From c96ab8f70cf048805644edf55ca5b9463007f552 Mon Sep 17 00:00:00 2001 From: chn Date: Tue, 13 May 2025 15:07:52 +0800 Subject: [PATCH] --- test-typst/main.typ | 81 +++++++++++++++++++++++++++++++++------------ 1 file changed, 59 insertions(+), 22 deletions(-) diff --git a/test-typst/main.typ b/test-typst/main.typ index 11874e5..5d49202 100644 --- a/test-typst/main.typ +++ b/test-typst/main.typ @@ -1,6 +1,7 @@ #import "@preview/starter-journal-article:0.4.0": article, author-meta #import "@preview/tablem:0.2.0": tablem -#import "@preview/physica:0.9.4": pdv +#import "@preview/physica:0.9.4": pdv, super-T-as-transpose +#show: super-T-as-transpose #set par.line(numbering: "1") // TODO: fix indent of first line @@ -303,6 +304,31 @@ $ mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;) $ +Before consider z-direction, it is important to note that, $a_1$ $a_2$ $a_3$ $a_4$ are not independent. +Consider vibration along x+ direction (lets say the distance is $d$). +System energy caused by external electric field and vibration is: +$ + E^T (mat(,,2a_1;,,;2a_1,,) d) E +$ +Apply C#sub[3] to atom vibration and external field, energy should not change. We got: +$ + (mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)^T ( mat(,,2a_1;,,;2a_1,,)(-1/2 d) + mat(,,;,,2a_3;,2a_3,)(sqrt(3)/2 d) ) + (mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E) +$ +It is equal to: +$ + E^T (mat(,,1/2 a_1 + 3/2 a_3;,,sqrt(3)/2 a_1 - sqrt(3)/2 a_3;1/2 a_1 + 3/2 a_3,sqrt(3)/2 a_1 - sqrt(3)/2 a_3,) d) E +$ +Thus: +$ + 1/2 a_1 + 3/2 a_3 = 2a_1 #linebreak() + sqrt(3)/2 a_1 - sqrt(3)/2 a_3 = 0 +$ +Thus $a_1 = a_3$. +Apply the same method, we get $abs(a_2) = abs(a_4)$. +Since we have not define the sign of $a_4$, we could take $a_2 = a_4$. +Same for $epsilon$. + Now consider what if we move the Si atom in A layer along z+ direction. If we move the Si atom in C layer along z+ direction, it is A1: $ @@ -359,22 +385,22 @@ Frequency could be estimated by, how many atoms are moving towards its neighbor. table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt), [*Move Direction*], [x], [y], [z], [C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$], - [$mat(a_4+eta_4,,;,-a_4-eta_4,-a_3-eta_3;,-a_3-eta_3,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], - [Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_4,,;,-a_4,a_3;,a_3,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], + [$mat(a_2+eta_2,,;,-a_2-eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], + [Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_2,,;,-a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], [C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$], - [$mat(-a_4-eta_4-zeta_4,,;,a_4+eta_4+zeta_4,-a_3-eta_3-zeta_3;,-a_3-eta_3-zeta_3,;)$], + [$mat(-a_2-eta_2-zeta_2,,;,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$], [$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$], [Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$], - [$mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)$], + [$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$], [$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$], [C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$], - [$mat(-a_4-eta_4,,;,a_4+eta_4,-a_3-eta_3;,-a_3-eta_3,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], - [Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_4,,;,a_4,a_3;,a_3,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], + [$mat(-a_2-eta_2,,;,a_2+eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], + [Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_2,,;,a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], [C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$], - [$mat(a_4+eta_4+zeta_4,,;,-a_4-eta_4-zeta_4,-a_3-eta_3-zeta_3;,-a_3-eta_3-zeta_3,;)$], + [$mat(a_2+eta_2+zeta_2,,;,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$], [$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$], [Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$], - [$mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;)$], + [$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$], [$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$], )}, caption: ["Raman tensor" caused by single atom], @@ -382,26 +408,37 @@ Frequency could be estimated by, how many atoms are moving towards its neighbor. )] // Raman Tensor for A1: line1 xz/yz; line2 zz - +// Raman Tensor for E1: x-dirc xz or y-dirc yx +// Raman Tensor for E2: x-dirc xy or y-dirc xx or y-dirc -yy +// Relative Vibration Direction: col1 C ABCB col2 Si ABCB #page(flipped: true)[#figure({ + let m(n, content) = table.cell(colspan: n, content); let m2(content) = table.cell(colspan: 2, content); let m3(content) = table.cell(colspan: 3, content); - table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt), - [*Representation in C#sub[6v]*], m3[A1], - [*Representation in C#sub[2v]*], m3[A1], - [*x*], m2[0.5], [1], - [*Relative Vibration Direction*], [$++--++--$], [$+--++--+$], [$+-+-+-+-$], - [*Vibration Direction*], m3[z], - [*Raman Tensor Predicted*], [$2(-epsilon_5+zeta_5)$ #linebreak() $2(-epsilon_6+zeta_6)$], + let m4(content) = table.cell(colspan: 4, content); + table(columns: 11, align: center + horizon, inset: (x: 3pt, y: 5pt), + [*Representation in C#sub[6v]*], m3[A#sub[1]], m3[E#sub[1]], m4[E#sub[2]], + [*x*], m2[0.5], [1], m2[0.5], [1], m2[0.25], m2[0.75], + [*Relative Vibration Direction*], + [$++\ --\ ++\ --$], [$+-\ -+\ +-\ -+$], [$+-\ +-\ +-\ +-$], + [$++\ --\ ++\ --$], [$+-\ -+\ +-\ -+$], [$+-\ +-\ +-\ +-$], + [$++\ +-\ --\ -+$], [$++\ --\ --\ ++$], [$++\ -+\ --\ +-$], [$+-\ ++\ -+\ --$], + [*Vibration Direction*], m3[z], m3[x/y], m4[x/y], + [*Raman Tensor Predicted*], [$2(zeta_5-epsilon_5)$ #linebreak() $2(zeta_6-epsilon_6)$], [$2(epsilon_5+zeta_5)$ #linebreak() $2(epsilon_6+zeta_6)$], [$-4(2a_5+eta_5+epsilon_5+zeta_5)$ #linebreak() $-4(2a_6+eta_6+epsilon_6+zeta_6)$], - [*Raman Intensity Predicted*], m2[weak], [strong], + [$2(zeta_1-epsilon_1)$], [$2(epsilon_1+zeta_1)$], [$-4(2a_1+eta_1+epsilon_1+zeta_1)$], + [$-2(zeta_2+epsilon_2)$], [$2(2eta_2+zeta_2-epsilon_2)$], [$2(4a_2+2eta_2+zeta_2+epsilon_2)$], + [$2(epsilon_2-zeta_2)$], + [*Raman Intensity Predicted*], m2[weak], [strong], m2[weak], [strong], m2[weak], [strong], [weak], [*Raman Tensor Calculated*], [0.10 #linebreak() -1.33], [-1.68 #linebreak() 1.34], [7.68 #linebreak() -21.65], - [*Atom-pair that Move Relatively In-plane*], [4], [0], [4], - [*Atom-pair that Move Relatively Out-plane*], [0], [4], [4], - [*Predicted Frequency*], [low], [medium], [high], - [*Calculated Frequency*], [591.90], [812.87], [933.80], + [-1.56], [-0.30], [7.32], [1.06], [0.41], [9.41], [0.17], + [*Atom-pair that Move Relatively In-plane*], [4], [0], [4], [4], [0], [4], [0], [2], [4], [4], + [*Atom-pair that Move Relatively Out-plane*], [0], [4], [4], [0], [4], [4], [2], [0], [2], [2], + [*Predicted Frequency*], [low], [medium], [high], [medium], [low], [high], [low], [medium], m2[high], + [*Calculated Frequency*], + [591.90], [812.87], [933.80], [746.91], [257.35], [776.57], [197.84], [190.51], [756.25], [764.33] )}, caption: [Predicted modes and their "Raman tensor"], placement: none,