diff --git a/paper/appendix/default.typ b/paper/appendix/default.typ index aeb17bb..26c2b91 100644 --- a/paper/appendix/default.typ +++ b/paper/appendix/default.typ @@ -1,230 +1,4 @@ -#import "@preview/physica:0.9.5": pdv, super-T-as-transpose -#show: super-T-as-transpose - = Appendix +#include "predict/default.typ" #include "predmode.typ" - -The center principle is to assign the Raman tensor (i.e., change of polarizability caused by atomic displacement) - to each atom in the unit cell. -This including the following steps: - - Write out the change of polarizability caused by displacement of Si atom in A and C layer, - Where unknown non-zero components are denoted by $a_1$, $a_2$, $a_5$, $a_6$. - For example, when we move the Si atom in A layer slightly towards the x+ direction in $d$ distance, - the change of polarizability should be $mat(,a_2,a_1;a_2,,;a_1,,)d$. - This could be done by conclusion above. - - The Si atom in B layer have similar local environment as the A and C layer, with only a little difference. - We denote these difference by $epsilon_1$, $epsilon_2$, $epsilon_5$, $epsilon_6$, - and the absolute value of $epsilon_i$ should be much smaller than $a_i$. - For example, when we move the Si atom in B layer slightly towards the x+ direction in $d$ distance, - the change of polarizability should be $mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,)d$. - - The local environment of C atom in A layer is similar to the Si atom in A layer with charge reversed and - the system reversed along xy plane. - We denote these difference by $eta_1$, $eta_2$, $eta_5$, $eta_6$, - and the absolute value of $epsilon_i$ should be much smaller than $a_i$. - For example, when we move the C atom in A layer slightly towards the x+ direction in $d$ distance, - the change of polarizability should be $mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,)d$. - - Similar to the case in Si atoms, we derive the change of polarizability - caused by moving C atom in B layer slightly towards the x+ direction in $d$ distance, - which should be $mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,)d$. - -Lets assign Raman tensor onto each atom. -That is, Raman tensor is derivative of the polarizability with respect to the atomic displacement: -$ - alpha = pdv(chi, u) -$ -where $u$ should be the displacement of the atom corresponding to a phonon mode. -But, even when $u$ is *NOT* the displacement of a phonon - (for example, lets only slightly move Si atom in A layer, keeping other atoms fixed), - the (high-frequency) polarizability is still well-defined, - and the will still cause a change in the polarizability. -Even more, the group representation theory is still applicable in this condition: - the only thing that matters is, when applying $g$ to the system, - the tensor transformed into $g^(-1) alpha g$ or $g alpha g^(-1)$, - no matter $alpha$ is Raman tensor or something else, or it is related to a phonon or not. - -Thus, we can, in principle, "assign" Raman tensor of a phonon, to each atom. -This "assign" is unique since both the atom movement and all phonons have 24 dimensions. - -Next, we consider what these single-atom-caused "Raman tensors" looks like. -For example, what happens if we move the Si atom in A layer slightly along the x+ direction? -Consider also move the Si atom in C layer slightly, along x+ or x- direction. -How about the Raman tensor caused by the both two atoms? -In first case, this is B2 representation in E1 representation. Thus the Raman tensor should be something like: -$ - mat(,,2a_1;,,;2a_1,,;) -$ -In the second case, it is A2 in E2. It turns out: -$ - mat(,2a_2,;2a_2,,;,,;) -$ -The average of these two tensors should be the s"Raman tensor" cause by move only the Si atom in A layer, - slightly towards x+ direction. -$ - mat(,a_2,a_1;a_2,,;a_1,,;) -$ -The difference should be the "Raman tensor" of the second atom. -$ - mat(,-a_2,a_1;-a_2,,;a_1,,;) -$ - -// This approach applied relied on the fact that, all Si atom in 4H-SiC is "distinguishable" by the symmetry operations. -// I mean, what will happen if we have two Si atoms in A layer? -// Apparently, we could not extract the "Raman tensor" of only one of the two atoms. -// This is the case for the 6H-SiC. -// Hence, we will provide a more general approach to estimate the "Raman tensor" of a single atom. - -Consider the Si atom in the B1 layer. -It lives in an environment quite similar to the A layer. -Thus, the "Raman tensor" caused by it should be similar to the one caused by the A layer: -$ - mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;) -$ -Similar to the Si atom in B2 layer: -$ - mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;) -$ - -Same approach applied for Si atom vibrate in y direction. -When we move both Si atoms in A and C layer in y+ direction, - it is B1 in E1, thus the "Raman tensor" should be: -$ - mat(,,;,,2a_3;,2a_3,;) -$ -And if we move Si in A layer towards y+ but Si in C layer towards y-, - it is A2 in E2: -$ - mat(2a_4,,;,-2a_4,;,,;) -$ -Thus we get the "Raman tensor" of Si atom in A layer sololy move towards y+ direction: -$ - mat(a_4,,;,-a_4,a_3;,a_3,;) -$ -and the "Raman tensor" of Si atom in C layer towards y+ direction: -$ - mat(-a_4,,;,a_4,a_3;,a_3,;) -$ -Same applied for the Si atom in B layer: -$ - mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;) -$ -$ - mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;) -$ - -Before consider z-direction, it is important to note that, $a_1$ $a_2$ $a_3$ $a_4$ are not independent. -Consider vibration along x+ direction (lets say the distance is $d$). -System energy caused by external electric field and vibration is: -$ - E^T (mat(,,2a_1;,,;2a_1,,) d) E -$ -Apply C#sub[3] to atom vibration and external field, energy should not change. We got: -$ - (mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)^T ( mat(,,2a_1;,,;2a_1,,)(-1/2 d) + mat(,,;,,2a_3;,2a_3,)(sqrt(3)/2 d) ) - (mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E) -$ -It is equal to: -$ - E^T (mat(,,1/2 a_1 + 3/2 a_3;,,sqrt(3)/2 a_1 - sqrt(3)/2 a_3;1/2 a_1 + 3/2 a_3,sqrt(3)/2 a_1 - sqrt(3)/2 a_3,) d) E -$ -Thus: -$ - 1/2 a_1 + 3/2 a_3 = 2a_1 #linebreak() - sqrt(3)/2 a_1 - sqrt(3)/2 a_3 = 0 -$ -Thus $a_1 = a_3$. -Apply the same method, we get $abs(a_2) = abs(a_4)$. -Since we have not define the sign of $a_4$, we could take $a_2 = a_4$. -Same for $epsilon$. - -Now consider what if we move the Si atom in A layer along z+ direction. -If we move the Si atom in C layer along z+ direction, it is A1: -$ - mat(2a_5,,;,2a_5,;,,2a_6;) -$ -If we move the Si atom in C layer along z- direction, it is B1: -$ - 0 -$ -Thus we get the "Raman tensor" of Si atom in A or C layer towards z+ direction: -$ - mat(a_5,,;,a_5,;,,a_6;) -$ - -Lets consider the C atom in A layer. -It should be somehow similar to the Si atom in A layer, but with a negative sign in some places, - and then add or subtract some little value. -Actually, the "transformation" of Si atom in A layer to C atom in A layer applied in the following steps: - - reverse charge. - - reverse system along xy plane. -First we consider the first step. -Taking the define of electricity tenser: -$ - P = chi E -$ -Lets reverse charge of the system, say we now have electricity tensor $chi'$. We get: -$ - -P = chi'(-E) -$ -Thus we get $chi' = chi$, the first step does not change the electricity tensor, nor the "Raman tensor". - -Now we consider the second step. -For electricity tensor, it will become: -$ - mat(1,,;,1,;,,-1) chi mat(1,,;,1,;,,-1) -$ -For $u$, when it is along x or y direction, it will not change. When it is along z direction, it will become $-u$. - -So in conclusion, Raman tensor of C atom in A layer could be estimated from the Raman tensor of Si atom in A layer, by: - - for movement alone x and y direction, xz yz should be applied a negative sign. - - for movement alone z direction, xx xy yy zz should be applied a negative sign. - -Export "Raman tensor" of C atom in C layer from C atom in A layer, in the same way. - -Now consider the C atom in B1 layer. -Is it similar to the C atom in A layer, just like that for Si atom? -No. It turns out to be similar to the C atom in C layer. - -We summarize these stuff into @table-singleatom. - -Until now, we only consider the "Raman tensor" caused by single atom or atoms move in the same amplitudes. -However, that is not the case in real phonon. -- In some A1 modes, only Si or C atom moves. If we take the magnitude of eigenvector as 1, - then amplitude of each atom is $1/(4sqrt(m_#text[Si]))$ or $1/(4sqrt(m_#text[C]))$. -- In other cases, the amplitude of Si and C are in the ration of $m_#text[C] : m_#text[Si]$. - thus the amplitude of Si atom is $1/2 sqrt(1/(m_#text[Si]+m_#text[Si]^2/m_#text[C]))$, so do the C atom. - - -Furthermore, we list predicted modes and their Raman tensors, in @table-predmode. - -- $a$: Raman tensor of Si atom in A layer, large value. -- $epsilon$: Difference of Raman tensors of Si atom in A and B1 layer, small value. -- $eta$: Difference of Raman tensors of C and Si atom in A layer, small value. -- $zeta$: Difference of Raman tensors of C atoms in A and B layer, small value. - - -#page(flipped: true)[#figure({ - table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt), - [*Move Direction*], [x], [y], [z], - [Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_2,,;,-a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], - [C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$], - [$mat(a_2+eta_2,,;,-a_2-eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], - [Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$], - [$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$], - [$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$], - [C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$], - [$mat(-a_2-eta_2-zeta_2,,;,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$], - [$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$], - [Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_2,,;,a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], - [C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$], - [$mat(-a_2-eta_2,,;,a_2+eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], - [Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$], - [$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$], - [$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$], - [C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$], - [$mat(a_2+eta_2+zeta_2,,;,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$], - [$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$], - )}, - caption: ["Raman tensor" caused by single atom], - placement: none, -)] diff --git a/paper/appendix/predict/default.typ b/paper/appendix/predict/default.typ new file mode 100644 index 0000000..926078e --- /dev/null +++ b/paper/appendix/predict/default.typ @@ -0,0 +1,273 @@ +#import "@preview/physica:0.9.5": pdv, super-T-as-transpose +#show: super-T-as-transpose + +== Approximation of Raman tensor of 4H-SiC + +近似的核心思路。 + +我们的近似方法基于这样一个原则:将拉曼张量(即原子位移引起的极化率变化)分配给单位晶胞中的每个原子。 +由于同种原子的局部环境相似、只有次近邻才有不同,因此我们将同种原子导致的拉曼效应的差视为一个小量。 +将一个模式中所有参与振动的原子的贡献相加,就可以得到该模式的拉曼张量。 + +The center principle of our approximation is to assign the Raman tensor + (i.e., change of polarizability caused by atomic displacement) + to each atom in the unit cell. +Because the local environment of the same type of atom is similar and only different for the next nearest neighbors, + we consider the difference in Raman effect caused by the same type of atom as a small quantity. +The Raman tensor of a phonon mode can be obtained + by summing the contributions of all atoms participating in the vibration. + +推导 A/C 层 Si 原子沿 x 方向振动时的拉曼张量。 + +我们首先推导 A/C 层 Si 原子沿 x 方向振动时的拉曼张量。 +根据前文,我们知道,当这两个原子同向和反向振动时,它们分别属于 E1(C6v) B2(C2v) 和 E2(C6v) A2(C2v) 表示,因此它们的拉曼张量分别为: + +We first derive the Raman tensor of Si atoms in A/C layer vibrating along x direction. +When the two atoms vibrate in the same direction and opposite direction, + they belong to the representation of E#sub[1] of C#sub[6v] or B#sub[2] of C#sub[2v] + and E#sub[2] of C#sub[6v] or A#sub[2] of C#sub[2v], respectively. +Thus, their Raman tensors are in the form of: + +$ mat(,,2a_1;,,;2a_1,,;), mat(,2a_2,;2a_2,,;,,;), $ + +其中 $a_1$ 和 $a_2$ 是两个未知的常数。 + +where $a_1$ and $a_2$ are two constants with unknown values. + +将上述结果相加或相减,得到 A 层和 C 层 Si 原子沿 x 方向振动时的拉曼张量分别为: + +By adding or subtracting the above results, + we get the Raman tensors of Si atoms in A and C layers vibrating along x direction: + +$ mat(,a_2,a_1;a_2,,;a_1,,;), mat(,-a_2,a_1;-a_2,,;-a_1,,;), $ + +近似给出 B 层 Si 原子沿 x 方向振动时的拉曼张量。 + +注意到 B 层 Si 原子与 A 层 Si 原子 + +#include "fig-same.typ" + + +The center principle is to assign the Raman tensor (i.e., change of polarizability caused by atomic displacement) + to each atom in the unit cell. +This including the following steps: + - Write out the change of polarizability caused by displacement of Si atom in A and C layer, + Where unknown non-zero components are denoted by $a_1$, $a_2$, $a_5$, $a_6$. + For example, when we move the Si atom in A layer slightly towards the x+ direction in $d$ distance, + the change of polarizability should be $mat(,a_2,a_1;a_2,,;a_1,,)d$. + This could be done by conclusion above. + - The Si atom in B layer have similar local environment as the A and C layer, with only a little difference. + We denote these difference by $epsilon_1$, $epsilon_2$, $epsilon_5$, $epsilon_6$, + and the absolute value of $epsilon_i$ should be much smaller than $a_i$. + For example, when we move the Si atom in B layer slightly towards the x+ direction in $d$ distance, + the change of polarizability should be $mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,)d$. + - The local environment of C atom in A layer is similar to the Si atom in A layer with charge reversed and + the system reversed along xy plane. + We denote these difference by $eta_1$, $eta_2$, $eta_5$, $eta_6$, + and the absolute value of $epsilon_i$ should be much smaller than $a_i$. + For example, when we move the C atom in A layer slightly towards the x+ direction in $d$ distance, + the change of polarizability should be $mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,)d$. + - Similar to the case in Si atoms, we derive the change of polarizability + caused by moving C atom in B layer slightly towards the x+ direction in $d$ distance, + which should be $mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,)d$. + +Lets assign Raman tensor onto each atom. +That is, Raman tensor is derivative of the polarizability with respect to the atomic displacement: +$ + alpha = pdv(chi, u) +$ +where $u$ should be the displacement of the atom corresponding to a phonon mode. +But, even when $u$ is *NOT* the displacement of a phonon + (for example, lets only slightly move Si atom in A layer, keeping other atoms fixed), + the (high-frequency) polarizability is still well-defined, + and the will still cause a change in the polarizability. +Even more, the group representation theory is still applicable in this condition: + the only thing that matters is, when applying $g$ to the system, + the tensor transformed into $g^(-1) alpha g$ or $g alpha g^(-1)$, + no matter $alpha$ is Raman tensor or something else, or it is related to a phonon or not. + +Thus, we can, in principle, "assign" Raman tensor of a phonon, to each atom. +This "assign" is unique since both the atom movement and all phonons have 24 dimensions. + +Next, we consider what these single-atom-caused "Raman tensors" looks like. +For example, what happens if we move the Si atom in A layer slightly along the x+ direction? +Consider also move the Si atom in C layer slightly, along x+ or x- direction. +How about the Raman tensor caused by the both two atoms? +In first case, this is B2 representation in E1 representation. Thus the Raman tensor should be something like: +$ + mat(,,2a_1;,,;2a_1,,;) +$ +In the second case, it is A2 in E2. It turns out: +$ + mat(,2a_2,;2a_2,,;,,;) +$ +The average of these two tensors should be the s"Raman tensor" cause by move only the Si atom in A layer, + slightly towards x+ direction. +$ + mat(,a_2,a_1;a_2,,;a_1,,;) +$ +The difference should be the "Raman tensor" of the second atom. +$ + mat(,-a_2,a_1;-a_2,,;a_1,,;) +$ + +// This approach applied relied on the fact that, all Si atom in 4H-SiC is "distinguishable" by the symmetry operations. +// I mean, what will happen if we have two Si atoms in A layer? +// Apparently, we could not extract the "Raman tensor" of only one of the two atoms. +// This is the case for the 6H-SiC. +// Hence, we will provide a more general approach to estimate the "Raman tensor" of a single atom. + +Consider the Si atom in the B1 layer. +It lives in an environment quite similar to the A layer. +Thus, the "Raman tensor" caused by it should be similar to the one caused by the A layer: +$ + mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;) +$ +Similar to the Si atom in B2 layer: +$ + mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;) +$ + +Same approach applied for Si atom vibrate in y direction. +When we move both Si atoms in A and C layer in y+ direction, + it is B1 in E1, thus the "Raman tensor" should be: +$ + mat(,,;,,2a_3;,2a_3,;) +$ +And if we move Si in A layer towards y+ but Si in C layer towards y-, + it is A2 in E2: +$ + mat(2a_4,,;,-2a_4,;,,;) +$ +Thus we get the "Raman tensor" of Si atom in A layer sololy move towards y+ direction: +$ + mat(a_4,,;,-a_4,a_3;,a_3,;) +$ +and the "Raman tensor" of Si atom in C layer towards y+ direction: +$ + mat(-a_4,,;,a_4,a_3;,a_3,;) +$ +Same applied for the Si atom in B layer: +$ + mat(a_4+epsilon_4,,;,-a_4-epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;) +$ +$ + mat(-a_4-epsilon_4,,;,a_4+epsilon_4,a_3+epsilon_3;,a_3+epsilon_3,;) +$ + +Before consider z-direction, it is important to note that, $a_1$ $a_2$ $a_3$ $a_4$ are not independent. +Consider vibration along x+ direction (lets say the distance is $d$). +System energy caused by external electric field and vibration is: +$ + E^T (mat(,,2a_1;,,;2a_1,,) d) E +$ +Apply C#sub[3] to atom vibration and external field, energy should not change. We got: +$ + (mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E)^T ( mat(,,2a_1;,,;2a_1,,)(-1/2 d) + mat(,,;,,2a_3;,2a_3,)(sqrt(3)/2 d) ) + (mat(-1/2,-sqrt(3)/2,;sqrt(3)/2,-1/2,;,,1)E) +$ +It is equal to: +$ + E^T (mat(,,1/2 a_1 + 3/2 a_3;,,sqrt(3)/2 a_1 - sqrt(3)/2 a_3;1/2 a_1 + 3/2 a_3,sqrt(3)/2 a_1 - sqrt(3)/2 a_3,) d) E +$ +Thus: +$ + 1/2 a_1 + 3/2 a_3 = 2a_1 #linebreak() + sqrt(3)/2 a_1 - sqrt(3)/2 a_3 = 0 +$ +Thus $a_1 = a_3$. +Apply the same method, we get $abs(a_2) = abs(a_4)$. +Since we have not define the sign of $a_4$, we could take $a_2 = a_4$. +Same for $epsilon$. + +Now consider what if we move the Si atom in A layer along z+ direction. +If we move the Si atom in C layer along z+ direction, it is A1: +$ + mat(2a_5,,;,2a_5,;,,2a_6;) +$ +If we move the Si atom in C layer along z- direction, it is B1: +$ + 0 +$ +Thus we get the "Raman tensor" of Si atom in A or C layer towards z+ direction: +$ + mat(a_5,,;,a_5,;,,a_6;) +$ + +Lets consider the C atom in A layer. +It should be somehow similar to the Si atom in A layer, but with a negative sign in some places, + and then add or subtract some little value. +Actually, the "transformation" of Si atom in A layer to C atom in A layer applied in the following steps: + - reverse charge. + - reverse system along xy plane. +First we consider the first step. +Taking the define of electricity tenser: +$ + P = chi E +$ +Lets reverse charge of the system, say we now have electricity tensor $chi'$. We get: +$ + -P = chi'(-E) +$ +Thus we get $chi' = chi$, the first step does not change the electricity tensor, nor the "Raman tensor". + +Now we consider the second step. +For electricity tensor, it will become: +$ + mat(1,,;,1,;,,-1) chi mat(1,,;,1,;,,-1) +$ +For $u$, when it is along x or y direction, it will not change. When it is along z direction, it will become $-u$. + +So in conclusion, Raman tensor of C atom in A layer could be estimated from the Raman tensor of Si atom in A layer, by: + - for movement alone x and y direction, xz yz should be applied a negative sign. + - for movement alone z direction, xx xy yy zz should be applied a negative sign. + +Export "Raman tensor" of C atom in C layer from C atom in A layer, in the same way. + +Now consider the C atom in B1 layer. +Is it similar to the C atom in A layer, just like that for Si atom? +No. It turns out to be similar to the C atom in C layer. + +We summarize these stuff into @table-singleatom. + +Until now, we only consider the "Raman tensor" caused by single atom or atoms move in the same amplitudes. +However, that is not the case in real phonon. +- In some A1 modes, only Si or C atom moves. If we take the magnitude of eigenvector as 1, + then amplitude of each atom is $1/(4sqrt(m_#text[Si]))$ or $1/(4sqrt(m_#text[C]))$. +- In other cases, the amplitude of Si and C are in the ration of $m_#text[C] : m_#text[Si]$. + thus the amplitude of Si atom is $1/2 sqrt(1/(m_#text[Si]+m_#text[Si]^2/m_#text[C]))$, so do the C atom. + + +Furthermore, we list predicted modes and their Raman tensors, in @table-predmode. + +- $a$: Raman tensor of Si atom in A layer, large value. +- $epsilon$: Difference of Raman tensors of Si atom in A and B1 layer, small value. +- $eta$: Difference of Raman tensors of C and Si atom in A layer, small value. +- $zeta$: Difference of Raman tensors of C atoms in A and B layer, small value. + + +#page(flipped: true)[#figure({ + table(columns: 4, align: center + horizon, inset: (x: 3pt, y: 5pt), + [*Move Direction*], [x], [y], [z], + [Si A], [$mat(,a_2,a_1;a_2,,;a_1,,;)$], [$mat(a_2,,;,-a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], + [C A], [$mat(,a_2+eta_2,-a_1-eta_1;a_2+eta_2,,;-a_1-eta_1,,;)$], + [$mat(a_2+eta_2,,;,-a_2-eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], + [Si B1], [$mat(,a_2+epsilon_2,a_1+epsilon_1;a_2+epsilon_2,,;a_1+epsilon_1,,;)$], + [$mat(a_2+epsilon_2,,;,-a_2-epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$], + [$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$], + [C, B1], [$mat(,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;-a_2-eta_2-zeta_2,,;-a_1-eta_1-zeta_1,,;)$], + [$mat(-a_2-eta_2-zeta_2,,;,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$], + [$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$], + [Si C], [$mat(,-a_2,a_1;-a_2,,;a_1,,;)$], [$mat(-a_2,,;,a_2,a_1;,a_1,;)$], [$mat(a_5,,;,a_5,;,,a_6;)$], + [C, C], [$mat(,-a_2-eta_2,-a_1-eta_1;-a_2-eta_2,,;-a_1-eta_1,,;)$], + [$mat(-a_2-eta_2,,;,a_2+eta_2,-a_1-eta_1;,-a_1-eta_1,;)$], [$mat(-a_5-eta_5,,;,-a_5-eta_5,;,,-a_6-eta_6;)$], + [Si B2], [$mat(,-a_2-epsilon_2,a_1+epsilon_1;-a_2-epsilon_2,,;a_1+epsilon_1,,;)$], + [$mat(-a_2-epsilon_2,,;,a_2+epsilon_2,a_1+epsilon_1;,a_1+epsilon_1,;)$], + [$mat(a_5+epsilon_5,,;,a_5+epsilon_5,;,,a_6+epsilon_6;)$], + [C, B2], [$mat(,a_2+eta_2+zeta_2,-a_1-eta_1-zeta_1;a_2+eta_2+zeta_2,,;-a_1-eta_1-zeta_1,,;)$], + [$mat(a_2+eta_2+zeta_2,,;,-a_2-eta_2-zeta_2,-a_1-eta_1-zeta_1;,-a_1-eta_1-zeta_1,;)$], + [$mat(-a_5-eta_5-zeta_5,,;,-a_5-eta_5-zeta_5,;,,-a_6-eta_6-zeta_6;)$], + )}, + caption: ["Raman tensor" caused by single atom], + placement: none, +)] diff --git a/paper/appendix/predict/fig-same.typ b/paper/appendix/predict/fig-same.typ new file mode 100644 index 0000000..df1fbd4 --- /dev/null +++ b/paper/appendix/predict/fig-same.typ @@ -0,0 +1,5 @@ +#figure( + image("/画图/AB相似/embed.svg"), + caption: [Light incidence configurations in our Raman experiments.], + placement: none, +) diff --git a/paper/main.typ b/paper/main.typ index 3288d16..c8a685a 100644 --- a/paper/main.typ +++ b/paper/main.typ @@ -49,6 +49,10 @@ // 增加标题的间距 #show heading: set block(below: 1em) +// 公式编号 + +#set math.equation(numbering: "(1)") + #include "introduction.typ" #include "method/default.typ" #include "result/default.typ" diff --git a/paper/todo.typ b/paper/todo.typ index fc80554..b8ba596 100644 --- a/paper/todo.typ +++ b/paper/todo.typ @@ -75,7 +75,7 @@ - [x] 中文 - [x] 英文 - [x] 调整语言 - - [ ] 填充分离 Si C 结果的数据,对称分布小量 + - [ ] 填充最终结果 - [ ] 模式的表格 - [x] 大致内容 - [ ] 调整、填充数据 @@ -93,6 +93,13 @@ - [ ] 复杂替位原子 - [ ] 面缺陷(BPD) - [ ] 附录 + - [/] 推导细节 + - [x] 总述 + - [x] A/C 层 Si 面内 + - [ ] 画图 + - [ ] B 层 Si 面内 + - [ ] 其它情况 + - [ ] 总结表格 - [ ] 分离 Si - [ ] 推导细节 - [ ] 杂项 diff --git a/画图/AB相似/atomA.csv b/画图/AB相似/atomA.csv new file mode 100644 index 0000000..b02e540 --- /dev/null +++ b/画图/AB相似/atomA.csv @@ -0,0 +1,12 @@ +type,x,y,z,radius +0,3.08813,0.00000,10.10781,1.18 +0,0.00000,0.00000,10.10781,1.18 +0,1.54407,2.67440,10.10781,1.18 +1,1.54407,0.89147, 9.48201,0.77 +0,1.54407,0.89147, 7.58104,1.18 +1,1.54407,2.67440, 6.94819,0.77 +1,3.08813,0.00000, 6.94819,0.77 +1,0.00000,0.00000, 6.94819,0.77 +0,3.08813,0.00000, 5.05312,1.18 +0,0.00000,0.00000, 5.05312,1.18 +0,1.54407,2.67440, 5.05312,1.18 diff --git a/画图/AB相似/atomB.csv b/画图/AB相似/atomB.csv new file mode 100644 index 0000000..fe739cd --- /dev/null +++ b/画图/AB相似/atomB.csv @@ -0,0 +1,12 @@ +type,x,y,z,radius +0, 1.54407, 0.89147,7.58104,1.18 +0,-1.54407, 0.89147,7.58104,1.18 +0,-0.00000,-1.78294,7.58104,1.18 +1, 0.00000, 0.00000,6.94819,0.77 +0, 0.00000, 0.00000,5.05312,1.18 +1, 0.00000, 1.78294,4.42732,0.77 +1,-1.54407,-0.89147,4.42732,0.77 +1, 1.54407,-0.89147,4.42732,0.77 +0, 0.00000, 1.78294,2.52635,1.18 +0,-1.54407,-0.89147,2.52635,1.18 +0, 1.54407,-0.89147,2.52635,1.18 diff --git a/画图/AB相似/bondA.csv b/画图/AB相似/bondA.csv new file mode 100644 index 0000000..86c8d4c --- /dev/null +++ b/画图/AB相似/bondA.csv @@ -0,0 +1,11 @@ +x0,y0,z0,x1,y1,z1 +3.08813,0.00000,10.10781,1.54407,0.89147, 9.48201 +0.00000,0.00000,10.10781,1.54407,0.89147, 9.48201 +1.54407,2.67440,10.10781,1.54407,0.89147, 9.48201 +1.54407,0.89147, 9.48201,1.54407,0.89147, 7.58104 +1.54407,0.89147, 7.58104,1.54407,2.67440, 6.94819 +1.54407,0.89147, 7.58104,3.08813,0.00000, 6.94819 +1.54407,0.89147, 7.58104,0.00000,0.00000, 6.94819 +1.54407,2.67440, 6.94819,1.54407,2.67440, 5.05312 +3.08813,0.00000, 6.94819,3.08813,0.00000, 5.05312 +0.00000,0.00000, 6.94819,0.00000,0.00000, 5.05312 diff --git a/画图/AB相似/bondB.csv b/画图/AB相似/bondB.csv new file mode 100644 index 0000000..c53bff1 --- /dev/null +++ b/画图/AB相似/bondB.csv @@ -0,0 +1,11 @@ +x0,y0,z0,x1,y1,z1 + 1.54407, 0.89147,7.58104, 0.00000, 0.00000,6.94819 +-1.54407, 0.89147,7.58104, 0.00000, 0.00000,6.94819 +-0.00000,-1.78294,7.58104, 0.00000, 0.00000,6.94819 + 0.00000, 0.00000,6.94819, 0.00000, 0.00000,5.05312 + 0.00000, 0.00000,5.05312, 0.00000, 1.78294,4.42732 + 0.00000, 0.00000,5.05312,-1.54407,-0.89147,4.42732 + 0.00000, 0.00000,5.05312, 1.54407,-0.89147,4.42732 + 0.00000, 1.78294,4.42732, 0.00000, 1.78294,2.52635 +-1.54407,-0.89147,4.42732,-1.54407,-0.89147,2.52635 + 1.54407,-0.89147,4.42732, 1.54407,-0.89147,2.52635 diff --git a/画图/AB相似/embed.svg b/画图/AB相似/embed.svg new file mode 100644 index 0000000..e573b16 --- /dev/null +++ b/画图/AB相似/embed.svg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0c31a371ccaf22b9b12682d29a24c99de72465abcf5558884d298a50667a7374 +size 332902 diff --git a/画图/AB相似/main.png b/画图/AB相似/main.png new file mode 100644 index 0000000..bcb20da --- /dev/null +++ b/画图/AB相似/main.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0ef5a754e4f5ba784d33c7196bd38adba936885a294d6c23d7f9440d0aeb4ccd +size 240978 diff --git a/画图/AB相似/main.pvsm b/画图/AB相似/main.pvsm new file mode 100644 index 0000000..b8cdbd4 --- /dev/null +++ b/画图/AB相似/main.pvsm @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4bede7b191e43899b2d50b60abe30a3460069ed00ac8bfe0a4aba78a42252b06 +size 1359184 diff --git a/画图/AB相似/main.svg b/画图/AB相似/main.svg new file mode 100644 index 0000000..311b2ce --- /dev/null +++ b/画图/AB相似/main.svg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e4e28c637328918510849eb85f88559fda5f8c38f976af1741bc0ce38c42a3b8 +size 4545