799+9hao/+LW0rf2T/7e9cw1u47ru+G/xIim+QJB6UpIt0A9ZchwJdGzFncZTm0qTceLUidKkbdKZdhpxpjNtpl+o5lM/NDMKNW2TdDptpWSmaZq0qaWmcZKJO6IcJ3Hi1ApJN5ZjyY4JyaIkS6JFAgRJYIHdvf2w2MUuHiQIkgAI3d/MCsRisXuFg13895xzzzm7aofPb2gZi8UIhUJEIhEikQijo6OuqsZL0Tg5KUugvf/9IATeX/4S/7PPouk6en+/a5tmXzOH7j3E1879C5Ozk7ww+YIrDr7Ul3Q1Cd0bonNXP/4NtcujqHtaWkj/4afx/+d/osRi+L/5DTK//wcQ6nJtdnfXXbxvx2/y48mfcPriCL1tvfRs6Cmx05Vhfj9Kh3HuevJu/Bv8KJ71mJFQHYwHHkDLZPCNjOB9+WXQNLQnnnDNElIUhSfu+hC3Xr3F1MI7fO/N7/HJ+z5Zk9YIzV3N7P/TCE0dte92XQ1cP8bOeiROL4o1XdghMG489TF6vvsMzW9dYsu3T3HtI08xtyvsEhatTUEevvPD/PjNk0RvvUJP2052hPbkZv2UCO9YoSAn+dfr/DL6i20L4O/fjK9/CwS8S4Z3DNezGp/bZYRv/vJ3tvMXT2yzn88mNe7408IwzLFjx7h161bB+u7uboaGhspqaBkOh13rQqEQ0WiUiDO8uwi3jScFrxftgx9Ez3Zs9Z0+jedcYTw71BLiA+EPAvDzqz/nSuIKUF2BAqYbWQqUMgiFyHzqU4ieHpREAv+3/gMSiYLNHul9hF2du8gYGb775vfWJD9FZOdsLPY9CbQFpEApA72/n8yTT4LHg/fcOXynTxdceAPeAE/d81H8Hh+X4pcYvT5ao9Fy2wgUcOeGOD0cliixnuu480kyTc28/dTHSNx1N4qus+WZ/6b5yhXXNGMD2NRxJ/dtfQQhYHzyDPPphB2eyffW2McUeePDfb121l8p+L8UWQ9AwIcoR6C4NqiDc7uMcE+TT6GjxZtbmovXbhoaGmJ4eLhgGRoaAsyml84O2vlNL61trFBP/jblcPuIFABFQXvsMfT3vAcA/w9+gHLpUsFme3r2sLdnLwLBsxPPks7GRmuFGlcR+bcJkhzt7WR+7/cQXV0o8Tj+k6cKKpoqisKH7nqCFl8L1+ev89K1l1bl0LkE2OXVNhGGkEnRS2Ds2UPmwx8GRcE7Po73pUKbdbd089gdZiuFH1/+0apUkF4JWkpDSzVmiLbAMwGucEwpweIUCJrPy7UPPUki3Iei6Wz9zrfxzUwXVJndvfm9hFq3kdZTjE+exjCMRY9hUaz2yWLl7Yt6VbKix7Xf2cJz1fagKNaz+sCagrzcpRKcDS1PnDhR0PTS6s49ODjIiRMnOHbsGMPDw65k26W4bcI9NoqC9vjjMDeH9/x5fC++SOaOOwoqmR7cdZC34pfobd+Obuj4PLX5qM5/6zXiF+Ps/dRe2ncUVuaUZGlrI/OJT+L/+tdRblzH88YbGPe7Oy23B9oZuPNxfvjW83Q2d1Z8qJyLubK7prm353j95AW8TV72De6veBy3A8aePWgLC2bo56WXzGrSefVx9m+OcP7WBRSUmiYtTv74Mtdeusb239xB73t7l37DOqN4bgd2Y0E972/d+hunYAHD6+XaE0/Se/JbtLz9Nl1jo1x7/KDLQ4PiIbLzAzz/xjfpbNmEkRdGyU9gLZYAS4mZOyULs2X/cc0Ayuik/uM8YiZFy5+8G6XV7w41WcMSSvEukjWhEr9/5QMvNZ14YmJiyW3K4fYTKWAKlSeeQIRC6AcOFC213uJr4TP7Bgn4auvGtUI+M7+ekSJlKbqCaB99CmV21pwtUoT7e+7nnq57aKrArs5S9SuhOdSMltJIz2dITidpCbUs/abbGL2/HzQNfffuogX8FEXh0L2HCHgDNclJsfC3BTB0QezNmYYUKZATJlayqtO7YQkUp3CxhIfLoyJA9/uZ/MhTdL7yClMPPezaztpnW3M3v713EL+3yVWJNn8KcP604lLiZLGf7mL7BVD8XhSfx6ztcimOd2+Pe9/FukrWWqgIwbIryK6gmNtac3uFe5z4/ejve1/JomACai5QAIJ9ZhJoLBqr7UDWCWLHjpICBcwftOUIFPPCtrql6n1NPltwSruWgaKYNxOLuIibfE01FSgAwb4gAIlrcw0b8gHrBz1Xw8QpTJyCRQCaQ6BYHhU9+zy9oZWbB96L4fG4BYoVggB8DoHinALsFEfYr4tFpxWXOncNUVygWHh3dZo5Nm/FC7cpuqLGP/hVrJNSDW5fkeLEMPCOjaFks5jzv9BTC1M888Z3mFVnqz60zmwfiYWpBdJzpTvHSoqQSJSstWEIg1enXmXk0pkibzRZyz46wV2mXeMX46u858bHMzFRst7RXHqO5y6dYWJmoujra0lzsJmWUDPCEMxerv61Yq1wfv+dAkQXjmqzmGJFc4Z58gSKFQLKbyJoCBCZDD0v/RySyQKhIwTcnL3M2UvftWun5J+TzuaDznEvJk6c9VQWO789O80bCm1y1lWbxQz1CMeHJOzPqKZIkdJ4+J5/Ht/p03hHRtxfwiwjF09z/tZ5Rq9Xv2Gdv9XPho1mq/vEZONc+NYcTcP/ta/h/clP8Fy4UPDyTCrG9978Pr94+xe8s/AOkPOaGI7aJmuF1e5g9vKsTIpeBp7XX8f/9NP4nn0W1MJkxrHro5x9+xf87OrPajC63E1FI4kUsARFTgjojkctK1ZceSgOQWIJFGsfxarHbv/+M2z+2Qts/t8XXSEfXYBm6Ixe/gFXZ17n8sxrjpww67iFmUglk2LJenPE4gLGuR+2tILfg0hqiHeSuXdZOShC2GKl5gIFgEoESv1eg6RIAfT9+xFeL56LF/FcvFjw+sPbDgDwyxv/R1qvvjej4w5TySeuFE6tlZQg28sJwPujH4HunnLc3RLintA9AJx9e5Rql6lv3dyKN+BFT+ssTBXvACwpxOjrM2dxzc+bnc7z6N/yIF7Fy9XEVa7NXav6+KwwXqPeUAjhyEvJigM7ORbzNcubki9QrO0MkfOqWNtNRfoRQOiXL+OLzbimFSseL7s2mjWtolNj5kyfIrN2nB6YgnGT+z0uR0jkisQJ8HrwbG0z11+bA2GFFYWZz6go5Cfc1pJqzu6pBre9SBGAEQqhZQvL+F54ocD1FQ6G6WruQtXTnH/ntaqPsb23HYC5q7Wrqrke0R9+GNHahhKL4XmlsCZO/5YHAYVf3foVKa2604EVj0LbNvPCN3dVis+y8fnQHn3U/PPsWUgmXS+3Bdq4r+c+AF6+8XLVh2edq/M3F9AztesVtRaIvMUZwtGzosVZFdZab+et4EiixZ17MrvzTmbv2AW6web//bkrv0UAd4TehcfjYzY5xa35qwXJsuXknJTjOcntywrjmIJEsUTKdWf7DQVK5MHUlDIqzhZd6pTbWqQ4TzjtwAHw+fBcu4bn8mXXdoqi8O5N7waoSUOztt52Nu/fzObI5qofe10TCKAfeBgA79mXzAsK2OGcHR076WoOkdYzvD79etWHt/H+jWx/pJfW7AVQUh7G7t2Inh5Ip82KtHns27QPgAu3zpPRK+tJUimBjgCb929m52/tbKgwntNLYQkSXYDmeNTI5am4hIvDg2J5KKywj13wTcC1A48AELxwHm8i4RIUXm8T24L3IoArM6+5xlTqU7bCOuUEM5z7EpDzlmRDOt47OvHt34z3bkc1a1G8QFzNkTkpjUHBl6utDf1d7wLAW6RL456evSgoXElcYVatbrJjU2cTuz4QZuMDm5beWOLC2LcP0dSMMj0N0Ys4a5soisL9G81aKq/VwEO28V0b2fHoTtqkSFkeimLeVADe8XHye/tsb99OsClIWs/w5sybVR6aQvgDYbY9tA1f0/qv8GBNGXaGeCxxoWXFR+7RLVZ0h1ixpi07pyLbs32yQmJ+6zZme7ejGAY95/7PnPbryDnp7doDwNux19EMvXjOiXDnnCyFU3yZISFHvomFAp5tbfgf3Yk3HMwKlzrznjiRImV9Y30pi2GFfLy//nVBV92Opg56283aB7+u8oVPUhkCBRFoQn/gAQQK3iKNJXd37wbgrdm3SGmy6d96wbjvPkRLC0oiUZBHpigKu7vNDuhvzLxRi+E1FPlTi52zeJyPGSHICMg4BIohMEULuSTXXBn8wn1P7duPQBB69RyGQ3wKoKttBwHfBlQ9xfT8FdcYrRyWxa7vru0dY3DNC1KWqMjmCFHVLVKkrE+Wcg0CiE2bMLZuxdi+HWWhMJnxrq67CTWH8NSgP4Omasxdm2P+xvzSG9/mmJec3NRh/YEHoKkJ0dpacDJ2t3SzacNGdrTvYCFT/QRWNa4SvxiT3a6Xi8+HsXevGfbRC3M/7uq6m1b/Bjb4NlR9aIZuMH9znvhbjTO93J5KnBUhmaxQcT7mwj/CJWCc4kTgrkvivCYbQjCzq490axvzm7fgSyVdXg5F8bCpo4+Olk3ohnm+WOLEFapZhHzPiXkpV3LhHeyV2AfIvlEkM+jXEhixVJ2LlMbKSVn//sgyKOfLa5H+9KfBW7zZ0kPbHuJA74FVG9dymHplirfOXCJ0b4h7PnpvTcZQ75SanSM2bUL97GdL2vWPHvhjPEpt9PqFkxdYmFpg9+/upquva+k3SGy0xx4radPt7dv5s/4/r0mBt4UbC5z713ME2gL0/1n/0m+oc5zTi01RUlygOL0nroqz9n7ceYBAQdKp8Pk498eH0UvY9f4d78ejeOwZQuXiOqb9r+O7oeSvyj7JhnYAMi9eRTs3he89W/E9Ur8VhSuZrVPPs3saWqQsR5zYlDg5gJr9kIHZDh5AjcmmdBambcssVV+vdg02szC1IO1aCYvYtJbVZ61zNT2XRs/oeP2lx1nvWNdQA+xQTgZI26GdbOgnm4tiZL0pTi+J5TXBWpf9QSxWGVZAgV0dzgzAQ7n5yE5RUvgWZ1hHcT24njiEFdlO16JIs8G6opLwTR2LlIYM95QT2lmSZBKKhHzArFaqVnnKalOHWb4/Xe8nSBXIhXOWWQ1WCDOBtgRpPY1RZbdnoNO0q+yIvAIyGYgXD60IIaqea+Rt9trCJJ1Y51WiszklmhBkhCAtBGnDFCZOoWIJGK1IUqwzl8VKmnWGZ1zhFwfexByo6aKvG4aOVqJmlXOfVuJvwQa222QRMSvcAkdpN89VUe82bbBwT0OJlFJf9uXi++EPaf7Sl/AVmeUzdn2ML579W350+fkVHmV5+NvMEyST1DC0+v1CrSWWMKGSomuGQeAf/oHA8eMwW1ho6+uvfp2/O/t3XJ+/vhpDLZum7IUvI1seVITnwgWavvhF/M8+W/DalcQVvjz6Jb7xq3+r6pgURSFg31Ssb7taU47T1mII0gLUrDCxhIqVi6IJa2aPKW7yxUm+KHGex1a+iiEg/N3vsO+r/0TnpWjBmF67+kNOv/plJqfd5SDcs3QcLzhqr7m8J/nqxXb7mIvAnSCrtJvNXsVcdae1LxspUuoPZ9xzVfbXbhZkUm7cKHit2dtExtC4lby1ikdcGl+LD4/XPNsy83V+kqwiubutnNekIhHq8dgddD1F7OpVvAhE1e3qb82KlIXbx6ariejoAF0veq62+VtJailmUrGqx9z9reYP2nq3q4EpQNKGQDUEqoCkYT63PCoZW6jkZvJYU4edvX2sBdy5KVZ+iTNnJbPBTHjecPNmwZi8Hj+GoTOv3ioqeoQQuZ46Nta6bJ4JwiFests6nCrFbnaVbEd6knVu0zyxVd5S60GXpi5FiprtyZFOL34XsiphnWL77ekBwJMXGlBVlW9+9ZvomkZMja3yURdHURR8zWYKUX6HVVVV+cLRo/bnVq+Ua1dwhnMs78nKMTZuBLAbSTrH9dz3nzPtmoqtyrHKxbfBtGlmoXB2j6qqHD16tKzPq5Ysx66rjXWuKgsLBdVnm2jmZy/8FDWdIpGublVf+1wtMmtrPdjVsum8qpIyBAuORRWCVNaLYgkVszaKmbCplfKa5P0uOrsa55PsNu3aMpO7BgsgraqMn3oGXdeZU+PFZ/UoeWEcAYUzeKB4LsoiN7wtpk1FxkDkebM1VeV/vvw3aPVwDZZTkNce6wQp9aO7VuLE3n+2JbwSj7uMp6oq//zFf0TTdebSc1W/O/NmL3x6EZFy7AtfWDcipbRdncJkDcRnlzl7RsnLX1BVlW//+3/Zdq0mVsEvXS3+YzbcAHZdUwIBc2o5oMRirpcy6Qw/fe6naLpeM5GyXu1qi5RkinlD2MuCIUhlvSppYSbROqcdWz18BDnviL1Qfkg+1RkEIDAbdyfvptO8+LVvoOsaasY6V50/siX2LERe2Mf5Wm6bRT3yAUdCr+qe9q6l05z++79FqwPhWe3ePadOneLUqVOcOHGCM2eKd5W3trGW5bCuZvdUK2pmhXvQNEiloKUl92LW02cIg5SeosXXUriDNWLrQ1vRVZ2mzqaqHbNaVKW5X5tZ2VVJFPnByl5bFrTq1qFpCjax89Ed+Fr8VT1uQ9HWBvPzKPPzhd+h7Pma1JL5r6wp3bu7aeluthsOrlfms9mvs7pB0uE1ceaYWOTPuqn0fBaA2taGAPzzc+Z+rVANZG2qkNasiQ2KI7yjuNJOyH+vEFlPixNlaYFC1pv9G73gUcBXl/f3JlWc3RONRhkZGeH48eMAHDx4kIGBAdc2sViMaDTK0NAQAIODgxw6dKjsY6wLkbIWd9WL4vOB3w+ZDEoyiXCKFAN8SjZzX1OrKlI27Wuc3j2mPavXdRjI2bHYHWz2hlfVqnsnFGgL0PvI9qoes9EQGzaYP0HJIkLEsqteXa9FsC9IsC9Y1WOuBe9oAqEZpIxcGMfOK1mlVIZiU5EzTS0IwJtKuUUGmDYV5M3ucRQ6cdVlc3pYch2L7cqywnws9//he3BrmVvWEGEs3zAVJs6eOXOGYDbyABAMBjlz5oxLqASDQY4fP87AwACRSMS1fTnUpUixXE+JuTliRWZiVANV11FUFXVmBuEzP6ZE9g5cTxloGZWZ2RhKuvaK2hpXwuEhqMfiPDm7zhOfrX7nX4+q4ldVjESCjON7lUgkQAN1QSUxl2C2Rt+5fCx7zs2Zbu16tCnkxjU3N1eTz86fyeBRVbRYDD3frhnTrvF4nNmAtGu5WGOamImzwd9iC5KVjlTk/217NpxCRJBOJ5m3woixOMJj3him5hOgg5ZUQRckZ+MoVp0jexdOzwnFPSru/+yKvfSprC2tR3O3NbJrGZ4UNSNQtdw2iVRln8DExATd3d3281AoRCwv7AowPDxMf38/kUiE5557blnHUEQdniHRaJS+vr5aD2NdMzk5yfbt9XWHLu26MurRpiDtulLq0a7Spiun2nadnZ2ls7OTqeFeOloWv3n+6x/E+fz/FIr2eDxOR0f5IcojR47Q3d3tCuX09/dz+PDhgu0+8YlPcOTIEaanpxkrUt6jFHXpSbnzzjuZnJykvb29ppUj1yNCCBKJBNu2bav1UAqQdq2MerYpSLtWSj3bVdq0cmpv16U9KUMH2/nsb+W6rydSBuG/KqwRdezYMW7dKizLYAmTvr4+l+dkenqacDjs2vbUqVMcPHiQSCTCyMgIg4ODBSGhxahLkeLxeOruzmI90dnZWeshFEXatXLq1aYg7boS6tWu0qYro5Z2LWe2TsALAW9OfIqC6dkmloekFAMDAxw5csR+Ho1GbfERi8UIBoMFwuXgwYOEQqEl/x8WdRnukUgkEolEUj5WuOfm0c10NC8vV3I2ZbDpczeWHe4B7CnF09PThEIhe+ZOX18fY2NjBINBjh07ZifMOrcpBylSJBKJRCJZ5+REyqYKRcrNikTKWlOX4R6JRCKRSCQV0GBdkGsqUqLRKOPj4wXrw+EwkUhk1Y/ndEuFw+GiiTultllsfTgcZnR0FIDDhw8zPj7O0aNHiUajDA8P29sePHiQYDDI8PCwK0a3FuMCM+nJOs6hQ4eWPa5KkXZdu3FBbexabZuCtGsj2lXatArX4AYTKYgaMzw8LA4dOmQ/HxsbE4cPH17140xMTLj2OzAwUPY2pdbPzMyISCRi/+38OI8fP+56z8TEhDh58mRVxmX9PTMzI4QQ9hiXM66VIu3aeHatlk2FkHZd7rhWgjxXG8Om8XhcAOLm57tF6m82Lmu5+fluAYh4PL7icaw2Na9EFgwGXZm+kUiE/v7+VT9Oqcp45WxTan0wGLTnezuzmvMZHx9nfHy8aLLQWoxrfHzcXj8+Pl5yTvpi41op0q6NZ9dq2RSkXZc7rpUgz9UGs6kwKlvqlLrMSckvBLMalFMZr9Q2S733xIkTjIyMcPLkyYLjjo+P8/GPf7zkl3QtxhWNRu0FzAI7Vm+Fcse1Fki7rmxc9WjXtbApSLs2ol2lTatjUzPas7zwTT1He2ruSakl09PTFW/jXH/48GEGBwdd88UBRkdHmZ6eZnBwkM985jNVG1csFiMUChGJRIhEIoyOjrrizpWOa70g7Srtuth6adf6Qdp0DWxq5aQsd6lTbhuRkl/iuVhlvFLbLPZeS3EPDAzw9NNPu9yEDz74IAMDAwwNDRGNRou2qF6LcVmLRSgUshV9ueNaL0i7SrvmbyPtWp9Im1bHprMpg9nkMpcKe/dUhVonxeQnEa0VExMTruQwZyKTldxUaptS648fPy6Ghobs9eFwWIyNjdmv5SdHBYNB+1hrOa6ZmRlXAlc4HLb3Ve64Voq0a+PZtVo2FULatRHtKm06s6xxLZdkMim2bNli9YFc9rJlyxaRTCZXNIa1oKbF3KLRKEeOHCEajfK5z31uTRI4nZRTGa/UNsXWx2IxO3FqZGTE7mfg/H9Z08xisRiPP/44AF/5yldc0/tWe1zWesvtGA6HOXTo0LLHVSnSrmszLmt9LexabZuCtGsj2lXadG1tmkqlSKfTFb03EAjQ3Nxc8bHXCllxViKRSCQSSV1y2+SkSCQSiUQiWV9IkSKRSCQSiaQukSJFIpFIJBJJXSJFikQikUgkkrpEihSJRCKRSCR1iRQpEolEIpFI6hIpUiQSiUQikdQlUqRIJBKJRCKpS6RIkUgkEolEUpdIkSKRSCQSiaQu+X+99n0nd1VC6AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 750x300 with 9 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"cmap = mcolors.LinearSegmentedColormap.from_list('light_amber_cyan_diverging', [[0, '#F57C00'], [0.25, '#FFB74D'], [0.5, '#F2F2F2'], [0.75, '#4DD0E1'], [1, '#0097A7']])\n",
"fig, axes = plt.subplots(2, 4, figsize=(7.5, 3))\n",
"for i, ax in enumerate(axes.flat):\n",
" data = np.mean([(np.array(frequency[mode]) - frequency[mode][0][0]) / 3 * 100 for mode in negligible_polar_modes[i]], axis=0)\n",
" im = ax.imshow(data, cmap=cmap, origin='lower', norm=mcolors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1))\n",
" ax.set_xlim(0, 100)\n",
" ax.set_ylim(0, 100)\n",
" ax.set_title(negligible_polar_name[i], fontsize=10)\n",
" ax.set_xticks([0, 9.70 / 20 * 100, 19.40 / 20 * 100], labels=['$\\\\Gamma$', '0.003K', '0.006K'], fontsize=8)\n",
" ax.set_yticks([9.88 / 20 * 100, 19.75 / 20 * 100], labels=['0.01A', '0.02A'], fontsize=8)\n",
" ax.get_xticklabels()[0].set_horizontalalignment('right')\n",
" ax.tick_params(axis='both', which='both', direction='in')\n",
" ax.tick_params(axis='y', which='major', pad=-1)\n",
" for l in range(len(lazer_vec)):\n",
" ax.plot(np.sin(np.linspace(0, np.pi / 2, 101)) * 100 / 20 * lazer_vec[l], np.cos(np.linspace(0, np.pi / 2, 101)) * 100 / 20 * lazer_vec[l], color=lazer_color[l], linestyle='--', alpha=0.5)\n",
"fig.subplots_adjust(right=0.7, hspace=0.4, wspace=0.5)\n",
"cbar_ax = fig.add_axes([0.74, 0.1, 0.02, 0.75])\n",
"cb = fig.colorbar(im, cax=cbar_ax, orientation='vertical')\n",
"cbar_ax.set_ylim(-0.9, 0.9)\n",
"cbar_ax.tick_params(direction='in', labelsize=8)\n",
"# fig.tight_layout()\n",
"fig.show()\n",
"fig.savefig('画图/入射角度与偏移/nopo.svg', format='svg', transparent=True, bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 73,
"id": "739332e4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_2124873/2390456606.py:21: UserWarning:\n",
"\n",
"FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAACZCAYAAADXVMskAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZdBJREFUeJztvWl4HNd55/ur6m40djQA7jsBrtpFUrJly/Ei0HYcO/FCWZlk7HgmEZnlZrLMjBhnPsyH+zzXI987c+/9MHMf0jfXWWcSi4kTO8nYIRLJthzJlghZOzeA+04AjaXRa9W5H7qWU0s3ukEs1eD5P2qhllNVp5qnqn79f99zShNCCJSUlJSUlJSUGlz6UldASUlJSUlJSWk+pKBGSUlJSUlJaVlIQY2SkpKSkpLSspCCGiUlJSUlJaVlIQU1SkpKSkpKSstCCmqUlJSUlJSUloUU1CgpKSkpKSktCymoUVJSUlJSUloWuquhJp1OL3UVFkzL+dyUlJSUlJTCpC3EiMKDg4McOnSIQ4cOkUqlOHLkCACHDh1ieHiYY8eO8dxzz7Fnzx5nm69+9aukUil6enoYGRmhr6+PAwcOzHfVPDp06JBTt0Y9h0pazuem5JX691RqZA0NDXHkyBGOHj3KwYMH2b9/f9W2qNquUlWJBdBzzz0nhoeHnfkDBw6IgwcPOvMnTpwQzz33nDO/Z88eceLECc8+nnnmGfHMM88sRPU8x6ikRjmHSlrO56bklfr3VGp0DQ8PC0CMj49XLafartJsWpDw09jYGH19fRXX79mzh7GxMQAOHz5MX1+f51ckwLPPPsvRo0cZGhpaiCpy9OhRnnrqqYrrG+EcKmk5n5tSUOrfU6nR1dPTM2sZ1XaVatGCQM3nP//5mst89atfZf/+/aFlBgYG+MpXvjKvdbN14sSJwMURVr9qWupzqKTlfG5KQal/T6W7QartKtWiBYGaVCpVU5mRkREA9u3bF1qmr6+vKn0fO3aMvXv30t/fD5QbfX9/P1/96lerHjudTjvbVKvfbFroczh27BhPPvkkx44d49ixY3R3dzM4OFi1TlE7t3rrr1S/FvPfs7+/nyeffBJw29rhw4frr7SSUh2607ardPcovtQVABxrvF4dOHCAgYEBnnjiCdLpNKlUihMnTsx6k7cT0uZTC3EOdoInlK3Xz3/+8wwMDFTdX5TODai7/koLrztpq2NjY5w4cQIog9Lhw4fnvb0pKVXSndyLlO4OLWmXbjsPwKZwv4aGhqqGUaB8Y/3a177G3r172bdvX02/WoeHh2sqV4sW8hxsABgcHOTYsWMVezPJitK5zaX+Sgun+WirBw8e5Bvf+Iazn0q/nJWU5kPHjh0D5qftKt0dWvJxap555hnn17xfr776KocOHQJg//797N27l7179zr2t61UKsWePXv4i7/4i1mPNzQ0VDEuO1ct1DmkUinS6TSHDh3i+PHjTv0rKWrnVm/9lRZe89FWDx486CRmqgeJ0kJKhpha267SXa7F6GLl72Lq1549e8Tx48c9yw4ePFh1G1vj4+PiyJEjznHkrqthmmvXv6U6h4GBAWedEMIz7VcUz62e+ivNjxby31OIcvfbvr6+Wa81JaVaFdale3x8XAwMDHjK3WnbVVr+WtCcmsHBQUZGRpxf50ePHmXfvn2BX3cnTpzg8OHDjIyMOAMqzTYAk72/Z5991iH0Rx55hKeffpqRkRGeeeaZhj8HO7mzp6eHo0eP8txzz83rr5HFOLeFrL+SVwv972nL7larBjxTmg/Zg+8BfOUrX6G/v98ZNNI/VMGdtl2l5a8FGVE4qjp27BipVGpZJqsu53NTip6OHTumHiRKSkqR05Ln1Cymjh8/vmwf+sv53JSioUOHDjE4OKhyaZSUlCKrSHTpXgzVMn5Lo2o5n5tSdPTkk086L0pVUKOkpBRF3VXhJyUlJSUlJaXlq7sq/KSkpKSkpKS0fKWgRklJSUlJSWlZqK6cGnt0R/utwGGJqZXKHDt2zBli/cknnwzd9sknn6w4uJKSUi1SbVSpEaTaqZLSwqhmqBkZGeH48ePOeAL79+8PXEyVytjjZhw8eJB0Os3WrVsZHx/3bHvs2DFnnI0tW7Zw9epVOjo60DTtjk5Q6c4lhGBqaop169ah69E19xazjfb19WGapmqnEZJqp2Wpe2l01ShttJFVM9QMDg563imUSqUYHBz0XIyVykC5y/GBAwdIpVL09PQEuoWOjY1x8OBBjhw5wm/+5m+ycePGOzgtpYXQpUuX2LBhw1JXo6IWs40+++yzXL16VbXTCEq1U3Uvjbqi3kYbWTVDzfDwML29vc58T0+P071ztjL2m6htjY2NeS7CdDrt2Kt79+7l93//90Pr8Du/89v829/9XWtOgKfjljxvutPCBAQapme+XAbAcMpqwp4W4EybIMzyOigvE4a1HxPN+oswreWU/yLQMNzlCHc/dhn/cvm4wjquXT/pmOXl9jlK5e36OOXs5eXtNakcTrny96Z5ytv7LpeZnCmy6YuDdHR0hP67REWL2UafffbZit+Ht50qLZampqbYfc+9qp3WcC/97d/5HX63Qhu17oDBZb6FhrxeCM82hrPc3Zd950UI77b+baT9mfa2wrsPAZhWhezthfCuBzDsx4Czjf94wv7PXSb8+xCefTifkDpRpawAstNT/PvHHo58G21k3dE4NbW8Bt5f5tChQ3zta1/zLBscHHRGJ+3r6+OFF14A4N133vb84yeTSZLJpDUnQ4yQ5u0Hs73Kghp7mfMgl+HGLD/wAw97w9mv5kCFDB6GBB1euNFsEJH2qfnAxIEfe7kDL+XtNH9dnP3IoCTv0z5Pt6wLNHpgPw5QYYLQrWVaeRoThEY5l7z83TWifb1QbXRwcJBHH30UmK2dKi22VDutfi8VaDRVaaOVoMb0LZTBxJSIJwxGnGUVYMW7THj2LwOEvSwAGkLa3t5OCA9wyOdgH0+GMRl6vMtERaARvn3hLwcBsIPGbKONopqhpr+/3/Nrwk5eq6fMsWPHQt/T8corrzjT+/bt4+tf/zoAHR0ddHZ21lbB0OF2Ki0TIevNkPXl/WqeecnF8OzThhLf7xLhv6yQIEi428gQ5ECYDWmGdxtcWJGPrUlw425rA5u0H6lu1RwaT/0aQIvZRo8cOeJATV3tVOmu11LfS313tHmXGbKs0p222jJnW1G5jB8WnDu7BTT2Mj+ImNbUUgBNVJXL5SgUCnPatqmpiebm5nmu0dxUM9QMDAxw+PBhZ35kZMSxQdPptPPeoUpl7BixneyWSqXo6+tjaGiIQ4cOOResHSueF9lhpQDESH/lB7Y/nOVM+k1NXNgJbCNBhOQgacIHG/Zy/KDiXY9vO4/bI0FHAGhkV8cPNKJeoGkMqFnMNtrd3b2IZ6a0nNSQ91Kfarkj+B/+1da7y4RnWSjAhISd/McJQo4XQkB4IcdXFxto/Pv1H0v46jwb0ET1TprL5Whdsw4xMT6n7desWcO5c+ciATZ1jSgsdzHs6elxfiX09/dz4sQJUqlUaJmRkRH27t3r7CedTiOEYHBwkMOHD3Po0CEOHjwIlN/Y+pGPfISJiQl++OKL3H//fRVqIwOF/WD2TVcKPdn5NI4zgjcEhBwakkJSUg6Mm+8ih43KcODuy5DqYPj2Y7o5PE7ZamEnQ1ru3U4LQIt8XFNa5+6vHqCZzBRIfX6QiYmJyDsSi9VGn3jiCT796U/zh3/4h1y+dDHy38vdoMnJSTZs3KTa6Sz30tmcGj+E+B/QLhhY8/4QjjVda+jJn0sjLwuEi/C6J+DmzVQKO4Xl0XggJwRU/EBTqZxdZ/m8qgHNzOQkv/3A9si10cnJSbq6umj7P/8AraW1rm1FdobM7/xyZM4pkq9JsL/gqg8Lj4NQJ9R4/sr5NIa0rfXwl/JqPIBhA0IAPOR9lWHCAzkyWHjyYfzHk+ojwhKS7brbQCJDk7zOBzQOYNUGNAjBZKZI6qnGgJrFVE3tVGnR1EhQs1jyt9HyHbN+qJHzafxQIwOAd7mvvJQgbD/4QQYY735kOLD3a+fSuADjTdSVw04uBHnrIUOYP5F4IYFGCMHM1BS/E2GoSR39BlprnVAzM0P64Ocjc04N+kJL/2U3l+3k7e0He4X9e8JG0jYyAMi5NA5cBC4BF3TksJNzFdhlpO09uTUSGHlyeHzJvx6HyQs03v3ODjSNkk+jpKRUixY2n8ZWIH9FeHtH+UNP/jurXCYQSpL++td5IEJa4ZYVoftxtl9AoGmEO6mm6ehafePnmHWWX2g1KNTMRdWaMt5p68EfniDsN29dONGEf99SLk0AMuRPOaSkhYEMUggpNI8mpDeT3FPLBzSBLt+1AI0CGyWlu0Jz/bkYth+/zCrLKuXSeO60vjKBPBi/YyT8PaKCeTRhP3PDfsLOF9CEfQdRUkwHXa+vZ1bEmCbaUFPMliglS+gxHS2m1dANzgYCaxpwtvA7MRbGa/JyGe3BBxfyMlNqxbKb4XVpNB+c2AfRZLcFKVTkcXTscJYPQqwwWOWeTl7AcbuVi7kDjYKaqirlDYyigR7XVVdNpUiqmDMwmg20eAzqfGjJkh/kEAISVaTZ5fwwIpWZzaXBNy9DhhdgZkkWDqmDv6cTeMFnuQMNgK7r9Y90HLGRkSMNNUP/zxBtyTYANF0jlogRb44Rb4mz+6ldJFrigGD62hRG3qA51URTR7z8YHEe0L6mJMAX+ZVWmCHl/c6JvA/JpQnlfOFu7yQX+yFC2kbOgXHyaKz1Ahd0nEtK3s4HRoFE5dmAxpTO1w80Cmqq6cR/PeG003IbjRNvjrH5I5tJ9aUAyE/mmbk5Q3N3M8lUEj0WrRuB0vLW0H+z26iGHteJJWPEmuOsuGcFGx4vj2wrhGD01BjJVJJkdzPxZNx5YFdS2KpKoSd/2VpdGhs45G38UBKAH18dPHBRJ9D4Ie5OgCbqvw/jsRh6LFbXNmad5RdakYYaWcIUlPIlSvkSTOSJJ90v8tor17n19iggiMU1WnpbaF3RTOuqZjrWtNC+tjUEJqXW5W9pwoYU4VnmLsd94DtXcIhLE8jFkbaRBubzhqh823iSjE2pG7kXXNyu21I9rP3UBDRhzox1nKhfiFGSUSy7Nvkpb7OaOD/B2b8bBsqA3tzdTOuKVlpXtdK+po2ODR3EmxvmclRqYBklE6NkQqZIKVdylheni5z55mnnbtXU0UTLylZaVrbSuqqN9vXtNKVm6bIrPeBl+V2KamX8Lo0faALQUyHs5MJH5TwaGZhmAxpzHoAm6rdSfQ45NVGLP0X6Lvrobz9CR3sHZsnEKBiYRZNSrkQpV0KTLNSm9iZaeprJT+QxigbT1zNMX58Gymlx7/ntB8sD42IycztHokUj0Sr/Q9itzQ8xfijBhYOKLg14Lhm5B5PnUpPBI7iNN4/GF34K9HQKd2fcENjcgEb4XRylUD3yW/tob23HLJoYBRMjX6KULdG2ps0poyditK1qIzeewygaZEezZEezjJ4aBWDXgZ30bO8BoDBVwCyZNHcv/ZgPSstDj/zWPjraOjBKohwuLRiUsiWaOpqcMmbRpH19B7nxHMWZIoWpAoWpAunhNACr9q5h80e3lssaJtmbMzSvavXci2eT/LoDWdVcGn85T0ioStjJBhqPayNvSzBPR66jd5m33FyBJupQE5tD+ElT4afapellq1SP675fsdLDF9j84Y1s/vBGhGmSG88ycyvLzM0MmRsZRMkk1qQ7D+bh715k6mqG9tXNdG9pp7u/jfbVTZYDEvLwlh76XpfGX0YKMfmTg+U6+8JObrdr/2sQfCAj7B5T/p5OSD2dZKCxu4fLcDYXoGmES3Fppcd04sk4VHkzwordvazY3YsQgsJUgeztLDO3ZsjcmGH6+jTta9udsjd+coNLL16mOdVMqi9F97YUnZs6iSWiZfMqNY70mE6sKYbepBFvTYSWae5p5r4v3ocAStkS2dFyG52+kWHmRoaODe6rQDJXpzn5p28Ra47TsaWLjv4UnX3dJKx9u65J9V4/ARdmFpemnrCTPeH8lPSBRS09nSqVmw1o5HL+/UVZsZhed2hci1goPdJQU680XaOlp5mWnmZ6d3S5oGKBhTAEZtEEAdPXZ5i+luHSS9DUHqN3WzsrdrbRua5ZCj1JXC6DhuR8VHVppBCSBzzwwUug15N9TJxtNE8Ssg9cKi33uzNzBZpGuBobRJqmkexMkuxMOvk2ftlOZC6d4/rQda4PXSeWiJHqS9G7u5eeHd0qJ0dpQRVvidOxoYP2DR2skJ0Oa31xuoDeFKOUKzF+cpSxk6OgabSt7yC1s4eu3SuItbmAA+EOiDxfi0vjmZ8t7CSEB2gqHSMMaPxQZS+rBWgquTONADa6rhNTicJRkey0CN98WZqu8eCXtpOfLJI+P0F6eJL0uUkK0yWuvTZGLp3nns+sC4UMj0tj788PGmEujRN2kmGoQtjJ49y4Do7rInkhywM00jnfEdA4ICMDTdQvxeWlrfu3svGnNjJ5cZL0cJrxs2nyU3lGT40ycS5N97a9oEwbpXmW/6ErOw1+9exeQdeOHjJXp5k4lyZ9dpyZ6xmmL00yfWmS5KpW2lo7Qx/klVyYWl2a6uEmN+xUyd0RBBOD5wo0zj5nARp3+2jfS+eSUyNCyqfTaY4ePQrAM8884yyXR8m23yY/31pGUCMp0HCk5iYg2RFjzX3drLmvC7NYZOLCNLdPpenpb3fgJT9V4vTfXWXVvW2s2N5CPG7vw5Qe9NV+Y/gdF+8yL7xYbownhFT+VE4MDr6Je+5AI6zV9jZSvZ3jKy2m4sk4Pdt76NnegxCCzPUMoyfH0DScMJQQgpPHTtGxrp1VD6zy5EcoKc2HKl35Qgg0XaNtQwctGzpY84GN5NM5xk+PM3VxgtYNnUD5Lnb9B5cozRTpfnA1zavbvPuZ5W+legTKiVnmkQGm9jeFzwY0teTPOPAzSyguCorrOrE6ezOF5dQMDg4yOjpKb2+vs2xkZITjx49z5MgRAPbv36+gZm7yN2v7b/nhrsd1uvva6d7a4kIDcPOdCSav5pi8kuX89zXW3NvG2gdbSbZrgD90FBZOCnFpqpXzhJCQriCBm0djeMs67swdAI2nh5MMNApqoiJN02hf2+7JuwGYvpZh/Ow442fHufzDK/Ts7GHtI2vpWNdeYU9KSvOjsDtCU1czqx5Zy8pH1rrhH8Nk9LUblGZKjL52k+YNHfTuW0P7tm40XavJpZGdFHdeAhMxe9hJ3i6s/tWAxq7ffABN1O+kuq7VPfieCCl/4MABxsbGPG+at1/EaiuVSjE4ODjvYNPgUFNDM5EztWbnfWvWZPW97WgYXH9jkvxkkcuvTnBlKM2qnS2s39NKW49eYR+zuzRVy4MLKcgJxL6u21Y9PS+oXDCgifqleHeqdWUL2z+5jeuv3WDqyhS337nN7Xdu07Wpk3XvXUeqL6UGA1SaF8kP+EoFhFzOeohrusbmn9vO7dduMnF6jJnLU8xcniLRlaTn0bV03r8SPa47x5D/Vgw7zQFo7O3s/TvHELMDjfxCzOUMNFDu/TRbTo1ZKCCKBXdBLlvTvoeHhz3OTU9Pjwd65ksNCDU+56CCixB+Kw+BGskdkV9/0NQWZ8MjKdbv6WB8ZJqrQxNMXMlx450Mt09P8+i/XkG8CbxOixdCPN2yw0JMds5MYJkfaCQHxxOG8r9xG8+xnO/HyfPxQY0NNJ59+8oppyayiiVirLx/JSvvX8n09QzXXrnG6LujTFycZOLiJLuf3EX3tu6lrqZSRLTYV7FJ2WVs3dTFpk1d5KYKjL12g7Gf3KAwkePa8XPkRrOsemKLU152U8LqHAAez99gHo3p2y4MVhYTaKqCYQRUS07NtT//Q6798dF5Od7Y2Ni87EdWA0LNbLIfxCHNx3roa2HY7O9BZEnXobe/ld6+JFPXclw+MUGyTSOe1B1wKMwYJJurhZ3ksFGtQBOsj+bb1gs0Jt4wlQQkswKNz5nxQU3Uk9uUoH1NG9s/tY1NH9zItR9fY/LylKd3VTFTJNEW3pVX6W7RPL3MMiw841kfvlmio4nVP7WR3veuZfyNW9x+9To9+9Y4mxjZEqJJ94SlKoWP5OOISvPS4rA8mvkAGjkQ4F3udYWcT8RvpbFYjPgsOTUb/+XTrH/ql5x5YybDa09+dNZ99/f3e5wZO1l4vrX8oKZikrCf1UMvR2uRDBounHSsiXPPJ1IIs+Ssm7qe482/TLP2viY27m0ikbT2GWjBkisUmkdT/mgYvnoJvInBdw40FXs4+XtCKZem4ZTsTLJlYEs5kdMKPRlFgze+/iatq1vZ/OFNtK5oXeJaKkVdwvlfUIGfi5JLYTsmFR0WIdATMVJ719C1ZzX2oBgmcGPwHLkbGVZ8aBPNfSmw2q8fPAxrh/Xk0VQDGrmO9QJNre5Mo9xGa3n3k97cDM3uwKClGrt0DwwMcPjwYWd+ZGREJQpXVgVnxoPuIU1YyjMJjjcTNtieVVbTHBgZG85jGoIrP8ly82SWLe9pYs1OHTTZpTG8uTCeS95/DAg4NyFA426zEEBjOhenZ7lSw0jOpZm6NEUhUyB/Nk96JM2avWvY+PgG9VoGJUfyQ9iW/LOv3rBJpTCQvT8ot1H71mJkS2QuTGLMFLnyV6dp2dpFz4c209Tb4tnG/snnCTvVkBhcDWgqQY+8nwDQ4P3OagGauXyPi625JAqHlR8cHOT48eOk02n6+vo4cOAAfX19PPXUUxw7doyxsTG+/OUvz1e1PVred7WAVWmG/PoIOihhLg2E5M0g2PJYK11rdUZ+mGFmrMSZF7LceEdj2wfitK+wXZaQEJMv/6ZyYrARUicpFFUX0Egw5JTDnUYGH7zbKzWsUn0pHnr6QS780wXGzoyXc2/eGWXLwGZ6d/eqZGKlulXxAS0quzS2wgAj1hJn8y8/wPiPrjJ+4jqZkQlmLrxJ56Nr6XrPOojrgR2KkP3Z8zLQGCHrnbrMFWhCys0GNGHgGDXF9Rhxvc5BsELKDwwMhLowBw4cmGvVaq/Ogh8hUrJeNSDc+Uqq5NKUl3nDR92bYjz8ZCt972si3gRTNw1+8lc5Lr5aIgyaAkCDP4+mAtDYTlGtQCN9hNwTKgxoPE4O0jLXzVJqXLX0tLDrwC7ueWo3LT0tFDIFTv/NGU4+dwqjaMy+AyUlCN4LhC8MRDhklOe9wCNvYwhBrDlOzwc3sfFfPUBrXwphCNIvXeXKH71J4Xa2YtjJ3pf/WBAEGvn49QCNSRWgse+d9noqA03U76R2+KneT5QUrdrMi+yXOJanvfk0tgzPwzos9FTVpfGUFSAMdF2w4cE4e38+yYo+HWGaJFpEeNjJn0cTli8jA45Up7qABnxAg6+cm5MjCAEaexsFNctGqb4UD/7yA2z8wEb0mI4e09Q7pZRqVtXwSchtoppLU2nfsVQzaz67g1U/t51YewKzaKJZA0vOFnaqUA1nuR+wKgFNefezv5VbLuPAj3z7ldbZkBRlxTTN6dZd8ydiTu8yCz/5fwdgta5Kl6LsovhdEaSHeSWXRiprAUCyFXbvj5O+B1JrXHcmN1ki2WqiaxLkSDks/vBS8JjG3IFGPo9AGV/+jGda+qu0bKTHdTY+voEVu3uJNblAU8qVEIZQvaSUql7yle+owdBTrS6N/7BC02jd0cO6jR0UJ/LoSXcU7UI6TzyVnDWPRnZpagGaamEpGWjqDTc1AszYmovzEjWnZnlBjSeHxo/u/nwav0vjyuXOKgADyO6KZsOGpdQ6Hc0sb1PKlXjj2ybJVpNdHzJobpfCTrIT4w8veca8qTPkZDsvsyUEh+XPhCYTKy03tVhJmFC+6Y585xyTFyfZ9qltpLZ2LWHNlJZS/od5RXdGzB56kjXbOr/jYgqB3hx3EtpNAZm3bjM2eJ7296+nbd8aBJpv+8UDGs82BIHG3VY401WdrggopuvE64QUETGoiVZt6pLlsjh/Zy+vIYOC/AlChLdJ25O+8WYsuaP5+vJhrG1nxk2MgsnkDcHQNzVGL1QLOy0G0Igg0HjCUfKHkN9fSstNpZzBzK0ZCpkC7/7Fu1z6wSVE2NNH6e5VnW6D42D4tqvk0vgdFwjmxGQvTyEMk8nvX2L0m2cws6UFAxobTuRyswGNZzu8QCPDTlRVd+hpLm/1XmBFqzbzqrlxsePSCEHwJZPWfgPg4V3uTwTuXK3x8M+ZdKwwKeUFbx+PceEECHMxgCa43kkIDixHAkXh5tk0iHWqNHclWuLc/6X7WP3gKoQQXHrxMu8+d5JitrTUVVNaYNX6sK2eTxMOJ/Ix5HWV9usHFFkGgu6PbaFrYAvEdHIjaW7/2dsUb2Zm7ek0F6AxhQ+0rHuh7EoZ1u3RlPdt78uqkyenJnj6kVJC0+b0iZKWGdTIScLgyacR3nLgDz3ZToXt0vguYc+7l+xl9mB5MvRAWC+mlk548JMm63aXB+678FqMtwdjlPLzBzRChAEN0rTpK4NvH65TI2SHJ/KXotJ8KJaI0f+JfrZ/chuxeIz0SJo3/+hNZm7PLHXVlCIi544qgqGnYCDdhZOwcJbs0hjSLaYSoCAo59o8uIren99NvCtJcSLP6J+/S+7UWKC8Ie1vNqAxQoDGqQ9loPGDi+zO+Mva036gifqdtFmf2ydKilh1ZlOtroHwTRo1hJ7M+l0ae/9hYacQ90XXDba9z2DXTxXQdZPRizojryTqA5rQEFGlLtt2edMBmnCIkfYJCPzro34pKs2nVt6/kvu+eC/NXUly4zlOHjulQlF3ofwP/soFg21jNpfG8MGOPW0XCQCK8PZ0Sqxuo+cX76Vpcxdm0SD998OUxrJzBhr5+JWAxrvMe56CINDYy+19NsJtND4HlyYeMadmGSUKyyAzx9ZT1aUxXJfGAzA23PjCToS8q8nKo1m9zaSlo8DIK3H6Hs7WBzT2+fmBxjlnH7jI4SZ5W0+4qbzc484EyivdTWpb3cb9v3Q/Z751hg2Pb0Crc5RRpcaU/6Hurqh+D/DnsZSnK7s08vIwl8beV3l9cJkJaC1xuj6znenvXUK0xtG7W3x1WTigqeTOyPuyz1kGoPoTIhZXCa38qUciYreG5QM1novO13RDrkfNZmgHJGRgIODSBOblsJNwwSbYLdwLNE6ezUqDhz6W8zhIuSlBS9tcgcYHJDKshIWbPInDBIHGv0+lu06JtgS7f363Z8ThXDpHsiupRiG+myS7JJQn/KEnWbW6NOVpdxu/SyOXDXN0TCHQdI3WD2/CHi/GAMyZIiKmQVOsItAYIRASSFT25c/UEm6yz9mJ/PuOEXU16xpN8/CahKVUg4Wf6pATPvGHnnwhKHcDXJaWB7yTBtzzJwf7w05hSb/WPkN7Omk401dPxnnlm13cuhCnrpCTM2+dg1S+cv6ML9wUutzv+CjdjZLhZfp6hjf+4A3O/+MFGmXcDaWyxHy9oTuw46CL4h5zdpfGnrYhJZBHgwwi0r58eTdO1+5ciYm/PMXkX52mlCs521UDGvl4DqTMAWiE/ZHdKquOjnMT8etmOYSfGhxqJEcC/+i9te/DHb13FpcG8CQH2/MeZ8YPMCL0/U2aNC1Mg4nrMUxT8M73O7gx0lQf0ARyaEJ6N8n5M+CFnpDtA6CkdNcrc22aUsHg2ivXGPnOucjfoJUWR9UShMvTUtkQl6ZS+UqOTqVEYgMoTeQxJ/MUr02T+ctTFGeKznbyPk2CsCSHm6oBjSlEObFYKmvDTNirFrD3K6I/OIYdfqr3EyU1KNTIMONfPnuz0TwJv3729rsyvnln2j9v593IISkrR6dSzoy1jY7B7vdPsKZ/BmHCyR92cmOkOeCoVAUa5zhh728KAosLM9XcGats5C9FpcXQ6odXs+1n+tE0jRs/ucHw348osGlw2e5C2PLQ/A8Rnn9iK8yZqcWlgcphp2ohKn9icHxVK60HdqG3xCnemGHmL09TyhYD+3SPI+1bVM6fkYFGhhb7/GZzZxrlKlFduiOpCpejADn0411nL/e5MlRyaVwo8oednP3hXx8GNK5jo+kGO9+bZu226TLY/HMXN881B8Ak3KHxwUoAZLzrPe6MdV5h7oyQe0wpKQGrHljFtk9tQ9M0br5xUzk2y13Cl0/jXelMhSUI28tthTkvgmDYabY8mmpdtw3KYNNyYBdaW4LSrRmyf+WCjezOVAIaG6RsoEHav9+FCQOaSu6ML7Ehkkqi0azV90mioGb+FYAU+2Eu5dP409f8CcKVXBoZSJDng2PL+HstySGmMKBx62U4wLTj0TRr+8tg8+4/d3P7UrIMGKZRFWg8+TN+mLG+E/fhE+Le4N2vN3F43v/FlBpYK+9d4YDNjZ/c4ILKsVkWquS+VJP8kK7VpQkLJeE7tgc+nLoFy/qBxt4m1ttCy+d2orXGKd7MkP3rMxgFw1kvH8cPNBXDTXadcWFGTkCu5M7410VZKvzUcJLyZ5xFbuKv68oIC0rMQJnQsBPB9zX5Q0yVx6Lx5d9gsuPRcVZvySBMmB5LeGEmDGjAuz4kDycYbvK5M5ITFEwcDjWile5irbx3Bf0/3QdA5uYMwmiEW7bSHUl4HRNbtbo09YSdytNSeWu5QTjQ+LcxKYNN8jM70JrjmFMFRKboWS/nxTh1CgGaO3Vn5Csj6uy/HMJPy6RLt28k4eBqPOEhwOvSCByWdqBHeLZxu3BXCDtJeTTVAUcGmqIHaGyI0BDsfHSMFetnWLEhI8GMVVefQ+PNuanBncG3jV3WdmWkZGLPXyUlSaseXEW8NU5qawo9fpf9PlrG8rsr/nlbRsj6ai4N1B52sssZBBOD5Wl5nQws5WMJYitbSX56O1prAtGRdNYH8mdEsL6hQFMBZrD2WQ1mhG9ZFJXUNZrr7KItItalu4Ghxu8g2POuu1I19ORMS+sdmPG7NLWEneSkYF+IqWKicBBo7I+uCw/QmIbAKGokkm45T7gpkOSLBDzCPT+BNC+8MFMBdpSUKqlne49nvjBVoKmjaYlqozSv8j34oTLgQO0ujVGlrL+cf9oUtQONPR9b0+4NeU3lEe1uG51tDBuwIcxbT9mdke+S3nUE1kVZcwknlaLFNMsw/FQxXCKHnnxhKD9o+HpHaTKAQAjQWDAVElKqnChcrAg0dhjIni7mNd54YTVvfX8lZokg0Pi2945P4ws34T9O+D4C4SwlpSoSpuD84Hl+8rXXyY5ml7o6SgupCkAS5tL4w0kVoUUCHzuPprx/cUdAg2996dQouT96C+PkqJMsXA1o7J+E8jg2cn5MWCJwNaCJ+k/E5RB+aiCoEZ6LqZ7NgqEnCVwCLo3hgZhqYafKeTMSwJhF7gRooAw1mXScydEkp17pxTTl8kGgcUGkMqg4uTN+hycAM3P83pXuKglTMHV1mlK+xMm/POUMfKbUGPI7EWEFwoAkzLnx7ycQyqoQdoKFBRohBMatGUTJpDB4AfN6xjdejbutDSCBN3VLdZBfA+EFHV+ekW99lJWcw8sskxGjiIhVpxb5nIMKLoIGHmhx5oXp3c4HI5oEKf6u2jXl0ZjFyoAzB6BBCFrbC9zz2A3QBDfOt3H1TEd1oPHDjC+sFD6CMEGYscvPw7+a0vKWHtfZ+dkdJDuSZEeznP3bs6geUdGW7UKErwx25fYDTKUQUy0ujX97k9kH45OXzwVoTCD2vvVoW1NQMin+3TBiJjiGjd+dkZcH6uZZHnJO0nohhOc7iaKUUxMJCW/CrwMavt8HHoix11k5Jh7nBqesJuXnuIBiw4+dR2OgmXLCbwXAYW5AY5dLrcrSd/8oCBh+vZeJ200emKkINJ4yds+mKqEmJ1lYjVOjVJ+a2pvY+bkd6HGdsTPjXHnp6lJXSalOhTkv3gLuvaBWlyYsOdj/9u1KicFmheW1AI0NVjJwmWjEProVupthukDxOyOUDNPZNsydMXDrXs2d8ZyzZ523DlFWkza3T5S0DKAGXJjxNRshJIjxgo0DILjAUtGlqRR2QoadsJ5OMtDY29cPNDZYrN+WZuWGSYQhOPnyaop5rXK4CS/MhHfllj/ucoHcrVtBjVLtal/bztb9WwG49P1LTF6cXOIaKd2xfC6L4VtdyaXxb2P67iPVyswVaOw8GdmdQVoOIJIxYj/Tj4hriEuTGK9ck8DFrc9c3Rn5LP2vRoj6nXQ5vPuprt5Px44dA2BsbIy+vj4GBgZqLpNOpzl69CgAzzzzTOj+n3zySZ577rl6qlRZ9oPdmS83t6oujQQynrwaJzdGdmUKPtgx0cyCCzRm0Qs0ZjEUKoRpUBFm7POwPhomO/bcJDPexMx0E2deW8nuR65JMOeFkEDOjPO94DtmedvwAffk6eirodroMtWqB1cyeWmSW2/d4sy3zvLQoQeJJWJLXa1IqRHaqezE2E6FrbBwUi3LbFgxqLyveoHGH24yAEKWe0JnPc1oH96Mefwc/Pga5qYutDVtTrlaYEZWLTDjeyJFUuU8mfogxYiYNVIz1IyMjHD8+HGOHDkCwP79+wMXYrUyg4ODjI6O0tvbG7r/Y8eOMTg4yMjICCtWrADgB5depLOzg6ZYkpZ4M63xFjqb2ulqaicZS1SoqbDCRmUw8L9sUgaYgEtjlQnmzoTk0djlPKGnOoDGNAkfVM/rzuADk3jcZOcj1zgztIpNO25L5+TCSvA1CBWgxgIWYQOe9f15wcZ2gaKvxWyjfX19zvIfXv4h3V3dJOPNtCVaaW9qpyvZRWu81fOW67tFmqbR97Gt5MZyrHvPWgU0Pi3FvfTFyy/S1ZkiGU/SGm+lramNzmQX7U0d6JrvqVQhVCJDji2/+wJBB8YGIhlWbPfHcVWkMs5+mH+g8eS07O5FuzKF2ZqAlS1OOT/ABYGFKuvCYaZRNJcu3VEbUbhmqBkcHCSVSjnzqVSKwcFBz8VYrcyBAwcYGxsjnU6H7n9sbIyDBw9y5MgR/sN/+A8A/Pjaj0lOJt1CTkMz+TcP/yrtiVYARrPjJPUY7fGkBDDSJeiEgqR8m4oujdXbye6ibZYk8Anr+WSXs/NlzOpAY9rQUiPQOF2xcdZ1pHI8/KHzlJ+XIe6M5zsgBGokd8b5TsNgxgdCEddittFnn33WWf7y1R+RnEgGyv/stk9x38r7AMgUM2SLWXpbeu8K0Ik1xbjvi/feFedar5bkXnr1xzSFtNF7V97Hz/R/qvwzUAiuTF9ldetqNN0C0RD3JawbdyWXplrYqepAfMwRaDxlgtvI8wDmRzajac7PYOv4s7szc4EZf6gqiorPIfG3YcNPw8PDnl8GPT09gYuqljJhSqfTjr26d+9e50Lc3bWbppYEeaNAzshSEHlmjBlMYdCWaAXKTswLl77PqbEz9Dan2Nq5ge2dG9ncvoqYBkGXxnJwPC6NP6/GDjv5cmOc5ZY74wlJSSGo+QYaIcGHtVzTXOjITCRoac+7y6qGmiT4KU/VADMRvxItLWYblaFmZ+dO4s1xckaOTDFDTuTImTm6m7udMqdGT/Odc9+hLdHGlq7N9Kf66e/upyXeMvcTjrhkoClmyr1MEm2VHNa7R0txL93VuYtYS4yckSdXypI1c2TNrKeNTuTT/Nlbf0xCj7OuYwNbUv1sTW2nozkVdF6o7NJ4HBl7ubWsUh5NWNdte31dQCNEaLipUs8oG2gEYJYMmCxAd3PNoaZaYaYx7qA4L6msR6VGhZowjY2NzUuZwcFBDhw4AEBfXx/PP/88AAcHDnnK/d7hZ/j9Lx+mUMqWb5hWQy2ZBpqmMZobZzQ7yqs3XqNZT7ArtYn7uvvY3LrS28XbE0byh5jCPvb6orS9DDuLADSyAyO5MxdP9XL+3RVsu/8aa7eOV4Ea05qsH2YauWvuQrXRwcFBHn30UQB+df+vecr+3u8d5pnD/95j6+eNHAk9QaaY4e3b7/D27XfQNZ0tXVu4b8W97OzZSaJiSLWxlR5Jc+ZbZ+nc2MHOz+1c6upEUgt9Lz2033svPfx7v8czv3eYkukixFRhipZEC9niDOcnznFu4hzPnx9kRdsatvfuZmfvvbQ2tTvlq7k04AWWAOSEuDj+sWjqARrH1anBnfF09baPN5lH+7thyBYxfuEeRDLu1Mmpn1TermM1oAmDmajfSe+q8FN/f7/nl4KdvFZvmTC98sorzvS+ffv4+te/DsC777xNR0eHtUaQbEqAMGmKNeF0vwae2vlpssVpLkxc4NzEec6MDzNdnOb126e4Nn2dX9n5s5LTIrk04Asp2bk4ckKw6Z22y9t5M9a6ikBjynAiA43JbDAD+IDGCyBCCPSYgTDh3Dsr6Vk9SbK56IMTn9OzjGFmMdvokSNHHKjxtlNIJpPEde+l9dj6x3hk7SNcnb7KSPocZ8bPcGvmFiPpEc6lz7Fpz6ZlCzWJtgSlfInR02OMnR6jZ0fP7BstYy3FvfSdd96hXWqjTckkmqaTiOnOZb+xcxO/seffcCt7m3MT5xgeP8vlyUvczFznRuY6LYk2tvfeV5NLM1vYKejWhA+6BzY4BZ0Wuby9zFsm3J2xlwm5js1xRMGA6SLay1cxfmqTp36y5gozYS5O1BRnDuEnwsvXkgy/EKoZagYGBjh8+LAzPzIy4snGT6VSVctU0tDQEIcOHXIu2AMHDjix5I6ODjo7O62SEggEJGiJJdnV3c/u1BbMjY9xeeoqb4+eZG1Lr/UOKJOiWeIH117jkd6tdMYSkgtjh53scWWs49jgYrk0nl5QgQH4agAae74edwbfXw/smKzbfJubFzuYGm9h5K3V7N57ybedBEbO94hnfVWY8ThE0dZittHubte297bTyorrcTZ1bmJT5yY+tOmDjGZHeef2O0wXM3Qm3e1fvvIyGzs3sr5jfW0nHnG1rW5j3aPruPLyFc4dP0/Xli5iTXdv8vBS3EvbfW200gNW0zRWtK6kt3Ule9Y8ynRxhlNjpzg7dpL+btdlGx47RVEYbOneBZpecVA5f9ip0pg1YUAjjzUD8wM0/tCRU8+EDh/ehP7NM/DGLdjZC6vbvHBVJ8w0AsT41TyHF1oWQ8rXkgy/UKq5M1ZfXx9PPfUUx44d4+jRo3z5y1921u3du9eJ5VYqMzg4yPHjxzl+/LhDcIODgzz99NMMDg465YaGhpzpCxcuWlP+h7Ivwmu7LpYhqqOzuX01n9j0OA/3bnPGqXlj7Awv3XyL/3ryW3z36glmihmqhZ0CicH+bt0O4BSrA41pzAFo5DCZ8KwrdwO3XCdNsP2Bq2gIbl3uJH2rxbP/ABzJxwJ3Hb7y8rEb5NJc7Db6W7/1W3dU396WXj6w8QP8dN/HnWWj2TGev/gCf/TWH/MX736DG5kbd3SMqGjD4+tp7kqSn8zf9YPyLcW99OKFC6F1EUJyLexl0nRLopX7Vz3Ez+36eXQ9Ybk0Ji9deoHB4W/x3Fv/H+fGTiFCXJpa8mj8owVXAxp7rJkwoDFxy9vHCwtT2TDlSUK297ehE3NHDwjQvn/JPba1TweGCCYQ2++Qkr8/59RsoBKNMKLw3D5+VUp0XwxpIoIxhsnJSbq6urh86aL160J+MEs5LIGB7kpglkCUXAiRwkSXpq7wwrUhLk5fB2GS1GN8YMU23pPaSIxSuawELJpZsLa3lxXmBjQesLCAwynjgxnwwkSIO+PNlSlPn319DVfP99DWmeXhx8+g6VRxZ6R5e7/2/uwrUFo/mTVZ9XvXmJiYqMmRuFsUbKd3ron8BD+49APeuv02pjDR0Hhw1QN8cNMHaUu0zcsxlkqjp8Y49Ven0OM6D/3KgzR3N8/r/icnJ9mwcZNqp5LsNnrx0qVQpyYANcLNZbHL+MNGeaPI0LUf8fr1V8mWsghgVfsGHt34BN1tawID6IWFpWSg8ScLVwIauyx2+RrdGb/bElzmThvTBRJ/+jZa0aQwsBljl5us7fer/c5MmJ/td3cK01N8/T33RK6N2u3k/KXLs9Yrn8+Tz+ed+ampKe6/Z7fnnA4fPkxvb68zjtKhQ4fYv3+/k++1kIrYsDlzlf3WbevSFDb82HkoZejZ1NrLF7Z+kF/Y8jhrmjvJG3kGr7/J0ZEXuJgZ9YadbHjBXYaQp0OARnJkhGkEgcY0EKZZGWiEWd5HwJ0xPe5M8GOyeed14vESmYlmblzqruDOmO6ygDMjwU7I/pUWR13JLj657ZM8/eDT7O7djUDwk5uvc+S1o7x24ycNl+ckq2dHN6ktXZglk4vfu7TU1VHySwTHl5EdCltxPc6+9e/nXzxwiD3r3kdcj3N9+jLfevePefniIAUjH3Bp/EBjq16gsV2WeoHG785g1UkGKwOgvQnjkbUIBLGXr0LR9Lg+9nayM+Nfbx8v7LuL+tUb18Ssn//7v/xntmzc4Hzuv2d3TfuuJdF9PnRHvZ8WWvHvfpdYZyckk4jWFuhoR3R1Inq6IG7H5KUHsjX+jJ1D48KOPW+iYdLftoK+rT/F6+Mj/NONt7idn+D5Wyf5pfUPoXnCTkWpu7bhnQ4DmjB3poaE4MD7mJzkXutS8YAHIeUE8YTJxu03uHh6NaaJF2qQtsPvzNjfoe+vZ71SNcUGB4mluqG1BdHejujqQvT2QmvrnPfZ29LDZ3Z8mkem9vEP545zPXOd5y88z/bubbRLPVAaSZqmsfkjm5n4wzfR4xrCFGh1xu+V5qb4P/wD8VQK0dKCaGtDdHVhdncjOrtASgx1HBtJZbhxYcMGjUS8mT3rP8C2lQ/yo0svcHb0Xd658SqrOzazrmubx6EJcznmAjRIyyrl29jl3WPN4s74yhoPrER78xZma7z8wsuupLNNvc4MWN+pXeeI31I1I49m5KqW+Xe//ev85q/9ijM/NTXFrvse9pSZa6L7fCjSUKO//TaxpDVglPOALTelwq89De3NZRgo5LEGpcFtaq5D4+96jTDREDzctZ5drSn+8eY7vD+1AU2UyuDiSQY2JOfG7vVUAWg8owR7/zpAI8OPxwmRwcL/LihCpk1r0l2+bvNtVq0bpylp94CaBWYqhJsILadUSbE33nDbqaTSpz6Fed991kwJdL38qUMbOjbwpft/iVeuveqMVtzIalvdxp5fe5hkZ/D7Ulo4xd56K9BGBVC6735yn/yk+4AuFBCJppocBbtMW1MnH+r7Wfp67+fK5Hk2pLYFHt7lB3t4GAqq5NBY6/35M1CbO2NLdmf8y+yyzhMmrpP73A5oS4CmzRlmnN+WjST7+VdFyYROMiGFjkPKzyXRfb4UaagxHn8cI5GAfA4tk0GbnEQbGy1DSXsrdrfu2Hf+Ef3qVUT/RsztW2BtL96B9EwgmPyLMGmJxfnU6t3WP2YBhMH3R8/RHY/zQFsKTw8o33TNQFMt3FSLO+PAhZtP4+nRZP3VdUFTkxFYXh1mQsDFcyVKdVIKlfHYYxixONpMBqam0NJptMlJhDVEPYD+5lvEn38es68Pc9dOzG3bIF7b5adrOu9Z96hn2bn0ec6mz/KRTR8mpjdWTyIFNIuv0vvfjxGLQTYL09NoExNo6XTZUbSkTaRpP3KE4oaNFHbuIrdjB2ZbW6hLUw4peSFlbecWVnVuccJO08VpXrn4jzy08QmS8baagMb0LUN4e02FAY3cVTsAQdJ3IIeakMp5fy5bam8qw4y073pgxvmNKinMBYuaNDs6Uec2fsmJ7mNjY55E94VWtKHm0UcxnERhKSckO231dAKEiX7lKtrUFNrQm8ROvI7obMW8tx9xzxZojvu6X1tOjQw3FtBoZpGLM6O8MHYBMLjRuYqBrtVWArINNMXKQGNKOSumMbdwU5g7I4GO8K8rz3hARZiC9O0OCoUYq9aNB2GmEsD4poOXq1KYjMces9qppELBAy36lcuQz6G/+w76u+9Ashnj3nsw9+xBrFxZ1/EKRoFvn/0208VpbmZu8Jkdn6E1MfdQ11IpO5Zl9OQYG963PLquR1nGe95DyWqj9p1ClAxMw3rEC4F2+QqaaRK/cIHYhQskB49T6Otj5sGHyftCB/Y+KvV2MoAfXzjOxfQZbkxf4bG+z5BqXVMX0Nhv2a4n3FRrqMkPI/6cGWddvkTsjVsU718JzfHQbZ3tZdPb9z01jIw8GHWOl2XkQxcvRlJwmCINNV7ZD2QDkknLpSk3l9Iv/yLayDn0U6fRzw6jTUwS++Gr8NIJzAe3I953T9ClMYvIOTO2q7OhqY0PpNbyg/GLvJS+wnh+ks92r6NJE7MDjbDqV3O4yQc5EOLQSGXk9fZ3EuK6jN3s4O1X+0kkivSuTBOLyQnCeMpWBRkVfpq7mpo8s6VPfALtoYfKbfTku2iTk8SGhogNDWFu3Urps58NbFNx17EmPt73Mb599m+5MHmRP37rT3hq91N0N6cW4EQWRqVciTf+4E2MkkHXpk46NnQsdZXuPsVi5Y+l4r33Uli7jtjp0yTefRf9+jWazp4lfuYshZ4e0p/8FMXVaxyXxp9U7O/pdN/6DzKeGyWdG+X50/+DR7b+LKs7+5w7TDWgseFlLuGmukJNnuUEQKf570aIXZ0CIcg/srYuVybsrhn1O6lmzsGpqbP8QquBez9JcBCPIbZvxvjERygd+kVKH/0AYvUKKBUhoUsOjZQfgx2ekt2aIjFKfCS1ms/1biKO4GRmnD+7OUzeyBHo5WSa3jFoZKAxzRCgcZOG3eXSMlOGo0oJxpaJ6e/NJNzeTN29EzS35CkW4ty43B04ZjCsZW0rw1EoRCnNWbqO2LAB44mPUPz1X6f48/8Cc+eucpKmYdQMNLZ29Ozgi/d9ga5kF2O5Mf7krT/hZubmAlV+/hVvjrPi3nLo48rLV5a4Nkq2zO5u8u95DxO/9EuM//KvkNm7DzPZRGxqCqOrCyg/mP2hJOtO5MgA2pPdfGjHL7K6YytFs8hLI9/kwtjbnhBWPUBT7urhHa/G0yOKINB4l7k9kux92WUr9WYq3r8SAcRev1kecVguY99GrWXyfsPgxxBuD6zIShTm9omQGhhqALt3U3my3OspoSPu6cN46uMYBwYQD/S5Ls2l6+gnTpVhx3RBxnFrcHNt7m9L8S9XbiGpwYX8FH988xw5o4S/27YLIBbQOGDi5tMIB3BcGBEBIJJcHNOFI+FZLwGQH2akcpom2LDlGgjBlXOrEEYIpEgQJJzwXhjMKKiZd2kaYusWSp/9DIVf/VWMj37UXZfNEvvud2F6etbdrGxdyRfv+wKrWlcxXZzmz97571yfvr6AFZ9frXvPOjRNY+zMONnR7FJX565UJUcBwFyxgpknBhj9td9g7MCTlJpbHJem63vPk7h+zRN2ChtQrynezPv7Psvm3vswhckrF/6e4VuvB3J0ZKAJzrvQVIs7Y8OWvzt3PTBjb1fo68LoSqLlDWInx5z9h8FMJZAxZKc94tKMgtUDqp6Pgpo7luZ50NoOiQskzjuc1vZCU7y8vJRH/8Hr6C+/g37s+2g3R13YsXs0yZBjFtnSlORLKzfQqmlcyWc5OTPpAxo/pNiOi2G5OMEE4YA743FoXGcmHGZcZ0aYZtVyq9bfJpEokptpYvRmVxBmEN66gW8/vitXaWGUSnlyamI//CGxoSGavvb/or/55qxA2dHUwS/e+wusb19PtpTlx9d+vNA1nje19LbQvS0FwLVXGwfGlpuc0YDtefC6KU1NFDdudMatSQyfpf1HP2bVn/4J3c//E6JQrDrAntBjPLzx42xduQch4PSNl8mX8qH5MpXyZwwfrPjdGf+YM0hlHGfJWT47zDhjzOga+QdWIQQ0vX7TundWdmWqgYy9TaRlFuf2iZAaEGqE9HB3H+KuyyJ9MMA00MwSYMKDWxHNcbSxSfRvvox24mzZtZFHH3b+FkAUWRuP88Xe9fxM1woeam6XBtVzAcZxZ0zDdVkcd8aFH487ExJqskGlFpgJuDs+cIrpJms23AIB1y6u8jgzLsj4XCIHdJCmFdgspsx77kGsXgO5LPG//Vvif/XNco+VKmqJt/Dzu5/i/evfxyf6P7FINZ0frd23FoBbb96ilCstcW3uHgnhhRh5mRwi8QMOQGHVaqZ37wZh0nHiFdb/6R8Tu3UzPGnYmjc1jXvWfYSd6z7Ae7Y9hR5rCnm9gXdeDjfB7LkzfnemHpixQSTwOgQBhV09iGQMfSJP7OJkVVcmzJGp5OREUmZhbp8IqQGgRnJlPA9f01cG16URFsiY9iB55dcmiO2rMZ98H2LrSjAN9FeG0b7zOlp2BmdwPQloyqBjsiae4JGWTifcZJgGwgpFecJNpuzY+PNdguBhh5o8oGLKwFENZiTgCUBO+bNmw01AkB7tIDOddPdXFV5806HjZSotlMS6dRS/9EsYH/wgxGLop0+R+PrX0a5dq7pdMp7kg5s+6Hk7uGEaVbaIhjo3d9K6ohWjaHDr7dtLXR0lS86VLzsTFqwU2zu4+TOf4upnPkeptY3E6G02/dmf0P7WGxXHojEECE2jf9V7aG7qcl0go+QBGiAQbjKluoS5M2GhJhlm7HBWNZhBXmft174NikSM/K5eBJCQ2mgtrkzDwIwlzSw5ycK1f6L1Y6QBoMaS9aCXx770DKjnuA7eUFTZhSm/DwpRRGvWEB/egfjANkRcQ7syivatN9AmMxbYeIHGhZXy/jJGkT8au8qLmYlguMlzfBlyfO6MlETsfYGkDTNSgnFFmAkHGTnElGzO07NynNa2GYr5WIWy5e8yMC/DTSNdlctBuo7xvvdR/MIXEN3daBMTJP70T9GGh2va3BQmx88P8hcnv4EZ8TGGNE1j9Z7VJFoSiKgPt7oMJF/OYZe2/FoDu4w9IrB/OtO3jQtf/BJTW/ugZLDmu/+T3he/Hwo0svtiz18ZP8n3Tv0B0/nJQP6MHW5y4aa+UBO4MGOrFpiRb3kylBTuXYGIa5iJGIZpzglk5O81sjJzYNT5MauPQLzYapAu3b5L0dOYhBt6sgfYM0vIrzIow08JzUoO1jBhWy903wPH34KOODSD3c27DDS+hGALcM5mp7mYz3Ipn2WNprMtkXThRgrnOG6NJ7yDs8z79mzcbcFdb00723nmg3+db0W439eO+88S001rJHTp50qgH6I0I4RvWdSvxOUpsXYtxS99ifi3v41240bN49mM59K8fvN1CkaB5y++wBObP7LANb0zrX5wFasfWoUea5zfWMtF9lgw/lcZ2CAhuzSecJKwwKC1jcuf/hypl/+Z7pf/mel1G2oCmqJpcPbGy8zkJ/nJhW/xcN9TaJbLGNaNOyzUBG4oygYKe3tZ8nn535JtWhuLkLKySt3NjH/pfmjyDnQ5228+E9/jKuLSRDF0ML3ZtomSGuQu4m8VsmNhf1yYwYIYOVem7IxIOTOiCKkEfGI7fGAjUEIz816g8fRQKrsrDyRb2dvchhAmfzV5m4mS/XZueZtZQk2B5N5ZnBlpTJxKroy3y7hbLh4z3MTqMIfG48pY+7CWlRc1Tub+slRzM6XPfY7iF74ANb7Vt7elh0/2/wwAP7r6I86MnVnIGt6x9LiugGaJFPbzxfuGbgtKsAHAdUycMJOmcfO97+P0l55mYmvfrEBThiWdB7Z8mni8mfTMNc5c+76n11Mld8afKCzkuuFCjyl9sPdVxZkJC7LLIS8hhAM0tTgyTsir0W6dZon6E4VV+OkOZD907WkpYdczarDhjgJsD7Inwv4xCtAkIG6Wyxl5OHEDrkxLQGOHktz8mY+3dLI2liBrGnxzahRhllwgsbfxhZrqghkJokJDRnbPpwDMyO6P92MUNSbH26kPZHxukNLSSNfBGiMEQD99mtiLL1bdZFfvLh5dW361wt8O/x1ThakFreJ8SAjBxIUJFYZaAvmdGb9Lg8AHGD7nBsh1dTkgEkun2fidv0cUCgGgsaebEp3s3vDTCODi7SFuTw57xnOp5s6EwYw9do3fmZF7Ucn5MnZZubwNMTbION+B9NHGc+hT3uTYWkBGdpOiKs3IzekTJTUW1Njugj0CsBN6shOESw7EYNrTdtipICUCW69FMPLSfB7OjsPbo/C9q4ibGey8GH8Pp5gQfLY1RRNwoZjjR9lp150JwEzY6xJcGAuFmSo5MxVdmVA3pnwzymUT/Pj7e3hraBdGUZsdZPz7UIqOxtPE//qvif3gB+g/rt59+8ObPsSatjVkS1n+fvh/RtpxE0Lw5tff5O3//g4T5yeWujrLWkL4H+RepybMpQmEnaRlBlC0QQcwDJOt3/om3e++xda//zaGYQaAxnZvejr72NC7DwGcvPIP5Iozs7ozfphx4MpaJvdkgqAr4wcfpH3L5+93ewBa/vkKXf/jHZrevOUOAlgDyFRydSIn1aV7EeV54EoPdCusJCcGe1+HYCUIO2GnAph5H+Dky+U2tcGaFigZ8IPrMJkrQ4lhuy8W3AiDXl1joKUDIQT/lJ1kvFQAnxPjTQKuE2acJGR3mfCDjOc7IThtfZLJPPFEAbOkMT7ahRA+p8cPMvJ3rsAmWupOYTz+OADxf/xH9JMnKxaN6TF+dtuniOtxhtPDvH377cWqZd3SNI22teU3kI+eGlvi2ixvyQ6MKc/jAo79IDYskJF7HTmhJeGGmQxp2tR1Rj70BKVYnI6RYTa88I8UTTM0HGUI2LLmcVqSveSKGc5ce6EqzMjujb/nU2iICfeWWNWVwYWOsFCUfczCqlaEgMRwOvS+6IehRrtzqt5PiyzNw9HCARdnAD2/S2MW0cy85cjIIFMAI+8FGtNEIBCPrUCkEmjZIvzgJhTcUYSF05uq7MTsiSfZEouT0nSyRsnnzvjBS4IZD7BIDo8PYmyQsT8Vw0tyOMkTWirvW9MEvStHEcDtmz3uF6pApiFlPPYYxt69AMS//bdoN25ULLuidQXvX/8+mmPNRP0Fpb07y21z7PSYCkEtgmR3Rh5x1wYZIYWYnPwZG3Jw4aYkfEnAQjCxfiNnfvqTmJrGqtd/wso3XqeEF2icB78WY9uGj4Kmo+tNlGw3Zg4w4wEK4T0Ozj5qc2Xs48ldwgubOhFxndhknpg1CrbfjZG/V7+iHn5STs1iSUhNRQh3LJqAA1JyQkvlcJOd+FtAM4pg5qSQU8ELNLYbEwPe14tI6pDOw6ujCMNwc2UMC3DMcsjrc8kODrZ0sU7TvTDjeTWCD2Zk0KmY/OsDmUBPqhC4kV0hpNcgCEHvqjEQgvHbqYqvTagINwpwoiVNwxgYwOzrg1KR+De/CbnKce33rnsvhx4+yP0r71/EStavzs2dxJNxijNFpq/N/poIpTuX58Hud2kIhp1KFlAUrVCSDSAy0NjTt/u2ce59H0AAW773T7RevVLeXnJsbIenrWUde3f8ClvWPYGmaYHu2bXCjH27kntQ4ZyDF2ZqBRmPEjHyGzsRQPz8RKgbo0l/7dGJG+V1CZqZm9MnSmoMqAHAflhbzUgONUnOjDwqsJxHgyjgzaUplIHGkMJLdkJws454Tzcg0C5Mw4Vp163xJQO3AboDILXCjPC6MqZUVpgIKYHYAy51ggzglOnomCTRVKJUjDGZ7qgBYvwOkFKkpOuUfvZnEV1daOPjxL/73YpFY3qMtkTbIlZubtJjOqm+FADjZ9NLWpflKNlFcOaFF2zcdy9JYScBReTQU7hbIwONvZ/Lex7h5rbtYBrs+O7fQyHvrsfOxSnvJ57oCOTN1AMzflcmDGTCkoORjuN/U7ezXvoUNncC0HR+MljODzGz/qtETKr30yLIebDjPrwdd8bqpi31dPKEncwiGDk3BGXknFCUAzSmlXdjjRIsDAOMEqInjrm7HaEDBRtogj2bhOUSFQ2DlwpZ3i7mvDAj92SaJcTkuDFOVpsZBJs6QEZ2YzRNkOoeByA9lpodYgLrlCKnlhZKP/dz5d5Rul52EatICMHpsdN87+L3FqmC9SvV1wVA+lx6aSuyzOV5waM8jdelkUHGhp3Z3Bq7bMna9tQTHyXb0UUx2YyezZa3wwsrMsxM5m5x9vJ3KRpFF2YkUECqZzVXpl6Qke90pu8jq7ipDDXxWzOImWJjQ4xfob2EZ/lEbJyaiA++5z5kNTliKQ2oZ49FUx5oz3ZnLCfGyKOZhXKXs1CgkfJgDBs6jHI8XxjQ34xYG0e06F4oEQKBBCAIflLMMZifoUvT2JlsxxmiyQETPKDhvFDSBjbnr33eBJ0Ua3nAwgxzUkKWpXrS3Lq+gvRoF5v75H1Lxwz9J2j4S3XZSqxfT+Hpp6GnZ9ayY7kxjp36SzQ07llxDytbaxvMbzGV2poCIHM9QzFbItES8VtUg8mGF9/PGLdXk/S3FDJfDWiKQh4NWAKXpmZe+8yTzLR3UNJ1Txdt/3ucDNPk1IW/IVuYoLl5Jat7HnadF+k8AgPsSfcoGUz8Mv23PXldyHel+csIgdGWoNjdTGw8R+LqNPn+VMiRgvuyv/soq9xFu777vWbkF6g2c1P0nRq56Qnp1QhmyXq/kxRqMrwhJs3M4eTX2EBj2CGn8l9sd8bu3WRYrophAALRrDnrbGdGSMnCtgvzoB6nFUibBm+XChXdGceVCculccJqQUdG7rFkfxd+N2a2Zd09Y/TtGGHbrjOVnRjh37cCmsirBqAB6G3pZWfPTgSCl668tMCVmpuaOprYun8L9/7CPcSaGuD21GBybg3WtP2gld0MOexkg4wDL1QGGreLs9QrivL8VGeXAzSyOyMnIZsCTE1n9YpHEMDV269QEoZTRjj7d8+nFlemkiNTzY2BCjkx1rrpR9cy8fGtFDa0h3/Pvn37naCoSvV+WkwJq8kKU3JpvF8uVvKvMyCQYU/bQFO0IMZ+GaXhhptMKRRllMrhI8Pu+WQgbubQXkmXu3v7x6ExTRJC8GgsAULwcjEnOT9hPZgq/XUhJgAys33s7ygspGTtt6mpwLoNV2lrz1jlK23j+eKDzpBSNJVOE//rv0G7datikfetfwyAd0bfZTIfzAmIgtbuW0vnpk41yvACyw49yW6MPAaN/1MUXqAp+ZbZicIlYeXK4AWckgAKBba+/CJr3nq94lg0PV33kIi3ki9Oc3vidCDE5M+VmSvI+OU4PDWEkwp9KQpbU4hkPABHYU5Yw9xBVe+nRZCwmqLUw8mbDGzBjGFlYlsw44WbrAU0VsjJBhujDDHCdmYs16Y8b/WKMg1EsYQ+NIV2NY92LuuBGRlw9upxEsAN0+CiNeie68rIn2ogI8JBxv4u6oCYAKjUCDDezyL8GyvNi+IvfA/93XeIfa9yzsza9rVs6tyIKUxeu/HaItZOKSqyH+5hboUdhrJhxf/X6964ZcuAIzzujA04prRs5emT9L3yMtteehE9nw/NqRF6nBU9D2EKuDH6mgNffpCxYcZWrSDjv6XZEGP/rXbLqxVgGvW2qXo/LZasB7Amv3lb2DZZwUoKLufQ4B++WQYawws0wig6To0/DFUGGsup0QSiPwlCoJ3NIopet8bu0dSC4F69/DbsE0ZBArGwBOEaQGZWd8a/r9kgBgqFBNevrubKhXV1AEyjXqJ3l4wPPA6ahn7mDNq1axXL7V1dHuPm9ZtvEMW3eAtTcPud25wfPI9Zil79Gl228+o8gCWXpoQLKwEHRwIcG2KKzjpfzydwkoVLErBc3HUv013dxLNZNrz5emAsGtuV6U49gK7pTGevMZ29URfIeEJpFc7fD0mVVA1g4lenaX3lGvGbMzV+73hyeiIp1ftpsWQ/uA3LoSlZHxdkyjCTdT+lGQdoyr2arNBTyQaYotedkUNNppxEbIJhYK7TEUkgZ6Bdyksw44aWhGnyMDogOGUUyVUag0Z+d1OFMuHuTAjEVAIYP6FYx8vnEpw9uY1LFzZWgJiwuizUv6vSfEr09mLecw8AsZderlhuR88O2hJtTBenGU6PLFb1apcG5/7hPFdfuUamxgeG0uzyuBbCDT3Zg+LZuTM22Mj5NLZT487bYSY33CQvt8uZwg1TmQJKus7pfe9FAFt+cgJRKkmjErshsVishY6OPgBup9+pC2T8kgHGP+iefGurxYWR1fLObdpfvU7ykjeMK4S3jtW6ikdOVg5q3Z8IqQGgxh1sz3VoCk43bTvk5AWajAdo8Dg0Jd8yO9Rk59jYYSnTcXeEWU4aNjfHwTTRzufK5YXUbdsCnHXAGjT60clJCcHuGDQ+V6WmTw0Q4/nKQsJI1qrWthk0TVAqxcnNJBXALDMZj5VzZvTTpyCdDi0T02Pcs+IeNnSsJ6bFQssspcqvTCiPq5O5nlni2iwPhT3APV21ceHFhpOigIIQFIQ3BCVDjA1FrmsjQRLecWjsMNPlbTuYae8gkZ1h7emTjnshg4QBpLruJZHooinRURfIzBVi/OVmuxUWe1sQAmK3ZhoPXiqo/iRhKxUkQop2f0nJodCc3kR276acF2hKM2V3xnZoSoVguMm0gcXOh7GcFvlllELgvhJBhgqBWB9DnAZt2oDREnRrbj2tvxrwr/UEuqZZMGHigY4QAAnOz1LGs6qWS8i90nRN0NqWITPVzkymjZbWsHio/8ps5Mv07pJYuRJzyxb08+eJ/eR1jA99MLTcE5s/gq5F9zdN26o20iNpZm4qqJkv2b9ZPPkzuC6NDS0Fadr/V3ZwPD2YpHl73zZ4IC0XALEYI/c9xO6XfsCmt9/g/O77wKqHrLa2rezo34qmaVW7Q5u+7cLuVtUSg2tR2O+94opWAOKj0copuSOZRfcfrZ5tIqTo3tUcCdehEW4ODUYOStkyxJRm0IwZKGUssCkgSkUoFct/7XBTSYacos+1MbzOjCdfxnJZdIFYo5fh5XLBASD5rzBNNER5H3U7MhbQVHBhgjkwIfAT+vEWa20rPyhmMq3V69HwaW93p8yHHwZAf+vNcrsMUZSBBqB1ZQsAM7eyS1yT5SWBG3qy4cQFFyGBTdChsZ2bks+dcYFHOK9BsNfbx5FDTCUB53bdi6HrpG5co/X2LXdQPcnxQNMwNa3qW7UrOTFzdWHqCR2VepsBiE3mobg8cr/sEe3r+0Tr3KPt1ABI+TTOgHqOO5NxPhSnLaDJI0oFKNldt6VRgiVYcaYDzoz71zsmTHm5uVZHm9QQXVjbCame9t/ysnEh0IQgpUlDOAVAJLxBzOrA1OTQyN+hO9famgEEM5kWFLAsP5nbtiFWr7HeDVWCpqaKZWeKM0wVpljdtnoRazi7WqxfwdlRBTXzKSGkN2TjDTU5QGOW5/MhDk1RuO6MPG3DkmEdw+vSuA4RVvlSSwsXt+8qv8dMcwfkC3NkDLPETPY6ba3r3fPwlfFvM9tdrdLts567odmSwGyOo+dKxNM5Sitb69g6orLTKerdJkKKONQId0was1geXM9yaDRjBs3IoJWmrU8GijnLkSkiSm4ycDnsZJYBxzNoXliOiwUqldyTTo3SvkR5mekYqp4QFMDzpsEPhcEjms7HkPIWQiCmKsDcAbx4lktqaS0nX2ZnlsFFqBRUPE7xX/+rWYudS5/nz9/9c3paejj00MFFqFjtaukp/wouZotqZOF5kg0MNoi4Lo3r1BQEFCSgKQOOsPJkbPdFysfBcjOs/dowE3j1gFXWling1Y98DAhGOwTuPdE0i5w8cwTTLLJj26+QSHTUHUoKu4XO10+5UipJ0/US8Yk8pZWts/ra0Xr8h8go1R9+MqLV+ynadwoLMjRhWG/VzrkwU5y2PpNoxaky0MhhJ0837ZKbQ2OGwIw1pown3OPpIm1fZEE3xqmnb7r8u1dwURjIg23fOcDcOQA1t5R//eZzzbXtoy6wUmoUrWlfjUAwmh0lU8xE6qWXsaYYTe1NFKYL5MZzJFrCR25Vqk0O0GAPpGeHmMqfvCnIC6y/5Xk57FSSwEbOo7G7cNs/7/yujDw2jNydWX5uyhAjLwPQ9ASJph5yuRtMz1yhq2tX1dBRpXOfL/mhpNiVJHE9gzaZR/qJW1FRv5M67yysc5soKdpQY+fT2InBpZlyuKk4ZcHMhAU0WUSxIEFNyU0KNkq+pGAp7CREaEKwB2RkyHGqVf45o6UFYiW40OKW32htexPIC5MmzfcWkVlBodIVeoeXhRC0NM/wwMNDJJN5hCnwV01pmahYRLt0GbFyBXR0BFa3xFtY0bKC29nbXJ26yvae7UtQycra9eQu4skYya7kUldlWUhguy3up+zKQE5ATgKavBR2sv8aFWDG8LkyduJuLSCjmSap27cQwPiq1aFORkvrOrK5G8xkr9LZtau8/QK4L7U8mv3HmNq7humHVlPqqBzibSip8NMCS5ShRjMKYOfQFKfKMFNIoxUmoZBFFMt5NKJY8HXdlhJ9HbCxk3h9ISYLWkJBxnMFCSgJ4i+WQAhK741Bi+Zua6kd6ACmEFxHsKniFTfP8FLDdrou6Oicqmenc6uL0pIqfuwY+vnzlD7+05gPPxRaZn3HOm5nb3Mtcy1yUNO+JjrOUaPLhg3DStx13BnrkzMFWQtqCgKKpnCSgosVYMYJOxEOMn7nIqyX0rbXT/Dgyy9yqW87L33sk6F3mubkGhCQzd5wb81z+A5me/TOZZ/GcgPuRQ4/pdNpjh49CsAzzzzjLD927BgAY2Nj9PX1MTAwUPM+ow01mGimYQGNFWoqpNHzY2iFNKKQgULehRqfSyOkcJOn67YHZKyRdOXcGTnM5PyxpwXoINoF2qSACRPRrLvrJK0GpoCbmGyq1NFsLvAyb+GgGvejmKYhJdatg/Pn0a9crgg1q1rLgdIbmZuLWDOlRZfASe4tWGGmnCiDzIwFNFnT7fXk9HKy/vqdGTfcZIWeQkAmDGL8YDG6ei0C6L1+teJou8nmVQggl7+NKQRaFWu5Grio29jscsZSq3ObuWpwcJDR0VF6e3udZSMjIxw/fpwjR44AsH///uUDNZowyr2dShm0wgR6YQw9fxstP4bITyMKOUQhb3XhLpRHC7Z7O0k5NE7+jCmDjO2Zym6MD2JCcmXs/5vtEJsog41YZZfzXjYrgbPAbXnfteiOoKW2bW/fXMH0VCc9vbfp7Irmiw2V7kzmunXEAO36jYplVrSsAGA0O7pItapd09czjJ0aI9mVZPVDq5a6Og0tk3JicEG4ADNjCjIS1OR8uTROYjBekLHhBsq3Kk+XaeneFfaDX0jbAYytWIVAoyWTITmTIdcadOeamlJomo5pligUJ0k0dVU8z8UGFy1Xou2t22hFg6nH1s++QdRlPzerKF80yRfdb3oyW6+14+rAgQOMjY2RlgYKHRwcJJVKOfOpVIrBwcGawSbSUIMolhODixPohVG03E203G1EbgqRz5ahpljwDrRnvZzS+yLJMsyEviRShhcfxMgY4y4v/09YeYtaRoYhb9kea4Mx6s2nCRxw3ouO3V7BrZurSSQKCmqWqcTKlQBoY6Pl/LJYcPTgnpZuANL5NKYwIzV+zczNDJf/+TKprSkFNXco22mxw0wZUzBtuFBj59MUJKixQUh2aaAMOBAEmbBeTFA9/6WYaGKqq4uOdJqusVFyrW1Bt0XTSTR1kc+Pky9OEK8CNYstzRB0vHINNJh67zoaPkFRmGBWP4f/9DdX+V+/Wfndcneq4eFhj3PT09PjgZ7ZFG2oMYtoxUn03C30mWtoM9cRM2lEfqYMNXZysD2Anmek4EogE4QYb+a9L/QUJiGgpbwvbYbgVWvNr0fwOBqr7P16C9X2HSzQT494ohwHLZUSC3MApaVXVxfEE1AqwsQk9HQHinQ2dfLede+lM9kZOahJtJbbZikbrS6jjaiSEJQsgJkyTCYNwaRhknGApuziyC6N3KvJkwxs3d/8OTNOFN8n/yI/tEykemhPp2lLj2Nu2BR6y0t1P4xpFkkkogM0AGbS+qEgQMsbiOZoP1JnU/k9idUfOoc/sYLf/qgLHZNZg62/++6C1mtsbKzmspH8F8jn8wAUMmn0+E30mUtomcuQGcXMZiygyUuJwW5CcOAVB/IYM5Y8g+rNMVFXNFtXeU6UHSFN8+wrXxIcfVHw7x7XSMa968o7qOsrmXfF4+UHhVEKf/dPviT4P34o+Hfvb/BfHgsop50WovVCN0eahkh1od2+jTYxgfBBTT6f5z//l//Cv/3d3yWZjF7CY6yp3DaNQmV7Wz4HpaDsNprJFyg1CyYMQdoQpA2TKcMNO/kH2bNBxg0zCQ/EzAYw9eS2THd0AtA2NRlYZxTynP2D/8a2X/51Yk3Ra6PEdURcQysJ9IKBEQI18jlEXubsTk0yBsmYVKZC+a9+9auMjgbD2r29vZ6kYL/6+/s9zoydLFyrIg01pekb6PFz6JPnEJM3EDNTmLkZRDHvjkXjjA4s3FCTBTLe0X7D3ZSKkrcNU5NAaKAJAQUg6S2aL8H/9n34zfeWG0HUpMfKD4qSUQFqDLf+SuGy26n9N4oS7e1lqJmeCrTkfD7Pf/pPz/K//MZvRBNqrAvHyFeHGvsclIKy2+ZELkehzeR2qfyZNEwn7FSwQMYeNM9+h5PjzFj7km+Zs43JUs9vtmxbOZbfMjMdWGcWCpw+8n/R94VfmRPU1PZuvDuTiOtopRJaMbydyucQdQnTqDTIfdVtwlQNXKppYGCAw4cPO/MjIyPLJ1E4ljmPbryNOXYBMT2BmZ9BFArW27ett3abNrDYoSaYNYRUT+JuxWIaZr9A6Fr5DVoVyt1GMAGsBeL+3JolVEwvN0TTAzV+M9m/TKnRZO7di7lzF+b6ykmMk4VJpqam6Ex20tEUHM9mqaTHy6EwsxStcTAaUeMlk4miybWiwXipHHaSx6KRXzgpuzDV4GWudwY/aFzdsInS+z/IRM+K4CB81nyplKU0k0HT4ySTvURJwmqnlMxQiLKXLQZg3bFMo/5hj2dJLK6mwcFBjh8/Tjqdpq+vjwMHDtDX18dTTz3FsWPHGBsb48tf/nJd+4w01GjXf4xZPIM5lUYUstbLKd0XTOIPI3naTLWcmPmpn7l+dkj573HQNMGvCc1KHK5VC3sBaLrdC0wKjSmmWXYyd+yYtcwLl1/gYvYSH9v6Mfau2bMItapNmmVxm4aCmjvVubzBaL7EWMkka7qjBNvjzYDXlbElBe0XbGDx9IpVpFdUTwSfzgwzeu0lOjq2sW79pxamInOUiJWhRpslF6UhZJpzgJq5X58DAwOhLsyBAwfmvM9IQo1NtBPv/jMtiZly7oywhnnyODGerRa3krNoyopIlPJlkB0XgvgC9WSai6YLBpliiUTBYDIXPJhd/ykpstIQvzQWUfb3MT09zeRk4/Ugm5oqD8BYmCmSn8kzOTXJZGt0zqOQKZDJZ9BLesXv1z4H+y+odirL/i5evTVOSSQomPaAecK5jUb52yplyiEpI5vDmMlT1DIUp+sZOHThlS9mMAt5ipkpitPBb9M+B/svRLeNll+TUP82UZImIvjtjoyM0N/fv9TVUPLp0qVLbNiwYamrERmpdhpNqXbqSrXRaCpqbXRycpKuri5ufXUDnS319YCczJqsfOYyExMTdHZ2LlANa1cknZotW7Zw6dIlOjo6qo4eqbQ4EkIwNTXFunXrlroqkZJqp9GSaqdBqTYaLUW+jYo5hJ/uYEThhVAkoUbX9UhRrBJ0dUVrfIgoSLXT6Em1U69UG42eotxGy72f6gveRC38FEmoUVJSUlJSUlpkCbP+JCvl1CgpKSkpKSlFTkYJjDpHFY9Y78QlhZqRkRGGhoYCy/v6+tizZ2m7ltby6vNKZaot7+vr49VXXwXg4MGDDA0N8ZWvfIWRkRGeffZZp+z+/ftJpVI8++yzdY2muJD1h/IokXZ9Dhw4sGD1j4pUG124NrpQ5wCqndpa6naq2mhjtVFhirrDSfWGqxZcYon17LPPigMHDjjzJ06cEAcPHlzCGgkxPDzsqcPAwEDNZSotHx8fF3v27HGm5a/+yJEjnm2Gh4fFc889F6n629Pj4+NCCOGcy0LUP2pSbXRh/o1VO51fRa2dqjbaOG10YmJCAOLGf+wQ2a901vW58R87BCAmJiYWvJ61aMnfXpdKpejpcYel27NnD3v37l3CGlV+9XktZSotT6VSnDhxAqg+7PPQ0BBDQ0N3NPjQQtR/aGjIWT40NOScy0LUP2pSbdSr+fo3Vu10fhW1dqraaOO10YmZEhOZOj8z0XrhbCRzag4ePLikx6/l1eeVysy27dGjRzl+/DjPPfdc4LhDQ0M8+eSTFRv5UtZ/ZGTE+QAcOnSII0eOLEj9G0Gqjd75v7FqpwuvpWynqo02ThttampizZo17Pjfr89p+zVr1tDU1DTPtZqbltypaRTV8urzSmXk5QcPHuTQoUOeF3YBvPrqq4yNjXHo0CGefvrpO6tsHXWrpczY2BjpdJqenh727NnDnj17ePXVVz0x/IWuv9LsavQ2Wq1+tZRR7TT6Um00mm20ubmZc+fOMTExMafPuXPnaG5uXpS6ziYFNSHyj8AZ9urzSmWqbWsT/sDAAN/4xjc8Nua+ffsYGBjgmWeeYWRkxEkwi0r97Y+tnp4e55fGfNdfaXY1ehtdqHNQ7TQ6Um20sdpoc3MznZ2dc/pEBWhAQU2oBgYGeOWVV5x5OXYrX1BhZSotP3r0KF/5ylec5T09PZ74t6znnnuOp59+OmBzLmX9BwYGPBdetXj2ndZfaXY1ehtdqHNQ7TQ6Um1UtdGl0JK++2lkZITDhw8zMjLCl7/85Ugl7cld8Xp6epy69ff3c+LECVKpVMUyYcvT6bSTOHb8+HF6e3sdEre/A7sbXzqd5oknngDga1/72py6ZM53/e3ltn1qvyZ+oeofFak2unBtdCHOwV6u2mk02qlqo6qNLrYi+UJLJSUlJSUlJaV6pcJPSkpKSkpKSstCCmqUlJSUlJSUloUU1CgpKSkpKSktCymoUVJSUlJSUloWUlCjpKSkpKSktCykoEZJSUlJSUlpWUhBjZKSkpKSktKykIIaJSUlJSUlpWUhBTVKSkpKSkpKy0IKapSUlJSUlJSWhRTUKCkpKSkpKS0L/f9abIRSCqwssAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 750x130 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1, 3, figsize=(7.5, 1.3))\n",
"for i, ax in enumerate(axes):\n",
" data = np.mean([(np.array(frequency[mode]) - frequency[mode][0][0]) / 3 * 100 for mode in strong_polar_modes[i]], axis=0)\n",
" im = ax.imshow(data, cmap=cmap, origin='lower', norm=mcolors.TwoSlopeNorm(vmin=-15, vcenter=0, vmax=15))\n",
" ax.set_xlim(0, 100)\n",
" ax.set_ylim(0, 100)\n",
" ax.set_title(strong_polar_name[i], fontsize=10)\n",
" ax.set_xticks([0, 9.70 / 20 * 100, 19.40 / 20 * 100], labels=['$\\\\Gamma$', '0.003K', '0.006K'], fontsize=8)\n",
" ax.set_yticks([9.88 / 20 * 100, 19.75 / 20 * 100], labels=['0.01A', '0.02A'], fontsize=8)\n",
" ax.get_xticklabels()[0].set_horizontalalignment('right')\n",
" ax.tick_params(axis='both', which='both', direction='in')\n",
" ax.tick_params(axis='y', which='major', pad=-1)\n",
" for l in range(len(lazer_vec)):\n",
" ax.plot(np.sin(np.linspace(0, np.pi / 2, 101)) * 100 / 20 * lazer_vec[l], np.cos(np.linspace(0, np.pi / 2, 101)) * 100 / 20 * lazer_vec[l], color=lazer_color[l], linestyle='--', alpha=0.5)\n",
"fig.subplots_adjust(right=0.75, hspace=0.3, wspace=0.3)\n",
"cbar_ax = fig.add_axes([0.78, 0.05, 0.02, 0.8])\n",
"cb = fig.colorbar(im, cax=cbar_ax)\n",
"cbar_ax.set_ylim(-14, 14)\n",
"cbar_ax.tick_params(direction='in', labelsize=8)\n",
"# fig.tight_layout()\n",
"fig.show()\n",
"fig.savefig('画图/入射角度与偏移/po.svg', format='svg', transparent=True, bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "0bb23295",
"metadata": {},
"outputs": [],
"source": [
"polarizations = [ \"zyyz\", \"xyyx\" ]\n",
"peek = [ \"E21\", \"E22\", \"A11\" ]\n",
"data = {peak: {p: np.loadtxt(f'画图/拉曼结果拟合/combined/substrate/{peak}_shift_{p}.txt') for p in polarizations} for peak in peek}\n",
"mean = {pe: {p: np.mean(data[pe][p]) for p in polarizations} for pe in peek}\n",
"std = {pe: {p: np.std(data[pe][p]) for p in polarizations} for pe in peek}\n",
"distribute_range = {pe: {p: np.linspace(mean[pe][p] - 5*std[pe][p], mean[pe][p] + 5*std[pe][p], 100) for p in polarizations} for pe in peek}\n",
"theoretical_result = { \"E21\": 0.263, \"E22\": -0.221, \"A11\": -0.188 }\n",
"color = { \"zyyz\": \"#50cfd2\", \"xyyx\": \"#9d569c\" }\n",
"peak_label = { \"E21\": \"$\\\\mathrm{E_2}$-1\", \"E22\": \"$\\\\mathrm{E_2}$-2\", \"A11\": \"$\\\\mathrm{A_1}$-1\" }"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5eb18b36",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAn8AAADbCAYAAAAcXPcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUM5JREFUeJzt3Wl0W+eZ4Pn/vdi5AQSpXbIl0JKXeBMoeYkdx7FB2U6dpKd7KKuWVHdOTYucVM2c6U7PIe2e1NTUdE0pZHdXV/eZTjWpmunuqtR0yURX9alUObaJJI5jJ7Ylwmu8yYBka+cCgivWe+98AHFFUNw3EMTzO4e2ALy4eHB58fLBuyqGYRgIIYQQQoiyoBY7ACGEEEIIsX4k+RNCCCGEKCOS/AkhhBBClBFJ/oQQQgghyogkf0IIIYQQZUSSPyGEEEKIMiLJnxBCCCFEGbEWO4CV0HWdy5cvU11djaIoxQ5HCFFiDMNgbGyMnTt3oqrF/S4s9ZkQYqUWW6eVdPJ3+fJl9uzZU+wwhBAl7sKFC+zevbuoMUh9JoRYLQvVaSWd/FVXVwO5N1lTU1PkaIQQpWZ0dJQ9e/aYdUkxSX0m1lsqleKP/uiP+Pa3v43D4Sh2OGIVLLZOK+nkL981UlNTI5WlEGLZNkI3q9RnYr2lUimcTic1NTWS/G0yC9VpMuFDCCGEEKKMSPInhBBClCGLxcKXv/xlLBZLsUMR66yku32FEEIIsTxWq5VHH3202GGIIpCWPyGEEKIMpdNpvv/975NOp4sdilhn0vInhBBClCHDMIhEItzae56M1V7scJbEac3QUD9MZLCWZNa2ase9+MTeVTsWwKiW5BeJz3nQdRM1FueqHnslpOVPCCGEECXFZcty5/YBXLZssUOZ16ie4qWJs4zqqWKHUkCSPyGEEEKIMiLJnxBCCFGGrFYrr/geRFNltm+5kTF/QgghNq1QKEQ0GsXr9RKNRmlra5u3fDwex+PxmLfD4TB+v3/e57S2ttLV1bUa4RZYbOxzlQuHw3g8HrxeL2fOnOHQoUMF781isfD6f/lP1P4vf7jqsYuNTVr+hBBCbFodHR20tLTQ3NwMQDAYnLVcMBikvb2dxx9/vOD+xsZGFEUxf2pra4nH4+bjnZ2dRKPRRccTCoUIh8OrGvtc5U6cOEFDQwP79u0zE8Hp/vAP/5C6s31Ytcyi499oVFXHsoo/KSO7qj9pQyv2KZqVtPwJIYTYlEKhUEHC4/f76erqMpOk6Zqbm/H7/YRCIfO+cDhMX1+f2fIXDoeJxWLmMaPR6A0J1XrHPl+5pqYmenp6Zj1+NBrF7XZj07PohrEWb2FdBPafX9Xj/fP+D1f1eBuVtPwJIYTYlMLhMF6v17zt9XoX3eoGuURqepfvmTNnCAQC5u1QKFRwezUtNvaFykWj0VmfFwqFeOyxx1Y5alEqpOVPCCHEpjQ0NLRqx2pvb6ejo8O8HQqFePrpp4nFYvM+Lx6Pc+LECfN2vovY5/OZ900/bt5iY1+oXDwex+fzcfToUU6ePInH4zFjv3LlyqJeYyMLnd1LPOFateN9Erhp1Y4FcCkzyr8f/sWqHnM1SPInhBBiU6qrqysYn7dc8Xj8hnF9+YkhCyV/Ho/nhqTR6/UuOIlksbHPV66lpcX8d1NTE+3t7XR1dZmxDw4OMljppcZSuqmArqto+up1YjqU1T0XdmVjzqSWbl8hhBCbkt/vL0jOYrHYgknXbLq7uwta6jo7O4nFYgSDQYLBINFodM7JGMu12NjnKhcKhWhqaiooG4vFCmL/q7/6KyYG+5l89YVVjV1sfJL8CSGE2JQCgUBBi104HObYsWMAS5qhe/r0aRoaGszbbW1t5uzaQCCAz+ebdRLJSiw29rnK+Xw+Wltbzfv7+vo4duxYQeyPPPIIeyps1Dy4NuMWxcZVum29QgghxAI6Ojro7Ow0W+7ySVprayvt7e3mhI1QKERvby/RaJTu7m4zqcub/u+8aDRKV1eX2fI3WwK43DF/S4l9rnLhcJju7m4AGhoaCuKLRqP86Z/+KSOxGNZXX8D+6NfnOINiM1IMo3TneI+OjuJ2uxkZGaGmpqbY4QghSsxGqkM2UiyiPKRSKb773e/ynw79GhmrvdjhLEmtK8GRW6O89LGP4VWc8HHxib2rdiyAi5kR/k3sVf6p92F229yreuzZLLYekZY/IYQQoox9FLgZh8NR7DCWZFRL8ouEhd976CZqLM5ihzOnGtXBkcr91Kgb6/xK8ieEEEKUIZvNxre+9S1sNluxQ1myGouTJ6oOFDuMBW3UOJc04SMcDtPa2oqiKLS3t9Pd3U1nZyft7e3U1tYWrIy+1OM2NjYu67lCCCGEWDpFUXC73SiKUuxQxDpb8pi/aDRKQ0MDw8PDN2x+febMmYJ1hRYjGAzi8/lobGxkqcMPZYyMEGIlNlIdspFiEeUhP+bvmWeeKbluXzG7xdYjS17qZfo2MtMtZ+0kuL6fohBCCCGEWHsrXucvHA6bU9effvrpFQckhBBCCCHWzrInfOTXDjp16hQ9PT0ABd3AQgghhBBi41l28tfS0iLJnhBCCFGi7HY7zzzzDHZ7aa3xJ1ZuxUu9TF8xPBQKEQgEzD0OT58+TVNTk7kKuRBCCCE2BsMw+Bf/4lWgCpAZvxvNH/zBfWt27BUnf9O3qIlGo4RCIaLRKG1tbfj9fo4ePUpfXx9NTU3m5tM+n8/sKhZCCCHE+stkMthsr5LJBIDSW+tPLN+Sk798AjdTPB6nr6+PlpYWs6UvGo1y6NAhAHp7exc8djwel65kIYQQZSvfgOL1es2GlNkEg0FisRiRSIR4PE5XV5f5WH5Mvtfrxe/34/P5CIVCeL1eYrEYPT09BeVF+VnyIs/5DahPnDhBd3c33d3dtLe3s2/fPhoaGgrKd3V10d7ePu8xQ6GQWebEiRNml7EQQghRbjo6OmhpaTGHVM32NzEajRKNRmlpaaGjo4NYLEZnZycAra2tHDp0iJaWFk6fPm1uvtDU1ITf7ycQCBCNRs0EUZSnJS/yvFidnZ0EAoE1XcNPFkUVQqzERqpDNlIsojhCoRBdXV3msKiZt/PC4TDHjx+nr68PyP297e3tpaenh8bGRiKRyA3Hjkaj5jCtxsZGTp48yRe+8AVOnPiXZLNfQbp9N57ljPlbs0WeFyM/8cPv90tLnhBCCLEI4XC4YCMFr9dLOBy+oZzf7zcTP4BIJILf7ycUCuHz+QgGgwSDQbM1EK6Pzw8Gg+bfZ4fDQTZ7BEn8ys+qJ3/RaJSjR49y/PhxGhoaFjXWTwghhCh3Q0NDS35OPB4nFArx7LPPEovFOHPmDM3NzWa38fQEMBwOE4vFqKurA0DXdRRlANBXJX5ROlY9+fP5fAwPD9PX10ckEpFBpUIIIcQi5JOypTh+/Di9vb14PB68Xq85yRJyf49PnTpl3vb7/eZYwNbWVjKZDFbrGUBbjfBFCVnxUi9CrKe0rnN2MsHZyUk+SyS5lk4zmtVI6joK4LKoeG02dtjt7HU5OVBZwc1OJ6qyOdawMgyDbDJDNqVhYGCxWrA5bajWNRnBIYRYR36/n9OnT5u3Y7HYvOPmOzs76ejowOfzFYzpmykYDNLV1WX2xB0+fLggKRTlR5I/seHFMxleHxnlzZFRfjk+QXq+OUoZuJBM8c60u2qsFvzV1dznrsFfU41D3fiJkmEYjF4Zpf9sP7HzQwxfGGb02hiTsQn07I1dNM5qJ1VbqnDvdOPdW8eWhnrqG7ZgdchHXIhSEQgEClbICIfDHDt2DOCG5C4/di9/XygUoqWlpWA5ttOnT3Ps2DE8Hg9Hjx694X5RvuQvg9iQEprGGyOjvDwc572x8YIRKbVWK7dWVuBzudjhsOOxWXGqKroBCV1nKJ3hYipFZHKSTyYTjGY1Xh6O8/JwHKeq8oC7hke9tdxZVYllA7UITg5PcvHti1x69xJXf3mFxEhi/icowFQenBxLkhxLMhgdJPJqbqafalGpv2ULO+/aye57dlN/Sz1qCSS+QpSzjo4OOjs7zaQuP3avtbWV9vZ2c6mW6clc/nkAJ0+epL29ncOHDwOY6wTmJ4HEYjF8Ph9tbW2k02kMQ3b3KEdrttTLepClETYX3TD4YHyCnwzH+Xl8hKR+PeW7pcLFg243h2qq2eN0oCwyacsaBh9NTHB6ZIxfxEcYyGTMx+psNh6t9fCo18Nup3PV389CDN1g6Nwgn/dd4EL4c4bOFQ72ttgs1DfUU++rp/YmLzXba6isq8RZ48TqsKIoCnpWJzWRYnJ4krFrY8QvxYmdH6L/bD+TscmC4zmrney6dzc3Nd7Ernt2Ya+Q/Tw3Uh2ykWIR5eM733mz2CGIOazlUi/S8ieKyjAMookkr8Xj/Gx4hMFpydkOu50vez08Uuthh8OxrONbFYU7q6q4s6qKb+7czseTk7wci/NafIShTIb/2j/Af+0f4BaXi4dr3TzkcVO/hpucpyZSXHn/MhffusiFty6QiE9r3VOg3lfP7nt3s/POnWzZvxWLzTLv8VSrisvtwuV2Ubf3+mBxwzAYHxjn8nuXufTuJS6/e4nkWJLIzz4l8rNPUSwK22/fzp6De9h17248uzyLTqiFEJuDpmkoygUMYxdrtPKb2KAk+RPrLqFpfDAxwVuj45weHaU/fT3hq1BVHqp185i3llsrKlY1IVEUhdsqK7mtspL/YdcO3hwd4+XYMOHRMT5NJPg0keA/Xb7KLS4Xh9zVHKyupqHCtaKu4dR4iv6z/Vz76BpXfnmZwU8Hmd7YbnXa2H3PLnYf3MOeg3tweVyr8VZRFIXqrdXc+vit3Pr4rehZnWufXONC3+dcCF9g5PIIV96/wpX3r8Cfv0mFt4IdX9jJjju2s/XWbbh3uFFUSQaF2Myy2SxW6/tkMtuR5K+8SPIn1lRC07iUSvF5IkU0keCTyUmik4mChQXsikJjTTVfqvXQWFONfR3GpdlUlYc8uZa+eCbLz+NxXo2P8NHEpJkI/uXVfpyqyq2VFeyvcOFzudjtdLDdbsc2I8ZsKsvYtVFGro4Svxhn+PMYQ+eHGL0yesNru3e62X3vbnbfu5vtd+xYsHVvNahWlR137GDHHTu47zfvZ+TKCBfDF7j49kWufniVydik2SoIYK+0U7evDu/NXmr3eHHvcFO9vRqX2yUthEJsMr/7u4dwLLN3RZQmSf42kUvJFCl98Yt1zjbY08Aw7zeMXBkDA90AHQPNyI2jyxoGWV0nZRgkNZ2ErjGhaYxlNUayWYYzWQYyGUay2Vlfe6vdxj3VVTTW1HBvddWcM3DHB8ZIjacW/Z7M9zHrmzMKHjMMAwwDwwC/YXBQr2AMGx+PTfDp+CSfjU+SyWgMZXXiGZ23MjrWlIYtpVGV1qlIZHGMZ7CMpVAmMrO8YI5jaxXV++upObCV2ju24aqrAmBSgXOZFGRAmWXA9VJSLI/Nite2+FX63TvcuH/FzRd+5U6y6Sz9H/dz5ZeXufrhVQYjg6Qn0tdbBqex2CxUeCuoqK3AWePCUe3AUWnH5rJjc1qxOmxY7RZUmwWLVUWxqKhTP4qqoCgKipp7d9NbFhUl/58bLSfXrL3ZK5NbhBBiDpL8bSJ//PkFPp1cYIZoEVRZLNTbbOx2Ori7uop7qqvYuohxdROaxo//8jSDr55bhygLuYG7l/icjMPCRK2T8Tono1tcjG6rYGR7JemKaUlZ7FruZ5V9eULh7zuqAUiNpXBUOaiorcC9021O7EhPphm5PEImkcHmspmPWe1W6hvqsbls7PjCTix2C7qmM3Z1lNjnw8QvDTNyeYSJoQm0jMbYtTHGro2t+ntYTb/5n/8hqlOSPyHmoygKDQ0N0ppfhiT520TcVit1tuX8SpWCf02vBlQl1yqV/79VUbAouYkUdlXFpig4VRWXxUKlRaXaYqXGaqHWZkM3DM5NJhjXNXNVktFMloy+8ATzS8kULw4OETMyVNXYczEZhcHlWyZVwKLm2s7UqRizhoE+7QmqAg5VNcfvaQqkdJ0MBlkD9KmWJ0VVsFhU3A4b1Q4bqtWCxW7B5rBisVsxdJ14fJIJBdIVVhJVNjJ1Lqy31JGtdZHWdXRdx6Hr1BoGVYaBZuRaTHVyrYz5/5vvA9A1nWw6i67nWiN1LVdAtSjX47KqaFkdQzcwdGNqvT8DFIXYu4P8/O1BbBW5mG1OK9Xbaqjd5WHv/fsAg/NvnGcynkBRcueuwuNa8LEDj91qxqllNSZjk0wMjjM5kiA1miQ5liI9mSIzmSGTzJBNZdEyWu4nq2Nkc+fD0Izce8Mw48/9Do1Zm6BXugiB/DETYmF2u51vfOMbxQ5DFIEs9SLWxISm8cLAEGOaxna7HVVR0A2Dq+k01RYLT22po8Iy+1i3CU3jb/oHeG9sHJui4rZZyRoGkYlJxjSNaquVvU4H/ekM45qGVVHY5XRwd1UV1zJpLifT7HTY2TO1s8fM1zWAFwaGuJZO8eH4JCnDoMaikjLAYhioqoLbauN3btpVMPM3PZnmwxc/IDmeomZbDYqqYOgGo9dGcVY5uP2JO5a1fMr041bWVnD1w6ukkxkUwOayse227Yz1jzF6eQT3TjdOj4voqxGyySyKVUFLaah2C+mxFIpFYdut28imNax2K5X1lTgrHaBCJpm9IW6b0woGZFI3PraS91QqNlIdspFiEeUhm83y6quv8vDDD2O1SlvQZrDYekT6RcSauJRMEctmzMQPQFUUttvtDGczXEzOPY7vUjLFxWQKVQG3zYqKQlLX0TBQlNxm5HFNI20YeGxWVAXi2SwjmoZdURnOZnCo6pyvm48trRtMGho1FguqouJSVbJAjcVKPJvhnbHxgrhGLo8wGU+YSRKAoirUbKshEU8wcnlkWedq+nGTo0nSiQwVbhdOt4v0ZIbkaBKrw0piJIHVYWX0yiiZyQwOtxOL1YqW1lAMUKwqhm6QGE3irHGSSWawOqyMXB4hfnFk1rjjl0aIX5r9sZW8JyHExqdpGj/96U/RNNnbt9xIqi/WRH6v3Zl76uZvJ+eZmJLUdTQjV1ad6rbVjFz3poKCoShm17FCbhKBbhhkdB2UXEdvdkaD9szXVYCUYYChFMRoAMbUzbFsYYWYSWRQFG5YAkXJ9YmTScw96WM+04+rZXJd5Ln3mqNlrsehZ3UyyQyGAqqqohm5CTW6rmNRVbKajp7RzG5PPaubFftscevZuR9byXsSQgixcUnLn1gTTlXNjWWbkYTlbzvnmYnpVFUsSq6sPjUgzDI1GM3AQDEMbFPJioGBYRioioJNVbGgYJAbkzjX6+ZjcygKKEZBjAqgTN2sthZ2S9tcttw4wxljFg09N27N5lr8bNu5jmuxWXLv2DDMcW8WmwXVmjtfqkXF5rShGLmELz8VVlVVtKnEVrVZzOeqVhWLxYJqscwat2qd+7GVvCchhBAblyR/Yk3scjrwWm1cTafN5Co/9q7Wmpv5O99zdzsd6AaMZLLoGLmEEAXDyCU6HosFu6IQz2TRDfBYrbgtFtKGTq3VRkrX53zdfGx2VaFCsTCqaeiGTkLXsQKjWhaPNbcUzXTunW4qPC5Gr41en7AwNT7O5XHh3ule1rmaflxnjRO7y8bkSILkSAJ7hQ1njZNsKovL7SKbzlKzowZbhY3USBItm8Vit2AoYGR1FFXBVeMkOZrE5rSRTWVx73Tj2e2eNW7PLjeeXbM/tpL3JITY+FRV5eDBg7IsUhmSbl+xJiotFh7wuHk9PsLFVNK8v9Zq4wGPe87JHvnnPlJbS0LT+WRykgvJpHl/ldWKgUF/JkN6aqarS1Wpslroz6TxWm00bq3h3GRi3tfNxxZ3aJxLJOjPZLAoCpWqhS1WG1/bWn/DNm/2Cjt779/H+TfOMXIpTn4Ks2tqZuxyJ0ZMP+74wDg2l43ESG7JngpvBRMD41TWVnCT/yaGzg2SiCeo2VHD0LkhtGRuYkc2lcXqsGKrsDE+MI7VaaXC46KytmJqRi9zxj3fY5t5socQ5c5ms/H1r3+92GGIIpDZvmJNTWoaF5MpkrqOU1XZ7XTMm/jNfG5kMjGV/CnsdjjY6bRzOZnmYioFGGyx23AoFlAoOP5iXjdf5lo6xYVECquqUGfLtfjNt7/vXOvlrdT045oD/qa6XvOvMb1MNp1hfHACLZXF4rBSVV+JYeTW+XNWO3B5FrfO31q+p41uI9UhGykWUR4ymQw//OEPeeqpp7AtYZF4sXEtth6Rlj+xpiosFg5UViz7uXdVV3HXjO7Xerudu6ma41mLf918mQOVFVC7+LjsFXa23LJl8U9YxeOu5LXne+5avSchxMal6zpvvfUWTzzxRLFDEetMOvqFEEIIIcrIpmj5e+mll6ioqOCxxx7j9ddfZ3JyErfbzV133cWrr74KwP79+9F1nUgkAsCjjz5KX18fY2NjVFVVcejQIV5++WUAfD4fVquVTz75BICHH36Y999/n3g8jsvl4qGHHiIUCgGwd+9eKioq+OCDDwB44IEHOHv2LENDQzidTh599FFeeOEFAPbs2YPH4+G9994D4PDhw5w/f56BgQFsNhtNTU388Ic/xDAMduzYwbZt23j77bcBOHjwIFeuXOHq1auoqsqTTz7JSy+9RDabZevWrezZs4e+vj4A7r77boaGhrh06RIAX/3qVwmFQqTTaerr62loaOCNN94A4M4772RsbIzPPvsMgCNHjvCzn/2MRCJBbW0td9xxB6+99hoAt912G6lUinPnctutPfbYY7z55puMj49TU1PDvffeyyuvvGKeb4CzZ88C8Mgjj/D2228zOjpKVVUV9913Hz/+8Y8B2LdvHw6Hg48++giAhx56iA8++IDh4WFcLhdf+tKXeOmllwC4+eabqa6u5v333wfg/vvvJxKJMDg4iN1uJxAI8PzzzwOwa9cu6urqePfddwFobGzkwoUL9Pf3Y7VaOXLkCC+88AK6rrN9+3Z27NjBW2+9BcC9997LtWvXuHLlCoqi8NRTT9Hb20smk2HLli3s3buX06dPA3DXXXcRj8e5cOECAE8++SQvv/wyyWSSuro69u/fz+uvvw7AHXfcweTkJOfPnwcgEAjw2muvkUgk8Hg83HnnneY1e+DAAbLZLNFo1Lxmz5w5w/j4ONXV1TQ2NprXbENDA6qqmuf74Ycf5r333mNkZISKigoeeOAB83zv3bsXl8vFhx9+CMAXv/hFPvroI2KxGE6nk0ceecQ833v27MHtdpvn+7777uPcuXOzXrO7du2ivr6ed955xzzfly5d4urVq1gsFp544glefPFFNE1j+/bt7Nq1y7xm77nnHgYHB7l06dKs53vfvn28+eab5jU7MjJinu8jR47wyiuvkEwm8Xq93Hbbbfz85z8H4PbbbyeRSJjne2YdcfPNNyOEEOVGxvwJIcrWRqpDNlIsojzIDh+bj4z5E0IIIcScrFYrjz76aLHDEEUgY/6EEEKIMpROp/n+979POp0udihinUnyJ4QQQpQhwzCIRCKU8OgvsUyS/AkhhBBClBFJ/oQQQgghyogkf0IIIUQZslqtfO1rX5OZvmVIfuNCCCHWxKiW5BeJz3nQdRM1Fue8ZXe/eH7ex53WDA31w0QGa0lmZSuy1XLxCX+xQxBFIC1/Qggh1sSonuKlibOM6qkVH8tly3Ln9gFctuwqRCYArFqG733vezLbtwxJ8ieEEEKUIcUwGBgYkNm+ZUi6fYUQQggxp1AoRDQaxev1Eo1GaWtrm7VcMBgkFosRiUSIx+N0dXXdUKa1tfWG++PxOB6PZy1CBxYf/1zllvu+NjJp+RNCCCHEnDo6OmhpaaG5uRnIJUMzRaNRotEoLS0tdHR0EIvF6OzsLCjT2dlp7lWeP057ezuPP/74kuIJhUKEw+FVjX+ucst5X6VAkj8hhBBrKm1opIzsvD8WVZ/3R1X1Yr+NTSdrsfIbv/Eb2GxzT6AJhUIFrXJ+v59Tp07dUC4ejxfcf/jwYXp7e83b0Wj0hta95uZmWltbl/8GFmGx8c9VbjnvqxRIt68QQog19e+Hf7Fgmea71yEQUcBQVG65xTdvmXA4jNfrNW97vd5ZW938fj99fX3m7Ugkgt9/fSZxKBQiEAjQ09OzCpEv3mLjn6vcRn1fKyXJnxBCCFGGbNk0J06c4Nvf/jYOh2PWMkNDQ0s+bjweJxQKmUlTKBTi6aefJhaLLSvOeDzOiRMnzNv5Llaf73ri2tHRMetzFxv/Ysqt9vsqJkn+hBBCrKnfqX2QXbaaecscCH0+7+MeV4LA/vOrGJUAFlzmpa6ujng8vqRjHj9+nN7eXrM7ND+hY7lJksfjKUjuQqEQXq+3oAVuLouNfzHlVvt9FZMkf0IIIdaUXbHgUOb/c6Pp8w9B1xd4XKyOo0ePmi1rra2t+P1+Tp8+bT4ei8XmTbo6Ozvp6OjA5/MRjUYJBoN4PJ6CyRPBYNCcVLHWFhv/QuU22vtaKUn+hBBCCAEw69i19vZ289/hcJhjx44Bue7X6V2vwWCQQCBg3hcKhQqWVQmHw/T29q5rghQIBBYV/3zlNuL7WilJ/oQQQogylLVY+da3vjXvbF/Ijafr7Ow0k598ktPa2kp7ezuBQIBoNMrRo0dveF5eNBqlq6uroIUsFArR29tLNBqlu7u7IMGabiVj/hYb/1zllvO+SoFilPDS3qOjo7jdbkZGRqipmX88iRBCzLSR6pCNFMtquZgZ4d/EXuWfeh9mt809b9mF9vatdSU4cmuUlz72MZxwrWKUZcwwiHxlJ3a7HUVRih2NWAWLrUdkEIUQQghRhmxahu9+97uyt28ZWlK3bzgcpquri+7ubtra2mhoaCAejzM0NER3dzc9PT1m8+lSjhkKhQA4ffo0J0+eLMkFE4UQQhSqUR0cqdxPjTr7MiLTXXxi77yPj2pJfpGw8HsP3USNxblKEZa3VCrFd88UOwpRDEtK/vx+P+3t7XR3d/Pss88WJGnHjh3jzJmlX0XTB052dnby+OOPFyyoKIQQojTVWJw8UXVgwx1LiHK35G7f6StgT7eY9XZmCofDBYM4m5ubCYfDJbdHniiuTyYm+d6Fi/zny1eIZTLFDkcIIYTY0FY82zccDuPxePD5fDz99NNLeq7f7+fkyZPm7fwCi3MlmELMdHpklI5zn6FN3X5lOE7H/gbq7faixiWEEBud3W7nmWeewS71ZdlZ9oSP7u5uOjs7OX78uHnfcsbqTZ8WferUKQKBgIz5E4sSz2T4d59fRAP81VXscjiIZbL8288vUsKT2IUQYl0YhsHIyIjUl2Vo2S1/LS0tq5qkxeNxgsGgjPcTi/aXV/sZ1zR8LifP+vYymM7wTz7+hPfHJ3h9ZJQHPfMvLSGEEOUsk8nwJ3/yJzzzzDNz7u0rNqcVL/UyveUuP2s3GAwSDAZpb28371tIe3t7wZ55QsxnMJ3hR7FhAH5r106sisJ2h52vb6kH4Lmr/fJtVgghhJjFisf8TV9hOxqNEgqFiEajtLW14ff7OXr0KH19fTQ1NZmbH/t8voItZDo7O2lvb8fn85nj/iQJFPN5fnCQrGHwhcpKvlBVad7/tS31/GBgiPPJJO+OT3BPdVURoxRCrIbvfOfNYoewSWVYYHMPsUktOfnLJ3AzxeNx+vr6aGlpMdf6i0ajHDp0CIDe3t5ZnxcMBvH7/Wbi99xzz9HS0rLUsEpKejLNtY+vkRpP4d7hpt5Xj6LK6uqLldJ1eodyrX5f31pf8Fi11cpj3lqeHxzi+YEhSf6EEGIeMtmjPC1rkWeAEydO0NDQAEAkEjHX/puuq6tr3v32Ztszz+PxbNrkT8tqvPNXb/P+375PNpU173fvdPPANx9g1z27ixhd6fh5fIRxTWOLzUZjTfUNjz9V7+X5wSHOjI4ymM5Qb5evtkIIcSPbDX+3Z5Pv0fN6vWbP3myCwSCxWIxIJEI8Hjfzhbnuz4vH49Lbt87WbG/fzs5OAoHAstb/W6xS2gszMZIg9C97GTg7AED1tmqq6qsYjA6SSeTWpjvYfJB7mw/KHosLePZshI8mJvn17ds4un3rrGW+czbKLycm+NXtWzm2fds6RyhKxUaqQzZSLBuNdPuuFZ1vfrMen8+Hqs49BaCpqcnsvevs7MTn8xWM94dcY04wGDQTw6NHj3L48GGam5tnvb+trY1gMMjp06cJhUIy2XOVFHVv31AoZCZ+wWBwLV6ipCTiCX74+88zcHYAe6WdR//JV2j+t0d56n//Kse+96vc/sTtALwVfIs3//wNmagwjwvJJB9NTKICj9fVzlnuSH1urcjQ0DCanE8hhJiFxl/8xV+QmWdx/FAoVNAq5/f7OXXq1A3l4vF4wf2HDx+mt7d3zvshN2G0tbV1Fd6HWKpVT/7yXbnHjx+noaFhzrF+5SKTSPPiiReIX4pTWVfJ1/7ga/ge9Jmte/YKOw/+1hd58LceBOCXf/dL3vmrt4sY8cb20mBuzOlhdw3eeUYqP+CuocpiYTCT4a3RsfUKTwghNpVwOFyw8YLX6yUcDt9Qzu/3F7TeRSIR/H7/nPeL4lrxbN+ZfD4fw8PDq33YkqRrOj/5458QOx/D6Xby5O8+hXvH7GvP3f7EHRgGvP4ff0H4uTDVW6tp+NIt6xzxxpbSdX4ydW011c2/C4xdVfmK18MPBoZ4cSjGIbd0owkhxFINDQ0t+TnxeHzWrty57hfrb026fUXOm3/2BhffvojFbqGp7ciciV/eHU/ewV1fvwuAn/2Hn3Hto2vrEWbJ+OlwnAlNZ5vdxsFFzOJ9oq4OgL7RMa6m0msdnhBClBiFLVu2zDvOvG6qHl2K48ePz7pu71z3i/Unyd8a+eDFD/jghQ8A+PL/9GW23LJlUc879GuHufm+vehZnR/9qxCj10bXMsySoRsGfzswCMBT9XWoi5gUs8vp4GB1FQaYzxVCCJFn5bd/+7cLlns5evQojY2NNDY20t3djd/vL1jiLRaLzdtt29nZSUdHBz6fj2g0uuD9ojgk+VsDn5/5jDf+4+sANP7qIfbev2/Rz1VUhUd+5xHq9tWRHEvy0omXSI4m1yrUknF6ZJQLyRQVqkpggS7f6f7e1lzS3TsUIz7PoGYhhCg/OuFwGE3TzHt6enro6+srWLd3erIWDoc5duwYwA1JXDAYJBAImJs/TN/1a7b7RfFI8rfKLr9/mZ/88U8wDIMDXznA3f/d3Us+hs1po6mticr6SkavjPDSiRdJTaTWINrSoBkG/9/VXBf4U1vqqLRYFv3cu6sq2V/hIm0YBK8NrFWIQghRgjR+8IMfkM1m5y3V0dFBZ2enuXpHfpmX1tZWM5HLT/ZsbGxEURQURSEej895P+SSwK6uLqLRKN3d3dIiuI7WbJ2/9bDR1sW68NYFfvxHP0JLa9x06CYe+/bjqJbl59fxS3Ge/72/IzmWpN5XT9OzR3DVuFYx4tLw/MAgJy9docpi4Xu3H6DaurR5Su+MjfN/RM5hAf71rfu52eVcm0BFydlIdchGimWjkXX+1koGmy3EM888g8PhKHYwYhUUdZ2/cmPoBu/94D1Cnb1oaY3dB3fzlX/y2IoSPwDPLg9PfOdJnNVOBqOD/OCf/w2DkfJqvbqQTPJnV64C8Os7ti058QO4p7qK+901aMAff3aBlK6vcpRCCCFE6ZDkb4UGPh3g+d//O05//00M3WD/l/fz+P8awGJbfNfkfOr21vEr/+evUL2tmvGBcX7wuz/gzT9/g+TY5h8HeDmV4l9EzpPSDe6pquKJJYz1m6ll905qrBbOJ5N0nvuMpCYJoBCi3Ck0NDTIrlJlSLp9l0jLasQvxrn6yyuce/0c/Z/0A2B1WLnvN+/n1sCta/JBSk2k+PnJ1zj3i3MAWOwW9t6/lz2NN7F1/1Yq6yo3zQc4nsnwk1icnmv9JHSdnQ47f7i/AfcyWv2m+3B8gv8jco60YbDTYefXtm/jsLsGxzzbGonNbSN1tW6kWIQQpWmx9UhZJX/v/PU7hUunTH/rxvX/Gbox9aOjZTSyqSzpyTSJkQSTQ5MF268pFoVdd++m4eEGarbX4PK4SMQTTMYnSY2lcFQ5qKitwL3Tjb0iN51+fHCcy+9dJjWWxFHtpP6WepIjSeKX4mTTWbKpLMnRJIqi4N7p5qbGm6iqz61rd+GtC4T/so+h84ULb1odVirrKnHWOLE5bVjsVlSriqoqKKoCioICMD0/nJEs3vLILey4Y8eC53GprqRS/NepyRbTLzbDMDDITehIGwYTmsZAOs219PVZubdXVvA7e3YzoWkkdR3DMFAUhaSmM5jJEMukuZJMkTWg3m7jnpoqvlCVO1eXkimupFNcSqSwKgp1dhuVFgvdFy8zPDXA2aoo7HDYqbPZcKkqNlVBJXeu8sl0/ixZFYX/cc+uVT8/ong2UsK1kWIR5SGbzfLqq6/y8MMPY13hl2uxMSy2Himr3/aFty7Q//HKF062V9jZcssW6vblFr/MpLIMfNrPxbcukBhJYLFbSI4myaSy2JxWqrfVULvLw9779zHWP8r7f/s+kyMJFCCb0dDTGlanFUM3SIwkyKayKKqCxWbBYrMQfS3Cvf/gILvv3c2eg3vYfe9uBs72c+71c1z55RWGPx8mm8oycnmEkcsjy35fW27ZsibJ30g2y49iS9v15RaXi6fq69hf4eL1+AixbIaJrMaVdJq0rpM1DIYzWRK6jkEuQbMAP4+PcGtlBdvsdq6kUpxLJEkZOhZFoUK1sNVu5x/v2sHnyRQ/jg0zkMlwIZniQnLh2dR2Sf6EEJuIpmn89Kc/5cEHH5Tkr8yU1W/7tqbb2OPfM+tj1xvBci1ligKqRUW1WbA6rNhdNpw1LqrqK3HVVpBJZPjwxQ9Ijqfw7PKgZzXG+sdIjibRMhpOj4vaLVUkx1JkJjNMDE/yyU8+ZuDTAdLJDLW7PRi6wfDFOJPjE6gJFUeNAy2r5abDqwpWhxWL3cJY/xjv/uAdPHs8VNVVoSgKWw9sY+uBbUCuK3q8f5zJ2ATJ8RTZZIZsWkPPatdbMQ3It7vN1da72IWol6reZucbO7YVnu+p9jRFAQsKdlWhwmLBa7Nyk9NJjdXKhKbxwsAQY5rGVpudD9MT2BSFuKYxoenmxA2VqQtZUUhoGu+OT7DVliIz1Uq41WojZYDFMBjJZugdGuZ3btrFse1bGUhnuJRKEc9mSWg6GUNHnzpHBoUnyrJJutWFEEKUt7JK/m5Zxb1yRy6PMBlP4NnlQVEVEvEEmWQWZ42T+KU4ldZKFFXFWeMkEU9gdVgZjA4yPjTBloZ6FFUlNZEkm8xgsVvQ0zrJkSQKCqpDxdBAS+vYKxwoisLE4ASX373Mga8cuCEWi9WCe6cb9875t48rlnq7jf9+29YlP+9SMkUsm2GPw8lAJsOEpmNDQUchPdXilx+tp5JLbRVFIavrxLMaBgZbbHZURcGlwKSmUW+xEs9meGdsnMfrvGx12NnqsM8dhBBCCLHJyEj3ZcokMihKbkcOAC2joYA5HtDQc//PjxvTs7nxgxgGytQEA0PTMXQDVbVM3c49R1VyqYyBAYaBqqgYukGqDGb4TpfUdRRAVRQyU618uVY5wxyIZ47Nm1o8NN9Wp+Wa7gq2gTMAY+rmWPb6ivZCCFGOVFXl4MGDqDLprezIb3yZbC5brmtwKsmz2CxmyxNcTwrzyaBqVXPLvygKxlQio1hUFFVB17Wp21OJoqGT6xjNJTW6oaOoCo7q8lqc2KmqGOT29bVNVU4qU+d4+gQdI5ckG4ZhTs6wKAoouefmKYAydbPaujpL8QghRKmy2Wx8/etfx2azFTsUsc4k+Vsm9043FR4Xo9dGMXQDl8eFzWklOZrE5rShZXUMXTdvZ1NZ6n31VNVVMnJ1FEPXsbtsWJ02tLSGYlFwup0YGGgpDcPQsdhVtGxu9m9lfSU7795Z7Le9rnY5HXitNq6m09RYLFRaVDIYqBjYVRWFqZbA6f83DKyqisdqocpiYVTT0A2dhK5jBUa1LB6rjXuqq4r51oQQougymQx/8zd/Q0b2PS87kvwtk73Czt779+GscjByKc5Y/xj2CjvOGic1O2rQM7n1ALOpDPYKG5W1FRz4yq3c/ffuwVnpIH4xzsjlEQxNx1nlpKK2AlVRsVgtuSVQdINsKks2maV6azV3f+0equrKK2GptFh4wOOm2mJhIJPGaVHJGgaVFgu1Nqu5Pp8OZMglfi6LhburKrmnuppdDieGYdCfyTCuZckCbquNr22tp94u4/yEEOVN13XeeustdNn1qOyU1YSP1ebe6eb2J+5g5PIImUQGm8uGq9ZFYvj6On/Oagcuz/V1/tw73Xj2eLj87vV1/rbs30IinjDX+dPSGsnRBDC1zt+hm8ou8cvb5XTw1JY6LiZTJHUdjNwM4YSuM5TOrfN3eWqdvy0z1vm7mExxLZ3iQiKFVVWos+Va/CTxE0IIUc4k+Vuh/Jp/0y2UqFXVVd0wa7d2dy077yyvbt3FqrBYOFBZseTnHaisyD2vdg2CEkIIIUqUdPsKIYQQZchisfDlL38Zi0UmwJWbTdHy99JLL1FRUcFjjz3G66+/zuTkJG63m7vuuotXX30VgP3796PrOpFIBIBHH32Uvr4+xsbGqKqq4tChQ7z88ssA+Hw+rFYrn3zyCQAPP/ww77//PvF4HJfLxUMPPUQoFAJg7969VFRU8MEHHwDwwAMPcPbsWYaGhnA6nTz66KO88MILAOzZswePx8N7770HwOHDhzl//jwDAwPYbDaampr44Q9/iGEY7Nixg23btvH2228DcPDgQa5cucLVq1dRVZUnn3ySl156iWw2y9atW9mzZw99fX0A3H333QwNDXHp0iUAvvrVrxIKhUin09TX19PQ0MAbb7wBwJ133snY2BifffYZAEeOHOFnP/sZiUSC2tpa7rjjDl577TUAbrvtNlKpFOfO5fYXfuyxx3jzzTcZHx+npqaGe++9l1deecU83wBnz54F4JFHHuHtt99mdHSUqqoq7rvvPn784x8DsG/fPhwOBx999BEADz30EB988AHDw8O4XC6+9KUv8dJLLwFw8803U11dzfvvvw/A/fffTyQSYXBwELvdTiAQ4Pnnnwdg165d1NXV8e677wLQ2NjIhQsX6O/vx2q1cuTIEV544QV0XWf79u3s2LGDt956C4B7772Xa9euceXKFRRF4amnnqK3t5dMJsOWLVvYu3cvp0+fBuCuu+4iHo9z4cIFAJ588klefvllkskkdXV17N+/n9dffx2AO+64g8nJSc6fPw9AIBDgtddeI5FI4PF4uPPOO81r9sCBA2SzWaLRqHnNnjlzhvHxcaqrq2lsbDSv2YaGBlRVNc/3ww8/zHvvvcfIyAgVFRU88MAD5vneu3cvLpeLDz/8EIAvfvGLfPTRR8RiMZxOJ4888oh5vvfs2YPb7TbP93333ce5c+dmvWZ37dpFfX0977zzjnm+L126xNWrV7FYLDzxxBO8+OKLaJrG9u3b2bVrl3nN3nPPPQwODnLp0qVZz/e+fft48803zWt2ZGTEPN9HjhzhlVdeIZlM4vV6ue222/j5z38OwO23304ikTDP98w64uabb0aIcmW1Wnn00UeLHYYogrLa21cIIabbSHXIRopFlId0Os1zzz3H008/jV3GQm8Ki61HpNtXCCGEKEOGYRCJRCjhNiCxTJL8CSGEEEKUEUn+hBBCCCHKiCR/QgghRBmyWq187Wtfw2rdFHM/xRLIb1xsCildx6oouT19hRBCLMhiseD3+4sdhigCafkTJe+TiUn+4Xsf8D9/9AkJTSt2OEIIURLS6TTf+973SKfTxQ5FrDNJ/kTJ+2/9A6QNgyupND8bHil2OEIIURIMw2BgYEBm+5Yh6fYVJU03DN4dHzdvvzM+zpF6bxEjEqI8jGpJfpH4nAddN1FjcZr3737xfEE5pzVDQ/0wkcFaklnbOkcp5mPLpvlmsYMQRSEtf6KkXUunmdB08/ank5NFjEaI8jGqp3hp4iyjemreci5blju3D+CyZdcpMiHEQiT5EyXt80QSgK32XItCfzoj4/6EEGIRshYrv/Ebv4HNJi2y5Ua6fUVJu5TKDVS+rbKSpD7GaFbjcipNQ4WryJEJIcTGZigqt9ziW7BcKBQiGo3i9XqJRqO0tbXNWi4YDBKLxYhEIsTjcbq6ugAIh8OzzioOh8N4PB68Xi9nzpzh0KFDeDyeFb2nlcS/ULl4PF4QXygUwuv1EovF6OnpMd9vKZCWP1HSrqRyXU47HXZ2OhwAXE7N3w0lhBAiN+bvxIkTpBaoMzs6OmhpaaG5uRnIJXkzRaNRotEoLS0tdHR0EIvF6OzsBKCxsRFFUcyf2tpa4vE4J06coKGhgX379pmJ4GKEQiHC4fCi3+di4p+vXDAYpL29nccff7ygfFNTE36/n0AgQDQapbu7e9ExFZskf6KkXZ1aomCb3c72qY3J+2XZAiHWTdrQSBlZ88ei6gU/qqovfBBRNAst8xIKhQqSMr/fz6lTp24oF4/HC+4/fPgwvb29hMNh+vr6MAwDwzDo6+ujp6cHj8dDU1MThmEwPDw8Z2vcSi02/vnKNTc309raesNzIpGI+e9YLMahQ4dWL/A1Jt2+oqT1T0v+tk0lf9ck+RNi3fz74V8U3G6+u0iBiDURDofxeq+voOD1emdtdfP7/fT19Zm3I5EIfr//hu7eM2fO0NLSYt6ORqPE4/E1W2x6sfEvttx0Pl+uyzwYDBIIBEpqwWxJ/kTJ0gyDoXQGgK12O1umJn0MTN0nhBBiZYaGhpb8nHg8TigUKkgGAdrb2+no6LihrM/n4+jRo5w8eXLWrt98F3FeNBoFridfwA3HXWr8y3mfkEsaY7EYdXV1y3p+sUjyJ0rWcCaDBlgAj83KlqmWP0n+hFg/v1P7ILtsNebtA6HPCx73uBIE9p9f56jEYmQtVr71rW/NO9u3rq6OeDy+pOMeP36c3t7egkQuHo+bSVve9BbApqYm2tvbZ5004fF4CpK7/ESLxbS0LTb+5bxPwGzdPHr0KK2trSUz6UPG/K0CLavxxn9+nb/7vb/l0jsXix1O2RjM5JK8OrsNi6JQP9XyN5hJy4r1QqwTu2LBoVjNH01XC350Xf7MbFQGCm63G2XanuhHjx6lsbGRxsZGuru78fv9xGIx8/FYLDZv0tXZ2UlHRwc+n68g2evu7i5oqQuFQjQ1NRU8d/rrrJbFxr/U9xkMBgviP3z4MGfOnFmlqNeefCpXwTt//Q6/fP6XXPvoGj/61z9iIjZR7JDKwuBUC1/91LfWuqn/p3SDcVnrTwgh5mXTMnz3u98tmPTR09NDX18ffX19tLS0mDNZ88LhMMeOHQO4oSUvP/Ytn+SFQiHzsdOnT9PQ0GDe9vl8BZMo+vr6zOOupsXGP1+52Xg8Ho4ePWrePn369JrEv1ak23eFsqksHzz/y8LbL3zA4V8/XMSoykO+5S/f4udQVWosFkY1jaFMhmqrXN5CCLFSHR0ddHZ2mkldfimU1tZW2tvbzcRpejKUf95001v+fD4f4XDYXB6loaHBPO5MKxnzt9j45ysXCoXo7e01l3MJBAIEAgGCwaC5tqHP51uzGctrQTFKuH9sdHQUt9vNyMgINTU1Cz9hDURfi/Dyv3uZqq3V3PeNw/z4j35MRW0Fx773qyiqsvABxLL9Pxcv87eDQ/z9rfX8w507APhnH58lmkjyv+27mUPu4lwTonRshDpkI8ayGBczI/yb2Kv8U+/D7La5zftn7u1b60pw5NYoL33sYzghi69vJLZsmm+e+S8888wzOKbWSRWlbbH1iHT7rtDnfbnBzfse3Mce/01YnTYmhycZjA4WObLNb2iq5c87bbByvus3/5gQQgghCi27XywcDnPq1Kl5m1qXcqzjx4/fMC18ozN0g0vvXgJgj38PFpuFXXft5LPTn3Hp3UtsuWVLkSPc3PIJXr0kf0KsuxrVwZHK/dSohS1GF5/YW3B7VEvyi4SF33voJmosznWMUCzEMAzSgWewT62UIMrHslv+urq6VmUrk/z2KUvZqmWjiH0eIzWWwuq0sfWWrQDsvGsnAFfev1zM0MrC9Nm+efl/D8pyL0KsqRqLkyeqDiyY0C22nFh/hmEwMjIiqyOUoWUnfx6Px1zIcSWam5tLalXs6a59eBWAbbduRbXmTuX2L+TGnvWf7UfLyozTtZI1DIYzWUBa/oQQYjkymQx/8id/Qkbqy7KzrOQvFApx7NgxAoEAPT09qx1Tybj28TUAtt223bzPs8uDo9qBltYYOre8FcPFwuKZDAa5BZ7d02b15hPBQanMhBBCiFktK/kLh8P4/X5aW1t57rnnVjumkmEmf7duM+9TFIWtB3K3+6ceF6svv4tHnd2GOm2B0vyyL0OZjHRlCCGEELNY0Wzf5ubmVen6LUXjg+NMxiZRVIX6hvqCx7YeyI3/6/+kvxihlYXBWSZ7QOFCz2Oy0LMQQsxLJnuUpyUnf6FQiEgkQnd3t7ldy8yu33g8Tnt7e0lO4lis/rO5xM57sxebszABMZO/s5L8rZV8y9+WGRWXXVXxTHUDy6QPIYSYm8Ph4Nlnn5U1/srQkpd6CYfDBRsXe71ejh8/XnDfmTNnbtgguampydw3b7aEsdQMTLXq5RO96ep99SiqwmRskvHBcarqq9Y7vE1vIJPbjmiL/cYNyevtNuLZLAPpNL4KWVRWiHL0ne+8WewQSoDON79Zj8/nQ1Vl2d9ysuLf9mxdv4FAAI/HU1Cut7fX3C9wrsRvZsK4keW7dLfuvzH5szlteG/25spJ69+amKvlD2DLVNdvv7T8CSHEPDT+4i/+Qmb7lqFFt/yFQiE6OjqIxWIEAgFzeZbu7m48Hg/t7e20trbS0tKypADye+YBnDhxgsOHD8+5v99GkU1nzZm8W2Zp+QPYemAbQ+eG6P+4H9+DvlnLiOW7lsq1/G2bJfnb5sjdd23aZuVCCCGWJxQKEY1G8Xq9RKPRBfewjcfjBQ1A4XCYaDRKLBYjHo+bz5/rfrH2Fp385TcynqmlpWXJCd9sx12NnULWy+CnA+iajqu2guqt1bOW2XrrVj588QOZ8bsGdMOgfyqx2zpLt28+IZTkTwghVq6jo8NspOns7CQYDM7aSBMMBjl9+jShUKhgx65QKFSQ8OWfP9f9Yu1JJ/8yXP1oaomXA1tRpi0zMl1++Zeh80NkEpKErKZYJkvaMFCZvdt3+1TL35WUnHchhJibwpYtW+b8Owa5xG16K57f7+fUqVOzlm1ubqa1tfWG+0+dOmUO64pGowveL9bemiR/oVDI3Pt3M874vfrhFQC23759zjJV9VVUbanC0A0zWRSr43IqBeS6d62zVFo7p2auXUun0WStPyGEmIOV3/7t3553uZdwOIzX6zVve73eJf9dP3ToEPv27aO7u5toNGq27s11v1h7S57tuxhzdRFvBlpG49pUMrfjzp3zlt1x507O/uQTrrx/mT0H96xHeGXh0lTyt3OO5QnqbTbsikLaMLiWTs9ZTgghyptOOBzmnnvuwWKxzFpiaGjlO1Xl5wu0trYWJHhz3S/WnnT7LtHVD6+ipTVctRV4dnvmLbvzrlxyeOndS+sQWfn4PJkE4Cbn7BvFq4rCbmcu4buQSK5bXEIIUVo0fvCDH5DNZucsUVdXt6JXyK/729PTQyQSIRqN0tnZOef9Yn1I8rdEF9+6AMDuu3fNO04CYNdduTLDnw8zPjC2HuGVhfNTCd3Nzrlb9PKJ4fmkJH9CCLFYR48epbGxkcbGRrq7u/H7/eYavQCxWMxc7WMxnnvuOY4ePQrk1vjt6+ujt7d3zvvF+liTbt/NytANzr95HoCbDt+0YHlnjZNtt23j6odXOf/mZ9z5K3eucYSbn2YYZvI33wLOvgoXLw/H+XQysV6hCSFEyZttHd729nbz3+FwmGPHjgG5SRo+3/xLmfl8vhsmc/j9/jnvF+tDkr8luPrRVSYGJ7C5bOy6Z/einrP3wX1c/fAqkVc+leRvFZxPJEnqOhWqyq55xvIdqKgA4JOJSXTDQF2glVYIIcqPQkNDw4K9WB0dHXR2dpqJXn58XmtrK+3t7eYY//y6vdFolO7ubnP8f347WMh1A+eXdpvrfrH2JPlbgg9f+ACAfV/0YbUv7tT5vujjzT97g6HzQ/R/co2tB7atZYib3rvj4wDcXlU5b0LnczlxqAqjmsb5RFK2eRNCiBtY+cY3vrFgqbkmcc7spp1r3d651gJeyRrBYmVkzN8iDZ0fMrt8v/DkHYt+nrPayS1fugWAvlN9GLL0yIq8Hh8BwF89/37JNlXl7qpcmddHRtY8LiGEKD0aL7/88rwTPsTmJMnfIqQmUrzyf/8UjFyrX+1N3oWfNM09/+BeLDYLV96/wi+f/+UaRbn5fTIxySeTCSzAgx73guW/VOsBIDQ0TFLT1zY4IYQoOTo//elP0TSt2IGIdVb23b7ZdBamGuPyrXKGbpBNZ0mOJOk/2897f/MuY9fGcLld3P+P7l/ya1RvrebQrx3ijT97I9cFfG6IhocbqNlRg73CjsWqgqIUjLtQrSqqpTxz85SeS9QMAwwMUrrB58kk/+FCbsmcL3trqbXduK3bTA+4a9hmt3EtneGPPvucX9uxjXqbDauimF3GKrlWQiHE5vIHf3BfsUPY8FKpFN/9bqjYYYgiKPvk78X/6wVz0eb5VNZVEmhrosJTQXoyzZUPrnD5vUuMXRtDS2s4PA6qaqup21eHy5MbX5aIJ4hfjKPaVCpqK7j9yTv48IUPiPzsUyI/+3Te13vsnz3O3vv2rsZbLDn/7ONPzYWcZ9pis/GbO7bzWSLBa8MjXEymGM5mqLZYsSngsFhwqSpb7HZ2OOw8VV/Hn1++yunRMU6P3rjczq/U1/GPd8+/WLcQQgixmZR98jcnBRxVDtw7PdzUuIfbmm7HXmFn5HKcd/7bO1x65xKp8RR69np3omJVsLvsOKudGEB6Mve4alGxV9ipqq/i/n90P7HzMa590s/E0DhaWprbF8Nrs+KvrubXd2zjzfgofz0wwHAmQ9owmDmK0q4oKIBLVdlf6eJ+dw3nk0mGM1kSunT/CiEEgKqqHDx4EFV6P8pO2Sd/T/zzJ2+YhKFaVFSresP09/Rkmk9e/oTL718mk8yg6zpYFNCudxenJlJkM9nch8mAqq1V6FkdRVVIjia5EL7Aw9/6ElV1uckIuqajazqGXhiDxTb7VjupVIoTJ07w7LPP4tik25b9qwO3YGCgoKAoYFUULFO/i88SCf56YIDxbJaMYaCQ67XX0mk++X//lAO/9Y/J2O04gbShczmZ4tHaWrbY7VRbLDTVe3GoqtmlPNvewJtFOVwryzH9vGwkqanW7tQcrd5ibnKtL4+u57Z3e+KJJ4odSknZDNdb2af7VocVm9NW8GOxWWZd92jk8giDkSG0tJZLThQFi6rmzmI+CwGMjIGW0VBsKrpmYHPaMLIGzhoniZEEl9+9bB5TtahY7TfGMNd4v1Qqxe///u9v6j8QTouKy2LBaVFxqKqZ+AG8NjzChJYlnxpbyJ16PZ3m467/AOl07tegKNgUlTFN51I6zXa7neFshqupNA5VNV9jM4/3K4drZTk26nmR5G/5NurvdKObmJjgrbfeYmJiotihlJTNcL1t3r98ayCTyKBlclPiFeN6QqJMm6yhoJDviFQVBXQDph7LtzCmxmTLseUayU5N0MknhDOS9JldwIZhkNR0c4JHUrp9hRACAE3T8Pv9Mtu3DEnytwQ2lw2LLddTbijX0wzDMK7PFJ7qrgTQDQNUJTdtFcwE0VHtXM+wNxW31TrVympO0S54fGZ7raIoOC1q7ncBODdxS58QQgixGCU95i+fcI2Ojq7L6ylVCs4dDlKfpcikM2Qz2VzL09SYv3wqbbFZUA2V9EQapQImk7kxf6mBFI5qJ1X7qpYdc/556/WeN5q7LQo/SiRzY/50nQygA5mpbovUxAR2IANkVQWP1Uqtw865RIIqi4WayhSjWnksaFru18pcZjsvG2Hx9XwMY2Nj8jtbIrnWl2dsbIxkMsnY2FjJjl0rho18veVjWqhOU4yNUOst08WLF9mzZ0+xwxBClLgLFy6we/fi9uteK9FolIaGhqLGIITYHBaq00o6+dN1ncuXL1NdXb3gxtRCCDGTYRiMjY2xc+fOoi93IfWZEGKlFlunlXTyJ4QQQgghlkZGvwshhBBClBFJ/oQQQgghykhJz/YtJ9FolGAwiM/nIxqN0tLSgsfjmbVsOBwmFMpt1n369GlOnjw5Z9lSspRzsJSypUyui9kt9/ff3t7Os88+u67npZRi3Ujk2l8cqTeXZ9NfX4YoCX6/3/x3JBIxmpub5yzb0dFR8O/pzy1lSzkHSylbyuS6mN1yfv99fX0GYAwPD69hZDcqpVg3Ern2F0fqzeXZ7NeXJH8lIBKJ3HAxeTyeWcv29fUVPBaJRAzAiEQiaxrjWlvKOVhK2VIm18Xslvv77+npMXw+37omVKUU60Yi1/7iSL25POVwfcmYvxIQCoXwer0F93m9XsLh8A1l/X4/J0+eNG/H43GzfClbyjlYStlSJtfF7Jbz+w8GgzQ3N691aDcopVg3Ern2F0fqzeUph+tLkr8SkL+YZorFYrPeP/0Pw6lTpwgEAht//MEClnIOlnq+SpVcF7Nb6nmJx+NFOw+lFOtGItf+4ki9uTzlcH3JhI8SNtcFOv3xYDBIX1/f+gRUBAudg+WWLWVyXcxurvPy3HPP0dLSsr7BLKCUYt1I5NpfHKk3l2czXV+S/BVRd3c3kUhkzsebmprMbxAzv3HEYrEFv1m0t7fT29u74b+BLMZSzsFyz1epketidks5L6FQiKeffnrVY1iLz/ZaxbqRSJ24uqTeXJ6yuL6KPehQLGyuwafzDfbu6OgwB5wODw+X/MDwpZyD5ZyvUiTXxeyWcl56e3uNrq4u8wcw2trajL6+Pol1A5Nrf3Gk3lyecri+JPkrETOnnQcCAfN2X19fwcyinp4eo7e31zCM3EXY1dW1foGuoaWcg/nKbiZyXcxuKedlOoowS6+UYt1I5NpfHKk3l2ezX1+S/JWISCRitLW1GT09PUZbW1vBt4rm5mZznaH8NPPpP5tluv5iz8FCZTcTuS5mt5RrxTByFXZHR4cBGC0tLevamlZKsW4kcu0vjtSby7PZry/FMAxjPbuZhRBCCCFE8chSL0IIIYQQZUSSPyGEEEKIMiLJnxBCCCFEGZHkTwghhBCijEjyJ4QQQghRRiT5E0IIIYQoI5L8CVEi4vE47e3thMPhYocihBCb3maucyX5E2UpHo8TCoWWvWl5MTY7P3PmjGyyLsQGtNL6pBxInbuxSPJXRsLhMK2trSiKQnt7O52dnXR2dtLa2ko0Gi12eMsSCoVobGyku7t7zjKNjY0Eg0Hzdjwe5/jx4/h8Ph5//PElv2Z3d/cNm36vh/yG9jN1dnaueyyiPMysM7q7u806Y/pnKm/mZw1yn5fu7m6CwSDt7e1m3TPb80vRfPWJ1Lk5UuduQMXeYkSsr+HhYQMo2Kqmt7e3pDfwbmtrm3cvxd7e3oL31tPTY27Nk79/se+9r6/P6OnpWW6oK9bW1nbDdl7Dw8NGW1tbkSISm91sdYZhzL713MzPWm9vb8G16fF4jJ6enqJ/jlbTbPXJdFLnSp27EVmLnHuKDSAQCJhN8s3NzcUOZ8nq6urmfTwQCBTcjkaj5rc5j8dDNBolFArR0tKy4GudOHGCnp6eZcc6l2AwOGtLQHNzMz6fb97n5t9LNBpdsKwQq+XkyZPU1tbS0tJiXoMzP2u9vb0cPnzYvH3o0CH8fj8+nw+/37+e4a6ZmfXJYkidK3VusUnyJ8zBrJulMl6qjo4OGhsbFywXj8fX7IO+0j8Ax44dIxgM0tbWtkoRCTE/j8eD3++nu7tbrrslkjpX6txik+SvTIVCITweD+FwmKGhISKRSMGHLBgMmt/QIpEIHR0d5vPa29tpbW3F5/MRjUbp7e2lo6PD/CYbiUTo6upa9rHm+pYXj8d57rnn8Pl8xONxTp8+bR4r/9ozjxEOhzl+/Ditra20tLQQDofp7e01j+nz+Thz5ow5niQQCMxZ2Tz33HMFrRiQ++bX1dXF4cOHicViPP3005w5c2bJ52ixv7Pps86m/+Hw+/20t7eXbEUkSpPP5+P06dPAjZ+1/PUajUbNz9f0z0tzc7NZJn+cjo4OQqEQra2ttLe3A9DV1UVfX9+cZReqQ2b7jHo8nlmPN5dwOEwoFDJfI986NLM+ma8lS+rc69eM1LkbQLH7ncX6mjn+pK+vz/D7/TeMvwCMSCRiGIZhtLS0FIy5aGtrM5qbm83bgUCgYOyPz+crON5SjzVzfEVeR0eH0dvba97Ojznp6OiY9xgdHR0F41M6OjoK4l1o/Mr0ctOPOzw8XPBe29razOMu9RytBr/fv6rHE8Iw5h7zZxi5cX+BQMC8PfOz1tbWVvB5DwQCZl0QiUQKrtmuri7zM9LS0mK0tLQYhpEbLzZf2fnqkLk+o/Mdb6ZIJFLwHg3DKKgzZ9YnM0mdK3XuRiQtf2XO7/dz6NAh2tvbC74VDQ8Pm98cY7FYwdiIurq6gjEfHo+n4Jubx+MhFouZ4yKWeqy5ZnU1NzfT2NiIz+fj2LFjBd+yp387nO8YKxGPxwvG9OS/Eefve/bZZ83HlnqOhChF0Wj0hvFdi9XV1YXX6yUUCpn35VsRPR6P+flpbm6mvb19zrLz1SFzfUZPnDgx5/Fmi3Nm96zP5+O5555b1Ji1maTOXTypc9eOJH8Cj8dzw7ILJ06coK6ublGDX/PHmMtSjzUXr9fL8PAw4XCYU6dOcfTo0YLuhNUws7KZzuPxFKz5NLPsQpWKVDpis4lGo7S2ti77+X6/vyB5nJ5czKwr5is7l/k+o8s53mqROvc6qXOLQ9b5EzQ0NJjfDPNjW8LhMG1tbeZYD6DgW/JMcy2EuZxjzeXEiRNEo1H8fj8dHR1L+mAvdqHO+eKafp4g96145srvyzlHq8Xr9a7p8YWYLj+ma2ZyMfM6n9kilH/82LFjN3xept+e/ryFys5lrs/oUo43W9lwOMzTTz+94OvPRercwnjnInXu2pGWvzKS//bW3NxMd3c3gUAAv99PS0sLvb29dHZ24vF4CgZEAxw9epSuri5zgPOpU6eA3EDdaDRaMHMtPwC4o6ODjo4ODh06tORj5R+f+Uelrq6OUCiE1+slFotx7NixBY8Rj8c5deoUXq+X5ubmgts+n4/m5mZaW1vp6Ogwz8lcAoEAXV1d5iwxn89HV1cX7e3tZhdIIBBY8jlajW+n4XCYpqamFR9HiOnynyXIJQINDQ3E43EikQhNTU0FMybz133+s5ZfziMcDnPo0CGi0Shnzpyhq6uL1tZWM6GY+fkJhUIFkzHy9dRsZRdTh8z2GfV4PLMebzb51+7s7DQnh/T09JiTN2bWJzPPn9S5UuduRIphGEaxgxCiVBw9enRN1pxaqekz3YQQYrOQOndtSLevEEsw17ZWxZTv2ijVSkgIIeYide7akORPiCUIBALEYrENtdn3iRMn5l2jTAghSpXUuWtDun2FWIb5ZqgJIYRYXVLnri5J/oQQQgghyoh0+wohhBBClBFJ/oQQQgghyogkf0IIIYQQZUSSPyGEEEKIMiLJnxBCCCFEGZHkTwghhBCijEjyJ4QQQghRRiT5E0IIIYQoI/8/h5nZVR9n/mcAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 650x230 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"normal_dist = lambda x, mu, sigma: np.exp( - (x - mu)**2 / (2 * sigma**2) ) / 50 / sigma\n",
"fig, axes = plt.subplots(1, 2, figsize=(6.5, 2.3))\n",
"\n",
"for i, pe in enumerate(peek):\n",
" for j, p in enumerate(polarizations):\n",
" axes[0].scatter(data[pe][p] - mean[pe][\"zyyz\"], np.ones_like(data[pe][p]) + 7 - i * 4, color=color[p], alpha=0.4, s=25)\n",
" axes[0].plot(distribute_range[pe][p] - mean[pe][\"zyyz\"], normal_dist(distribute_range[pe][p] - mean[pe][\"zyyz\"], mean[pe][p] - mean[pe][\"zyyz\"], std[pe][p]) + 8.2 - i * 4, color=color[p])\n",
" axes[0].axhline(y=7.5 - i * 4, color='gray', linestyle='--', linewidth=0.5, alpha=0.5)\n",
"axes[0].tick_params(axis=\"x\", direction='in', labelsize=10)\n",
"axes[0].tick_params(axis=\"y\", left=False, labelsize=10)\n",
"axes[0].set_yticks([9.5 - i * 4 for i in range(len(peek))])\n",
"axes[0].set_yticklabels([peak_label[pe] for pe in peek])\n",
"axes[0].set_ylim(-0.2, 11.5)\n",
"axes[0].set_xlabel('Raman shift (cm$^{-1}$)')\n",
"# axes[0].set_title('Experimental results', fontsize=10)\n",
"\n",
"ha = ['right', 'left', 'left']\n",
"offset = [0, 0.01, 0.01]\n",
"pm_offset = [0.01, 0, 0]\n",
"for i, peak in enumerate(peek):\n",
" axes[1].barh(1.9 - i * 0.8, mean[peak]['xyyx'] - mean[peak]['zyyz'], height=0.2, color='#1bb8df')\n",
" axes[1].errorbar(mean[peak]['xyyx'] - mean[peak]['zyyz'], 1.9 - i * 0.8, xerr=np.sqrt(std[peak]['zyyz']**2 + std[peak]['xyyx']**2), capsize=5, color='#72e8b4')\n",
" axes[1].text(0 + offset[i] + pm_offset[i], 1.9 - i * 0.8, f'{mean[peak][\"xyyx\"] - mean[peak][\"zyyz\"]:.3f} $\\\\pm$ {np.sqrt(std[peak]['zyyz']**2 + std[peak]['xyyx']**2):.3f}', va='center', ha=ha[i], fontsize=9)\n",
" axes[1].barh(1.6 - i * 0.8, theoretical_result[peak], height=0.2, color='#7b7bc9')\n",
" axes[1].text(0 + offset[i], 1.6 - i * 0.8, f'{theoretical_result[peak]:.3f}', va='center', ha=ha[i], fontsize=9)\n",
"axes[1].set_xlabel('Difference of Raman shift (cm$^{-1}$)')\n",
"axes[1].set_xlim(-0.4, 0.3)\n",
"axes[1].tick_params(direction='in')\n",
"axes[1].set_yticks([])\n",
"axes[1].axvline(x=0, color='gray', linestyle='--', linewidth=0.8)\n",
"# ax.set_title('Experimental v.s. calculated', fontsize=10, x=0.35)\n",
"\n",
"plt.tight_layout()\n",
"plt.subplots_adjust(hspace=0.1)\n",
"plt.show() \n",
"fig.savefig(f'画图/入射角度与偏移/1.svg', format='svg', transparent=True, bbox_inches='tight')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}