Files
SiC-2nd-paper/test-typst/main.typ
2025-05-04 19:42:15 +08:00

228 lines
13 KiB
Typst
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#import "@preview/starter-journal-article:0.4.0": article, author-meta
#import "@preview/tablem:0.2.0": tablem
#set par.line(numbering: "1")
#show: article.with(
title: "Article Title",
authors: (
"Haonan Chen": author-meta(
"xmu",
// email: "chn@chn.moe",
),
"Junyong Kang": author-meta(
"xmu",
email: "jykang@xmu.edu.cn"
)
),
affiliations: (
"xmu": "Xiamen University",
),
abstract: [#lorem(100)],
keywords: ("Typst", "Template", "Journal Article"),
// template: (body: (body) => {
// show heading.where(level: 1): it => block(above: 1.5em, below: 1.5em)[
// #set pad(bottom: 2em, top: 1em)
// #it.body
// ]
// set par(first-line-indent: (amount: 2em, all: true))
// set footnote(numbering: "1")
// body
// })
)
= Introduction
// SiC 是很好的材料。
// 其中4H-SiC 是SiC的一种多型它的性质更好近年来随着外延工艺的成熟而获得了更多的关注。
SiC is a promising wide-bandgap semiconductor material
with high critical electric field strength and high thermal conductivity.
It has been widely used in power electronic devices and has long attracted a lot of research
@casady_status_1996 @okumura_present_2006.
The 4H-SiC has a wider bandgap, higher critical electric field strength,
higher thermal conductivity, and higher electron mobility along the c-axis than other polytypes.
Currently, the 4H-SiC has gradually received more attention than other polytypes,
thanks to the development of epitaxy technology and the increasing application in the new energy industry
@tsuchida_recent_2018 @harada_suppression_2022 @sun_selection_2022. // TODO: 多引用一些近年来的文献,有很多
// 声子(量子化的原子振动)在理解晶体的原子结构以及热电性质方面起着重要作用。
// 声子可以通过多种实验技术来探测,包括 EELS、IR 吸收谱等。
// 拉曼光谱是最常用的方法,它提供了一种无损、非接触、快速和局部的声子测量方法,已被广泛用于确定晶体的原子结构(包括区分 SiC 的多型)。
Phonons (quantized atomic vibrations) play a fundamental role
in understanding the atomic structure
as well as the thermal and electrical properties
of crystals (including 4H-SiC).
They could be probed by various experimental techniques,
such as electron energy loss spectroscopy and infrared absorption spectroscopy.
Among these techniques,
Raman spectroscopy is the most commonly used method,
as it provides non-destructive, non-contact, rapid and spatially localized measurement of phonons
that near the $Gamma$ point in reciprocal space.
Studies in Raman scattering of 4H-SiC have been conducted since as early as 1983
and have been widely employed to identification of different SiC polytypes.
// 近年来,更多信息被从拉曼光谱中挖掘出来。
// LOPC 已经被用于快速估计 n 型 SiC 的掺杂浓度。
// 层错的拉曼光谱也已经被研究,可以被用于检测特定结构层错的存在和位置。
// 掺杂对拉曼光谱的潜在影响也已经被研究。
// 然而,拉曼光谱上仍有一些不知来源的峰;同时,一些也缺少一些理论上预测应该存在的峰。
// 此外,预测掺杂导致的新峰也没有说明原因。
Increasingly rich information has been extracted from Raman spectra of 4H-SiC.
Longitudinal optical phononplasmon coupling (LOPC) peek
has been utilized to rapidly estimate the doping concentration in n-type SiC.
Peeks associated with some stacking faults have also been investigated
and used to detect the presence and location of specific structural faults.
Moreover, the potential effects of doping on Raman spectra have been explored.
However, some unidentified peaks still appear in the Raman spectra,
while certain phonon modes predicted by theory remain unobserved.
In addition, the origins of newly emerged peaks induced by doping are often unclear or unexplained.
In this paper, we do some things. We do something for the first time.
= Method
= Results and Discussion
// 拉曼活性的声子模式对应于 Gamma 点附近的声子模式。
// 根据这些声子模式在拉曼实验中的表现,我们将这些声子分成三个部分。
Raman scattering peeks correspond to phonons located near $Gamma$ point in reciprocal space.
We classified these phonons into three categories according to their behavior in Raman scattering:
(1) phonons could not be observed in Raman scattering spectrum,
either because they are Raman inactive or their scattering intensity is too weak;
(2) phonons could be observed in Raman scattering spectrum and with weak or no polarities,
their frequencies were independent of the direction of the incident light;
(3) strong polar phonons,
which were visible in Raman scattering spectrum,
and their frequencies depend on the direction of the incident light.
// 我们计算了 4H-SiC 在 A-Gamma 和 Gamma-M 上的声子频率如图和附录1所示。
// 在拉曼散射中,起作用的模式都是那些非常接近于 Gamma 的模式
// (如图中的点所示,分为位于 1/50 和 1/100 处,这两条线分别对应于拉曼散射在 z 方向入射/散射和 y 方向入射/散射)。
// 大多数声子模式在 Gamma 附近都是连续的,这使得它们的频率对入射光的方向不敏感;
// 然而,少数声子具有较强的极性,这使得声子之间存在长程的库伦相互作用(引用文献),并导致 gamma 附近的频率不同,如图中的某两条线所示。
// 据此,我们将无缺陷的 4H-SiC 的声子分成三类:
// 无拉曼活性或拉曼散射强度太弱的模式,它们在拉曼散射谱上不可见;
// 拉曼散射强度足够大且极性不强的模式,它们在拉曼散射谱上可以看到,且频率与拉曼入射光方向无关;
// 极性声子,它们在拉曼散射谱上可以看到,不仅频率与入射光方向有关,而且可与载流子发生一些相互作用。
Phonons in defect-free 4H-SiC are calculated at A-$Gamma$ and $Gamma$-M,
as shown in Figure \ref{fig:phonon} and Table \ref{tab:phonon}.
Raman active phonons are very close to $Gamma$,
as indicated by the points in the figure.
Because of the consistency of the most phonon modes near $Gamma$,
most of the phonon frequencies are insensitive to the direction of the incident light.
However, some phonons have strong polarities,
which leads to long-range Coulomb interactions between phonons,
and results in different frequencies near $Gamma$,
as shown by the two lines in the figure.
Thus, we divide the phonons of defect-free 4H-SiC into three categories:
(1) Raman inactive or too weak Raman intensity,
which are invisible in the Raman scattering spectrum;
(2) Raman active phonons with strong polarities,
which are visible in the Raman scattering spectrum,
and their frequencies are independent of the direction of the incident light;
(3) Polar phonons,
which are visible in the Raman scattering spectrum,
and their frequencies depend on the direction of the incident light,
and can interact with carriers.
#page(flipped: true)[
#let m(n, content) = table.cell(colspan: n, content);
#let mCell(n, content) = m(n, content);
#let A1 = [A#sub[1]];
#let A2 = [A#sub[2]];
#let B1 = [B#sub[1]];
#let B2 = [B#sub[2]];
#let E1 = [E#sub[1]];
#let E2 = [E#sub[2]];
#figure(
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Direction of Incident & Scattered Light*],
m(26)[Any direction (not depend on direction of incident & scattered light)],
[*Number of Phonon*],
// E2 E2 E1 2B1 A1
[1], m(2)[2], [3], m(2)[4], [5], [6], [7], [8], m(3)[9],
// E1 E2 E2 A1 2B1
[10], [11], [12], m(2)[13], [14], m(2)[15], m(3)[16], [17], [18],
[*Vibration Direction*],
// E2 E2 E1 2B1 A1
[x], m(2)[y], [x], m(2)[y], [x], [y], [z], [z], m(3)[z],
// E1 E2 E2 A1 2B1
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], [z], [z],
[*Representation in Group C#sub[6v]*],
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
[*Representation in Group C#sub[2v]*],
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
[*Scattering in Polarization*],
// E2 E2 E1 2B1 A1
[xy], [xx], [yy], [xy], [xx], [yy], [xz], [yz], [-], [-], [xx], [yy], [zz],
// E1 E2 E2 A1 2B1
[xz], [yz], [xy], [xx], [yy], [xy], [xx], [yy], [xx], [yy], [zz], [-], [-],
[*Raman Intensity (a.u.)*],
// E2 E2 E1 2B1 A1
m(3)[0.17], m(3)[1.13], m(2)[2.43], [0], [0], m(2)[2.83], [1.79],
// E1 E2 E2 A1 2B1
m(2)[0.09], m(3)[88.54], m(3)[0.50], m(2)[0.01], [1.78], [0], [0],
[*Visible in Common Raman Experiment*],
// E2 E2 E1 2B1 A1
m(3)[Yes], m(3)[Yes], m(2)[Yes], [No], [No], m(3)[Yes],
// E1 E2 E2 A1 2B1
m(2)[No], m(3)[Yes], m(3)[No], m(2)[No], [Yes], [No], [No],
[*Wavenumber (Simulation) (cm#super[-1])*],
// E2 E2 E1 2B1 A1
m(3)[190.51], m(3)[197.84], m(2)[257.35], [389.96], [397.49], m(3)[591.90],
// E1 E2 E2 A1 2B1
m(2)[746.91], m(3)[756.25], m(3)[764.33], m(3)[812.87], [885.68], [894.13],
[*Wavenumber (Experiment) (cm#super[-1])*],
// E2 E2 E1 2B1 A1
m(3)[195.5], m(3)[203.3], m(2)[269.7], [-], [-], m(3)[609.5],
// E1 E2 E2 A1 2B1
m(2)[-], m(3)[776], m(3)[-], m(2)[-], [839], [-], [-],
[*Electrical Polarity*],
// E2 E2 E1 2B1 A1
m(3)[None], m(3)[None], m(2)[Weak], [None], [None], m(3)[Weak],
// E1 E2 E2 A1 2B1
m(2)[Weak], m(3)[None], m(3)[None], m(3)[Weak], [None], [None],
),
caption: [Weak- and None-polarized phonons near $Gamma$ point],
)
#figure({
let NA = [Not Applicable];
let yzmix = [y-z mixed#linebreak() (LO-TO mixed)];
let lopc = [Yes#linebreak() (LOPC)];
let overf = [Yes#linebreak() (overfocused)];
table(columns: 20, align: center + horizon, inset: (x: 3pt, y: 5pt),
[*Direction of Incident & Scattered Light*], m(5)[z], m(5)[y], m(9)[between z and y, 10#sym.degree to z],
// z y 45 y&z
[*Number of Phonon*], [1], [2], m(3)[3], m(3)[1], [2], [3], m(4)[1], [2], m(4)[3],
[*Vibration Direction*],
[x#linebreak() (TO)], [y#linebreak() (TO)], m(3)[z (LO)], // z
m(3)[z (TO)], [x#linebreak() (TO)], [y (LO)], // y
m(4, yzmix), [x#linebreak() (TO)], m(4, yzmix), // 45 y&z
[*Representation in Group C#sub[6v]*], m(2, E1), m(3, A1), m(14, NA),
// z y 45 y&z
[*Representation in Group C#sub[2v]*], B2, B1, m(3, A1), m(3, A1), B2, B1, m(4, NA), B2, m(4, NA),
[*Scattering in Polarization*],
[xz], [yz], [xx], [yy], [zz], // z
[xx], [yy], [zz], [xz], [yz], // y
[xx], [yy], [yz], [zz], [xz], [xx], [yy], [yz], [zz], // 45 y&z
[*Raman Intensity (a.u.)*],
m(2)[53.52], m(2)[58.26], [464.69], // z
m(2)[58.26], [454.09], [53.52], [53.55], // y
m(2)[53.71], [3.20], [425.98], [53.56], m(2)[3.60], [50.36], [27.99], // 45 y&z
[*Visible in Common Raman Experiment*],
m(2)[Yes], m(2, lopc), [No], // z
overf, [No], overf, [Yes], lopc, // y
m(4)[???], [???], m(4)[???], // 45 y&z
[*Wavenumber (Simulation) (cm#super[-1])*],
// z y 45 y&z
m(2)[776.57], m(3)[933.80], m(3)[761.80], [776.57], [941.33], m(4)[762.76], [776.57], m(4)[940.86],
[*Electrical Polarity*], m(19)[Strong]
)},
caption: [Strong-polarized phonons near $Gamma$ point],
)
]
#bibliography("./ref.bib", title: "Reference", style: "american-physics-society")