diff --git a/paper/main.tex b/paper/main.tex index 06af48a..00c6978 100644 --- a/paper/main.tex +++ b/paper/main.tex @@ -119,22 +119,23 @@ Thus, we divide the phonons of defect-free 4H-SiC into three categories: \begin{sidewaystable} \centering { - \newcommand{\tworow}[1]{\multirow{2}{*}{#1}} \newcommand{\twocol}[1]{\multicolumn{2}{C{1cm}|}{#1}} \newcommand{\threecol}[1]{\multicolumn{3}{C{1.5cm}|}{#1}} - \newcommand{\allcol}[1]{\multicolumn{26}{C{15cm}|}{#1}} - \caption{Title} + \newcommand{\wthreecol}[1]{\multicolumn{3}{C{2cm}|}{#1}} + \newcommand{\allcol}[1]{\multicolumn{26}{C{16cm}|}{#1}} + \setlength\tabcolsep{0pt} % 不加这句话的话,表格的竖线的宽度会被计入,导致合并后的单元格不居中 + \caption{Weak- and None-polarized phonons near $\Gamma$ point} \begin{tabular}{ | C{4cm} % header | C{0.5cm} | C{0.5cm} | C{0.5cm} % E2 | C{0.5cm} | C{0.5cm} | C{0.5cm} % E2 | C{0.5cm} | C{0.5cm} % E1 | C{1cm} | C{1cm} % 2B1 - | C{0.5cm} | C{0.5cm} | C{0.5cm} % A1 + | C{0.5cm} | C{0.5cm} | C{1cm} % A1 | C{0.5cm} | C{0.5cm} % E1 | C{0.5cm} | C{0.5cm} | C{0.5cm} % E2 | C{0.5cm} | C{0.5cm} | C{0.5cm} % E2 - | C{0.5cm} | C{0.5cm} | C{0.5cm} % A1 + | C{0.5cm} | C{0.5cm} | C{1cm} % A1 | C{1cm} | C{1cm} % 2B1 | } \hline @@ -143,14 +144,14 @@ Thus, we divide the phonons of defect-free 4H-SiC into three categories: & 3 & \twocol{4} % E2 & 5 & 6 % E1 & 7 & 8 % 2B1 - & \threecol{9} % A1 + & \wthreecol{9} % A1 & 10 & 11 % E1 & 12 & \twocol{13} % E2 & 14 & \twocol{15} % E2 - & \threecol{16} % A1 + & \wthreecol{16} % A1 & 17 & 18 % 2B1 \\ \hline - \textbf{Direction of Incident \& Scattered Light} + \textbf{\makecell{Direction of Incident \\ \& Scattered Light}} & \allcol{\makecell{Any direction \\ (not depend on direction of incident \& scattered light)}} \\ \hline \textbf{Vibration Direction} @@ -158,24 +159,36 @@ Thus, we divide the phonons of defect-free 4H-SiC into three categories: & x & \twocol{y} % E2 & x & y % E1 & z & z % 2B1 - & \threecol{z} % A1 + & \wthreecol{z} % A1 & x & y % E1 & x & \twocol{y} % E2 & x & \twocol{y} % E2 - & \threecol{z} % A1 + & \wthreecol{z} % A1 & z & z % 2B1 \\ \hline \textbf{Representation in Group $\mathrm{C_{6v}}$} - & \threecol{$\mathrm{E_2}$} - & \threecol{$\mathrm{E_2}$} - & \twocol{$\mathrm{E_1}$} - & $\mathrm{B_1}$ & $\mathrm{B_1}$ - & \threecol{$\mathrm{A_1}$} - & \twocol{$\mathrm{E_1}$} - & \threecol{$\mathrm{E_2}$} - & \threecol{$\mathrm{E_2}$} - & \threecol{$\mathrm{A_1}$} - & $\mathrm{B_1}$ & $\mathrm{B_1}$ + & \threecol{$\mathrm{E_2}$} % E2 + & \threecol{$\mathrm{E_2}$} % E2 + & \twocol{$\mathrm{E_1}$} % E1 + & $\mathrm{B_1}$ & $\mathrm{B_1}$ % 2B1 + & \wthreecol{$\mathrm{A_1}$} % A1 + & \twocol{$\mathrm{E_1}$} % E1 + & \threecol{$\mathrm{E_2}$} % E2 + & \threecol{$\mathrm{E_2}$} % E2 + & \wthreecol{$\mathrm{A_1}$} % A1 + & $\mathrm{B_1}$ & $\mathrm{B_1}$ % 2B1 + \\ \hline + \textbf{Representation in Group $\mathrm{C_{2v}}$} + & $\mathrm{A_2}$ & \twocol{$\mathrm{A_1}$} % E2 + & $\mathrm{A_2}$ & \twocol{$\mathrm{A_1}$} % E2 + & $\mathrm{B_2}$ & $\mathrm{B_1}$ % E1 + & $\mathrm{B_1}$ & $\mathrm{B_1}$ % 2B1 + & \wthreecol{$\mathrm{A_1}$} % A1 + & $\mathrm{B_2}$ & $\mathrm{B_1}$ % E1 + & $\mathrm{A_2}$ & \twocol{$\mathrm{A_1}$} % E2 + & $\mathrm{A_2}$ & \twocol{$\mathrm{A_1}$} % E2 + & \wthreecol{$\mathrm{A_1}$} % A1 + & $\mathrm{B_1}$ & $\mathrm{B_1}$ % 2B1 \\ \hline \textbf{Scattering in Polarization} & xy & xx & yy % E2 @@ -206,7 +219,7 @@ Thus, we divide the phonons of defect-free 4H-SiC into three categories: & \threecol{Yes} % E2 & \twocol{Yes} % E1 & No & No % 2B1 - & \threecol{Yes} % A1 + & \wthreecol{Yes} % A1 & \twocol{No} % E1 & \threecol{Yes} % E2 & \threecol{No} % E2 @@ -214,23 +227,23 @@ Thus, we divide the phonons of defect-free 4H-SiC into three categories: & No & No % 2B1 \\ \hline \textbf{Wavenumber (Simulation) ($\mathrm{cm^{-1}}$)} - & \threecol{$190.51$} % E2 - & \threecol{$190.51$} % E2 - & \twocol{$257.35$} % E1 - & $389.96$ & $389.96$ % 2B1 - & \threecol{$591.90$} % A1 - & \twocol{$746.91$} % E1 - & \threecol{$756.25$} % E2 - & \threecol{$764.33$} % E2 - & \threecol{$812.87$} % A1 - & $885.68$ & $894.13$ % 2B1 + & \threecol{$190.51$} % E2 + & \threecol{$190.51$} % E2 + & \twocol{$257.35$} % E1 + & $389.96$ & $389.96$ % 2B1 + & \wthreecol{$591.90$} % A1 + & \twocol{$746.91$} % E1 + & \threecol{$756.25$} % E2 + & \threecol{$764.33$} % E2 + & \wthreecol{$812.87$} % A1 + & $885.68$ & $894.13$ % 2B1 \\ \hline \textbf{Wavenumber (Experiment) ($\mathrm{cm^{-1}}$)} & \threecol{$195.5$} % E2 & \threecol{$203.3$} % E2 & \twocol{$269.7$} % E1 & - & - % 2B1 - & \threecol{$609.5$} % A1 + & \wthreecol{$609.5$} % A1 & \twocol{-} % E1 & \threecol{$776$} % E2 & \threecol{-} % E2 @@ -238,16 +251,16 @@ Thus, we divide the phonons of defect-free 4H-SiC into three categories: & - & - % 2B1 \\ \hline \textbf{Electrical Polarity} - & \threecol{None} % E2 - & \threecol{None} % E2 - & \twocol{Weak} % E1 - & None & None % 2B1 - & \threecol{Weak} % A1 - & \twocol{Weak} % E1 - & \threecol{None} % E2 - & \threecol{None} % E2 - & \threecol{Weak} % A1 - & None & None % 2B1 + & \threecol{None} % E2 + & \threecol{None} % E2 + & \twocol{Weak} % E1 + & None & None % 2B1 + & \wthreecol{Weak} % A1 + & \twocol{Weak} % E1 + & \threecol{None} % E2 + & \threecol{None} % E2 + & \wthreecol{Weak} % A1 + & None & None % 2B1 \\ \hline \end{tabular} }