This commit is contained in:
@@ -157,15 +157,13 @@ In these 18 modes, the vibrations of two Si atoms are approximately opposite to
|
||||
|
||||
// 这18个声子对应于 $\mathrm{C_{6v}}$ 点群的 14 个表示:2A1 + 4B1 + 2E_1 + 4E2
|
||||
// 其中,B1 表示没有拉曼活性,它的拉曼张量为零;其它表示的拉曼张量不为零,但张量的大小是否足够大到可以在实验上看到,则还需要第一性原理计算,不能直接通过表示来判断。
|
||||
// 我们的计算结果如表所示。其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。
|
||||
// 其中,xxx 和xxx 位于强模式的附近,它们在实验上无法看到;xxx 只在 z 方向入射/散射时可以看到;xxx 则在任意方向都能看到。
|
||||
|
||||
The 18 negligible-polar phonons correspond to 14 irreducible representations of the C#sub[6v] point group:
|
||||
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
|
||||
Phonons belonging to A#sub[1] and B#sub[1] representations are non-degenerate,
|
||||
while phonons belonging to E#sub[1] and E#sub[2] representations are doubly degenerate.
|
||||
Phonons belonging to B#sub[1] representation are Raman inactive, as their Raman tensors vanish.
|
||||
In contrast, the Raman tensors of phonons belonging to other representations have non-zero components,
|
||||
Phonons belonging to B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
|
||||
In contrast, phonons belonging to other representations are Raman-active,
|
||||
the Raman tensors of them have non-zero components,
|
||||
indicating that these phonons might be visible in Raman experiment under appropriate polarization configurations.
|
||||
However, the actual visibility of each phonon depends on the magnitudes of its Raman tensor components,
|
||||
which cannot be inferred solely from symmetry analysis.
|
||||
@@ -187,59 +185,34 @@ However, the actual visibility of each phonon depends on the magnitudes of its R
|
||||
* 写出各个模式的拉曼张量(上面的线性组合)。即可以直接看到结果。
|
||||
*/
|
||||
|
||||
// 我们计算了这些声子的拉曼张量与线宽,并与实验对比,结果如表所示。
|
||||
// 不同方向入射/散射光的拉曼实验对应于 Gamma 附近、偏向于不同方向的声子。
|
||||
// 其中 $\mathrm{A_1}$、$\mathrm{B_1}$ 为一维表示,对应于无简并的声子;$\mathrm{E_1}$、$\mathrm{E_2}$ 为二维表示,对应于二重简并的声子。
|
||||
// 在拉曼实验中,起作用的声子并不严格在 Gamma 点;但大多数声子的色散谱在 Gamma 点连续且导数(斜率)为零,因此大多情况下可以沿用这个分类,少数情况我们稍后会专门讨论。
|
||||
// 我们计算了拉曼活性声子的拉曼张量。
|
||||
// 其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。
|
||||
// 其中,xxx 和xxx 位于强模式的附近,它们在实验上无法看到;xxx 只在 z 方向入射/散射时可以看到;xxx 则在任意方向都能看到。
|
||||
// 我们同样计算了这些声子在 300K 下的展宽,并与实验对比,结果如表所示。原子的振幅另外列于附录中。
|
||||
|
||||
The Raman tensors of these Raman-active phonons were calculated using first-principles methods,
|
||||
and the results are summarized and compared with experimental results in @nopol.
|
||||
Some Raman-active phonons are not visible in experiments,
|
||||
including E#sub[1] at ~746.91 cm#super[-1] and E#sub[2] at ~764.33 cm#super[-1],
|
||||
causing their Raman intensity are relatively low and located close to strong modes.
|
||||
The A#sub[1] phonon at ~812.87 cm#super[-1] is only visible
|
||||
when both the incident and scattered light propagate along the z-direction,
|
||||
since its Raman intensity in basal plane is too week to be recognized from the background.
|
||||
We also calculated the linewidthes of these phonons at 300 K and compared them with experimental results,
|
||||
as summarized in the table.
|
||||
The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
|
||||
// 4H-SiC 在 Gamma 点的声子共有 21 个模式,这些模式对应于点群 $\mathrm{C_{6v}}$ 的 14 个表示($\mathrm{3A_1+4B_1+3E_1+4E_2}$,其中 $\mathrm{A_1}$、$\mathrm{B_1}$ 为一维表示,对应于无简并的声子;$\mathrm{E_1}$、$\mathrm{E_2}$ 为二维表示,对应于二重简并的声子)。在拉曼实验中,起作用的声子并不严格在 Gamma 点;但大多数声子的色散谱在 Gamma 点连续且导数(斜率)为零,因此大多情况下可以沿用这个分类,少数情况我们稍后会专门讨论。
|
||||
|
||||
|
||||
// 我们计算了 4H-SiC 在 A-Gamma 和 Gamma-M 上的声子频率,如图和附录1所示。
|
||||
// 在拉曼散射中,起作用的模式都是那些非常接近于 Gamma 的模式
|
||||
// (如图中的点所示,分为位于 1/50 和 1/100 处,这两条线分别对应于拉曼散射在 z 方向入射/散射和 y 方向入射/散射)。
|
||||
// 大多数声子模式在 Gamma 附近都是连续的,这使得它们的频率对入射光的方向不敏感;
|
||||
// 然而,少数声子具有较强的极性,这使得声子之间存在长程的库伦相互作用(引用文献),并导致 gamma 附近的频率不同,如图中的某两条线所示。
|
||||
// 据此,我们将无缺陷的 4H-SiC 的声子分成三类:
|
||||
// 无拉曼活性或拉曼散射强度太弱的模式,它们在拉曼散射谱上不可见;
|
||||
// 拉曼散射强度足够大且极性不强的模式,它们在拉曼散射谱上可以看到,且频率与拉曼入射光方向无关;
|
||||
// 极性声子,它们在拉曼散射谱上可以看到,不仅频率与入射光方向有关,而且可与载流子发生一些相互作用。
|
||||
|
||||
// Phonons in defect-free 4H-SiC are calculated at A-$Gamma$ and $Gamma$-M,
|
||||
// as shown in Figure \ref{fig:phonon} and Table \ref{tab:phonon}.
|
||||
// Raman active phonons are very close to $Gamma$,
|
||||
// as indicated by the points in the figure.
|
||||
// Because of the consistency of the most phonon modes near $Gamma$,
|
||||
// most of the phonon frequencies are insensitive to the direction of the incident light.
|
||||
// However, some phonons have strong polarities,
|
||||
// which leads to long-range Coulomb interactions between phonons,
|
||||
// and results in different frequencies near $Gamma$,
|
||||
// as shown by the two lines in the figure.
|
||||
// Thus, we divide the phonons of defect-free 4H-SiC into three categories:
|
||||
// (1) Raman inactive or too weak Raman intensity,
|
||||
// which are invisible in the Raman scattering spectrum;
|
||||
// (2) Raman active phonons with strong polarities,
|
||||
// which are visible in the Raman scattering spectrum,
|
||||
// and their frequencies are independent of the direction of the incident light;
|
||||
// (3) Polar phonons,
|
||||
// which are visible in the Raman scattering spectrum,
|
||||
// and their frequencies depend on the direction of the incident light,
|
||||
// and can interact with carriers.
|
||||
|
||||
#page(flipped: true)[
|
||||
#let m(n, content) = table.cell(colspan: n, content);
|
||||
#let mCell(n, content) = m(n, content);
|
||||
#let A1 = [A#sub[1]];
|
||||
#let A2 = [A#sub[2]];
|
||||
#let B1 = [B#sub[1]];
|
||||
#let B2 = [B#sub[2]];
|
||||
#let E1 = [E#sub[1]];
|
||||
#let E2 = [E#sub[2]];
|
||||
#figure(
|
||||
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
[*Direction of Incident & Scattered Light*],
|
||||
m(26)[Any direction (not depend on direction of incident & scattered light)],
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let A1 = [A#sub[1]];
|
||||
// let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
// let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
table(columns: 27, align: center + horizon, inset: (x: 2pt, y: 5pt),
|
||||
// [*Direction of Incident & Scattered Light*],
|
||||
// m(26)[Any direction (not depend on direction of incident & scattered light)],
|
||||
[*Number of Phonon*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[1], m(2)[2], [3], m(2)[4], [5], [6], [7], [8], m(3)[9],
|
||||
@@ -252,10 +225,10 @@ However, the actual visibility of each phonon depends on the magnitudes of its R
|
||||
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], [z], [z],
|
||||
[*Representation in Group C#sub[6v]*],
|
||||
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
|
||||
[*Representation in Group C#sub[2v]*],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
|
||||
[*Scattering in Polarization*],
|
||||
// [*Representation in Group C#sub[2v]*],
|
||||
// // E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
// A2, m(2, A1), A2, m(2, A1), B2, B1, B1, B1, m(3, A1), B2, B1, A2, m(2, A1), A2, m(2, A1), m(3, A1), B1, B1,
|
||||
[*Scattering in Polarization#linebreak() (non-zero Raman tenser components)*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[xy], [xx], [yy], [xy], [xx], [yy], [xz], [yz], [-], [-], [xx], [yy], [zz],
|
||||
// E1 E2 E2 A1 2B1
|
||||
@@ -280,15 +253,34 @@ However, the actual visibility of each phonon depends on the magnitudes of its R
|
||||
m(3)[195.5], m(3)[203.3], m(2)[269.7], [-], [-], m(3)[609.5],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[776], m(3)[-], m(2)[-], [839], [-], [-],
|
||||
[*FWHM (Simulation) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[1.11], m(3)[1.11], m(2)[1.11], [-], [-], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[1.11], m(3)[1.11], m(3)[1.11], m(3)[1.11], [-], [-],
|
||||
[*FWHM (Experiment) (cm#super[-1])*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[1.11], m(3)[1.11], m(2)[1.11], [-], [-], m(3)[591.90],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[-], m(3)[1.11], m(3)[-], m(3)[1.11], [-], [-],
|
||||
[*Electrical Polarity*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
m(3)[None], m(3)[None], m(2)[Weak], [None], [None], m(3)[Weak],
|
||||
// E1 E2 E2 A1 2B1
|
||||
m(2)[Weak], m(3)[None], m(3)[None], m(3)[Weak], [None], [None],
|
||||
),
|
||||
)},
|
||||
caption: [Weak- and None-polarized phonons near $Gamma$ point],
|
||||
)
|
||||
)<nopol>]
|
||||
|
||||
#page(flipped: true)[
|
||||
#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
let NA = [Not Applicable];
|
||||
let yzmix = [y-z mixed#linebreak() (LO-TO mixed)];
|
||||
let lopc = [Yes#linebreak() (LOPC)];
|
||||
|
||||
Reference in New Issue
Block a user