This commit is contained in:
@@ -1,8 +1,10 @@
|
||||
#import "@preview/starter-journal-article:0.4.0": article, author-meta
|
||||
#import "@preview/tablem:0.2.0": tablem
|
||||
#set par.line(numbering: "1")
|
||||
// TODO: fix indent of first line
|
||||
#show figure.caption: it => {
|
||||
set text(10pt)
|
||||
// TODO: how to align correctly?
|
||||
align(center, box(align(left, it), width: 80%))
|
||||
}
|
||||
#set page(
|
||||
@@ -13,7 +15,8 @@
|
||||
// ],
|
||||
numbering: "1/1",
|
||||
)
|
||||
#set figure(placement: none)
|
||||
// TODO: why globally set placement not work?
|
||||
// #set figure(placement: none)
|
||||
#show: article.with(
|
||||
title: "Article Title",
|
||||
authors: (
|
||||
@@ -71,6 +74,7 @@ Among these techniques,
|
||||
that near the #sym.Gamma point in reciprocal space.
|
||||
Studies in Raman scattering of 4H-SiC have been conducted since as early as 1983
|
||||
and have been widely employed to identification of different SiC polytypes.
|
||||
// TODO: 增加引用文献
|
||||
|
||||
// 近年来,更多信息被从拉曼光谱中挖掘出来。
|
||||
// LOPC 已经被用于快速估计 n 型 SiC 的掺杂浓度。
|
||||
@@ -87,37 +91,57 @@ Moreover, the potential effects of doping on Raman spectra have been explored.
|
||||
However, some unidentified peaks still appear in the Raman spectra,
|
||||
while certain phonon modes predicted by theory remain unobserved.
|
||||
In addition, the origins of newly emerged peaks induced by doping are often unclear or unexplained.
|
||||
// TODO: 多举例,增加引用文献
|
||||
|
||||
In this paper, we do some things. We do something for the first time.
|
||||
In this paper, we do some things. Especially we do something for the first time.
|
||||
// TODO: 完善
|
||||
|
||||
= Method
|
||||
|
||||
// TODO
|
||||
|
||||
calc
|
||||
|
||||
experiment
|
||||
|
||||
= Results and Discussion
|
||||
|
||||
== Phonons in Perfect 4H-SiC
|
||||
|
||||
// 拉曼活性的声子模式对应于 Gamma 点附近的声子模式。
|
||||
// 根据这些声子模式的极性,我们将这些声子分成两类。
|
||||
Raman scattering peeks correspond to phonons located near the #sym.Gamma point in reciprocal space.
|
||||
We classified these phonons into two categories based on their polarities:
|
||||
(i) negligible-polar phonons (i.e., phonons with no polarity or very weak polarity),
|
||||
whose dispersion curves are continuous near the #sym.Gamma point (as shown in @phonon),
|
||||
and for which the effect of polarity can be ignored in the Raman scattering process;
|
||||
and (ii) strong-polar phonons,
|
||||
whose dispersion curves exhibit discontinuity near the #sym.Gamma point (also shown in @phonon),
|
||||
Raman scattering peeks correspond to atom vibrations (phonons) located near the #sym.Gamma point in reciprocal space,
|
||||
and the exact location of these phonons is determined by the wavevectors of incident and scattered light.
|
||||
On each site of the Brillouin zone near the #sym.Gamma point,
|
||||
there are 21 phonon modes in 4H-SiC.
|
||||
We classified these phonons into two categories based on their polarities.
|
||||
18 of 21 phonons are classified into negligible-polar phonons (i.e., phonons with zero or very weak polarity),
|
||||
for which the effect of polarity can be ignored in the Raman scattering process;
|
||||
and the other three phonons are strong-polar phonons,
|
||||
where the polarity gives rise to observable effects in the Raman spectra.
|
||||
This classification is based on the fact that
|
||||
the four Si atoms in the primitive cell carry similar positive Born effective charges (BECs),
|
||||
and the four C atoms carry similar negative BECs (see @table-bec).
|
||||
In the 18 negligible-polar phonons,
|
||||
the vibrations of two Si atoms are approximately opposite to those of the other two Si atoms,
|
||||
so do C atoms,
|
||||
leading to cancellations of macroscopic polarity.
|
||||
While in the three strong-polar phonons,
|
||||
all Si atoms vibrate in the same direction, so do C atoms,
|
||||
leading to a net dipole moment.
|
||||
|
||||
#figure(
|
||||
image("/画图/声子不连续/embed.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
]
|
||||
)<phonon>
|
||||
table(columns: 4, align: center + horizon,
|
||||
table.cell(colspan: 2)[], table.cell(colspan: 2)[*BEC* (unit: |e|)],
|
||||
table.cell(colspan: 2)[], [x / y direction], [z direction],
|
||||
table.cell(rowspan: 2)[Si atom], [A/C layer], [2.667], [2.626],
|
||||
[B layer], [2.674], [2.903],
|
||||
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730],
|
||||
[B layer], [-2.648], [-2.800],
|
||||
),
|
||||
caption: [Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC.],
|
||||
placement: none,
|
||||
)<table-bec>
|
||||
|
||||
=== Phonons with Negligible Polarities
|
||||
|
||||
@@ -131,49 +155,51 @@ Phonons at the #sym.Gamma point were used
|
||||
This approximation is widely adopted and justified by the fact that,
|
||||
although the phonons participating in Raman processes are not these strictly located at the #sym.Gamma point,
|
||||
their dispersion near the #sym.Gamma point is continuous with vanishing derivatives,
|
||||
and their wavevector is very small (about 0.01 nm#super[-1] in this paper,
|
||||
and their wavevector is very small (about 0.01 nm#super[-1] in back-scattering configurations with 532 nm laser light,
|
||||
which corresponds to only 1% of the smallest reciprocal lattice vector of 4H-SiC),
|
||||
as shown by the orange dotted line in @phonon.
|
||||
as shown by the orange dotted line in @figure-discont.
|
||||
Therefore, negligible-polar phonons involved in Raman processes
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point.
|
||||
|
||||
// 4H-SiC 在 Gamma 有 21 个distinct phonons。
|
||||
// 其中 18 个被归类为极性较弱的声子。这是因为,4H-SiC 的原胞中,4 个 Si 原子所带的有效电荷差别不大,四个 C 原子所带的有效电荷差别也不大。
|
||||
// 在这些声子模式中,原胞中的 2 个 Si 原子运动方向与另外 2 个 Si 原子相反,2 个 C 原子的运动方向与另外 2 个 C 原子相反,极性相互抵消。
|
||||
There are 21 distinct phonons at the #sym.Gamma point in 4H-SiC.
|
||||
Among them, 18 phonons are classified as negligible-polar phonons.
|
||||
This classification is based on the fact that
|
||||
the four Si atoms in the primitive cell carry similar Born effective charges (BEC),
|
||||
as do the four C atoms, as shown in @bec.
|
||||
In these 18 modes, the vibrations of two Si atoms are approximately opposite to those of the other two Si atoms,
|
||||
and similarly for the C atoms,
|
||||
leading to cancellations of macroscopic polarity.
|
||||
have nearly indistinguishable properties from those at the #sym.Gamma point,
|
||||
and the phonon participating in Raman processes of different incident/scattered light directions
|
||||
are all nearly identical to the phonons at the #sym.Gamma point.
|
||||
|
||||
#figure(
|
||||
table(columns: 4, align: center + horizon,
|
||||
table.cell(colspan: 2)[], table.cell(colspan: 2)[*BEC*],
|
||||
table.cell(colspan: 2)[], [x / y direction], [z direction],
|
||||
table.cell(rowspan: 2)[Si atom], [A/C layer], [2.667], [2.626],
|
||||
[B layer], [2.674], [2.903],
|
||||
table.cell(rowspan: 2)[C atom], [A/C layer], [-2.693], [-2.730],
|
||||
[B layer], [-2.648], [-2.800],
|
||||
),
|
||||
caption: [Born effective charges of Si and C atoms in A/B/C/B layers of 4H-SiC.]
|
||||
)<bec>
|
||||
image("/画图/声子不连续/embed.svg"),
|
||||
caption: [
|
||||
(a) Phonon dispersion of 4H-SiC along the A–#sym.Gamma–K high-symmetry path.
|
||||
Gray lines represent negligible-polar phonon modes,
|
||||
while colored lines indicate strong-polar phonon modes.
|
||||
The green, red and blue lines indicate the mode along the z-direction, y-direction and x-direction, respectively.
|
||||
Along A-#sym.Gamma path, strong-polar modes along x- and y-directions are degenerated,
|
||||
showing as a single purple line.
|
||||
(b) Magnified view of the boxed region in (a).
|
||||
The orange dashed lines mark the phonon wavevectors involved in Raman scattering
|
||||
with incident light along the z- and y-directions.
|
||||
],
|
||||
placement: none,
|
||||
)<figure-discont>
|
||||
|
||||
// 这18个声子对应于 $\mathrm{C_{6v}}$ 点群的 14 个表示:2A1 + 4B1 + 2E_1 + 4E2
|
||||
// 其中,B1 表示没有拉曼活性,它的拉曼张量为零;其它表示的拉曼张量不为零,但张量的大小是否足够大到可以在实验上看到,则还需要第一性原理计算,不能直接通过表示来判断。
|
||||
// 其中,B1 表示没有拉曼活性,它的拉曼张量为零;其它表示的拉曼张量不为零
|
||||
// 但张量的大小是否足够大到可以在实验上看到,则还需要第一性原理计算,不能直接通过表示来判断。
|
||||
The 18 negligible-polar phonons correspond to 14 irreducible representations of the C#sub[6v] point group:
|
||||
2A#sub[1] + 4B#sub[1] + 2E#sub[1] + 4E#sub[2].
|
||||
Phonons belonging to A#sub[1] and B#sub[1] representations are non-degenerate,
|
||||
while phonons belonging to E#sub[1] and E#sub[2] representations are doubly degenerate.
|
||||
Phonons belonging to A#sub[1] and B#sub[1] representations vibration along z-axis and are non-degenerate,
|
||||
while phonons belonging to E#sub[1] and E#sub[2] representations vibrate in plane and are doubly degenerate.
|
||||
Phonons belonging to B#sub[1] representation are Raman-inactive, as their Raman tensors vanish.
|
||||
In contrast, phonons belonging to other representations are Raman-active,
|
||||
the Raman tensors of them have non-zero components,
|
||||
indicating that these phonons might be visible in Raman experiment under appropriate polarization configurations.
|
||||
// 各个模式的声子可以使用怎样的偏振光看到(即拉曼张量的非零分量)可以联合考虑 C6v 和 C2v 的表示来判断,如表所示。
|
||||
// TODO: 翻译
|
||||
However, the actual visibility of each phonon depends on the magnitudes of its Raman tensor components,
|
||||
which cannot be inferred solely from symmetry analysis.
|
||||
which cannot be computed solely from symmetry analysis.
|
||||
|
||||
// TODO: 画个表
|
||||
|
||||
Here we propose a method to estimate the magnitudes of the Raman tensors of these phonons.
|
||||
|
||||
// TODO: 写出来这个方法,并验证。
|
||||
/*
|
||||
这里应该有办法来估计。下面是我总结的规律:
|
||||
按照我们规定的 ABCB 层序,并将拉曼张量的大小归结为键长的变化的话:
|
||||
@@ -191,12 +217,12 @@ However, the actual visibility of each phonon depends on the magnitudes of its R
|
||||
* 写出各个模式的拉曼张量(上面的线性组合)。即可以直接看到结果。
|
||||
*/
|
||||
|
||||
// 我们计算了拉曼活性声子的拉曼张量。
|
||||
// 我们计算了拉曼活性声子的频率及拉曼张量,并与实验对比,如表如图所示。
|
||||
// 其中有几个声子的拉曼活性较弱,有几个比较强。强的都可以在实验上看到;但弱的能否看到则取决于它是否恰好位于强模式的附近。
|
||||
// 其中,xxx 和xxx 位于强模式的附近,它们在实验上无法看到;xxx 只在 z 方向入射/散射时可以看到;xxx 则在任意方向都能看到。
|
||||
// 我们同样计算了这些声子在 300K 下的展宽,并与实验对比,结果如表所示。原子的振幅另外列于附录中。
|
||||
The Raman tensors of these Raman-active phonons were calculated using first-principles methods,
|
||||
and the results are summarized and compared with experimental results in @nopol.
|
||||
and the results are summarized and compared with experimental results in @table-nopol.
|
||||
Two Raman-active modes are not observed in our experiments,
|
||||
including the E#sub[1] mode at 746.91 cm#super[-1] and the E#sub[2] mode at 764.33 cm#super[-1],
|
||||
due to their relatively low Raman intensities, broad FWHM values, and their proximity to stronger modes.
|
||||
@@ -205,7 +231,7 @@ The A#sub[1] phonon at 812.87 cm#super[-1] is Raman-active
|
||||
but it is only visible when both the incident and scattered light propagate along the z-direction (zz),
|
||||
as its Raman intensity in basal plane is too week to be distinguished from the noise.
|
||||
We also calculated the linewidths of these phonons at 300 K and compared them with experimental results,
|
||||
as summarized in the @nopol.
|
||||
as summarized in the @table-nopol.
|
||||
The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
|
||||
// TODO: 将一部分 phonons 改为 phonon modes
|
||||
@@ -214,6 +240,8 @@ The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
|
||||
#page(flipped: true)[#figure({
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let m2(content) = table.cell(colspan: 2, content);
|
||||
let m3(content) = table.cell(colspan: 3, content);
|
||||
let A1 = [A#sub[1]];
|
||||
// let A2 = [A#sub[2]];
|
||||
let B1 = [B#sub[1]];
|
||||
@@ -223,16 +251,15 @@ The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
table(columns: 27, align: center + horizon, inset: (x: 3pt, y: 5pt),
|
||||
// [*Direction of Incident & Scattered Light*],
|
||||
// m(26)[Any direction (not depend on direction of incident & scattered light)],
|
||||
// TODO: 整理表格,使用 m2 m3 来代替
|
||||
[*Number of Phonon*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[1], m(2)[2], [3], m(2)[4], [5], [6], [7], [8], m(3)[9],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[10], [11], [12], m(2)[13], [14], m(2)[15], m(3)[16], [17], [18],
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
[1], m2[2], [3], m2[4], [5], [6], [7], [8], m3[9], [10], [11], [12], m2[13], [14], m2[15], m3[16], [17], [18],
|
||||
[*Vibration Direction*],
|
||||
// E2 E2 E1 2B1 A1
|
||||
[x], m(2)[y], [x], m(2)[y], [x], [y], [z], [z], m(3)[z],
|
||||
[x], m2[y], [x], m(2)[y], [x], [y], m(2)[z], m(3)[z],
|
||||
// E1 E2 E2 A1 2B1
|
||||
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], [z], [z],
|
||||
[x], [y], [x], m(2)[y], [x], m(2)[y], m(3)[z], m(2)[z],
|
||||
[*Representation #linebreak() in Group C#sub[6v]*],
|
||||
m(3, E2), m(3, E2), m(2, E1), B1, B1, m(3, A1), m(2, E1), m(3, E2), m(3, E2), m(3, A1), B1, B1,
|
||||
[*Raman-active or Not*],
|
||||
@@ -279,8 +306,8 @@ The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
// E2 E2 E1 2B1 A1 E1 E2 E2 A1 2B1
|
||||
m(6)[None], m(2)[Weak], m(2)[None], m(5)[Weak], m(6)[None], m(3)[Weak], m(2)[None],
|
||||
)},
|
||||
caption: [Weak- and None-polarized phonons near $Gamma$ point],
|
||||
)<nopol>]
|
||||
caption: [Negaligible-polarized Phonons at $Gamma$ Point],
|
||||
)<table-nopol>]
|
||||
|
||||
#figure(
|
||||
image("/画图/拉曼整体图/main.svg"),
|
||||
@@ -294,8 +321,29 @@ The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
]
|
||||
)<raman>
|
||||
|
||||
// TODO: 画一个模拟的图,与实验图对比。
|
||||
|
||||
// 实验与计算基本相符。对于声子频率,计算总是低估大约 3%。
|
||||
// 此外,一些较强的模式在预测无法看到的偏振中也可以看到。例如,一些在 xy 偏振中不应该看到的模式可以被看到了。
|
||||
// 这个现象可以由 4度的斜切所解释:我们将材料略微踮起一些角度,就可以使得该模式减小。
|
||||
// 这个现象也可以由材料或偏振片的微小角度来解释。
|
||||
// 例如,我们将偏振方向转动 5 度,就可以得到这个模拟结果。
|
||||
// 此外,由于使用的材料是沿着 c 轴切片的,所以我们在测量 y 入射时不得不将片子以略小于 90 度(约 75 度)的角度放置。这也导致实验与计算的偏差。
|
||||
// TODO: 翻译成英文
|
||||
|
||||
=== Strong-polar Phonons
|
||||
|
||||
// 在半导体的极性声子模式中,原子间存在长距离的库伦相互作用,导致散射谱在 Gamma 附近不再连续(引用),如图中的彩色线所示。
|
||||
// 这导致不同方向的入射/散射光的声子模式不同。
|
||||
// 具体来说,当入射光/散射光沿着 z 方向时,起作用的是 A-Gamma 线上的声子模式(图中的左半边的橘线),它们适用于群 C6v。
|
||||
// 这时会有一个 E1 模式(TO,振动方向在面内)和一个 A1 模式(LO,沿 z 振动)。
|
||||
// 而当沿着 y 方向入射时,起作用的是 Gamma-K 线上的声子模式(图中的右半边的橘线),它们不再适用于群 C6v,而只适用于群 C2v;
|
||||
// 它会分裂成沿x、y、z 方向的三个声子模式(图中的右半边的蓝线),它们分别对应于群 C2v 的 A1、B1 和 B2 表示 TODO: 确认这个几个表示的名字。
|
||||
// 若考虑到到入射光不是严格沿着 z 方向,而是有一个小的角度(例如 10 度),则此时有一个声子模式沿着 x 方向,另外两个声子模式则为 y-z 两个方向的混合。
|
||||
|
||||
#page(flipped: true)[
|
||||
#figure({
|
||||
// 使用 m2 m3
|
||||
let m(n, content) = table.cell(colspan: n, content);
|
||||
let A1 = [A#sub[1]];
|
||||
let A2 = [A#sub[2]];
|
||||
@@ -303,7 +351,7 @@ The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
let B2 = [B#sub[2]];
|
||||
let E1 = [E#sub[1]];
|
||||
let E2 = [E#sub[2]];
|
||||
let NA = [Not Applicable];
|
||||
let NA = [Not Applicable]
|
||||
let yzmix = [y-z mixed#linebreak() (LO-TO mixed)];
|
||||
let lopc = [Yes#linebreak() (LOPC)];
|
||||
let overf = [Yes#linebreak() (overfocused)];
|
||||
@@ -339,4 +387,8 @@ The atomic vibration amplitudes are listed separately in the Appendix.
|
||||
)
|
||||
]
|
||||
|
||||
// TODO: 这句话放哪里?
|
||||
// whose dispersion curves exhibit discontinuity near the #sym.Gamma point (also shown in @phonon),
|
||||
|
||||
|
||||
#bibliography("./ref.bib", title: "Reference", style: "american-physics-society")
|
||||
|
||||
Reference in New Issue
Block a user